+ All Categories
Home > Documents > Polar Fft Focm

Polar Fft Focm

Date post: 18-Feb-2018
Category:
Upload: kokoc25
View: 213 times
Download: 0 times
Share this document with a friend
68
7/23/2019 Polar Fft Focm http://slidepdf.com/reader/full/polar-fft-focm 1/68 -1- Fast Polar Fourier Transform Michael Elad* Scientific Computing and Computational Mathematics Stanford University FoCM Conference, August 2002 Image and Signal Processing Workshop IMA - Minneapolis * Joint work with Dave Donoho (Stanford-Statistics),  Amir Averbuch (TAU-CS-Israel), and Ronald Coifman (Yale-Math)
Transcript
Page 1: Polar Fft Focm

7/23/2019 Polar Fft Focm

http://slidepdf.com/reader/full/polar-fft-focm 1/68

- 1 -

Fast Polar Fourier Transform

Michael Elad*Scientific Computing and Computational Mathematics

Stanford University

FoCM Conference, August 2002

Image and Signal Processing Workshop

IMA - Minneapolis

* Joint work with Dave Donoho (Stanford-Statistics), Amir Averbuch (TAU-CS-Israel), and Ronald Coifman (Yale-Math)

Page 2: Polar Fft Focm

7/23/2019 Polar Fft Focm

http://slidepdf.com/reader/full/polar-fft-focm 2/68

- 2 -

Collaborators

Dave DonohoStatistics Department

Stanford

 Amir AverbuchCS Department

Tel-Aviv University

Ronald CoifmanMath. Department

 Yale

Page 3: Polar Fft Focm

7/23/2019 Polar Fft Focm

http://slidepdf.com/reader/full/polar-fft-focm 3/68

- 3 -

Fast Polar Fourier Transform

FFT is one of top 10 algorithms of 20th century.

We'll extend utility of FFT algorithms to new

class of settings in image processing.

Create a tool which is:

Free of emotional involvement, &

Freely available over the internet.

Current Stage:

We have the tool, and its analysis,

Have not demonstrated applications yet.

Page 4: Polar Fft Focm

7/23/2019 Polar Fft Focm

http://slidepdf.com/reader/full/polar-fft-focm 4/68

- 4 -

 Agenda

1. Thinking Polar – Continuum

2. Thinking Polar – Discrete

3. Current State-Of-The-Art

4. Our Approach - General

5. The Pseudo-Polar Fast Transform

6. From Pseudo-Polar to Polar

7. Algorithm Analysis

8. Conclusions

Thinking Polar – Continuum Background&

Motivation

New Approach

and its

Results

Page 5: Polar Fft Focm

7/23/2019 Polar Fft Focm

http://slidepdf.com/reader/full/polar-fft-focm 5/68

- 5 -

1. Thinking Polar - Continuum

For today f(x,y) function of (x,y)∈ℜ2

Continuous Fourier Transform

( ) ( )( ) ( ) { }∫ ∫   −−=ℑ= dxdyiyvixuexpy,xf y,xf v,uf ̂

( ) ( )

( ) { }∫ ∫   θ⋅−θ⋅−=

=θ⋅θ⋅=θ

dxdy)sin(iy)cos(ixrexpy,xf 

)sin(r),cos(rf ̂,rf ~

Polar coordinates: u=r·cos(θ) , v=r·sin(θ)

Important Processes easy to continuum polar domain.

Page 6: Polar Fft Focm

7/23/2019 Polar Fft Focm

http://slidepdf.com/reader/full/polar-fft-focm 6/68

- 6 -

-5 -4 -3 -2 -1 0 1 2 3 4 5

-5

-4

-3

-2

-1

0

1

2

3

4

5

v

u

0 1 2 3 4 5 6 7

0

1

2

3

4

5

6

r

θ

1. Thinking Polar - Continuum

Page 7: Polar Fft Focm

7/23/2019 Polar Fft Focm

http://slidepdf.com/reader/full/polar-fft-focm 7/68

- 7 -

Natural Operations: 1. Rotation

Using the polar coordinates, rotation is simply a shift in

the angular variable.

1. Thinking Polar - Continuum

Qθ0 – planar rotation by θ0 degrees

Rotation

In polar coordinates – shift in angular variable

( ) { }y,xQf y,xf  00   θθ   =

( ) ( )0,rf ~,rf ~0

  θ−θ=θθ

h k l C

Page 8: Polar Fft Focm

7/23/2019 Polar Fft Focm

http://slidepdf.com/reader/full/polar-fft-focm 8/68

- 8 -

Natural Operations: 2. Scaling

Using the polar coordinates, 2D scaling is simply a 1D

scaling in the radial variable.

