+ All Categories
Home > Documents > Preliminary Paleontologic Report on Cores 19A and 19B, from ...

Preliminary Paleontologic Report on Cores 19A and 19B, from ...

Date post: 30-Dec-2016
Category:
Upload: vuongtram
View: 216 times
Download: 0 times
Share this document with a friend
29
Preliminary Paleontologic Report on Cores 19A and 19B, from Russell Bank, Everglades National Park, Florida Bay by G.L. Brewster-Wingard 1 , S.E. Ishman 1 , D.A. Willard 1 , L.E. Edwards 1 , and C.W. Holmes 2 1 U.S. Geological Survey, Reston, VA 2 U.S. Geological Survey, St. Petersburg, FL Open-File Report 97-460 This report is preliminary and has not been reviewed for conformity with U.S. Geological Survey editorial standards or with the North American Stratigraphic Code. Any use of trade, product, or firm names is for descriptive purposes only and does not imply endorsement by the U.S. Government 1997
Transcript
Page 1: Preliminary Paleontologic Report on Cores 19A and 19B, from ...

Preliminary Paleontologic Report on Cores 19A and 19Bfrom Russell Bank Everglades National Park

Florida Bayby

GL Brewster-Wingard1 SE Ishman1 DA Willard1 LE Edwards1 and CW Holmes2

1 US Geological Survey Reston VA2 US Geological Survey St Petersburg FL

Open-File Report 97-460

This report is preliminary and has not been reviewed for conformity with US Geological Survey editorial standardsor with the North American Stratigraphic Code Any use of trade product or firm names is for descriptive purposes

only and does not imply endorsement by the US Government

1997

TABLE OF CONTENTS

AbstractIntroductionAcknowledgmentsMethods of Investigation Benthic Foraminifers and Molluscs Pollen and Dinocysts Isotopic AnalysesAnalysis and discussion of the benthic fauna in core 19B Benthic Foraminifers Molluscs Benthic Faunal PatternsAnalysis and discussion of the flora in core 19A Pollen Dinocysts Floral Patterns210Pb age model for the Russell Bank siteSummaryReferences Cited

FIGURES

1 Location map of Russell Bank 2 Cluster diagram of molluscan assemblages 3 Plot of percent abundance of benthic faunal indicators of marine salinity 4 Plot of percent abundance of molluscan substrate indicators 5 Plot of percent abundance of pollen taxa 6 Actual counts of pollen grains 7 Plot of percent and absolute abundances of dinocysts 8 Plot of absolute abundances of Polysphaeridium zoharyi and Spiniferites 9 210Pb activity for core 19B10 210Pb activity for core 19C

TABLES

1 Russell Bank 19B Percent abundance of benthic foraminifera2 Russell Bank 19B Percent abundance of molluscan fauna3 Russell Bank 19A Percent abundance of pollen4 Dinocyst data from Russell Bank 19A

Preliminary Paleontologic Report on Cores 19A and 19B from Russell BankEverglades National Park Florida Bay

ABSTRACT

The fauna and flora preserved in two cores 19A and 19B from the south side of Russell Bank(N 25 03831rsquo W 80 37486rsquo) in north-central Florida Bay Everglades NationalPark Florida record a history of environmental change over the last century The benthicforaminifera and molluscs indicate fluctuating salinities with increasing average salinity upcorein core 19B Shifts from low salinity (12-15 ppt) to higher average salinity (30 ppt) occurred at70-66 cm and 24-18 cm in core 19B (approximately 1937-1940 and 1975-1980) The inverseshifts from periods of higher average salinity to periods of lower salinity occurred at 140 cm 90cm and 42 cm (approximately 1880 1921 and 1960) Significant changes in the molluscanfauna indicative of specific substrate types occur at 88 cm 68 cm and 22 cm The lower portionof the core is dominated by a mixture of sediment and grass dwellers the middle portion bysediment dwellers and the upper portion of the core by grass and finally grass and algaedwellers Changes occur in the floral assemblages in core 19A but the significance of thesechanges is unclear Three subtle shifts occur in the pollen assemblages indicating the onshorevegetation was responding to some environmental factor Two peaks in dinocyst abundanceoccur in core 19A but the composition of dinocyst assemblages remains relatively stablethroughout the core Correspondence between changes in salinity and onshore vegetationchanges is consistent with results from previous cores The pattern of increased salinity upcore isconsistent with patterns seen in core T24 from the mouth of Taylor Creek and in core 6A fromBob Allen mudbank

INTRODUCTION

The fragile and unique ecosystems of southern Florida including Florida Bay the terrestrialEverglades and Biscayne Bay have been the focus of a substantial scientific effort in responseto environmental economic and political concerns These concerns are focused on returning theEverglades to its natural state as mandated by the Everglades Forever Act (passed in 1994)while at the same time addressing the conflicting interests of the ever-growing population ofsouthern Florida the environmentalists the farmers and the tourist industry among othersConsequently Federal State and local jurisdictions are faced with decisions related to theecosystem restoration goals mediation of conflicting interests and monitoring of change

An essential part of the decision making process is to understand the history of the ecosystemprior to significant human alteration and to separate natural variability in the ecosystem fromhuman-induced change The US Geological Survey (USGS) in cooperation with NationalOceanic and Atmospheric Administration (NOAA) South Florida Water Management District(SFWMD) the National Park Service (NPS) the Army Corps of Engineers (ACOE) and otherFederal State and local agencies is conducting research to provide information on the history of

the Everglades ecosystem over the last 150-200 years The distribution of fauna and flora in aseries of sediment cores taken throughout the Everglades ecosystem provides information on thebiological physical and chemical parameters of the system over time

Sediment cores were taken in February of 1995 by researchers from the US GeologicalSurvey (St Petersburg FL) in cooperation with South Florida Water Management District(SFWMD) and the Everglades National Park (ENP) for use by USGS investigators conductingresearch in Florida Bay Three cores were taken from the south side of Russell Bank (N 2503831rsquo W 80 37486rsquo) in north-central Florida Bay (Figure 1) Cores 19A and 19B arereplicate cores taken side by side from a grass bed in 051 m of water Core 19C was taken 54 mnorth of 19A and 19B from a mud flat on top of the south side of Russell Bank Core 19Apenetrated 140 cm of sediment spanning approximately 115 years and has been sampled for210Pb and palynologic analyses Core 19B penetrated 144 cm of sediment spanningapproximately 118 years and has been sampled for 210Pb and calcareous fossil analyses Core19C penetrated 158 cm of sediment and has been sampled for 210Pb analysis

This report is produced by the Ecosystem History of Florida Bay and the Southwest Coastcomponent of the US Geological Surveyrsquos Ecosystem Program and is one of a series of USGSOpen-File Reports on the distribution of biogenic components in sediments sampled from thesouthern Florida region The data presented in these reports can be used to estimate changes insalinity substrate and other critical components of the ecosystem over time

ACKNOWLEDGMENTS

We would like to thank Robert Halley and Gene Shinn US Geological Survey StPetersburg FL for collecting the cores and making them available to us for analysis We wouldlike to thank our colleagues at South Florida Water Management District National Oceanic andAtmospheric Administration and Everglades National Park for their cooperation and assistancein this investigation We have benefited from discussions with William Lyons Florida MarineResearch Institute St Petersburg FL and Thomas Scott Florida Geological SurveyTallahassee FL Our reviewers Thomas Cronin and John Sutter US Geological SurveyReston VA provided helpful comments and suggestions to improve this manuscript

Marci Marot US Geological Survey St Petersburg FL prepared the samples for isotopicand calcareous analysis Assistance in sample processing was provided by Jill DrsquoAmbrosio IanGraham Lisa Weimer Neil Waibel Patrick Buchanan Nancy Carlin and Steve Wandrei of theUS Geological Survey Reston VA Rob Stamm and Patrick Buchanan US GeologicalSurvey Reston VA assisted in the preparation of illustrations for this report and JillDrsquoAmbrosio assisted in compiling the final report

MODERN SAMPLING SITES

Seasonal collecting startingFebruary 1995Seasonal collecting startingFebruary 1996

Seasonal collecting startingFebruary 1997

8

1

3

4 59

11

12

1314

15

16

17 19

18

10 6

7

2

Florida Bay

Atlantic OceanC

AP

E S A B L E JOHN PENNEKAMP

CORAL REEF

STATE PARK

EVERGLADES NATIONALPARK

PARK BOUNDARY

1

1

0

0

1

1

5

5

10

10

Kilometers

Miles

WATER DEPTH

lt 3 ft

gt 3 ft

25

26

23

24

21

20

22

Figure 1 Location of Russell Bank (N25 03831 W80 37486) cores 19A 19B and 19C

Russell Bank Site

METHODS OF INVESTIGATION

Benthic Foraminifers and Molluscs

Sediment samples from core 19B were collected at 2 cm intervals and every other samplestarting with 0-2 cm and totaling 34 samples was analyzed for calcareous benthic fauna Thesamples were washed through a 63micro m sieve and dried at lt50 degrees C When possible a total of300 benthic foraminifer specimens were picked from the sample and mounted on griddedmicropaleontologic slides Large samples were put through a sample splitter to randomly reducethe number of specimens For samples containing fewer than 300 benthic foraminiferindividuals all of the specimens present were picked Molluscs were picked from the gt =850micro m size fraction All molluscs and fragments of molluscs recognizable to the generic levelpresent in each interval were picked Species abundances for the benthic fauna were standardizedby calculating relative abundances (percent)

Pollen and Dinocysts

Material for palynological analysis was extracted from 1-2 cm sections of core 19A For eachpalynological sample 7-40 g of material (dry weight) was treated in hydrochloric andhydrofluoric acids and processed for palynological studies All samples were treated with warmKOH for 2-5 minutes given ultrasonic pulse treatment for 5 seconds acetolysed and sievedbetween 8-200micro m mesh A tablet of Lycopodium marker grains was added to each sample Formost samples at least 300 pollen grains were counted for calculation of percent abundances andabsolute pollen concentration To calculate absolute concentration of palynomorphs the marker-grain method was used (Benninghoff 1962 Maker 1981 Stockmarr 1971) For two samplespollen was sparse enough that fewer than 300 grains were counted For nine samples one slidewas completely examined for dinocysts and all dinocyst taxa were tabulated For two samples (0-1 cm and 80-82 cm) two slides were examined completely for dinocysts

Isotopic Analyses

Samples were collected every 2 cm from cores 19B and 19C and analyzed for 210Pb Ra137Ce 7Be and total Pb Analysis of 210Pb has been completed for 19B and Ra and 210Pb havebeen completed for 19C For details of the method see Robbins et al (in press)

ANALYSIS AND DISCUSSION OF THE BENTHIC FAUNA IN CORE 19B

Benthic Foraminifers

A total of 31 benthic foraminiferal species were identified and counted The foraminiferal datawas standardized to relative abundance (percent of assemblage Table 1) and was used for allquantitative analyses Species diversity as measured by Simpsonrsquos Index ranged from 011 to026 and the number of species ranged from 12 to 19

The foraminiferal assemblages are dominated by calcareous benthic forms with thedominance patterns alternating between rotaliid taxa Ammonia parkinsoniana tepida Aparkinsoniana typica Elphidium galvestonense mexicanum E galvestonense typica and Epoeyanum and miliolid taxa Miliolinella cirlcularis M labiosa Quinqueloculina bosciana Qseminulum Q tenagos Q polygona Q poeyana and Triloculina tricarinata Other significantspecies include Archaias angulatus Peneroplis proteus Rosalina floridana and Quinqueloculinaagglutinans

Two dominant assemblages can be identified in the cores an Ammonia-Elphidium (A-E)assemblage and a miliolid assemblage Observations of the foraminiferal faunal changesthroughout core 19B show four intervals dominated by the miliolid assemblage (140 cm 118-90cm 70-42 cm and 18-0 cm) interrupted by three intervals of A-E assemblage dominance (140-118 cm 90-70 cm and 42-18 cm)

Molluscs

Twenty-six molluscan taxonomic categories were recognized and counted in the Russell Bank19B core The number of specimens per sample ranged from 2 to 517 so the faunal counts werestandardized to relative percent abundance (Table 2) The Simpsonrsquos Diversity Index wascalculated for each sample (Table 2) Three sections in the core contained few individualspecimens (lt40) and few molluscan taxonomic groups (1-9) 122-112cm 62-52cm 38-28cmTwo species Brachiodontes sp and Transennella sp make up greater than 50 percent of themolluscan fauna in the entire core

A cluster analysis of Pearsons Correlation coefficient values calculated for the molluscanpercent abundance data and plotted using average linkage method (Figure 2) revealed 3 primarydivisions of the molluscan assemblages within the core 142-68 cm 68-22 cm and 22-0 cm Theinterval from 142-68 cm is dominated by Transennella sp Brachiodontes sp and Cerithiumspp Bittium varium Rissoina spp and Chione cancellata also are present in significantamounts (5) throughout the interval The interval from 66-22 cm has the lowest within-groupsimilarity of the three molluscan assemblages in the core and is represented by 2 clusters in theanlaysis This interval from 66-22 cm contains 2 zones of very low molluscan abundance (62-52cm and 38-28 cm) Brachiodontes sp and Cerithium spp dominate the 66-22 cm interval with anumber of other species present in significant amounts (10) in individual samples (see Table

