+ All Categories
Home > Documents > Plasmonic hot carrier-driven oxygen evolution reaction on ... · c Graduate School of EEWS, Korea...

Plasmonic hot carrier-driven oxygen evolution reaction on ... · c Graduate School of EEWS, Korea...

Date post: 26-Sep-2020
Category:
Upload: others
View: 0 times
Download: 0 times
Share this document with a friend
13
1 Electronic Supplementary Information Plasmonic hot carrier-driven oxygen evolution reaction on Au nanoparticles/TiO 2 nanotube arrays Song Yi Moon a,b , Hee Chan Song b,c , Eun Heui Gwag b,c , Ievgen I. Nedrygailov b , Changhwan Lee b,c , Jeong Jin Kim b , Won Hui Doh b and Jeong Young Park* ,a,b,c a Department of Chemistry, Korea Advanced Institute of Science and Technology (KAIST), Daejeon 34141, Republic of Korea b Center for Nanomaterials and Chemical Reactions, Institute for Basic Science (IBS), Daejeon 34141, Republic of Korea c Graduate School of EEWS, Korea Advanced Institute of Science and Technology (KAIST), Daejeon 34141, Republic of Korea *To whom correspondence should be addressed. E-mail: [email protected] KEYWORDS: surface plasmon resonance, hot electron, Schottky barrier, oxygen evolution reaction, solar water splitting, nanostructure Electronic Supplementary Material (ESI) for Nanoscale. This journal is © The Royal Society of Chemistry 2018
Transcript
Page 1: Plasmonic hot carrier-driven oxygen evolution reaction on ... · c Graduate School of EEWS, Korea Advanced Institute of Science and Technology (KAIST), Daejeon 34141, Republic of

1

Electronic Supplementary Information

Plasmonic hot carrier-driven oxygen evolution reaction on Au

nanoparticles/TiO2 nanotube arrays

Song Yi Moona,b, Hee Chan Songb,c, Eun Heui Gwagb,c, Ievgen I. Nedrygailovb,

Changhwan Leeb,c, Jeong Jin Kimb, Won Hui Dohb and Jeong Young Park*,a,b,c

a Department of Chemistry, Korea Advanced Institute of Science and Technology (KAIST),

Daejeon 34141, Republic of Korea b Center for Nanomaterials and Chemical Reactions, Institute for Basic Science (IBS),

Daejeon 34141, Republic of Korea

c Graduate School of EEWS, Korea Advanced Institute of Science and Technology (KAIST),

Daejeon 34141, Republic of Korea

*To whom correspondence should be addressed. E-mail: [email protected]

KEYWORDS: surface plasmon resonance, hot electron, Schottky barrier, oxygen evolution

reaction, solar water splitting, nanostructure

Electronic Supplementary Material (ESI) for Nanoscale.This journal is © The Royal Society of Chemistry 2018

Page 2: Plasmonic hot carrier-driven oxygen evolution reaction on ... · c Graduate School of EEWS, Korea Advanced Institute of Science and Technology (KAIST), Daejeon 34141, Republic of

2

Figure S1. Au particle size distributions on the titania nanotube arrays (TNAs). Scanning electron

microscopy images and corresponding histograms showing the size distributions of the Au

nanoparticles (NPs) on the surface of the TNAs for (a,b,c) 29 nm Au NPs, (d,e,f) 14.9 nm Au NPs,

and (g,h,i) 4.9 nm Au NPs.

Page 3: Plasmonic hot carrier-driven oxygen evolution reaction on ... · c Graduate School of EEWS, Korea Advanced Institute of Science and Technology (KAIST), Daejeon 34141, Republic of

3

Figure S2. (a) High-angle annular dark-field scanning transmission electron microscope (HAADF-

STEM) image showing the 5 nm Au NPs@TNAs. (b) High-resolution transmission electron

microscope (HRTEM) image obtained at the interface between the Au NPs and the TiO2. (c)

Energy dispersive spectroscopy (EDS) spectrum of a 5 nm Au NPs@TNAs (2.67 wt%) sample

showing the presence of Au.

Page 4: Plasmonic hot carrier-driven oxygen evolution reaction on ... · c Graduate School of EEWS, Korea Advanced Institute of Science and Technology (KAIST), Daejeon 34141, Republic of

4

Figure S3. X-ray diffraction (XRD) patterns for the 5 nm Au NPs@TNAs. The XRD pattern for Ti foil

is also shown for reference.