1. Thinking Polar - Continuum

Sα – planar scaling by a factor α

Scaling

In polar coordinates – 1D scale in radial variable

Log-Polar – shift in the radial variable.

( ) { }( )y,xSf y,xf    αα   =

( ) ( )θα⋅=θα ,rf 

~

Const,rf 

~

1 Thi ki P l C ti

Page 9: Polar Fft Focm

7/23/2019 Polar Fft Focm

http://slidepdf.com/reader/full/polar-fft-focm 9/68

- 9 -

Natural Operations: 3. Registration

Using the polar coordinates, rotation+shift registration

simply amounts to correlations.

1. Thinking Polar - Continuum

f(x,y) and g(x,y):

Goal: recover .

 Angular cross-correlation between

 – Estimate θ0.

Rotation & cross-correlation on regular Fourier transform

gives the shift.

( ) { } { }00 y,xy,xQgy,xf 0

  +=   θ

{ }000 ,y,x   θ

( ) ( )θθ ,rg~and,rf ~

1 Thi ki P l C ti

Page 10: Polar Fft Focm

7/23/2019 Polar Fft Focm

http://slidepdf.com/reader/full/polar-fft-focm 10/68

- 10 -

Natural Operations: 4. Tomography

Using the polar coordinates, we obtain a method to

obtain the Inverse Radon Transform.

1. Thinking Polar - Continuum

Radon Transform:

Goal: Given Rf(t,θ), recover f.

Projection-Slice-Theorem: .

Reconstruction: .

( ) ( )∫∫   −θ+θδ=θ dxdyt)sin(y)cos(x)y,x(f ,tRf 

( )( ) ( )θ=θℑ ,rf ~

,tRf 1

f f ̂f ~

Rf    aaa

1 Thinking Polar Continuum

Page 11: Polar Fft Focm

7/23/2019 Polar Fft Focm

http://slidepdf.com/reader/full/polar-fft-focm 11/68

- 11 -

More Natural Operations

1. Thinking Polar - Continuum

New orthonormal bases:

Ridgelets,

Curvelets,

Fourier Integral operations,

Ridgelet packets.

 Analysis of textures.

 Analysis of singularities.

More …

r

θ

Page 12: Polar Fft Focm

7/23/2019 Polar Fft Focm

http://slidepdf.com/reader/full/polar-fft-focm 12/68

- 12 -

 Agenda

1. Thinking Polar – Continuum

2. Thinking Polar – Discrete

3. Current State-Of-The-Art

4. Our Approach - General

5. The Pseudo-Polar Fast Transform

6. From Pseudo-Polar to Polar

7. Algorithm Analysis

8. Conclusions

Page 13: Polar Fft Focm

7/23/2019 Polar Fft Focm

http://slidepdf.com/reader/full/polar-fft-focm 13/68

- 13 -

2. Thinking Polar - Discrete

Certain procedures very important to digitize

Rotation,

Scaling,

Registration,

Tomography, and

These look so easy in continuous theory – Can’t we

use it in the discrete domain?

Why not Polar-FFT?

2 Thinking Polar - Discrete

Page 14: Polar Fft Focm

7/23/2019 Polar Fft Focm

http://slidepdf.com/reader/full/polar-fft-focm 14/68

- 14 -

The FFT Miracles

1D Discrete Fourier Transform

Uniformly sampled in time and frequency – FFT.

Complexity – O(5Nlog2N) instead of O(N2).

2. Thinking Polar - Discrete

2D Discrete Fourier Transform

Cartesian grid in space and frequency – Separability

Only 1D-FFT operations.

Smart memory management.

2 Thinking Polar - Discrete

Page 15: Polar Fft Focm

7/23/2019 Polar Fft Focm

http://slidepdf.com/reader/full/polar-fft-focm 15/68

- 15 -

2D DFT – Cartesian Grid

2. Thinking Polar Discrete

N

N

2π1

2

N

2

Nn,n2y

1x

21Nn2Nn2  −

−=

π=ωπ=ω

π-π

π

Page 16: Polar Fft Focm

7/23/2019 Polar Fft Focm

http://slidepdf.com/reader/full/polar-fft-focm 16/68

- 16 -

1D FFT to rows5N2logN

Cartesian2D-FFT 10N2logN

CartesianData

N-by-N

1D FFT to columns

5N2logN

2D FFT Complexity

Complexity: O(10N2log2N)

instead of O(N4

). Important Feature: All

operations are 1D

 – leading to

efficient cache usage

2. Thinking Polar - Discrete

Page 17: Polar Fft Focm

7/23/2019 Polar Fft Focm

http://slidepdf.com/reader/full/polar-fft-focm 17/68

- 17 -

Discrete Polar Coordinates?