Table 1Russell Bank 19B

Percent Abundance of Benthic Foraminifera

Depth in Core Am

mon

ia p

arki

nson

iana

tepi

da

Am

mon

ia p

arki

nson

iana

typi

ca

Arc

haia

s an

gula

tus

Bol

ivin

a lo

wm

ani

Bol

ivin

a ps

eudo

plic

ata

Cla

vulin

a tri

carin

ata

Cyc

logy

ra p

lano

rbis

Elp

hidi

um d

elic

atul

um

Elp

hidi

um g

alve

ston

ense

typi

cum

Elp

hidi

um g

alve

ston

ense

mex

ican

um

Elp

hidi

um p

oeya

num

Gra

ss d

wel

ler

Mili

olin

ella

circ

ular

is

Mili

olin

ella

fich

telia

na

Mili

olin

ella

labi

osa

Nod

osar

iidae

Pen

erop

lis p

rote

us

Qui

nque

locu

lina

aggl

utin

ans

Qui

nque

locu

lina

bosc

iana

0-2 cm 000 107 000 000 000 000 000 000 1123 107 000 080 1203 000 000 000 027 000 17914-6 cm 000 098 164 000 000 000 000 000 918 328 000 033 787 000 000 000 000 066 1443

8-10 cm 000 523 000 000 000 000 000 000 1463 418 000 070 592 000 000 000 070 000 167212-14 cm 000 642 520 000 000 000 000 000 887 1376 000 000 673 000 031 000 092 061 76516-18 cm 000 761 543 000 000 000 000 000 2174 1957 000 000 543 000 000 000 000 326 54324-26 cm 000 888 164 000 000 000 000 000 559 1086 000 066 329 033 000 000 066 395 217128-30 cm 000 1738 066 000 000 000 000 000 1770 2787 000 033 492 000 000 033 033 000 45932-34 cm 000 1294 129 000 000 000 000 000 1974 1909 000 000 388 000 000 000 000 000 301036-38 cm 000 2347 144 000 000 000 072 000 1011 1227 000 072 217 072 000 000 000 072 245540-42 cm 000 556 065 000 000 000 065 000 1242 000 000 196 752 000 000 000 000 033 356244-46 cm 000 525 031 000 000 000 093 000 1265 556 000 154 741 000 000 000 000 185 256248-50 cm 000 994 000 000 029 000 029 000 000 3129 000 175 292 000 000 000 000 029 242752-54 cm 000 664 000 035 000 000 140 000 1364 699 000 385 699 000 000 000 000 000 255256-58 cm 000 281 112 000 000 000 056 000 1180 534 000 871 927 000 000 000 000 056 238860-62 cm 000 975 144 000 000 000 036 000 903 1733 000 325 722 000 000 000 000 072 227464-66 cm 000 767 184 000 000 031 061 000 706 1626 000 276 736 000 000 000 061 123 144268-70 cm 000 1536 031 000 000 063 000 000 972 3103 000 063 1348 000 000 000 000 000 43972-74 cm 000 1691 344 000 000 000 000 000 1261 2436 000 086 802 000 000 000 000 115 86076-78 cm 000 1467 367 000 000 000 000 000 900 3767 000 000 500 000 067 000 000 000 26780-82 cm 000 1921 213 000 000 000 000 000 793 3994 000 000 213 000 000 000 000 122 03084-86 cm 000 2097 032 000 000 000 000 000 806 3419 1129 000 226 000 000 000 000 000 16188-90 cm 000 1864 034 000 000 000 000 000 000 3932 1153 000 237 000 000 000 034 034 10292-94 cm 000 329 033 000 000 000 000 000 757 1217 2303 000 921 000 000 000 000 033 78996-98 cm 000 538 028 000 000 000 000 2720 652 1133 000 000 737 000 000 000 000 000 1416

100-102 cm 000 1148 033 000 000 000 000 2230 000 2590 000 000 590 000 000 000 000 000 295104-106 cm 000 635 159 000 000 000 000 2032 317 1333 000 000 794 000 000 000 063 127 1556108-110 cm 000 1655 338 000 000 000 000 439 270 2601 000 000 1250 068 000 000 000 338 000112-114 cm 080 479 133 000 000 000 000 000 1729 1064 000 000 1596 027 000 000 053 133 1941116-118 cm 000 1181 139 000 000 000 000 000 2847 2014 000 000 972 000 000 000 000 000 243120-122 cm 000 1761 066 000 000 000 000 000 2093 2292 000 000 532 000 000 000 000 066 000124-126 cm 000 3142 453 000 000 060 000 121 000 4350 000 000 242 000 000 000 000 242 000128-130 cm 000 2786 352 000 000 000 000 528 000 4164 000 000 587 000 000 000 000 411 029132-134 cm 000 1705 129 000 000 000 000 904 233 3178 000 000 956 000 000 000 000 052 310136-138 cm 000 843 421 000 000 000 000 899 393 1236 000 000 2444 000 028 000 084 197 449140-142 cm 000 2032 581 000 000 000 000 000 645 3903 000 000 645 000 000 000 000 290 000

Table 1Russell Bank 19B

Percent Abundance of Benthic Foraminifera

Depth in Core

0-2 cm 4-6 cm

8-10 cm 12-14 cm 16-18 cm 24-26 cm 28-30 cm 32-34 cm 36-38 cm 40-42 cm 44-46 cm 48-50 cm 52-54 cm 56-58 cm 60-62 cm 64-66 cm 68-70 cm 72-74 cm 76-78 cm 80-82 cm 84-86 cm 88-90 cm 92-94 cm 96-98 cm

100-102 cm 104-106 cm 108-110 cm 112-114 cm 116-118 cm 120-122 cm 124-126 cm 128-130 cm 132-134 cm 136-138 cm 140-142 cm

Qui

nque

locu

lina

sem

inul

um

Qui

nque

locu

lina

tena

gos

Qui

nque

locu

lina

poly

gona

Qui

nque

locu

lina

poey

ana

Ros

alin

a flo

ridan

a

Ros

alin

a gl

obul

aris

Spi

rolo

culin

a an

tilla

rium

Trilo

culin

a lin

eian

a

Trilo

culin

a ro

tund

a

Trilo

culin

a tri

locu

lina

Val

vulin

a s

p

Val

vulin

eria

laev

igat

a

Num

ber o

f Spe

cies

Sim

pson

s D

iver

sity

Inde

x

1337 107 481 3235 214 000 027 000 000 160 000 000 14 019525 000 1279 3934 066 000 098 000 000 262 000 000 14 021732 279 244 3275 035 000 000 000 000 627 000 000 13 018367 153 214 2875 092 000 000 000 031 1009 000 214 17 014217 000 652 1413 000 000 109 000 000 761 000 000 12 013230 954 691 1480 099 000 000 000 493 164 000 132 18 011885 000 393 1082 230 000 000 000 000 000 000 000 13 017000 000 647 583 065 000 000 000 000 000 000 000 9 019072 289 217 1372 000 000 000 000 217 108 036 000 17 016

1046 163 163 1993 065 000 000 000 065 000 000 033 15 020648 340 370 2377 154 000 000 000 000 000 000 000 14 016322 175 117 1637 205 000 000 000 205 234 000 000 15 020245 140 000 2797 140 000 000 000 000 140 000 000 13 018365 000 169 2669 056 000 000 000 000 337 000 000 14 016

1011 181 397 1227 000 000 000 000 000 000 000 000 13 013521 215 706 1933 245 000 000 000 123 215 000 031 19 011878 000 000 1317 219 000 000 000 000 031 000 000 12 018201 086 401 1146 115 000 000 000 000 401 000 057 15 014667 000 467 1100 133 000 000 000 000 267 000 033 13 020549 000 671 732 000 000 000 000 213 488 000 061 13 022290 000 032 1516 000 000 000 000 097 194 000 000 12 021881 000 508 780 000 000 000 000 136 271 000 034 14 022

1908 099 296 1184 132 000 000 000 000 000 000 000 13 014878 000 227 1020 170 000 142 000 340 000 000 000 13 014

1541 000 426 787 033 000 066 000 197 066 000 000 13 0171238 000 222 1397 095 032 000 000 000 000 000 000 14 0131014 034 574 777 000 000 000 000 236 338 000 068 15 014

984 000 293 1011 213 000 000 000 133 080 000 053 17 0131632 104 208 486 035 000 000 000 035 104 000 000 13 0182093 000 166 565 100 000 000 000 033 100 133 000 13 018

000 272 242 393 000 000 000 030 091 363 000 000 13 030000 029 235 323 029 000 000 000 059 411 000 059 14 026

1111 000 207 620 052 000 000 000 336 207 000 000 14 017983 140 253 955 169 000 000 000 112 253 000 140 18 012258 032 419 548 000 000 065 000 065 258 000 258 14 021

Table 2Russell Bank 19B

Percent Abundance of Molluscan Fauna

Depth in Core G

astro

pods

Act

eoci

na c

anal

icul

ata

Am

aea

spp

Bitt

ium

var

ium

Bul

la s

p

Cae

cum

pu

chel

lum

flor

idan

um

Cer

ithid

ea s

pp

Cer

ithiu

m s

pp

Con

us s

p

Cre

pidu

la s

p

Mar

gine

llids

Mod

ulus

mod

ulus

Oliv

ella

sp

Ris

soin

a s

pp

Turr

itella

exo

leta

Vitr

inel

lids

Rar

e G

astro

pods

Uni

dent

ified

gas

tropo

d fra

gmen

ts u

nkno

wn

sp

and

juve

nile

s

0-2 cm 000 000 128 000 147 000 568 000 073 092 183 000 220 000 037 037 0554-6 cm 000 000 347 000 087 000 723 000 116 116 347 000 145 000 116 116 260

8-10 cm 000 000 172 000 000 000 259 000 000 086 517 000 345 000 345 086 34512-14 cm 000 000 244 000 244 000 488 000 000 061 244 244 488 244 000 061 36616-18 cm 000 000 244 000 000 000 610 000 122 000 122 122 854 000 000 122 36620-22 cm 000 000 270 135 135 000 270 000 135 000 000 000 135 000 000 135 27024-26 cm 172 000 345 000 345 172 1552 000 690 000 000 172 172 000 000 000 17228-30 cm 000 000 000 000 000 000 000 000 000 000 000 000 000 000 000 000 00032-34 cm 000 000 714 714 000 000 2143 000 000 000 714 000 714 000 000 000 00036-38 cm 000 000 2143 000 000 000 3571 357 000 000 357 1071 000 000 000 000 107140-42 cm 000 000 1237 515 000 000 1856 000 309 000 103 206 412 000 000 103 41244-46 cm 000 000 215 000 000 000 860 000 000 000 645 108 968 000 108 000 43048-50 cm 000 000 1111 000 000 000 1852 000 000 000 556 000 741 000 000 000 74152-54 cm 000 000 000 000 000 000 811 000 000 000 4324 000 270 000 000 000 54156-58 cm 000 000 000 000 1000 000 4000 000 4000 000 000 000 000 000 000 000 00060-62 cm 000 000 313 000 000 000 000 625 000 000 000 000 625 000 000 313 187564-66 cm 000 000 800 200 100 000 1400 000 300 100 200 000 300 000 000 000 40068-70 cm 000 000 1569 000 196 000 1765 000 392 196 196 000 980 000 000 392 58872-74 cm 000 000 1918 000 137 000 1918 000 685 000 137 000 000 000 000 000 54876-78 cm 000 000 562 000 000 000 1124 000 000 562 337 225 562 112 000 000 168580-82 cm 000 000 414 000 000 000 552 000 000 138 069 138 000 138 000 000 96684-86 cm 000 000 933 000 400 000 1333 267 133 000 267 267 533 000 000 000 133388-90 cm 000 000 219 000 000 000 1606 000 000 000 000 292 803 219 000 146 153392-94 cm 000 000 432 000 144 000 1007 000 000 000 072 288 504 144 000 000 93596-98 cm 303 000 152 000 152 000 1364 000 152 000 000 152 758 152 000 303 152

100-102 cm 000 000 000 000 138 000 483 000 000 069 000 207 345 000 000 000 483104-106 cm 000 067 738 000 067 134 1611 067 000 134 000 134 470 067 000 134 470108-110 cm 000 238 714 000 000 000 952 000 000 079 000 397 1190 079 000 159 1825112-114 cm 286 000 857 000 000 000 1714 000 286 000 286 000 000 000 000 000 1143116-118 cm 000 000 000 000 000 000 000 000 000 000 000 000 000 000 000 000 2000120-122 cm 000 000 345 000 345 000 690 000 000 000 000 345 690 1034 000 000 345124-126 cm 075 000 970 000 000 149 1343 000 075 000 821 224 373 149 149 149 224128-130 cm 000 143 257 000 086 000 857 000 114 086 086 000 286 029 000 029 571132-134 cm 000 000 723 000 000 000 1205 000 000 000 000 120 482 602 000 000 1084136-138 cm 051 051 769 051 103 103 615 000 000 103 000 103 000 256 103 256 410140-142 cm 055 000 656 000 000 000 710 055 109 000 000 383 601 109 000 000 874

Table 2Russell Bank 19B

Percent Abundance of Molluscan Fauna

Depth in Core0-2 cm 4-6 cm

8-10 cm 12-14 cm 16-18 cm 20-22 cm 24-26 cm 28-30 cm 32-34 cm 36-38 cm 40-42 cm 44-46 cm 48-50 cm 52-54 cm 56-58 cm 60-62 cm 64-66 cm 68-70 cm 72-74 cm 76-78 cm 80-82 cm 84-86 cm 88-90 cm 92-94 cm 96-98 cm