20 30 40 50 60 70 80

5 nmAu NPs@TNAs

TNAsAu

(200

)A(

200)

A(00

4)

A(20

4)

A(21

1)A(

105)

Au(2

20)

A(21

5)Ti

(112

)

Ti(1

03)

Ti(1

10)

Ti(1

02)

Ti(1

01)

Au(1

11)

A(10

3)

A(10

1)

Inte

nsity

(a.u

.)

2 theta (degree)

Ti foil

Page 5: Plasmonic hot carrier-driven oxygen evolution reaction on ... · c Graduate School of EEWS, Korea Advanced Institute of Science and Technology (KAIST), Daejeon 34141, Republic of

5

Figure S4. Optical properties of the Au NPs@TNAs. (a) UV–vis absorption spectra of the Au

nanoparticles. (b) UV–vis absorption spectra of the 5, 15, and 30 nm Au NPs@TNAs calculated

using the relation %A = 100 − (%T + %R).

%A =100-(%

T + %R

)

400 450 500 550 600 650 7000.0

0.2

0.4

0.6

0.8

1.0

1.2

528nm

524nm

Abso

rban

ce (a

.u.)

Wavelength (nm)

5 nm Au NPs 15 nm Au NPs30 nm Au NPs

520nm

(a) (b)

300 400 500 600 700 8000

20

40

60

80

10030 nm Au NPs@TNAs15 nm Au NPs@TNAs 5 nm Au NPs@TNAs TNAs

Wavelength (nm)Ab

sorp

tion

(%)

Page 6: Plasmonic hot carrier-driven oxygen evolution reaction on ... · c Graduate School of EEWS, Korea Advanced Institute of Science and Technology (KAIST), Daejeon 34141, Republic of

6

Figure S5. Optical properties of the Au NPs@TNAs. (a) Transmission spectra and (b) UV–vis

absorption spectra of the 5, 15, and 30 nm Au NPs@TNAs.

300 400 500 600 700 8000

20

40

60

80

100

Tran

smiss

ion

(%)

Wavelength (nm)

30 nm Au NPs@TNAs 15 nm Au NPs@TNAs 5 nm Au NPs@TNAs

300 400 500 600 700 8000

20

40

60

80

100

Wavelength (nm)

Refle

ctio

n (%

)

30 nm Au NPs@TNAs 15 nm Au NPs@TNAs 5 nm Au NPs@TNAs

(a) (b)

Page 7: Plasmonic hot carrier-driven oxygen evolution reaction on ... · c Graduate School of EEWS, Korea Advanced Institute of Science and Technology (KAIST), Daejeon 34141, Republic of

7

Figure S6. TEM characterization with Au loading dependence. TEM images of the 5 nm Au

NPs@TNAs electrode with gold loading between 0.52 and 4.75 wt%.

Page 8: Plasmonic hot carrier-driven oxygen evolution reaction on ... · c Graduate School of EEWS, Korea Advanced Institute of Science and Technology (KAIST), Daejeon 34141, Republic of

8

Figure S7. Photoelectrochemical performance with the optimum loading amount of Au. (a) Linear

sweep voltammetry of the Au NPs@TNAs electrodes with different gold loading under white light

illumination. (b) Photocurrent density as a function of gold loading for the Au NPs@TNAs

electrodes under white and visible light illumination.

0.0 0.2 0.4 0.6 0.8 1.0 1.2 1.40.0

0.5

1.0

1.5

2.0

Curre

nt d

ensit

y (m

A/cm

2 )

Potential (V vs RHE)

TNAs Au NPs@TNAs (0.52 wt%) Au NPs@TNAs (1.29 wt%) Au NPs@TNAs (2.67 wt%) Au NPs@TNAs (4.75 wt%)

(a) (b)

0 1 2 3 4 5

0.5

1.0

1.5

2.0

2.5

3.0

Phot

ocur

rent

den

sity

(mA/

cm2 )

Under white light Under visible light

0

50

100

150

200

Amount of Au loading (wt%)

Pho

tocu

rrent

den

sity

(μA/

cm2 )

Page 9: Plasmonic hot carrier-driven oxygen evolution reaction on ... · c Graduate School of EEWS, Korea Advanced Institute of Science and Technology (KAIST), Daejeon 34141, Republic of

9

Calculation of Decay Lifetime. The decay lifetime can be calculated by fitting the V–t curves to a

biexponential function () = + / + / and the harmonic mean of the

lifetime (τm) is obtained by = ()/( + ) . Finally, the total lifetimes estimated by log(2

x τm) of the bare TNAs, 30 nm Au NPs@TNAs, 15 nm Au NPs@TNAs, and 5 nm Au NPs@TNAs are

0.68, 0.63, 0.49, and 0.27 s, respectively.