2. Thinking Polar Discrete

Choice of grid?

π-π

π

,NS

nr

1NS

0nr

1r

1

=

  π=

rNS

π

Resulting with NSθ

rays with NSr

elements on each:

For Sθ=Sr=1, we

have N2 grid points.   θ

πNS2

1NS

0n

2

2NS

n2

  −

θ

  π=θ

ωx

ωy

2. Thinking Polar - Discrete

Page 18: Polar Fft Focm

7/23/2019 Polar Fft Focm

http://slidepdf.com/reader/full/polar-fft-focm 18/68

- 18 -

Grid Problematics

g

Grid spacing?

Fate of corners?

No X-Y separability !!π-π

π

ωx

ωy

2. Thinking Polar - Discrete

Page 19: Polar Fft Focm

7/23/2019 Polar Fft Focm

http://slidepdf.com/reader/full/polar-fft-focm 19/68

- 19 -

Polar FFT - Current Status

g

Current widespread belief - There cannot be a

fast method for DFT on the polar grid. See e.g.

The DFT: an owner’s manual, Briggs and

Henson, SIAM, 1995, p. 284.

Consequence of Non-existence: Continuous Fourier – vague inspiration only.

Fourier in implementations widely deprecated.

Fragmentation: each field special algorithm.

Page 20: Polar Fft Focm

7/23/2019 Polar Fft Focm

http://slidepdf.com/reader/full/polar-fft-focm 20/68

- 20 -

 Agenda

1. Thinking Polar – Continuum

2. Thinking Polar – Discrete

3. Current State-Of-The-Art

4. Our Approach - General

5. The Pseudo-Polar Fast Transform

6. From Pseudo-Polar to Polar

7. Algorithm Analysis

8. Conclusions

Page 21: Polar Fft Focm

7/23/2019 Polar Fft Focm

http://slidepdf.com/reader/full/polar-fft-focm 21/68

- 21 -

3. Current State-Of-The-Art

 Assessing T: Unequally-spaced FFT (USFFT)

Data in Cartesian set.

 Approximate transform in non-Cartesian set.

Oriented to 1D – not 2D and definitely not Polar.

 Assessing T †: For Tomography

Data in Polar coordinates in frequency.

 Approximate inverse transform to Cartesian grid.

Inspired by the projection-slice-theorem.

3. Current State-of-the-Art

Page 22: Polar Fft Focm

7/23/2019 Polar Fft Focm

http://slidepdf.com/reader/full/polar-fft-focm 22/68

- 22 -

USFFT - Rational

-3 -2 -1 0 1 2 3

-3

-2

-1

0

1

2

3

+ Destination Polargrid

O Critically sampledCartesian grid

o Over-sampledCartesian grid

ωx

ωy

3. Current State-of-the-Art

Page 23: Polar Fft Focm

7/23/2019 Polar Fft Focm

http://slidepdf.com/reader/full/polar-fft-focm 23/68

- 23 -

USFFT - Detailed

Over-sample Cartesian grid.

Rapidly evaluate FT:

 Values F.

Possibly - partial derivatives.

 Associate Cartesian neighbors to each

polar grid point.

 Approximate interpolation.

3. Current State-of-the-Art

Page 24: Polar Fft Focm

7/23/2019 Polar Fft Focm

http://slidepdf.com/reader/full/polar-fft-focm 24/68

- 24 -

Our Reading of Literature

Boyd (1992) – Over-sampling and interpolation

by Euler sum or Langrangian interpolation.

Dutt-Rokhlin (1993,1995) - Over-sampling and

interpolation by the Fast-Multipole method.

 Anderson-Dahleh (1996) – Over-sampling andobtaining the partial derivatives, and then

interpolating by Taylor series.

Ware (1998) – Survey on USFFT methods.

3. Current State-of-the-Art

Page 25: Polar Fft Focm

7/23/2019 Polar Fft Focm

http://slidepdf.com/reader/full/polar-fft-focm 25/68

- 25 -

USFFT Problematics

Several involved parameters:

Over-sampling factor,

Method of interpolation, and

Order of interpolation.

Good accuracy calls for extensive over-sampling. Correspondence overhead: spoils vectorizability of

algorithm - causes high cache misses.