100-102 cm 104-106 cm 108-110 cm 112-114 cm 116-118 cm 120-122 cm 124-126 cm 128-130 cm 132-134 cm 136-138 cm 140-142 cm

Pel

ecyp

ods

Ano

mal

ocar

dia

sp

Arc

opsi

s ad

amsi

Bra

chio

dont

es s

p

Chi

one

canc

ella

ta

Cum

ingi

a te

llino

idea

Laev

ecar

dium

spp

Nuc

ula

prox

ima

Pec

tinid

Pin

ctad

a ra

diat

a

Telli

na s

pp

Tran

senn

ella

spp

Rar

e P

elec

ypod

s

Uni

dent

ified

Pel

ecy

Fr

ags

Tota

l num

ber o

f in

divi

dual

spe

cim

ens

Num

ber o

f fau

nal g

roup

s

Sim

pson

s D

iver

sity

Inde

x

000 018 7033 073 055 000 000 000 1264 000 000 018 000 517 16 052000 116 6416 087 000 000 000 000 954 000 000 029 029 331 16 043000 000 7328 086 000 000 000 000 259 000 000 000 172 49 12 055000 183 5732 244 061 000 000 000 1037 000 000 000 061 145 16 035000 000 5732 366 122 000 000 000 244 000 732 000 244 62 14 035000 000 7703 000 000 000 000 000 000 000 270 000 541 62 11 060000 000 2414 345 000 172 000 000 172 172 1724 000 1207 50 16 014000 000 000 000 000 000 000 000 000 000 5000 000 5000 2 2 050000 000 1429 1429 000 000 000 000 000 000 2143 000 000 12 8 015000 000 1429 000 000 000 000 000 000 000 000 000 000 28 7 022000 103 4124 309 000 000 000 103 206 000 000 000 000 97 14 023000 430 968 4624 108 000 000 000 000 108 000 000 430 93 13 025000 926 926 370 926 000 000 185 926 370 000 000 370 54 13 010000 000 2703 000 270 000 000 000 811 000 000 000 270 37 8 028000 000 000 000 000 000 000 000 000 000 000 000 1000 10 4 034000 000 5000 000 000 313 000 000 313 000 000 000 625 32 9 030000 000 2900 100 000 100 000 1000 900 200 300 100 600 100 18 014000 000 588 588 196 000 000 196 000 000 980 000 1176 51 15 010000 000 1918 548 000 000 274 000 000 000 1918 000 000 73 10 016000 112 1910 000 000 000 000 000 337 000 787 000 1685 89 13 012000 207 2690 897 000 000 000 000 138 000 2414 345 897 145 14 016000 000 800 933 000 000 000 000 267 000 1200 000 1333 75 14 010438 000 438 657 073 000 000 000 000 073 2847 000 657 137 14 015216 288 719 647 000 072 000 000 504 000 2734 000 1295 139 16 013152 000 606 455 000 152 000 000 000 000 4545 000 455 66 16 024000 000 1241 483 000 000 000 000 000 000 4897 000 1655 145 10 029671 000 067 134 000 000 000 000 067 000 3624 000 1342 149 18 019000 000 714 238 000 079 159 000 159 000 2302 000 714 126 16 013000 000 000 571 000 000 000 000 000 000 3714 000 1143 35 9 021000 000 000 000 000 000 000 000 000 000 6000 000 2000 5 3 044000 000 2759 000 000 000 000 000 000 000 2069 000 1379 29 10 016373 000 821 672 075 075 000 000 224 000 2463 000 597 134 20 012000 029 857 314 057 000 000 000 200 000 5429 029 543 350 19 032000 000 602 964 241 000 120 000 241 000 2048 000 1566 83 13 012000 103 923 923 000 256 205 000 308 103 3179 000 1026 195 22 014000 109 1967 656 109 000 055 000 273 000 3115 000 164 183 17 016

0-2

4-6

12-14

16-18

20-22

36-38

56-58

116-118

100-102

128-130

96-98

88-90

92-94

112-114

104-106

124-126

136-138

140-142

108-110

132-134

84-86

76-78

120-122

80-82

72-74

68-70

48-50

64-66

24-26

32-34

40-42

60-62

52-54

44-46

28-30

8-10

00 01 02 03 04 05 080706

Figure 2 Q-mode cluster diagram of molluscan assemblages from core 19B Distancesare expressed as Pearsons Correlation coefficient values calculated on the molluscanpercent abundance data (see Table 2) and plotted using average linkage methodShaded areas represent clusters formed by samples from the upper portion of the core(0-22 cm) and the lower portion of the core (68-142 cm)

Sam

ple

(iden

tifie

d by

dep

th in

cm

)

2) The cluster containing samples from the interval from 22-0 cm has high Pearsons Correlationcoefficient values for within-group similarity and the largest between-group distances (seeFigure 2) This upper portion of the core is dominated by Brachiodontes sp which comprisesgreater than 50 of the molluscan assemblage in each sample from this section Pinctadaradiata and Cerithium spp are present in significant amounts (5) in some samples from 22-0cm

Benthic Faunal Patterns

Comparison of the benthic fauna present in core 19B with our modern data set enables us tointerpret the salinity history for the Russell Banks site The foraminiferal and molluscan recordsfrom core 19B show distinct oscillations in salinity with a gradual increase in salinity toward thetop of the core (Figure 3) In addition a positive correlation (ρ =052) exists between increasingSimpson diversity indices and decreasing salinity for the benthic foraminfera

The two dominant foraminiferal assemblages Ammonia-Elphidium and miliolid are verysimilar to the Ammonia-Elphidium and Archaias-miliolid assemblages described from modernFlorida Bay sediments (Brewster-Wingard et al 1996) The distribution of modern benthicforaminifers in Florida Bay shows a strong association between the occurrence of Aparkinsoniana and E galvestonense mexicanum and typica with salinities less than 25 ppt(Brewster-Wingard et al 1996) Conversely miliolids dominate where salinities are near normalmarine values (30 ppt) The intervals dominated by the miliolid assemblage (140 cm 118-90 cm70-42 cm and 18-0 cm) therefore indicate more stable and relatively higher average salinity (32-35 ppt) These segments are interrupted by three periods of A-E assemblage dominance (140-118cm 90-70 cm and 42-18 cm) indicating unstable and relatively low average salinity (lt32 ppt)

Molluscs are not as sensitive to variations in salinity as benthic foraminifers consequently themolluscan data do not show the degree of fluctuation seen in the foraminiferal data (Figure 3)The general trend of increasing percent abundance of euhaline and euhaline-polyhaline molluscsupcore does follow the general trend of the foraminiferal plot showing a gradual increase insalinity upcore No molluscan faunas restricted to terrestrial fresh water marsh or upperestuarine environments are present in core 19B indicating this area has been relatively open bayover the last century and the salinity has probably not dropped below 12-15 ppt

Both the benthic foraminiferal assemblages and the molluscan assemblages show significantchanges between 70-66 cm and between 24-18 cm These zones correspond to shifts from A-Edominated assemblages to miliolid dominated assemblages but the molluscs do not seem torespond significantly to the decreases in salinity that mark the shift from miliolid assemblagesback to A-E assemblages Almost all of the molluscs present in this core can be classified aspolyhaline and are tolerant of a wide range of salinities (from approximately 12 or 15 ppt to 30-35 ppt) which could explain the patterns seen for the molluscs If however the salinity haddropped below ~15ppt during the periods of A-E dominance then the molluscs would mostlikely have shown a response The areas of A-E dominance in the core represent salinities of 15-25 ppt with the lower number delineated by the absence of species of molluscs found in lowsalinity waters of Florida Bay and the upper number constrained by the presence of low salinitybenthic foraminifera The miliolid dominated zones represent salinities of 30 ppt or higher

Figure 3 Plot of percent abundance of benthic foraminifers molluscs and the two datasets combined that indicate increasing salinity for core 19B The benthic foraminifersindicate salinity gt 30 ppt The mollusc species have wider salinity tolerances thespecies illustrated on this plot are classified as euhaline or euhalinepolyhaline andrepresent salinities of 20-25 ppt or greater The positions of the benthic foraminiferalassemblages (Milliolid-gray Ammonia-Elphidium-white) discussed in the text are shownon the right of the plot

ForaminifersMolluscsCombined

900080007000600050004000300020001000000

0-2

8-10

16-18

24-26

32-34

40-42

48-50

56-58

64-66

72-74

80-82

88-90

96-98

104-106

112-114

120-122

128-130

136-138

140-142

abundance

Dep

th in

Cen

timet

ers

Miliolid Assemblage

Miliolid Assemblageat 140-142 cm

Miliolid Assemblage

Miliolid Assemblage

Ammonia- ElphidiumAssemblage

Ammonia- ElphidiumAssemblage

Ammonia- ElphidiumAssemblage

1981

1962

1939

1922

1898

1878

Hard Surface

Coarse Sediment or Sponges

Coarse Sediment

Coarse or Fine Sediment

Fine Sediment

Grass Beds or Sediment

Grass Beds or Coarse Sediment

Grass and Algae Beds

Grass Beds

Pecent AbundanceD

epth

in C

ore

(cm

)

0 10 20 30 40 50 60 70 80 90 1000-2

8-10

16-18

24-26

32-34

40-42

48-50

56-58

64-66

72-74

80-82

88-90

96-98

104-106

112-114

120-122

128-130

136-138

Figure 4 Area diagram of percent abundance of molluscs indicative of specific substrate types for core 19B Data plotted at the 116 cm and 28 cm depths represent averages of the overlying and underlying samples these two samples did not contain enough individual specimens to be statistically valid

The suite of molluscs present in core 19B is more indicative of changes in substrate thanchanges in salinity Figure 4 illustrates the substrate patterns within the core based on thepercent abundance of molluscs known to prefer those substrate types The lowest portion of thecore from 142-110 cm has significant numbers of both sediment dwellers and grass dwellerspresent with dominance of either group fluctuating From 106-88 cm sediment dwellersdominate although grass dwellers are still present in significant numbers The segment from 88-22 cm is dominated by grass dwellers above 68 cm the presence of species indicative of asediment substrate is negligible The uppermost portion of the core from 22 cm to the top isdominated by species that could live on either algae or grass

The shifts in abundance of molluscan substrate indicators at 88 cm 68 cm and 22 cmcorrespond to changes seen in the benthic foraminiferal salinity indicators but at this point thesignificance of this relationship is not understood However since the benthic foraminifers usedfor salinity indicators are not sensitive to changes in substrate we believe the changingforaminiferal patterns reflect changing salinity

ANALYSIS AND DISCUSSION OF THE FLORA IN CORE 19A

Pollen

The percent abundance data on pollen is presented in Table 3 Three pollen zones aredistinguishable based on both percent abundance and absolute pollen concentration (pollengrainsgram dry sediment) The bottom zone (140-80 cm) is characterized by the highestpercentages of Pinus (pine) pollen (80-90) and the lowest percentages of Quercus (oak)(lt6) and pollen of the ChenopodiaceaeAmaranthaceae (pigweed family) and Asteraceae(aster family) (Figure 5) No pollen of the Cyperaceae (sawgrass family) is present in this zoneTotal pollen concentration in this zone and the middle zone ranges from about 500-1200grainsgram and the concentration of Quercus pollen is lower than the other zones with lt50grainsgram (Figure 6)

The middle zone (80-32 cm) is characterized by lower percentages of Pinus pollen (54-73)higher percentages of Quercus (6-10) and higher concentrations of Quercus pollen (50-100grainsgram) In both this and the upper zone pollen of the ChenopodiaceaeAmaranthaceae andAsteraceae are more abundant comprising 3 and 2 of the assemblages respectively Pollenof the Cyperaceae is present in low percentages in this and the upper zone

The upper zone has the highest pollen concentrations of the core with most samples rangingfrom 1200-4600 grainsgram Several taxa contribute to these higher values including PinusQuercus Myrica (wax myrtle) ChenopodiaceaeAmaranthaceae and Asteraceae Cephalanthus(buttonbush) is present in low abundances (lt1) in this zone and Liquidambar (sweet gum) isabsent from this zone

Table 3Russell Bank 19A

Percent Abundance of Pollen

Depth in core Aln

us

Api

acea

e

Ast

erac

eae

Avi

cenn

ia

Bet

ula

Bum

elia

Bur

sera

sim

arub

a

Car

ya

Cas

uarin

a

Cel

tis

Cep

hala

nthu

s

Che

nopo

diac

eae

A

mar

anth

acea

e

Con

ocar

pus

Cyp

erac

eae

Dec

odon

Eric

acea

e

Eup

horb

iace

ae

Faba

ceae

Frax

inus

Ilex

Jugl

ans

0-1 cm 000 000 255 000 000 000 000 000 482 000 028 425 000 000 000 000 000 142 000 000 000 4-5 cm 057 000 201 000 000 000 000 029 115 000 029 287 029 115 000 000 029 057 000 029 029 8-9 cm 032 000 322 000 000 000 000 000 129 000 032 096 000 064 000 000 000 032 000 000 000