Figure S8. Photovoltage–time spectra collected for (a) bare TNAs and (b) 30nm Au NPs@TNAs,

(c) 15nm Au NPs@TNAs, and (d) 5nm Au NPs@TNAs.

Page 10: Plasmonic hot carrier-driven oxygen evolution reaction on ... · c Graduate School of EEWS, Korea Advanced Institute of Science and Technology (KAIST), Daejeon 34141, Republic of

10

Figure S9. Calculation of the Schottky barrier height. Fitting of the experimental current–voltage

curves to the thermionic emission equation for (a) 40 nm Au NPs@TNAs and (b) 76 nm Au

NPs@TNAs.

(a) (b)

0.0 0.5 1.0 1.5 2.00

10

20

30

Current Fitting Line

Curre

nt (p

A)

Tip Bias (V)0.0 0.5 1.0 1.5 2.0

0

5

10

15

20

Current Fitting Line

Curre

nt (p

A)Tip Bias (V)

Page 11: Plasmonic hot carrier-driven oxygen evolution reaction on ... · c Graduate School of EEWS, Korea Advanced Institute of Science and Technology (KAIST), Daejeon 34141, Republic of

11

Figure S10. Ultraviolet photoelectron spectroscopy (UPS) spectra. (a) Valence band edges from

the Au NPs@TNAs. (b) Secondary electron emission spectra observed for 130 eV photons incident

on the Au NPs@TNAs.

7 6 5 4 3 2 1 0 -1

Inte

nsity

(a.u

.)

VBm= 3.23 eV

Binding energy (eV)

TNAs

30 nm Au NPs@TNAs

15 nm Au NPs@TNAs

5nm Au NPs@TNAs

VBm= 3.16 eV

VBm= 3.03 eV

VBm= 2.94 eV

48.6 48.8 49.0 49.2 49.4 49.6

Inte

nsity

(a.u

.)

Binding Energy (eV)

5 nm Au@TNAs15 nm Au@TNAs30nm Au@TNAs TNAs

hλ= 130 eVBias = -5.0 V

(a)

(b)

Page 12: Plasmonic hot carrier-driven oxygen evolution reaction on ... · c Graduate School of EEWS, Korea Advanced Institute of Science and Technology (KAIST), Daejeon 34141, Republic of

12

Finite-Difference Time-Domain (FDTD) Simulation. The FDTD simulation model was based on

TEM images (Figure S2). All the simulations were carried out in three spatial dimensions that are

periodic in the x- and y-directions and the perfectly matched layer (PML) was used in the z-

direction. The incident light was a plane wave at 537 nm, which is the wavelength of the strongest

LSPR excitation.

Figure S11. Electric field distribution formed at the Au NPs@TNAs. The gold nanoparticle sizes

are (a) 5, (b) 15, and (c) 30 nm. The field images are a cross-section of the Au NPs@TNAs and are

output from the FDTD simulation.

Page 13: Plasmonic hot carrier-driven oxygen evolution reaction on ... · c Graduate School of EEWS, Korea Advanced Institute of Science and Technology (KAIST), Daejeon 34141, Republic of

13

Table S1. Atomic weight percentage of Au in the EDX and XPS spectra.

Au wt % on TiO2 30 nm Au NPs @TNAs

15 nm Au NPs @TNAs

5 nm Au NPs @TNAs

EDX - Au (L) % 12.095±0.40 3.761±0.14 1.294±0.25

XPS - Au (4f) % 14.863±0.85 4.367±0.43 1.49±0.16 (Amount of Au loading was analyzed at several different spots in the sample)

Table S2. Parameters obtained from fitting the thermionic emission equation to current–voltage

(I–V) curves measured on the plasmonic Au NPs@TNAs.

Au NPs diameter (nm)

SBH (φb) Ideal factor (η)

20 0.565 eV 11.9 23 0.52 eV 12 25 0.579 eV 9.2 31 0.571 eV 7.5 35 0.577 eV 7.8 40 0.593 eV 6.32 49 0.64 eV 5.07 58 0.70 eV 4.3 60 0.715 eV 3.7 70 0.73 eV 3.8 75 0.76 eV 2.5


Recommended