Emotionally involved.

d

Page 26: Polar Fft Focm

7/23/2019 Polar Fft Focm

http://slidepdf.com/reader/full/polar-fft-focm 26/68

- 26 -

 Agenda

1. Thinking Polar – Continuum

2. Thinking Polar – Discrete

3. Current State-Of-The-Art

4. Our Approach - General

5. The Pseudo-Polar Fast Transform

6. From Pseudo-Polar to Polar

7. Algorithm Analysis8. Conclusions

4 O A h G l

Page 27: Polar Fft Focm

7/23/2019 Polar Fft Focm

http://slidepdf.com/reader/full/polar-fft-focm 27/68

- 27 -

4. Our Approach - General

Low complexity – O(Const·N2log2N)

 Vectorizability – 1D operations only

Non-Expansiveness – Factor 2 (or 4) only

Stability – via Regularization  Accuracy – 2 orders of magnitude over USFFT methods

We propose a

Fast Polar Fourier Transform

with the following features:

Page 28: Polar Fft Focm

7/23/2019 Polar Fft Focm

http://slidepdf.com/reader/full/polar-fft-focm 28/68

- 28 -

Our Strategy

Fast and ExactFourier Trans.on a polar-like

grid

1Dinterpolationsto the polar

grid

Pseudo

PolarGrid

A d

Page 29: Polar Fft Focm

7/23/2019 Polar Fft Focm

http://slidepdf.com/reader/full/polar-fft-focm 29/68

- 29 -

 Agenda

1. Thinking Polar – Continuum

2. Thinking Polar – Discrete

3. Current State-Of-The-Art

4. Our Approach - General

5. The Pseudo-Polar Fast Transform

6. From Pseudo-Polar to Polar

7. Algorithm Analysis8. Conclusions

5 Th P d P l FFT

Page 30: Polar Fft Focm

7/23/2019 Polar Fft Focm

http://slidepdf.com/reader/full/polar-fft-focm 30/68

- 30 -

5. The Pseudo-Polar FFT

Developed by Averbuch, Coifman, Donoho,

Israeli, and Waldén (1998).

Basic idea: A “Polar-Like” grid that enables

EXACT Fourier transform,

FAST computation,

1D operations only.

 Applications: Tomography, image processing,Ridgelets, and more.

5. The Pseudo-Polar FFT

Page 31: Polar Fft Focm

7/23/2019 Polar Fft Focm

http://slidepdf.com/reader/full/polar-fft-focm 31/68

- 31 -

The Pseudo-Polar Skeleton

-3 -2 -1 0 1 2 3

-3

-2

-1

0

1

2

3

ωx

ωy

NSr equi-spacedconcentric squares,

NSt ‘equi-spaced’(not in angle)

We separate our

treatment tobasically verticaland basically

horizontal lines.

5. The Pseudo-Polar FFT

Page 32: Polar Fft Focm

7/23/2019 Polar Fft Focm

http://slidepdf.com/reader/full/polar-fft-focm 32/68

- 32 -

Fast Fourier Transform

ωx

ωy

-3 -2 -1 0 1 2 3

-3

-2

-1

0

1

2

3 The destination samples

are uniformly sampled

vertically, Per each row, destination

samples are uniformly

sampled horizontally,

Fractional Fourier

Transform is the answer

(Chirp-Z), with complexity:O(20Nlog2N).

[Why?]

5. The Pseudo-Polar FFT

Page 33: Polar Fft Focm

7/23/2019 Polar Fft Focm

http://slidepdf.com/reader/full/polar-fft-focm 33/68

- 33 -

PP-FFT versus 2D-FFT

1D FFT to columns

5N2logN

1D FFT to rows5N2logN

Cartesian2D-FFT 10N2logN

1D FFT to columns

5N2logN

1D FRFFT to rows20N2logN

PP-FFTvertical25N2logN

CartesianData

N-by-N

2D-FFTPP-FFT

5. The Pseudo-Polar FFT

Page 34: Polar Fft Focm

7/23/2019 Polar Fft Focm

http://slidepdf.com/reader/full/polar-fft-focm 34/68

- 34 -

The PP-FFT - Properties

Exact in exact arithmetic.

No parameters involved !!

Complexity - O(50·N2log2N) versus O(N4).

1D operations only.

For the chosen grid (Sr=St=2) - κ≈5.