20-21 cm 000 000 409 031 000 000 000 000 314 000 063 597 000 000 000 000 000 220 000 000 00032-34 cm 030 000 332 000 030 030 000 000 211 000 000 332 030 030 000 000 000 121 000 030 03044-46 cm 080 000 777 000 000 000 000 027 214 000 000 429 000 080 000 000 027 107 000 054 00056-58 cm 031 000 439 000 000 000 000 031 157 000 000 690 000 063 000 063 000 094 031 000 00068-70 cm 168 000 251 000 028 000 028 084 056 000 000 307 000 056 000 000 000 084 000 000 00080-82 cm 000 000 238 000 000 000 000 000 000 000 000 476 000 000 000 000 000 000 000 000 00092-94 cm 054 000 054 000 000 027 000 082 027 000 000 054 000 000 000 000 000 082 027 000 000

104-106 cm 000 029 115 000 000 000 000 000 000 000 000 230 000 000 057 000 000 115 000 000 000116-118 cm 062 000 062 000 000 000 000 000 000 031 000 185 031 000 000 000 000 062 000 000 000128-130 cm 000 000 061 000 000 000 000 030 000 000 000 091 000 000 000 030 000 061 000 000 000136-138 cm 060 000 060 030 000 030 060 181 000 000 000 091 000 000 000 000 000 000 000 000 000138-140 cm 000 000 000 000 000 000 000 081 000 000 000 244 000 000 000 000 000 000 000 000 000

Table 3Russell Bank 19A

Percent Abundance of Pollen

Depth in core0-1 cm

4-5 cm 8-9 cm

20-21 cm 32-34 cm 44-46 cm 56-58 cm 68-70 cm 80-82 cm 92-94 cm

104-106 cm 116-118 cm 128-130 cm 136-138 cm 138-140 cm

Liqu

idam

bar

Mag

nolia

Myr

ica

Nys

sa

Ost

rya

Car

pinu

s

Pin

us

Pla

nera

Poa

ceae

Que

rcus

Rhi

zoph

ora

Rut

acea

e

Sag

ittar

ia

Sal

ix

Taxo

diac

eae

C

upre

ssac

eae

Tax

acea

e

Typh

a

Ulm

us

Tota

l Pol

len

Cou

nted

000 000 283 000 028 6856 000 028 1076 028 000 028 000 000 000 057 353000 000 086 000 000 6905 000 029 1375 029 000 029 000 000 000 000 349000 000 225 000 000 7395 000 032 932 096 032 032 032 000 096 032 321000 000 1069 000 063 5660 000 031 1101 000 000 000 000 000 031 000 321030 000 846 000 000 6737 000 030 634 000 000 000 030 030 030 000 332107 000 429 027 000 5416 000 107 1046 027 000 000 027 027 054 054 378000 031 376 000 000 6395 000 031 690 094 000 031 031 031 063 031 320028 028 447 000 000 7346 000 000 615 028 000 000 028 000 112 028 358119 000 357 000 000 7976 000 000 595 000 000 000 000 000 000 000 85082 000 408 000 000 8696 000 000 245 027 000 000 000 027 000 000 371029 000 747 000 000 8017 000 029 316 057 000 000 000 029 029 000 350000 000 338 000 000 8923 000 031 123 031 000 000 031 000 031 000 326030 000 396 000 000 8628 000 030 457 000 000 000 030 000 000 000 331030 000 242 000 000 8792 030 000 181 000 000 000 000 000 030 000 332081 000 163 000 000 8862 000 000 569 000 000 000 000 000 000 000 123

0 10 20 30 40 50 60 70 80

10

20

30

40

50

60

70

80

90

100

110

120

130

Depthcm Pinu

sQue

rcus

Casua

rina

Rhizop

hora

Myrica

Cepha

lanthu

s

Cheno

podia

ceae

Amara

nthac

eae

Poace

ae

Cypera

ceae

Asterac

eae

10

20

30

40

50

60

70

80

90

100

110

120

130

0 10 0 0 0 10 0 0 0 0 05 5 5 5 5 5 5 55

(Pine

)(O

ak)

(Aus

tralia

n Pine

)

(Red

Man

grove

)

(Wax

Myrt

le)

(Pig

Wee

d)

(Gras

s Fam

ily)

(Saw

grass

Family

)

(Aste

r Fam

ily)

(Butt

on B

ush)

Figure 5 Percent abundance of selected pollen groups for core Russell Bank 19A (note different scales)

0 50 100 150 200 250 300 350 400

Querc

us

0 50

Casua

rina

0 50 100 150 200 250 300

Myr

ica

0 50 100 150

Cheno

pods

0

Cyper

acea

e

0 50 100

Astera

ceae

10

20

30

40

50

60

70

80

90

100

110

120

130

Depthcm Pinu

s

0 1000 2000 3000

Total

Pollen

Con

cent

ratio

n

10

20

30

40

50

60

70

80

90

100

110

120

130

0 1000 2000 3000 4000

Figure 6 Total concentration of pollen (grainsgram) for core Russell Bank 19A (note different scales)

Dinocysts

Dinocyst recovery in all samples was low Most microscope slides are heavily dominated byorganic debris and the maximum number of specimens observed in any sample was 214Absolute abundance ranges from 779 to 4736 cystsgram These values are one to two orders ofmagnitude below those reported by Wall et al (1977) for samples from the Middle AtlanticBight and western South Africa and are consistent with high sedimentation rates These absoluteabundances in the sediments are far below bloom concentrations in which the number of livingcells per ml of water may exceed 50 million

The dinocyst assemblages in the Russell Bank 19A core consist of less than 10 taxa (Table 4)Various species of the genus Spiniferites Mantell dominate all samples (61 to 79 percent) Due topoor preservation and taxonomic difficulties the individual species of this genus were notdifferentiated S mirabilis (Rossignol) Sarjeant S ramosus (Ehrenberg) Mantell S scabratus(Wall) Sarjeant and other forms are present Operculodinium Wall spp (O israelianum(Rossignol) Wall or Operculodinium species undifferentiated) are present in all samples inamounts of 5 to 19 percent Polysphaeridium zoharyi (Rossignol) Bujak et al is present in allsamples and comprises up to 16 percent of the assemblages Most samples included low numbersof Lingulodinium machaerophorum (Deflandre amp Cookson) Wall Nematosphaeropsis rigidaWrenn and (or) Tectatodinium pellitum Wall Only two samples contained a single specimeneach of the family Congruentidiaceae

Most samples from Russell Bank core 19A are quite similar to one another (Figure 7)Throughout the core the dinocyst Polysphaeridium zoharyi ranges in abundance from 0-16percent which is considerably lower than in the Bob Allen 6A (Wingard et al 1995) and LittleMadeira Bay T24 (Ishman et al 1996) cores With one exception (80-82 cm) increased absoluteabundance of Spiniferites spp is accompanied by increased absolute abundance of P zoharyi(Figure 8) This relationship suggests that absolute abundances in this core are a function ofsediment supply rather than cyst production The sample at 80-82 cm is anomalous the highabsolute abundance of cysts is attributable to Spiniferites spp and fewer than 30 total cysts werefound on each slide This sample may represent a case of an increase in Spiniferites cystproduction and an increase in the amount of organic debris in proportion to sediment supply Thelowest samples (132-134 cm and 136-138 cm) show both low absolute abundances of all cysttypes and low percentages of P zoharyi

Floral Patterns

Changes occur in the pollen and dinocyst assemblages in core 19A but the significance ofthese changes is unclear Three zones are distinguishable for the pollen but the differencesamong them are very subtle and any interpretation of patterns of vegetational change would bepremature However it is apparent that the vegetation changed in response to someenvironmental factor at those times correlation with on-shore cores would be necessary toestablish the nature of the changes Dinocyst abundance fluctuates in the core with two peaks at118-104 cm and 82-80 cm but the assemblages are relatively stable throughout the core

Table 4 Dinocyst data from Russell Bank 19A

Pol

ysph

aerid

ium

zoh

aryi

Spi

nife

rites

spp

Ope

rcul

odin

ium

spp

Nem

atos

phae

rops

is ri

gida

Ling

ulod

iniu

m m

acha

erop

horu

m

Tect

atod

iniu

m p

ellit

um

Tube

rcul

odin

ium

van

cam

poae

Con

grue

ntid

iace

ae

Oth

er

TOTA

L D

INO

CY

STS

CO

UN

TED

Depth (cm)

Wt (g) Cystsg

Slides examined

0-1 74 779 2 129 742 97 00 32 00 00 00 00 3120-21 115 1363 1 123 630 74 49 49 62 00 12 00 8144-46 363 921 1 24 750 95 36 48 12 00 00 36 8468-70 358 1454 1 114 705 95 10 38 29 00 10 00 10580-82 337 3732 2 19 811 132 00 38 00 00 00 00 5392-94 385 2049 1 84 720 119 49 28 00 00 00 00 143

104-106 331 4736 1 128 636 133 77 10 05 00 00 10 195116-118 350 3451 1 141 676 106 07 63 07 00 00 00 142128-130 390 1854 1 121 612 178 51 28 05 05 00 00 214132-134 321 1288 1 34 754 127 68 17 00 00 00 00 118136-138 371 2028 1 66 747 110 55 11 11 00 00 00 91

Species

Percent abundance

Comparison of these data to additional terrestrial and marine cores may lead to a betterunderstanding of the patterns seen here

210PB AGE MODEL FOR THE RUSSELL BANKS SITE

The activity of 210Pb (dpmgram) is shown for 19B and 19C in Figures 9 and 10 Thesedimentation rate for the Russell Bank site is based on the results from 19C because both 210Pband Ra analyses have been completed for that core the rate equals 122 cmyear +- 005The 210Pb curves for cores 19B and 19C are almost identical therefore we make the assumptionthat the rate of sediment accumulation is the same in the two cores No 210Pb analyses have beendone for core 19A to date

SUMMARY

The fauna and flora present in the Russell Bank cores 19A and 19B record an approximately120-year history of fluctuating environmental changes The benthic foraminifera documentperiods of fluctuating salinity with a gradual increase in salinity upcore The molluscan data areconsistent with the foraminiferal data showing increasing salinity upcore but without the degreeof fluctuation indicated by the benthic foraminifera The benthic fauna show significant changesin the assemblages at 70-66 cm and 24-18 cm which correspond to approximately 1937-1940and 1975-1980 A similar shift occurred at 118 cm (approximately 1898) which is not as clearlyseen in the molluscan faunal data These periods represent shifts from low salinity (12-15 ppt) tohigher average salinity (30 ppt) In addition the benthic foraminiferal assemblages shift fromperiods of higher average salinity to periods of lower salinity at 140 cm 90 cm and 42 cmwhich correspond to approximately 1880 1921 and 1960 respectively

The molluscan fauna indicate changes occurring in the substrate at the Russell Banks siteSediment and grass (probably Thalassia) apparently were equally available for habitation from142-110 cm or approximately 1878-1904 Although grass was still available bare-sedimentdominated the area from 106-88 cm or approximately 1908-1922 From 88-22 cm orapproximately 1922-1976 grass was the dominant substrate and from approximately 1939 (68cm) to the present the presence of bare-sediment bottoms was negligible at the siteSignificantly from 22 cm or approximately 1976 to the present the molluscan fauna isdominated by species that can live equally well on algae or seagrass

The pollen present in core 19A show three periods of subtle shifts in the onshore vegetation inresponse to some environmental factor These changes occur at 80 cm and at 32 cm orapproximately 1929 and 1968 If we assume that core 19A and 19B have similar sedimentationrates then the shifts in the onshore vegetation indicated by the pollen seen in 19A occurapproximately 7-8 years prior to changes in Florida Bay as indicated by the benthic fauna in19B However until we see this pattern repeated in the same core or until a 210Pb analysis is

0 20 40 60 80 100

0-1

20-21

44-46

68-70

80-82

92-94

104-106

116-118

128-130132-134136-138

Operculodinium spp

Nematosphaeropsis rigida

Lingulodinium machaerophorum

Spiniferites spp

Polysphaeridium zoharyi

All others

Percent Cystsgram 0 100 200 300 400 500

Figure 7 Percent and absolute abundances of dinocysts for core 19A

Dep

th (

cm)

0 100 200 300 4000

20

40

60

80

100

120

140

Spiniferites

Cystsgram

Dep

th (

cm)

Polysphaeridium zoharyi

Figure 8 Absolute abundances of Polysphaeridium zoharyi and Spiniferites spp in core 19 A

000 200 400 600

Activity (dpmg)

Dep

th (c

m)

0

40

80

120

160

Figure 9 Pb210 activity in dpmg for core 19B

Activity (dpmg)

Dep

th (c

m)

000 100 200 300 400 500 600

0-2

6-8

12-14

18-20

24-26

30-32

36-38

42-44

48-50

54-56

60-62

66-68

72-74

78-80

84-86

90-92

96-98

102-104

108-110

114-116

120-122

126-128

132-134

138-140

144-146

150-152

156-158

Figure 10 210Pb activity in dpmg for core 19C

completed for core 19A we can not be certain of its significance because our assumption ofsimilar sedimentation rates for cores 19A and 19B may not be correct

Two peaks in dinocyst abundance (cystsgram) occur in the samples examined 118-104 cm(approximately 1898-1909) and 82-80 cm (approximately 1927-1929) These occur during aperiod of near normal marine (30 ppt) and stable salinity as indicated by the benthicforaminifera These periods may represent increased dinocyst production and decreased sedimentsupply but the composition of the dinocyst assemblages remains relatively stable throughout thecore

