+ All Categories
Home > Documents > Power System Stabilization Using Virtual Synchronous Generator

Power System Stabilization Using Virtual Synchronous Generator

Date post: 07-Jul-2018
Category:
View: 229 times
Download: 0 times
Share this document with a friend

of 7

Transcript
  • 8/19/2019 Power System Stabilization Using Virtual Synchronous Generator

    1/15

      106 陳敬燁

    Power System Stabilization Using Virtua

    l Synchronous Generator With AlternatingMoment of Inertia

  • 8/19/2019 Power System Stabilization Using Virtual Synchronous Generator

    2/15

    synchronous generators(SGs)

    ! rotating inertia

    "! #isturbancessu##en changes

    in$ecting the %inetic

    energy to the &owergri#

    SoSystemis robust againstinstability 

  • 8/19/2019 Power System Stabilization Using Virtual Synchronous Generator

    3/15

     VI'UA S*+,-'.+.US G/+/'A.' S'U,U'/

    swing e0uation :

    its out&ut &ower an#

    fre0uency are calculate#!

    Measuring the 1oltage

    an# currentsignals2

    ** J together with D determines the timeconstant 

     H bigger time constant, slowerresponse , smaller fre0uency #e1iation(aftera change or #isturbance)

  • 8/19/2019 Power System Stabilization Using Virtual Synchronous Generator

    4/15

    3A+G43A+G ,.+'. S'A/G* .5 A/'+AI+G I+/'IA 

    .ne cycle of the oscillation consists of four segments

    ** select a large 1alue of J #uring acceleration &hases to reduce the acceleration** select  a small 1alue of J during deceleration phases to boost the deceleration.

    he transients are su&&resse#

    an#ω equals zero at the newequilibrium point 

    .scillation will sto&

  • 8/19/2019 Power System Stabilization Using Virtual Synchronous Generator

    5/15

    5i6e# 7 Alternating 7

  • 8/19/2019 Power System Stabilization Using Virtual Synchronous Generator

    6/15

    88fi6e# J cannot stabilize the fre0uency 

     When changing toalternating inertia

    control

     !stabilize the system"!su&&resses the fre0uency an# &ower oscillations

    effecti1ely!

    9am&ing factor! An ina&&ro&riate 1alue of #am&ing factor may result in a high

    magnitu#e of oscillation or a sluggish res&onse"! -ere2 choosing #am&ing factor : ;

  • 8/19/2019 Power System Stabilization Using Virtual Synchronous Generator

    7/15

    9am&ing factor

    !  An ina&&ro&riate 1alue of #am&ing factor may result in a high magnitu#e of oscillation or a sluggish res&onse

    "! -ere2 choosing #am&ing factor : ;

     We can see the system o&eratesstably 2 an# the oscillations areeliminate# by the alternating

    inertia i#ea

  • 8/19/2019 Power System Stabilization Using Virtual Synchronous Generator

    8/15

    SA3II* ASS/SSM/+ 3* /+/'G* 5U+,I.+ A+A*SIS

      ω 0 J [−

    P in(δ−

    δ 1 ) + b( cos δ−

    cos δ 1 ) ]

     Ek , is the kinetic energy

     EP is the potential energy

    From Fig.4 start at point a

    a to b

     

    ω is zero and ! " is ma#imum&resum&tion of J $ % is needed.

     Ek & % EP is ma#imum Ek is increasing, and Ep isdecreasing as ω increasesan# !" decreases

     b to c ω decreases and ! " increasesthe total energy has #ecrease#

  • 8/19/2019 Power System Stabilization Using Virtual Synchronous Generator

    9/15

    89am&ing effecthis criterion #eman#s that the #eri1ati1e of theenergy function is negati1e!

     Assuming a zero #am&ing factor D

  • 8/19/2019 Power System Stabilization Using Virtual Synchronous Generator

    10/15

    G'I9 SA3II* /+-A+,/M/+3* A/'+AI+G I+/'IA 

     A! '() in Parallel *ith +ther achines

     With fi6e# 72 VSG was not ableto reco1er from the fault as

    shown in 5ig! "!

    the alternating inertiascheme im&ro1e# the stability ofthe a#$acent machine by the e6tra #am&ing effect im&ose#on the transient energy #irectly 

  • 8/19/2019 Power System Stabilization Using Virtual Synchronous Generator

    11/15

    3! '() as an -nterace /etween the () and )rid 

    System with fi6e# inertia an# a zero#am&ing factor was unable toreco1er from much mil#er faults

    oscillation was su&&resse# by thealternating inertia scheme2 an# these1ere transient of #c

  • 8/19/2019 Power System Stabilization Using Virtual Synchronous Generator

    12/15

    /=P/'IM/+A '/SUS

     with fi6e# moment of inertia of;!>?@ %gm" an# D & "0 pu.

     When the &ower referenceincrease#2the VSG out&ut &ower followe#the &ower comman# after&assing se1ere oscillations withthe am&litu#e of " %W 

  • 8/19/2019 Power System Stabilization Using Virtual Synchronous Generator

    13/15

     with alternating J and D & "0 pu

    he effecti1eness of the alternatinginertia in the smooth transition ofcurrent le1el an# re#ucing the 1oltageri&&les at the VSG terminal is ob1iousin this figure

  • 8/19/2019 Power System Stabilization Using Virtual Synchronous Generator

    14/15

    o clarify the #am&ing effect of the alternating inertia scheme

     With 9: ;2 alternating inertiathe VSG can trac% the&ower reference with negligibletransients!

  • 8/19/2019 Power System Stabilization Using Virtual Synchronous Generator

    15/15

    ,.+,USI.+

    !3y selecting a big 1alue for the moment of inertia #uring acceleration2 the haste was mitigate#2 an# on the other han#2 #uring #eceleration2 a small 1alue for inertia factor was a#o&te# to increase the #eceleration effect

    "!In the case of a real synchronous machine2 this transient energy is #issi&ate# by

    #am&ing terms #uring .scillations

    @!,om&are# to normal #am&ing factor D, the #am&ing e6erte# by alternating inertia is consi#erably more effecti1e an# has i#entical results in any con#itions!

    !Any transients can be eliminate# before a&&earing! he i#ea #oes not only stabilize the VSG unit2 but also enhances the stabilit y of other machines in the system


Recommended