Agenda

Page 35: Polar Fft Focm

7/23/2019 Polar Fft Focm

http://slidepdf.com/reader/full/polar-fft-focm 35/68

- 35 -

 Agenda

1. Thinking Polar – Continuum

2. Thinking Polar – Discrete

3. Current State-Of-The-Art

4. Our Approach - General

5. The Pseudo-Polar Fast Transform

6. From Pseudo-Polar to Polar

7. Algorithm Analysis8. Conclusions

6 From Pseudo-Polar to Polar

Page 36: Polar Fft Focm

7/23/2019 Polar Fft Focm

http://slidepdf.com/reader/full/polar-fft-focm 36/68

- 36 -

6. From Pseudo-Polar to Polar

Fast and ExactFourier Trans.

on a polar-likegrid

2 stages of 1Dinterpolations

to get to thepolar grid

6. From Pseudo-Polar to Polar

Page 37: Polar Fft Focm

7/23/2019 Polar Fft Focm

http://slidepdf.com/reader/full/polar-fft-focm 37/68

- 37 -

The Interpolation Stages

-3 -2 -1 0 1 2 3

-3

-2

-1

0

1

2

3

The original Pseudo-Polar Grid

Warping to equi-spacedangles

Warping each ray to

have the same step

ωx

ωy

6. From Pseudo-Polar to Polar

Page 38: Polar Fft Focm

7/23/2019 Polar Fft Focm

http://slidepdf.com/reader/full/polar-fft-focm 38/68

- 38 -

First Interpolation Stage

-3 -2 -1 0 1 2 3

-3

-2

-1

0

1

2

3

Every row is a

trigonometric polynomial of

order N,

FRFT on over-sampled

array and 1D interpolation,

 Very accurate.

Rotation of the rays tohave equi-spaced angles

(S-Pseudo-Polar grid):

ωx

ωy

6. From Pseudo-Polar to Polar

Page 39: Polar Fft Focm

7/23/2019 Polar Fft Focm

http://slidepdf.com/reader/full/polar-fft-focm 39/68

- 39 -

The Required Warping

Basically vertical lines:

12

NS

2NSm,

yt

xr

y

t

tNSm2,

NS2

  −

−=

ω=ωπ=ω

l

l

12

NS

2NSmt

yx

t

tNS2

mtan

−=

 

 

 

    π⋅ω=ω

-3 -2 -1 0 1 2   3

-3

-2

-1

0

1

2

3

π=ωy

Original ωx

New ωx

[Why?]

6. From Pseudo-Polar to Polar

Page 40: Polar Fft Focm

7/23/2019 Polar Fft Focm

http://slidepdf.com/reader/full/polar-fft-focm 40/68

- 40 -

The Actual Interpolation

1D FFT to columns

5N2logN

1D FRFFT to rows20N

2

logN

PP-FFT Vertical25N2logN

CartesianData

N-by-N

S-PP-FFTPP-FFT

1D FFT to columns

5N2logN

1D Over-sampled (S) FRFFTto rows

20N2S·log(NS)

1D Interpolation

O{N2}

S-PP-FFT Vertical(20S+5)N2logN

6. From Pseudo-Polar to Polar

Page 41: Polar Fft Focm

7/23/2019 Polar Fft Focm

http://slidepdf.com/reader/full/polar-fft-focm 41/68

- 41 -

Second Interpolation Stage

-3 -2 -1 0 1 2 3

-3

-2

-1

0

1

2

3

ωx

ωy

 As opposed to the previous

step, the rays are not

trigonometric polynomialsof order N,

We proved that the rays

are band-limited (smooth)

functions,

Over-sampling and

interpolation is expected to

perform well.

6. From Pseudo-Polar to Polar

O S li l

Page 42: Polar Fft Focm

7/23/2019 Polar Fft Focm

http://slidepdf.com/reader/full/polar-fft-focm 42/68

- 42 -

Over-Sampling Along Rays

-3 -2 -1 0 1 2 3

-3

-2

-1

0

1

2

3 Over-sampling alongrays cannot be doneby taking the 1D rayand over-sampling it.

Sr>1:

More concentric squares.

Sr longer 1D-FFT’s at thebeginning of the algorithm.

Sr times FRFFT operations.

ωx

ωy

Th A t l I t l ti

6. From Pseudo-Polar to Polar

Page 43: Polar Fft Focm

7/23/2019 Polar Fft Focm

http://slidepdf.com/reader/full/polar-fft-focm 43/68

- 43 -

The Actual Interpolation

CartesianData

N-by-N

1DFFT to over-sampled columns

N·5(NSr)·log(NSr)

NSr·20(NSt)·log(NSt)

1D Over-sampled (S) FRFFTto rows

1D Interpolation

O{(NSr)·N} O{N·N}

1D Interpolation

Polar-FFT Vertical

Full Polar FFT

O{40SrStN2

logN}

S-PP-FFT Vertical

T S i

6. From Pseudo-Polar to Polar

Page 44: Polar Fft Focm

7/23/2019 Polar Fft Focm

http://slidepdf.com/reader/full/polar-fft-focm 44/68

- 44 -

Low complexity – O(Const·N2log2N)

 Vectorizability – 1D operations only

Non-Expansiveness – Factor 2 (or 4) only

Stability – via Regularization  Accuracy – 2 orders of magnitude over USFFT methods