The pattern of increased salinity upcore documented here for Russell Banks 19B is consistentwith patterns seen in core T24 from the mouth of Taylor Creek in Little Madeira Bay (Ishman etal 1996) and in core 6A from Bob Allen mudbank (Wingard et al 1995) The correspondencebetween changes in salinity and onshore changes in vegetation is also consistent with resultsfrom the previous cores These patterns will continue to be investigated at additional sites inFlorida Bay and the terrestrial Everglades in order to establish the sequence and timing of eventsthroughout the ecosystem and to determine linkages between the marine and terrestrial systems

REFERENCES CITED

Benninghoff WS 1962 Calculation of pollen and spore density in sediments by addition of exotic pollen in known quantities Pollen et Spores v 4 p 332-333

Brewster-Wingard GL Ishman SE Edwards LE and Willard DA 1996 Preliminary report on the distribution of modern fauna and flora at selected sites in north-central and north-eastern Florida Bay US Geological Survey Open-File Report 96-732 34 p

Davis JC 1973 Statistics and Data Analysis in Geology New York John Wiley amp Sons 550 p

Ishman SE Brewster-Wingard GL Willard DA Cronin TM Edwards LE and Holmes CW 1996 Preliminary paleontologic report on core T-24 Little Madeira Bay Florida US Geological Survey Open-File Report 96-543 47 p

Maker LJ Jr 1981 Statistics for microfossil concentration measurements employing samples spiked with marker grains Review of Paleobotany and Palynology v 32 p153-191

Robbins JA Holmes CW Halley RB Bothner Michael Shinn EA Graney Joseph Keller Gerald tenBrinck Marilyn Rudnick David in press Time constraints characterizing predeposition integration of 137Ce and Pb fluxes to sediments in Florida Bay Geochemica et Cosmochemica

Stockmarr Jens 1971 Tablets with spores used in abolute pollen analysis Pollen et Spores v 8 p 615-621

Wall David Dale Barrie Lohmann GP and Smith WK 1977 The environmental and climatic distribution of dinoflagellate cysts in modern marine sediments from regions in the North and South Atlantic Oceans and Adjacent seas Marine Micropaleontology v 2 p 121-200

Wingard GL Ishman SE Cronin TM Edwards LE Willard DA and Halley RB 1995 Preliminary analysis of down-core biotic assemblages Bob Allen Keys Everglades National Park Florida Bay US Geological Survey Open-File Report 95-628 35 p

  • Title Page
  • Table of Contents
  • Abstract
  • Acknowledgements
  • Methods
  • Discussion of Fauna
  • Discussion of Flora
  • Age Model
  • Summary
  • References
Page 2: Preliminary Paleontologic Report on Cores 19A and 19B, from ...

TABLE OF CONTENTS

AbstractIntroductionAcknowledgmentsMethods of Investigation Benthic Foraminifers and Molluscs Pollen and Dinocysts Isotopic AnalysesAnalysis and discussion of the benthic fauna in core 19B Benthic Foraminifers Molluscs Benthic Faunal PatternsAnalysis and discussion of the flora in core 19A Pollen Dinocysts Floral Patterns210Pb age model for the Russell Bank siteSummaryReferences Cited

FIGURES

1 Location map of Russell Bank 2 Cluster diagram of molluscan assemblages 3 Plot of percent abundance of benthic faunal indicators of marine salinity 4 Plot of percent abundance of molluscan substrate indicators 5 Plot of percent abundance of pollen taxa 6 Actual counts of pollen grains 7 Plot of percent and absolute abundances of dinocysts 8 Plot of absolute abundances of Polysphaeridium zoharyi and Spiniferites 9 210Pb activity for core 19B10 210Pb activity for core 19C

TABLES

1 Russell Bank 19B Percent abundance of benthic foraminifera2 Russell Bank 19B Percent abundance of molluscan fauna3 Russell Bank 19A Percent abundance of pollen4 Dinocyst data from Russell Bank 19A

Preliminary Paleontologic Report on Cores 19A and 19B from Russell BankEverglades National Park Florida Bay

ABSTRACT

The fauna and flora preserved in two cores 19A and 19B from the south side of Russell Bank(N 25 03831rsquo W 80 37486rsquo) in north-central Florida Bay Everglades NationalPark Florida record a history of environmental change over the last century The benthicforaminifera and molluscs indicate fluctuating salinities with increasing average salinity upcorein core 19B Shifts from low salinity (12-15 ppt) to higher average salinity (30 ppt) occurred at70-66 cm and 24-18 cm in core 19B (approximately 1937-1940 and 1975-1980) The inverseshifts from periods of higher average salinity to periods of lower salinity occurred at 140 cm 90cm and 42 cm (approximately 1880 1921 and 1960) Significant changes in the molluscanfauna indicative of specific substrate types occur at 88 cm 68 cm and 22 cm The lower portionof the core is dominated by a mixture of sediment and grass dwellers the middle portion bysediment dwellers and the upper portion of the core by grass and finally grass and algaedwellers Changes occur in the floral assemblages in core 19A but the significance of thesechanges is unclear Three subtle shifts occur in the pollen assemblages indicating the onshorevegetation was responding to some environmental factor Two peaks in dinocyst abundanceoccur in core 19A but the composition of dinocyst assemblages remains relatively stablethroughout the core Correspondence between changes in salinity and onshore vegetationchanges is consistent with results from previous cores The pattern of increased salinity upcore isconsistent with patterns seen in core T24 from the mouth of Taylor Creek and in core 6A fromBob Allen mudbank

INTRODUCTION

The fragile and unique ecosystems of southern Florida including Florida Bay the terrestrialEverglades and Biscayne Bay have been the focus of a substantial scientific effort in responseto environmental economic and political concerns These concerns are focused on returning theEverglades to its natural state as mandated by the Everglades Forever Act (passed in 1994)while at the same time addressing the conflicting interests of the ever-growing population ofsouthern Florida the environmentalists the farmers and the tourist industry among othersConsequently Federal State and local jurisdictions are faced with decisions related to theecosystem restoration goals mediation of conflicting interests and monitoring of change

An essential part of the decision making process is to understand the history of the ecosystemprior to significant human alteration and to separate natural variability in the ecosystem fromhuman-induced change The US Geological Survey (USGS) in cooperation with NationalOceanic and Atmospheric Administration (NOAA) South Florida Water Management District(SFWMD) the National Park Service (NPS) the Army Corps of Engineers (ACOE) and otherFederal State and local agencies is conducting research to provide information on the history of

the Everglades ecosystem over the last 150-200 years The distribution of fauna and flora in aseries of sediment cores taken throughout the Everglades ecosystem provides information on thebiological physical and chemical parameters of the system over time

Sediment cores were taken in February of 1995 by researchers from the US GeologicalSurvey (St Petersburg FL) in cooperation with South Florida Water Management District(SFWMD) and the Everglades National Park (ENP) for use by USGS investigators conductingresearch in Florida Bay Three cores were taken from the south side of Russell Bank (N 2503831rsquo W 80 37486rsquo) in north-central Florida Bay (Figure 1) Cores 19A and 19B arereplicate cores taken side by side from a grass bed in 051 m of water Core 19C was taken 54 mnorth of 19A and 19B from a mud flat on top of the south side of Russell Bank Core 19Apenetrated 140 cm of sediment spanning approximately 115 years and has been sampled for210Pb and palynologic analyses Core 19B penetrated 144 cm of sediment spanningapproximately 118 years and has been sampled for 210Pb and calcareous fossil analyses Core19C penetrated 158 cm of sediment and has been sampled for 210Pb analysis

This report is produced by the Ecosystem History of Florida Bay and the Southwest Coastcomponent of the US Geological Surveyrsquos Ecosystem Program and is one of a series of USGSOpen-File Reports on the distribution of biogenic components in sediments sampled from thesouthern Florida region The data presented in these reports can be used to estimate changes insalinity substrate and other critical components of the ecosystem over time

ACKNOWLEDGMENTS

We would like to thank Robert Halley and Gene Shinn US Geological Survey StPetersburg FL for collecting the cores and making them available to us for analysis We wouldlike to thank our colleagues at South Florida Water Management District National Oceanic andAtmospheric Administration and Everglades National Park for their cooperation and assistancein this investigation We have benefited from discussions with William Lyons Florida MarineResearch Institute St Petersburg FL and Thomas Scott Florida Geological SurveyTallahassee FL Our reviewers Thomas Cronin and John Sutter US Geological SurveyReston VA provided helpful comments and suggestions to improve this manuscript

Marci Marot US Geological Survey St Petersburg FL prepared the samples for isotopicand calcareous analysis Assistance in sample processing was provided by Jill DrsquoAmbrosio IanGraham Lisa Weimer Neil Waibel Patrick Buchanan Nancy Carlin and Steve Wandrei of theUS Geological Survey Reston VA Rob Stamm and Patrick Buchanan US GeologicalSurvey Reston VA assisted in the preparation of illustrations for this report and JillDrsquoAmbrosio assisted in compiling the final report

MODERN SAMPLING SITES

Seasonal collecting startingFebruary 1995Seasonal collecting startingFebruary 1996

Seasonal collecting startingFebruary 1997

8

1

3

4 59

11

12

1314

15

16

17 19

18

10 6

7

2

Florida Bay

Atlantic OceanC

AP

E S A B L E JOHN PENNEKAMP

CORAL REEF

STATE PARK

EVERGLADES NATIONALPARK

PARK BOUNDARY

1

1

0

0

1

1

5

5

10

10

Kilometers

Miles

WATER DEPTH

lt 3 ft

gt 3 ft

25

26

23

24

21

20

22

Figure 1 Location of Russell Bank (N25 03831 W80 37486) cores 19A 19B and 19C

Russell Bank Site

METHODS OF INVESTIGATION

Benthic Foraminifers and Molluscs

Sediment samples from core 19B were collected at 2 cm intervals and every other samplestarting with 0-2 cm and totaling 34 samples was analyzed for calcareous benthic fauna Thesamples were washed through a 63micro m sieve and dried at lt50 degrees C When possible a total of300 benthic foraminifer specimens were picked from the sample and mounted on griddedmicropaleontologic slides Large samples were put through a sample splitter to randomly reducethe number of specimens For samples containing fewer than 300 benthic foraminiferindividuals all of the specimens present were picked Molluscs were picked from the gt =850micro m size fraction All molluscs and fragments of molluscs recognizable to the generic levelpresent in each interval were picked Species abundances for the benthic fauna were standardizedby calculating relative abundances (percent)

Pollen and Dinocysts

Material for palynological analysis was extracted from 1-2 cm sections of core 19A For eachpalynological sample 7-40 g of material (dry weight) was treated in hydrochloric andhydrofluoric acids and processed for palynological studies All samples were treated with warmKOH for 2-5 minutes given ultrasonic pulse treatment for 5 seconds acetolysed and sievedbetween 8-200micro m mesh A tablet of Lycopodium marker grains was added to each sample Formost samples at least 300 pollen grains were counted for calculation of percent abundances andabsolute pollen concentration To calculate absolute concentration of palynomorphs the marker-grain method was used (Benninghoff 1962 Maker 1981 Stockmarr 1971) For two samplespollen was sparse enough that fewer than 300 grains were counted For nine samples one slidewas completely examined for dinocysts and all dinocyst taxa were tabulated For two samples (0-1 cm and 80-82 cm) two slides were examined completely for dinocysts

Isotopic Analyses

Samples were collected every 2 cm from cores 19B and 19C and analyzed for 210Pb Ra137Ce 7Be and total Pb Analysis of 210Pb has been completed for 19B and Ra and 210Pb havebeen completed for 19C For details of the method see Robbins et al (in press)

ANALYSIS AND DISCUSSION OF THE BENTHIC FAUNA IN CORE 19B

Benthic Foraminifers

A total of 31 benthic foraminiferal species were identified and counted The foraminiferal datawas standardized to relative abundance (percent of assemblage Table 1) and was used for allquantitative analyses Species diversity as measured by Simpsonrsquos Index ranged from 011 to026 and the number of species ranged from 12 to 19

The foraminiferal assemblages are dominated by calcareous benthic forms with thedominance patterns alternating between rotaliid taxa Ammonia parkinsoniana tepida Aparkinsoniana typica Elphidium galvestonense mexicanum E galvestonense typica and Epoeyanum and miliolid taxa Miliolinella cirlcularis M labiosa Quinqueloculina bosciana Qseminulum Q tenagos Q polygona Q poeyana and Triloculina tricarinata Other significantspecies include Archaias angulatus Peneroplis proteus Rosalina floridana and Quinqueloculinaagglutinans

Two dominant assemblages can be identified in the cores an Ammonia-Elphidium (A-E)assemblage and a miliolid assemblage Observations of the foraminiferal faunal changesthroughout core 19B show four intervals dominated by the miliolid assemblage (140 cm 118-90cm 70-42 cm and 18-0 cm) interrupted by three intervals of A-E assemblage dominance (140-118 cm 90-70 cm and 42-18 cm)

Molluscs

Twenty-six molluscan taxonomic categories were recognized and counted in the Russell Bank19B core The number of specimens per sample ranged from 2 to 517 so the faunal counts werestandardized to relative percent abundance (Table 2) The Simpsonrsquos Diversity Index wascalculated for each sample (Table 2) Three sections in the core contained few individualspecimens (lt40) and few molluscan taxonomic groups (1-9) 122-112cm 62-52cm 38-28cmTwo species Brachiodontes sp and Transennella sp make up greater than 50 percent of themolluscan fauna in the entire core