We propose a

Fast Polar Fourier Transform

with the following features:

To Summarize

Agenda

Page 45: Polar Fft Focm

7/23/2019 Polar Fft Focm

http://slidepdf.com/reader/full/polar-fft-focm 45/68

- 45 -

 Agenda

1. Thinking Polar – Continuum

2. Thinking Polar – Discrete

3. Current State-Of-The-Art

4. Our Approach - General

5. The Pseudo-Polar Fast Transform

6. From Pseudo-Polar to Polar

7.  Algorithm Analysis8. Conclusions

7. Algorithm Analysis

Page 46: Polar Fft Focm

7/23/2019 Polar Fft Focm

http://slidepdf.com/reader/full/polar-fft-focm 46/68

- 46 -

7. Algorithm Analysis

We have a code performing the Polar-FFT in Matlab:

Where: X – Input array of N-by-N samples

St,Sr – Over-sampling factors in the approximations

 Y – Polar-FFT result as an 2N-by-2N array with rows being

the rays and columns being the concentric circles.

Y=Polar_FFT(X);

OR

Y=Polar_FFT(X,St,Sr);

The Implementation

7. Algorithm Analysis

Page 47: Polar Fft Focm

7/23/2019 Polar Fft Focm

http://slidepdf.com/reader/full/polar-fft-focm 47/68

- 47 -

The Implementation

The current Polar-FFT code implements Taylor

method for the first interpolation stage and spline

ONLY (no-derivatives) for the second stage.

For comparison, we demonstrate the performanceof the USFFT method with over-sampling S and

interpolation based on the Taylor interpolation

(found to be the best).

Error for Specific Signal

7. Algorithm Analysis

Page 48: Polar Fft Focm

7/23/2019 Polar Fft Focm

http://slidepdf.com/reader/full/polar-fft-focm 48/68

- 48 -

10 20 30 40 50 60 70 80 90 100

10-3

10-2

10

-1

100

101

102

St·Sr

or S2

||Approximation error||1

Error for Specific Signal

Taylor USFFT

St=4

• Input is random32-by-32 array,

• USFFT methoduses oneparameterwhereas thereare two for theup-sampling inthe Polar-FFT.

• Thumb rule:Sr·St= S2.

St=2

St=3

St=1

Thumb rule: Sr=4St

Error For Specific Signals

7. Algorithm Analysis

Page 49: Polar Fft Focm

7/23/2019 Polar Fft Focm

http://slidepdf.com/reader/full/polar-fft-focm 49/68

- 49 -

Error For Specific Signals

Similar curves obtained of ||*||∞ and ||*||2 norms.

Similar behavior is found for other signals.

Conclusion: For the proper choice of St and Sr, we

get 2-orders-of-magnitude improvement in the

accuracy comparing to the best USFFT method. Further improvement should be achieved for Taylor

interpolation in the second stage.

US-FFT takes longer due the 2D operations.

The Transform as a Matrix

7. Algorithm Analysis

Page 50: Polar Fft Focm

7/23/2019 Polar Fft Focm

http://slidepdf.com/reader/full/polar-fft-focm 50/68

- 50 -

The Transform as a Matrix

 All the involved

transformations (accurate

and approximate) are

linear - they can berepresented as a matrix of

size 4N2-by-N2.

 Y a= AxOr

 Y t=Tx

 Approximate

True

Regularization of T/A

7. Algorithm Analysis

Page 51: Polar Fft Focm

7/23/2019 Polar Fft Focm

http://slidepdf.com/reader/full/polar-fft-focm 51/68

- 51 -

Regularization of T/A

 An input signal of N-by-N is transformed to anarray or 2N-by-2N.

For N=16, T size is 1024-by-256, and κ≈60,000(bad for inversion).

=

=

0

yxxy

Corner

PolarPolar

T

TT

 Adding the assumption that the Frequencycorners should be zeroed, we obtain

and the condition number becomes κ≈5 !!!

Discarding the Corners?

7. Algorithm Analysis

Page 52: Polar Fft Focm

7/23/2019 Polar Fft Focm

http://slidepdf.com/reader/full/polar-fft-focm 52/68

- 52 -

Discarding the Corners?

π-π

π

2π−

2π−

If the given signal wassampled at 1.4142 the

Nyquist Rate, thecorners can beremoved.

If it is not, over-sampling it can be doneby FFT.

7. Algorithm Analysis

Error Analysis – Worst Signal

Page 53: Polar Fft Focm

7/23/2019 Polar Fft Focm

http://slidepdf.com/reader/full/polar-fft-focm 53/68

- 53 -

Error Analysis – Worst Signal

( ) FFTPolarFFTPolar ex   −−   =− T A Approximation error is :

{ }  ( )

22

22

x x

xMax / Arge,x

PolarFFTPolar2

worstworst

T A   −=

  −Worst error :

{ }   ( )22

2

2

x xxMax / Arge,x

Polar

PolarFFTPolar2

rworstrworst

TT A   −=   −Worst relative error :

7. Algorithm Analysis

Worst Signal - Results

Page 54: Polar Fft Focm

7/23/2019 Polar Fft Focm

http://slidepdf.com/reader/full/polar-fft-focm 54/68

- 54 -

Worst Signal Results

N=16 → T  1024×256, S=Sr=St=4

USFFTworst signal (abs. Value) λ=3.469

The worst casesignal in the freq.Domain (abs. and

shifted)

Polar-FFTworst signal (abs. Value) λ=0.0319

The worst casesignal in the freq.Domain (abs. andshifted)

7. Algorithm Analysis

Relative Worst Signal - Results

Page 55: Polar Fft Focm

7/23/2019 Polar Fft Focm

http://slidepdf.com/reader/full/polar-fft-focm 55/68

- 55 -

Relative Worst Signal Results

Same parameters: N=16 → T  1024×256, S=Sr=St=4

USFFTworst signal (abs. Value) λ=0.0613

The worst casesignal in the freq.Domain (abs. and

shifted)

Polar-FFTworst signal (abs. Value) λ=0.0023

The worst casesignal in the freq.Domain (abs. andshifted)

7. Algorithm Analysis

Comparing Approximations

Page 56: Polar Fft Focm

7/23/2019 Polar Fft Focm

http://slidepdf.com/reader/full/polar-fft-focm 56/68

- 56 -

Comparing Approximations

( ) ( )PolarFFTPolarPolarFFTPolar

H

T AT A  −−

  −−

Solve for the eigenvalue/vectors of the matrix

and obtained ( in ascending order).

Compare to by computing

using the above eigenvectors and compare to .

USFFT A

{ }2N

1k k k  x,=

λ k λ

( ) 22k k  xPolarUSFFT T A   −=α

k λ

7. Algorithm Analysis

Comparing Approximations - Results

Page 57: Polar Fft Focm

7/23/2019 Polar Fft Focm

http://slidepdf.com/reader/full/polar-fft-focm 57/68

- 57 -

Comparing Approximations Results

0 200 400 600 800 1000 120010

-10

10

-8

10-6

10-4

10-2

100

102

USFFT

Polar-FFT

Eigen-spaceof the Polar-FFT

Mean Squared Error

[N=32]

 Agenda

Page 58: Polar Fft Focm

7/23/2019 Polar Fft Focm

http://slidepdf.com/reader/full/polar-fft-focm 58/68

- 58 -

1. Thinking Polar – Continuum

2. Thinking Polar – Discrete

3. Current State-Of-The-Art

4. Our Approach - General

5. The Pseudo-Polar Fast Transform

6. From Pseudo-Polar to Polar

7. Algorithm Analysis8. Conclusions

8. Conclusions

Page 59: Polar Fft Focm

7/23/2019 Polar Fft Focm

http://slidepdf.com/reader/full/polar-fft-focm 59/68

- 59 -

We have proposed a fast, accurate, stable, and

reliable Polar Discrete-Fourier-Transform.

By this we extend utility of FFT algorithms to

new class of settings in image processing.

Future plans: Extend the analysis and improve further,

Demonstrate applications,

  Publish the code for the procedure and some

applications over the internet.

Page 60: Polar Fft Focm

7/23/2019 Polar Fft Focm

http://slidepdf.com/reader/full/polar-fft-focm 60/68

- 60 -

Beyond this slides arethe appendix orredundant slides

USFFT for T†

3. Current State-of-the-Art

Page 61: Polar Fft Focm

7/23/2019 Polar Fft Focm

http://slidepdf.com/reader/full/polar-fft-focm 61/68

- 61 -

Over-sample Polar grid (and possibly

partial derivatives).

 Associate polar neighbors to each

Cartesian grid point.

 Approximate interpolation to get the

Cartesian grid values.

Perform the Cartesian 2D Inverse-FFT.

Our Reading of Literature

3. Current State-of-the-Art

Page 62: Polar Fft Focm

7/23/2019 Polar Fft Focm

http://slidepdf.com/reader/full/polar-fft-focm 62/68

- 62 -

g

Natterer (1985).

Jackson, Meyer, Nishimura and Macovski (1991).

Schomberg and Timmer (1995).

Choi and Munson (1998).