A cluster analysis of Pearsons Correlation coefficient values calculated for the molluscanpercent abundance data and plotted using average linkage method (Figure 2) revealed 3 primarydivisions of the molluscan assemblages within the core 142-68 cm 68-22 cm and 22-0 cm Theinterval from 142-68 cm is dominated by Transennella sp Brachiodontes sp and Cerithiumspp Bittium varium Rissoina spp and Chione cancellata also are present in significantamounts (5) throughout the interval The interval from 66-22 cm has the lowest within-groupsimilarity of the three molluscan assemblages in the core and is represented by 2 clusters in theanlaysis This interval from 66-22 cm contains 2 zones of very low molluscan abundance (62-52cm and 38-28 cm) Brachiodontes sp and Cerithium spp dominate the 66-22 cm interval with anumber of other species present in significant amounts (10) in individual samples (see Table

Table 1Russell Bank 19B

Percent Abundance of Benthic Foraminifera

Depth in Core Am

mon

ia p

arki

nson

iana

tepi

da

Am

mon

ia p

arki

nson

iana

typi

ca

Arc

haia

s an

gula

tus

Bol

ivin

a lo

wm

ani

Bol

ivin

a ps

eudo

plic

ata

Cla

vulin

a tri

carin

ata

Cyc

logy

ra p

lano

rbis

Elp

hidi

um d

elic

atul

um

Elp

hidi

um g

alve

ston

ense

typi

cum

Elp

hidi

um g

alve

ston

ense

mex

ican

um

Elp

hidi

um p

oeya

num

Gra

ss d

wel

ler

Mili

olin

ella

circ

ular

is

Mili

olin

ella

fich

telia

na

Mili

olin

ella

labi

osa

Nod

osar

iidae

Pen

erop

lis p

rote

us

Qui

nque

locu

lina

aggl

utin

ans

Qui

nque

locu

lina

bosc

iana

0-2 cm 000 107 000 000 000 000 000 000 1123 107 000 080 1203 000 000 000 027 000 17914-6 cm 000 098 164 000 000 000 000 000 918 328 000 033 787 000 000 000 000 066 1443

8-10 cm 000 523 000 000 000 000 000 000 1463 418 000 070 592 000 000 000 070 000 167212-14 cm 000 642 520 000 000 000 000 000 887 1376 000 000 673 000 031 000 092 061 76516-18 cm 000 761 543 000 000 000 000 000 2174 1957 000 000 543 000 000 000 000 326 54324-26 cm 000 888 164 000 000 000 000 000 559 1086 000 066 329 033 000 000 066 395 217128-30 cm 000 1738 066 000 000 000 000 000 1770 2787 000 033 492 000 000 033 033 000 45932-34 cm 000 1294 129 000 000 000 000 000 1974 1909 000 000 388 000 000 000 000 000 301036-38 cm 000 2347 144 000 000 000 072 000 1011 1227 000 072 217 072 000 000 000 072 245540-42 cm 000 556 065 000 000 000 065 000 1242 000 000 196 752 000 000 000 000 033 356244-46 cm 000 525 031 000 000 000 093 000 1265 556 000 154 741 000 000 000 000 185 256248-50 cm 000 994 000 000 029 000 029 000 000 3129 000 175 292 000 000 000 000 029 242752-54 cm 000 664 000 035 000 000 140 000 1364 699 000 385 699 000 000 000 000 000 255256-58 cm 000 281 112 000 000 000 056 000 1180 534 000 871 927 000 000 000 000 056 238860-62 cm 000 975 144 000 000 000 036 000 903 1733 000 325 722 000 000 000 000 072 227464-66 cm 000 767 184 000 000 031 061 000 706 1626 000 276 736 000 000 000 061 123 144268-70 cm 000 1536 031 000 000 063 000 000 972 3103 000 063 1348 000 000 000 000 000 43972-74 cm 000 1691 344 000 000 000 000 000 1261 2436 000 086 802 000 000 000 000 115 86076-78 cm 000 1467 367 000 000 000 000 000 900 3767 000 000 500 000 067 000 000 000 26780-82 cm 000 1921 213 000 000 000 000 000 793 3994 000 000 213 000 000 000 000 122 03084-86 cm 000 2097 032 000 000 000 000 000 806 3419 1129 000 226 000 000 000 000 000 16188-90 cm 000 1864 034 000 000 000 000 000 000 3932 1153 000 237 000 000 000 034 034 10292-94 cm 000 329 033 000 000 000 000 000 757 1217 2303 000 921 000 000 000 000 033 78996-98 cm 000 538 028 000 000 000 000 2720 652 1133 000 000 737 000 000 000 000 000 1416

100-102 cm 000 1148 033 000 000 000 000 2230 000 2590 000 000 590 000 000 000 000 000 295104-106 cm 000 635 159 000 000 000 000 2032 317 1333 000 000 794 000 000 000 063 127 1556108-110 cm 000 1655 338 000 000 000 000 439 270 2601 000 000 1250 068 000 000 000 338 000112-114 cm 080 479 133 000 000 000 000 000 1729 1064 000 000 1596 027 000 000 053 133 1941116-118 cm 000 1181 139 000 000 000 000 000 2847 2014 000 000 972 000 000 000 000 000 243120-122 cm 000 1761 066 000 000 000 000 000 2093 2292 000 000 532 000 000 000 000 066 000124-126 cm 000 3142 453 000 000 060 000 121 000 4350 000 000 242 000 000 000 000 242 000128-130 cm 000 2786 352 000 000 000 000 528 000 4164 000 000 587 000 000 000 000 411 029132-134 cm 000 1705 129 000 000 000 000 904 233 3178 000 000 956 000 000 000 000 052 310136-138 cm 000 843 421 000 000 000 000 899 393 1236 000 000 2444 000 028 000 084 197 449140-142 cm 000 2032 581 000 000 000 000 000 645 3903 000 000 645 000 000 000 000 290 000

Table 1Russell Bank 19B

Percent Abundance of Benthic Foraminifera

Depth in Core

0-2 cm 4-6 cm

8-10 cm 12-14 cm 16-18 cm 24-26 cm 28-30 cm 32-34 cm 36-38 cm 40-42 cm 44-46 cm 48-50 cm 52-54 cm 56-58 cm 60-62 cm 64-66 cm 68-70 cm 72-74 cm 76-78 cm 80-82 cm 84-86 cm 88-90 cm 92-94 cm 96-98 cm

100-102 cm 104-106 cm 108-110 cm 112-114 cm 116-118 cm 120-122 cm 124-126 cm 128-130 cm 132-134 cm 136-138 cm 140-142 cm

Qui

nque

locu

lina

sem

inul

um

Qui

nque

locu

lina

tena

gos

Qui

nque

locu

lina

poly

gona

Qui

nque

locu

lina

poey

ana

Ros

alin

a flo

ridan

a

Ros

alin

a gl

obul

aris

Spi

rolo

culin

a an

tilla

rium

Trilo

culin

a lin

eian

a

Trilo

culin

a ro

tund

a

Trilo

culin

a tri

locu

lina

Val

vulin

a s

p

Val

vulin

eria

laev

igat

a

Num

ber o

f Spe

cies

Sim

pson

s D

iver

sity

Inde

x

1337 107 481 3235 214 000 027 000 000 160 000 000 14 019525 000 1279 3934 066 000 098 000 000 262 000 000 14 021732 279 244 3275 035 000 000 000 000 627 000 000 13 018367 153 214 2875 092 000 000 000 031 1009 000 214 17 014217 000 652 1413 000 000 109 000 000 761 000 000 12 013230 954 691 1480 099 000 000 000 493 164 000 132 18 011885 000 393 1082 230 000 000 000 000 000 000 000 13 017000 000 647 583 065 000 000 000 000 000 000 000 9 019072 289 217 1372 000 000 000 000 217 108 036 000 17 016

1046 163 163 1993 065 000 000 000 065 000 000 033 15 020648 340 370 2377 154 000 000 000 000 000 000 000 14 016322 175 117 1637 205 000 000 000 205 234 000 000 15 020245 140 000 2797 140 000 000 000 000 140 000 000 13 018365 000 169 2669 056 000 000 000 000 337 000 000 14 016

1011 181 397 1227 000 000 000 000 000 000 000 000 13 013521 215 706 1933 245 000 000 000 123 215 000 031 19 011878 000 000 1317 219 000 000 000 000 031 000 000 12 018201 086 401 1146 115 000 000 000 000 401 000 057 15 014667 000 467 1100 133 000 000 000 000 267 000 033 13 020549 000 671 732 000 000 000 000 213 488 000 061 13 022290 000 032 1516 000 000 000 000 097 194 000 000 12 021881 000 508 780 000 000 000 000 136 271 000 034 14 022

1908 099 296 1184 132 000 000 000 000 000 000 000 13 014878 000 227 1020 170 000 142 000 340 000 000 000 13 014

1541 000 426 787 033 000 066 000 197 066 000 000 13 0171238 000 222 1397 095 032 000 000 000 000 000 000 14 0131014 034 574 777 000 000 000 000 236 338 000 068 15 014

984 000 293 1011 213 000 000 000 133 080 000 053 17 0131632 104 208 486 035 000 000 000 035 104 000 000 13 0182093 000 166 565 100 000 000 000 033 100 133 000 13 018

000 272 242 393 000 000 000 030 091 363 000 000 13 030000 029 235 323 029 000 000 000 059 411 000 059 14 026

1111 000 207 620 052 000 000 000 336 207 000 000 14 017983 140 253 955 169 000 000 000 112 253 000 140 18 012258 032 419 548 000 000 065 000 065 258 000 258 14 021

Table 2Russell Bank 19B

Percent Abundance of Molluscan Fauna

Depth in Core G

astro

pods

Act

eoci

na c

anal

icul

ata

Am

aea

spp

Bitt

ium

var

ium

Bul

la s

p

Cae

cum

pu

chel

lum

flor

idan

um

Cer

ithid

ea s

pp

Cer

ithiu

m s

pp

Con

us s

p

Cre

pidu

la s

p

Mar

gine

llids

Mod

ulus

mod

ulus

Oliv

ella

sp

Ris

soin

a s

pp

Turr

itella

exo

leta

Vitr

inel

lids

Rar

e G

astro

pods

Uni

dent

ified

gas

tropo

d fra

gmen

ts u

nkno

wn

sp

and

juve

nile

s

0-2 cm 000 000 128 000 147 000 568 000 073 092 183 000 220 000 037 037 0554-6 cm 000 000 347 000 087 000 723 000 116 116 347 000 145 000 116 116 260

8-10 cm 000 000 172 000 000 000 259 000 000 086 517 000 345 000 345 086 34512-14 cm 000 000 244 000 244 000 488 000 000 061 244 244 488 244 000 061 36616-18 cm 000 000 244 000 000 000 610 000 122 000 122 122 854 000 000 122 36620-22 cm 000 000 270 135 135 000 270 000 135 000 000 000 135 000 000 135 27024-26 cm 172 000 345 000 345 172 1552 000 690 000 000 172 172 000 000 000 17228-30 cm 000 000 000 000 000 000 000 000 000 000 000 000 000 000 000 000 00032-34 cm 000 000 714 714 000 000 2143 000 000 000 714 000 714 000 000 000 00036-38 cm 000 000 2143 000 000 000 3571 357 000 000 357 1071 000 000 000 000 107140-42 cm 000 000 1237 515 000 000 1856 000 309 000 103 206 412 000 000 103 41244-46 cm 000 000 215 000 000 000 860 000 000 000 645 108 968 000 108 000 43048-50 cm 000 000 1111 000 000 000 1852 000 000 000 556 000 741 000 000 000 74152-54 cm 000 000 000 000 000 000 811 000 000 000 4324 000 270 000 000 000 54156-58 cm 000 000 000 000 1000 000 4000 000 4000 000 000 000 000 000 000 000 00060-62 cm 000 000 313 000 000 000 000 625 000 000 000 000 625 000 000 313 187564-66 cm 000 000 800 200 100 000 1400 000 300 100 200 000 300 000 000 000 40068-70 cm 000 000 1569 000 196 000 1765 000 392 196 196 000 980 000 000 392 58872-74 cm 000 000 1918 000 137 000 1918 000 685 000 137 000 000 000 000 000 54876-78 cm 000 000 562 000 000 000 1124 000 000 562 337 225 562 112 000 000 168580-82 cm 000 000 414 000 000 000 552 000 000 138 069 138 000 138 000 000 96684-86 cm 000 000 933 000 400 000 1333 267 133 000 267 267 533 000 000 000 133388-90 cm 000 000 219 000 000 000 1606 000 000 000 000 292 803 219 000 146 153392-94 cm 000 000 432 000 144 000 1007 000 000 000 072 288 504 144 000 000 93596-98 cm 303 000 152 000 152 000 1364 000 152 000 000 152 758 152 000 303 152