Direct Fourier method with over-sampling and

interpolation (also called gridding) – see

The Pseudo-Polar Sampling

 A. The Fractional Fourier Transform

Page 63: Polar Fft Focm

7/23/2019 Polar Fft Focm

http://slidepdf.com/reader/full/polar-fft-focm 63/68

- 63 -

p g

Basically vertical lines:

12

NS

2NSr

y

r

rNS2

  −

−=

  π=ω

l

l

12NS

2NS

my

tx

t

tNS

m2   −

−=

ω=ω

-3 -2 -1 0 1 2 3

-3

-2

-1

0

1

2

3

For St=Sr=1, we haveN2 grid points

ωx

ωy

The Pseudo-Polar FT – Stage 1

 A. The Fractional Fourier Transform

Page 64: Polar Fft Focm

7/23/2019 Polar Fft Focm

http://slidepdf.com/reader/full/polar-fft-focm 64/68

- 64 -

g

{ }1 2

1

N 1 N 1

1 y 1 2 2 yk 0 k 0t

f̂ k ,

2mexp ik f k ,k exp ik  NS

− −

= =

=  

= − ω − ω   ∑ ∑

l

1444442444443

This part is obtained by 1D-FFT along the rows !!

( ) { }1 2

N 1 N 1

x y 1 2 1 x 2 yk 0 k 0

F , f k ,k exp ik ik  − −

= =

ω ω = − ω − ω = ∑ ∑

1 2

N 1 N 11 2 1 y 2 y

k 0 k 0 t

2mf k ,k exp ik ik  NS

− −

= =

= − ω − ω =  

∑ ∑

The Pseudo-Polar FT – Stage 2

 A. The Fractional Fourier Transform

Page 65: Polar Fft Focm

7/23/2019 Polar Fft Focm

http://slidepdf.com/reader/full/polar-fft-focm 65/68

- 65 -

( )   [ ]∑−

=  

  ω

−==ωω1N

0k  t

y11yx

1NS

2mik exp,k f ̂],m[F,F   ll

The destination grid points are also 1D equi-spaced in

the frequency domain, BUT THEY ARE NOT IN THE

RANGE [-π,π], but rather [-ωy,ωy].

[ ]l,k f ̂ 1 This summation takes columns of (being equi-

spaced 1D signals) and computes Fourier transform of it.

This task is called Fractional Fourier/Chirp-Z Transform.

Fractional Fourier Transform

 A. The Fractional Fourier Transform

Page 66: Polar Fft Focm

7/23/2019 Polar Fft Focm

http://slidepdf.com/reader/full/polar-fft-focm 66/68

- 66 -

[ ]∑−

=  

α⋅π

−=1N

0k N

km2iexpk f ]m[F

For α=1 we get the ordinary 1D-FFT,

For α=-1 we get the ordinary 1D-IFFT,

There exists a Fast Fractional Fourier Transform with the

complexity of O(20·Nlog2N), based on 1D-FFT operations.

See: Fast fractional Fourier transforms and applications, by D. H. Bailey and P. N.

Swarztrauber, SIAM Review , 1991, and also Bluestein, Rabiner, and Rader (1960’s).

FR-FFT Detailed

 A. The Fractional Fourier Transform

Page 67: Polar Fft Focm

7/23/2019 Polar Fft Focm

http://slidepdf.com/reader/full/polar-fft-focm 67/68

- 67 -

PostMultiplication

Convolution

Pre-Multiplication

[ ]

[ ]   ( )[ ]

[ ]   ( )∑

=

απαπ

=

=

α−π−⋅⋅⋅=

=

α⋅−−−π−=

=

α⋅π−=

1N

0k 

2Nk iNmi

1N

0k 

222

1N

0k 

N

mk iexpek f e

Nmk mk iexpk f 

Nkm2iexpk f ]m[F

22

[Back]

Interpolation As 1D Operation

B. From Pseudo-Polar to Polar

Page 68: Polar Fft Focm

7/23/2019 Polar Fft Focm

http://slidepdf.com/reader/full/polar-fft-focm 68/68

- 68 -

{ }1 2

N 1 N 1

1 y 1 2 2 yk 0 k 0t

mexp ik tan f k ,k exp ik  2NS

− −

= =

π = − ω − ω =  

∑ ∑

It is a 1D operation – But it is not the Fractional-FFT.Can be computed by over-sampled FRFFT and interpolation.

( ) { }1 2

N 1 N 1

x y 1 2 1 x 2 yk 0 k 0

F , f k ,k exp ik ik  − −

= =

ω ω = − ω − ω = ∑ ∑

1

N 1

1 y 1k 0 t

m ˆexp ik tan f k ,2NS

=

π = − ω

    ∑   l


Recommended