100-102 cm 000 000 000 000 138 000 483 000 000 069 000 207 345 000 000 000 483104-106 cm 000 067 738 000 067 134 1611 067 000 134 000 134 470 067 000 134 470108-110 cm 000 238 714 000 000 000 952 000 000 079 000 397 1190 079 000 159 1825112-114 cm 286 000 857 000 000 000 1714 000 286 000 286 000 000 000 000 000 1143116-118 cm 000 000 000 000 000 000 000 000 000 000 000 000 000 000 000 000 2000120-122 cm 000 000 345 000 345 000 690 000 000 000 000 345 690 1034 000 000 345124-126 cm 075 000 970 000 000 149 1343 000 075 000 821 224 373 149 149 149 224128-130 cm 000 143 257 000 086 000 857 000 114 086 086 000 286 029 000 029 571132-134 cm 000 000 723 000 000 000 1205 000 000 000 000 120 482 602 000 000 1084136-138 cm 051 051 769 051 103 103 615 000 000 103 000 103 000 256 103 256 410140-142 cm 055 000 656 000 000 000 710 055 109 000 000 383 601 109 000 000 874

Table 2Russell Bank 19B

Percent Abundance of Molluscan Fauna

Depth in Core0-2 cm 4-6 cm

8-10 cm 12-14 cm 16-18 cm 20-22 cm 24-26 cm 28-30 cm 32-34 cm 36-38 cm 40-42 cm 44-46 cm 48-50 cm 52-54 cm 56-58 cm 60-62 cm 64-66 cm 68-70 cm 72-74 cm 76-78 cm 80-82 cm 84-86 cm 88-90 cm 92-94 cm 96-98 cm

100-102 cm 104-106 cm 108-110 cm 112-114 cm 116-118 cm 120-122 cm 124-126 cm 128-130 cm 132-134 cm 136-138 cm 140-142 cm

Pel

ecyp

ods

Ano

mal

ocar

dia

sp

Arc

opsi

s ad

amsi

Bra

chio

dont

es s

p

Chi

one

canc

ella

ta

Cum

ingi

a te

llino

idea

Laev

ecar

dium

spp

Nuc

ula

prox

ima

Pec

tinid

Pin

ctad

a ra

diat

a

Telli

na s

pp

Tran

senn

ella

spp

Rar

e P

elec

ypod

s

Uni

dent

ified

Pel

ecy

Fr

ags

Tota

l num

ber o

f in

divi

dual

spe

cim

ens

Num

ber o

f fau

nal g

roup

s

Sim

pson

s D

iver

sity

Inde

x

000 018 7033 073 055 000 000 000 1264 000 000 018 000 517 16 052000 116 6416 087 000 000 000 000 954 000 000 029 029 331 16 043000 000 7328 086 000 000 000 000 259 000 000 000 172 49 12 055000 183 5732 244 061 000 000 000 1037 000 000 000 061 145 16 035000 000 5732 366 122 000 000 000 244 000 732 000 244 62 14 035000 000 7703 000 000 000 000 000 000 000 270 000 541 62 11 060000 000 2414 345 000 172 000 000 172 172 1724 000 1207 50 16 014000 000 000 000 000 000 000 000 000 000 5000 000 5000 2 2 050000 000 1429 1429 000 000 000 000 000 000 2143 000 000 12 8 015000 000 1429 000 000 000 000 000 000 000 000 000 000 28 7 022000 103 4124 309 000 000 000 103 206 000 000 000 000 97 14 023000 430 968 4624 108 000 000 000 000 108 000 000 430 93 13 025000 926 926 370 926 000 000 185 926 370 000 000 370 54 13 010000 000 2703 000 270 000 000 000 811 000 000 000 270 37 8 028000 000 000 000 000 000 000 000 000 000 000 000 1000 10 4 034000 000 5000 000 000 313 000 000 313 000 000 000 625 32 9 030000 000 2900 100 000 100 000 1000 900 200 300 100 600 100 18 014000 000 588 588 196 000 000 196 000 000 980 000 1176 51 15 010000 000 1918 548 000 000 274 000 000 000 1918 000 000 73 10 016000 112 1910 000 000 000 000 000 337 000 787 000 1685 89 13 012000 207 2690 897 000 000 000 000 138 000 2414 345 897 145 14 016000 000 800 933 000 000 000 000 267 000 1200 000 1333 75 14 010438 000 438 657 073 000 000 000 000 073 2847 000 657 137 14 015216 288 719 647 000 072 000 000 504 000 2734 000 1295 139 16 013152 000 606 455 000 152 000 000 000 000 4545 000 455 66 16 024000 000 1241 483 000 000 000 000 000 000 4897 000 1655 145 10 029671 000 067 134 000 000 000 000 067 000 3624 000 1342 149 18 019000 000 714 238 000 079 159 000 159 000 2302 000 714 126 16 013000 000 000 571 000 000 000 000 000 000 3714 000 1143 35 9 021000 000 000 000 000 000 000 000 000 000 6000 000 2000 5 3 044000 000 2759 000 000 000 000 000 000 000 2069 000 1379 29 10 016373 000 821 672 075 075 000 000 224 000 2463 000 597 134 20 012000 029 857 314 057 000 000 000 200 000 5429 029 543 350 19 032000 000 602 964 241 000 120 000 241 000 2048 000 1566 83 13 012000 103 923 923 000 256 205 000 308 103 3179 000 1026 195 22 014000 109 1967 656 109 000 055 000 273 000 3115 000 164 183 17 016

0-2

4-6

12-14

16-18

20-22

36-38

56-58

116-118

100-102

128-130

96-98

88-90

92-94

112-114

104-106

124-126

136-138

140-142

108-110

132-134

84-86

76-78

120-122

80-82

72-74

68-70

48-50

64-66

24-26

32-34

40-42

60-62

52-54

44-46

28-30

8-10

00 01 02 03 04 05 080706

Figure 2 Q-mode cluster diagram of molluscan assemblages from core 19B Distancesare expressed as Pearsons Correlation coefficient values calculated on the molluscanpercent abundance data (see Table 2) and plotted using average linkage methodShaded areas represent clusters formed by samples from the upper portion of the core(0-22 cm) and the lower portion of the core (68-142 cm)

Sam

ple

(iden

tifie

d by

dep

th in

cm

)

2) The cluster containing samples from the interval from 22-0 cm has high Pearsons Correlationcoefficient values for within-group similarity and the largest between-group distances (seeFigure 2) This upper portion of the core is dominated by Brachiodontes sp which comprisesgreater than 50 of the molluscan assemblage in each sample from this section Pinctadaradiata and Cerithium spp are present in significant amounts (5) in some samples from 22-0cm

Benthic Faunal Patterns

Comparison of the benthic fauna present in core 19B with our modern data set enables us tointerpret the salinity history for the Russell Banks site The foraminiferal and molluscan recordsfrom core 19B show distinct oscillations in salinity with a gradual increase in salinity toward thetop of the core (Figure 3) In addition a positive correlation (ρ =052) exists between increasingSimpson diversity indices and decreasing salinity for the benthic foraminfera

The two dominant foraminiferal assemblages Ammonia-Elphidium and miliolid are verysimilar to the Ammonia-Elphidium and Archaias-miliolid assemblages described from modernFlorida Bay sediments (Brewster-Wingard et al 1996) The distribution of modern benthicforaminifers in Florida Bay shows a strong association between the occurrence of Aparkinsoniana and E galvestonense mexicanum and typica with salinities less than 25 ppt(Brewster-Wingard et al 1996) Conversely miliolids dominate where salinities are near normalmarine values (30 ppt) The intervals dominated by the miliolid assemblage (140 cm 118-90 cm70-42 cm and 18-0 cm) therefore indicate more stable and relatively higher average salinity (32-35 ppt) These segments are interrupted by three periods of A-E assemblage dominance (140-118cm 90-70 cm and 42-18 cm) indicating unstable and relatively low average salinity (lt32 ppt)

Molluscs are not as sensitive to variations in salinity as benthic foraminifers consequently themolluscan data do not show the degree of fluctuation seen in the foraminiferal data (Figure 3)The general trend of increasing percent abundance of euhaline and euhaline-polyhaline molluscsupcore does follow the general trend of the foraminiferal plot showing a gradual increase insalinity upcore No molluscan faunas restricted to terrestrial fresh water marsh or upperestuarine environments are present in core 19B indicating this area has been relatively open bayover the last century and the salinity has probably not dropped below 12-15 ppt

Both the benthic foraminiferal assemblages and the molluscan assemblages show significantchanges between 70-66 cm and between 24-18 cm These zones correspond to shifts from A-Edominated assemblages to miliolid dominated assemblages but the molluscs do not seem torespond significantly to the decreases in salinity that mark the shift from miliolid assemblagesback to A-E assemblages Almost all of the molluscs present in this core can be classified aspolyhaline and are tolerant of a wide range of salinities (from approximately 12 or 15 ppt to 30-35 ppt) which could explain the patterns seen for the molluscs If however the salinity haddropped below ~15ppt during the periods of A-E dominance then the molluscs would mostlikely have shown a response The areas of A-E dominance in the core represent salinities of 15-25 ppt with the lower number delineated by the absence of species of molluscs found in lowsalinity waters of Florida Bay and the upper number constrained by the presence of low salinitybenthic foraminifera The miliolid dominated zones represent salinities of 30 ppt or higher

Figure 3 Plot of percent abundance of benthic foraminifers molluscs and the two datasets combined that indicate increasing salinity for core 19B The benthic foraminifersindicate salinity gt 30 ppt The mollusc species have wider salinity tolerances thespecies illustrated on this plot are classified as euhaline or euhalinepolyhaline andrepresent salinities of 20-25 ppt or greater The positions of the benthic foraminiferalassemblages (Milliolid-gray Ammonia-Elphidium-white) discussed in the text are shownon the right of the plot

ForaminifersMolluscsCombined

900080007000600050004000300020001000000

0-2

8-10

16-18

24-26

32-34

40-42

48-50

56-58

64-66

72-74

80-82

88-90

96-98

104-106

112-114

120-122

128-130

136-138

140-142

abundance

Dep

th in

Cen

timet

ers

Miliolid Assemblage

Miliolid Assemblageat 140-142 cm

Miliolid Assemblage

Miliolid Assemblage

Ammonia- ElphidiumAssemblage

Ammonia- ElphidiumAssemblage

Ammonia- ElphidiumAssemblage

1981

1962

1939

1922

1898

1878

Hard Surface

Coarse Sediment or Sponges

Coarse Sediment

Coarse or Fine Sediment

Fine Sediment

Grass Beds or Sediment

Grass Beds or Coarse Sediment

Grass and Algae Beds

Grass Beds

Pecent AbundanceD

epth

in C

ore

(cm

)

0 10 20 30 40 50 60 70 80 90 1000-2

8-10

16-18

24-26

32-34

40-42

48-50

56-58

64-66

72-74

80-82

88-90

96-98

104-106

112-114

120-122

128-130

136-138

Figure 4 Area diagram of percent abundance of molluscs indicative of specific substrate types for core 19B Data plotted at the 116 cm and 28 cm depths represent averages of the overlying and underlying samples these two samples did not contain enough individual specimens to be statistically valid

The suite of molluscs present in core 19B is more indicative of changes in substrate thanchanges in salinity Figure 4 illustrates the substrate patterns within the core based on thepercent abundance of molluscs known to prefer those substrate types The lowest portion of thecore from 142-110 cm has significant numbers of both sediment dwellers and grass dwellerspresent with dominance of either group fluctuating From 106-88 cm sediment dwellersdominate although grass dwellers are still present in significant numbers The segment from 88-22 cm is dominated by grass dwellers above 68 cm the presence of species indicative of asediment substrate is negligible The uppermost portion of the core from 22 cm to the top isdominated by species that could live on either algae or grass

The shifts in abundance of molluscan substrate indicators at 88 cm 68 cm and 22 cmcorrespond to changes seen in the benthic foraminiferal salinity indicators but at this point thesignificance of this relationship is not understood However since the benthic foraminifers usedfor salinity indicators are not sensitive to changes in substrate we believe the changingforaminiferal patterns reflect changing salinity

ANALYSIS AND DISCUSSION OF THE FLORA IN CORE 19A

Pollen

The percent abundance data on pollen is presented in Table 3 Three pollen zones aredistinguishable based on both percent abundance and absolute pollen concentration (pollengrainsgram dry sediment) The bottom zone (140-80 cm) is characterized by the highestpercentages of Pinus (pine) pollen (80-90) and the lowest percentages of Quercus (oak)(lt6) and pollen of the ChenopodiaceaeAmaranthaceae (pigweed family) and Asteraceae(aster family) (Figure 5) No pollen of the Cyperaceae (sawgrass family) is present in this zoneTotal pollen concentration in this zone and the middle zone ranges from about 500-1200grainsgram and the concentration of Quercus pollen is lower than the other zones with lt50grainsgram (Figure 6)

The middle zone (80-32 cm) is characterized by lower percentages of Pinus pollen (54-73)higher percentages of Quercus (6-10) and higher concentrations of Quercus pollen (50-100grainsgram) In both this and the upper zone pollen of the ChenopodiaceaeAmaranthaceae andAsteraceae are more abundant comprising 3 and 2 of the assemblages respectively Pollenof the Cyperaceae is present in low percentages in this and the upper zone

The upper zone has the highest pollen concentrations of the core with most samples rangingfrom 1200-4600 grainsgram Several taxa contribute to these higher values including PinusQuercus Myrica (wax myrtle) ChenopodiaceaeAmaranthaceae and Asteraceae Cephalanthus(buttonbush) is present in low abundances (lt1) in this zone and Liquidambar (sweet gum) isabsent from this zone

Table 3Russell Bank 19A

Percent Abundance of Pollen

Depth in core Aln

us

Api

acea

e

Ast

erac

eae

Avi

cenn

ia

Bet

ula

Bum

elia

Bur

sera

sim

arub

a

Car

ya

Cas

uarin

a

Cel

tis

Cep

hala

nthu

s

Che

nopo

diac

eae

A

mar

anth

acea

e

Con

ocar

pus

Cyp

erac

eae

Dec

odon

Eric

acea

e

Eup

horb

iace

ae

Faba

ceae

Frax

inus

Ilex

Jugl

ans

0-1 cm 000 000 255 000 000 000 000 000 482 000 028 425 000 000 000 000 000 142 000 000 000 4-5 cm 057 000 201 000 000 000 000 029 115 000 029 287 029 115 000 000 029 057 000 029 029 8-9 cm 032 000 322 000 000 000 000 000 129 000 032 096 000 064 000 000 000 032 000 000 000

20-21 cm 000 000 409 031 000 000 000 000 314 000 063 597 000 000 000 000 000 220 000 000 00032-34 cm 030 000 332 000 030 030 000 000 211 000 000 332 030 030 000 000 000 121 000 030 03044-46 cm 080 000 777 000 000 000 000 027 214 000 000 429 000 080 000 000 027 107 000 054 00056-58 cm 031 000 439 000 000 000 000 031 157 000 000 690 000 063 000 063 000 094 031 000 00068-70 cm 168 000 251 000 028 000 028 084 056 000 000 307 000 056 000 000 000 084 000 000 00080-82 cm 000 000 238 000 000 000 000 000 000 000 000 476 000 000 000 000 000 000 000 000 00092-94 cm 054 000 054 000 000 027 000 082 027 000 000 054 000 000 000 000 000 082 027 000 000

104-106 cm 000 029 115 000 000 000 000 000 000 000 000 230 000 000 057 000 000 115 000 000 000116-118 cm 062 000 062 000 000 000 000 000 000 031 000 185 031 000 000 000 000 062 000 000 000128-130 cm 000 000 061 000 000 000 000 030 000 000 000 091 000 000 000 030 000 061 000 000 000136-138 cm 060 000 060 030 000 030 060 181 000 000 000 091 000 000 000 000 000 000 000 000 000138-140 cm 000 000 000 000 000 000 000 081 000 000 000 244 000 000 000 000 000 000 000 000 000

Table 3Russell Bank 19A

Percent Abundance of Pollen

Depth in core0-1 cm

4-5 cm 8-9 cm

20-21 cm 32-34 cm 44-46 cm 56-58 cm 68-70 cm 80-82 cm 92-94 cm

104-106 cm 116-118 cm 128-130 cm 136-138 cm 138-140 cm

Liqu

idam

bar

Mag

nolia

Myr

ica

Nys

sa

Ost

rya

Car

pinu

s

Pin

us

Pla

nera

Poa

ceae

Que

rcus

Rhi

zoph

ora

Rut

acea

e

Sag

ittar

ia

Sal

ix

Taxo

diac

eae

C

upre

ssac

eae

Tax

acea

e

Typh

a

Ulm

us

Tota

l Pol

len

Cou

nted

000 000 283 000 028 6856 000 028 1076 028 000 028 000 000 000 057 353000 000 086 000 000 6905 000 029 1375 029 000 029 000 000 000 000 349000 000 225 000 000 7395 000 032 932 096 032 032 032 000 096 032 321000 000 1069 000 063 5660 000 031 1101 000 000 000 000 000 031 000 321030 000 846 000 000 6737 000 030 634 000 000 000 030 030 030 000 332107 000 429 027 000 5416 000 107 1046 027 000 000 027 027 054 054 378000 031 376 000 000 6395 000 031 690 094 000 031 031 031 063 031 320028 028 447 000 000 7346 000 000 615 028 000 000 028 000 112 028 358119 000 357 000 000 7976 000 000 595 000 000 000 000 000 000 000 85082 000 408 000 000 8696 000 000 245 027 000 000 000 027 000 000 371029 000 747 000 000 8017 000 029 316 057 000 000 000 029 029 000 350000 000 338 000 000 8923 000 031 123 031 000 000 031 000 031 000 326030 000 396 000 000 8628 000 030 457 000 000 000 030 000 000 000 331030 000 242 000 000 8792 030 000 181 000 000 000 000 000 030 000 332081 000 163 000 000 8862 000 000 569 000 000 000 000 000 000 000 123

0 10 20 30 40 50 60 70 80

10

20

30

40

50

60

70

80

90

100

110

120

130

Depthcm Pinu

sQue

rcus

Casua

rina

Rhizop

hora

Myrica

Cepha

lanthu

s

Cheno

podia

ceae

Amara

nthac

eae

Poace

ae

Cypera

ceae

Asterac

eae

10

20

30

40

50

60

70

80

90

100

110

120

130

0 10 0 0 0 10 0 0 0 0 05 5 5 5 5 5 5 55

(Pine

)(O

ak)

(Aus

tralia

n Pine

)

(Red

Man

grove

)

(Wax

Myrt

le)

(Pig

Wee

d)

(Gras

s Fam

ily)

(Saw

grass

Family

)

(Aste

r Fam

ily)

(Butt

on B

ush)

Figure 5 Percent abundance of selected pollen groups for core Russell Bank 19A (note different scales)

0 50 100 150 200 250 300 350 400

Querc

us

0 50

Casua

rina

0 50 100 150 200 250 300

Myr

ica

0 50 100 150

Cheno

pods

0

Cyper

acea

e

0 50 100

Astera

ceae

10

20

30

40

50

60

70

80

90

100

110

120

130

Depthcm Pinu

s

0 1000 2000 3000

Total

Pollen

Con

cent

ratio

n

10

20

30

40

50

60

70

80

90

100

110

120

130

0 1000 2000 3000 4000

Figure 6 Total concentration of pollen (grainsgram) for core Russell Bank 19A (note different scales)

Dinocysts

Dinocyst recovery in all samples was low Most microscope slides are heavily dominated byorganic debris and the maximum number of specimens observed in any sample was 214Absolute abundance ranges from 779 to 4736 cystsgram These values are one to two orders ofmagnitude below those reported by Wall et al (1977) for samples from the Middle AtlanticBight and western South Africa and are consistent with high sedimentation rates These absoluteabundances in the sediments are far below bloom concentrations in which the number of livingcells per ml of water may exceed 50 million

The dinocyst assemblages in the Russell Bank 19A core consist of less than 10 taxa (Table 4)Various species of the genus Spiniferites Mantell dominate all samples (61 to 79 percent) Due topoor preservation and taxonomic difficulties the individual species of this genus were notdifferentiated S mirabilis (Rossignol) Sarjeant S ramosus (Ehrenberg) Mantell S scabratus(Wall) Sarjeant and other forms are present Operculodinium Wall spp (O israelianum(Rossignol) Wall or Operculodinium species undifferentiated) are present in all samples inamounts of 5 to 19 percent Polysphaeridium zoharyi (Rossignol) Bujak et al is present in allsamples and comprises up to 16 percent of the assemblages Most samples included low numbersof Lingulodinium machaerophorum (Deflandre amp Cookson) Wall Nematosphaeropsis rigidaWrenn and (or) Tectatodinium pellitum Wall Only two samples contained a single specimeneach of the family Congruentidiaceae

Most samples from Russell Bank core 19A are quite similar to one another (Figure 7)Throughout the core the dinocyst Polysphaeridium zoharyi ranges in abundance from 0-16percent which is considerably lower than in the Bob Allen 6A (Wingard et al 1995) and LittleMadeira Bay T24 (Ishman et al 1996) cores With one exception (80-82 cm) increased absoluteabundance of Spiniferites spp is accompanied by increased absolute abundance of P zoharyi(Figure 8) This relationship suggests that absolute abundances in this core are a function ofsediment supply rather than cyst production The sample at 80-82 cm is anomalous the highabsolute abundance of cysts is attributable to Spiniferites spp and fewer than 30 total cysts werefound on each slide This sample may represent a case of an increase in Spiniferites cystproduction and an increase in the amount of organic debris in proportion to sediment supply Thelowest samples (132-134 cm and 136-138 cm) show both low absolute abundances of all cysttypes and low percentages of P zoharyi

Floral Patterns

Changes occur in the pollen and dinocyst assemblages in core 19A but the significance ofthese changes is unclear Three zones are distinguishable for the pollen but the differencesamong them are very subtle and any interpretation of patterns of vegetational change would bepremature However it is apparent that the vegetation changed in response to someenvironmental factor at those times correlation with on-shore cores would be necessary toestablish the nature of the changes Dinocyst abundance fluctuates in the core with two peaks at118-104 cm and 82-80 cm but the assemblages are relatively stable throughout the core

Table 4 Dinocyst data from Russell Bank 19A

Pol

ysph

aerid

ium

zoh

aryi

Spi

nife

rites

spp

Ope

rcul

odin

ium

spp

Nem

atos

phae

rops

is ri

gida

Ling

ulod

iniu

m m

acha

erop

horu

m

Tect

atod

iniu

m p

ellit

um

Tube

rcul

odin

ium

van

cam

poae

Con

grue

ntid

iace

ae

Oth

er

TOTA

L D

INO

CY

STS

CO

UN

TED

Depth (cm)

Wt (g) Cystsg

Slides examined

0-1 74 779 2 129 742 97 00 32 00 00 00 00 3120-21 115 1363 1 123 630 74 49 49 62 00 12 00 8144-46 363 921 1 24 750 95 36 48 12 00 00 36 8468-70 358 1454 1 114 705 95 10 38 29 00 10 00 10580-82 337 3732 2 19 811 132 00 38 00 00 00 00 5392-94 385 2049 1 84 720 119 49 28 00 00 00 00 143

104-106 331 4736 1 128 636 133 77 10 05 00 00 10 195116-118 350 3451 1 141 676 106 07 63 07 00 00 00 142128-130 390 1854 1 121 612 178 51 28 05 05 00 00 214132-134 321 1288 1 34 754 127 68 17 00 00 00 00 118136-138 371 2028 1 66 747 110 55 11 11 00 00 00 91

Species

Percent abundance

Comparison of these data to additional terrestrial and marine cores may lead to a betterunderstanding of the patterns seen here

210PB AGE MODEL FOR THE RUSSELL BANKS SITE

The activity of 210Pb (dpmgram) is shown for 19B and 19C in Figures 9 and 10 Thesedimentation rate for the Russell Bank site is based on the results from 19C because both 210Pband Ra analyses have been completed for that core the rate equals 122 cmyear +- 005The 210Pb curves for cores 19B and 19C are almost identical therefore we make the assumptionthat the rate of sediment accumulation is the same in the two cores No 210Pb analyses have beendone for core 19A to date

SUMMARY

The fauna and flora present in the Russell Bank cores 19A and 19B record an approximately120-year history of fluctuating environmental changes The benthic foraminifera documentperiods of fluctuating salinity with a gradual increase in salinity upcore The molluscan data areconsistent with the foraminiferal data showing increasing salinity upcore but without the degreeof fluctuation indicated by the benthic foraminifera The benthic fauna show significant changesin the assemblages at 70-66 cm and 24-18 cm which correspond to approximately 1937-1940and 1975-1980 A similar shift occurred at 118 cm (approximately 1898) which is not as clearlyseen in the molluscan faunal data These periods represent shifts from low salinity (12-15 ppt) tohigher average salinity (30 ppt) In addition the benthic foraminiferal assemblages shift fromperiods of higher average salinity to periods of lower salinity at 140 cm 90 cm and 42 cmwhich correspond to approximately 1880 1921 and 1960 respectively

The molluscan fauna indicate changes occurring in the substrate at the Russell Banks siteSediment and grass (probably Thalassia) apparently were equally available for habitation from142-110 cm or approximately 1878-1904 Although grass was still available bare-sedimentdominated the area from 106-88 cm or approximately 1908-1922 From 88-22 cm orapproximately 1922-1976 grass was the dominant substrate and from approximately 1939 (68cm) to the present the presence of bare-sediment bottoms was negligible at the siteSignificantly from 22 cm or approximately 1976 to the present the molluscan fauna isdominated by species that can live equally well on algae or seagrass

The pollen present in core 19A show three periods of subtle shifts in the onshore vegetation inresponse to some environmental factor These changes occur at 80 cm and at 32 cm orapproximately 1929 and 1968 If we assume that core 19A and 19B have similar sedimentationrates then the shifts in the onshore vegetation indicated by the pollen seen in 19A occurapproximately 7-8 years prior to changes in Florida Bay as indicated by the benthic fauna in19B However until we see this pattern repeated in the same core or until a 210Pb analysis is

0 20 40 60 80 100

0-1

20-21

44-46

68-70

80-82

92-94

104-106

116-118

128-130132-134136-138

Operculodinium spp

Nematosphaeropsis rigida

Lingulodinium machaerophorum

Spiniferites spp

Polysphaeridium zoharyi

All others

Percent Cystsgram 0 100 200 300 400 500

Figure 7 Percent and absolute abundances of dinocysts for core 19A

Dep

th (

cm)

0 100 200 300 4000

20

40

60

80

100

120

140

Spiniferites

Cystsgram

Dep

th (

cm)

Polysphaeridium zoharyi

Figure 8 Absolute abundances of Polysphaeridium zoharyi and Spiniferites spp in core 19 A

000 200 400 600

Activity (dpmg)

Dep

th (c

m)

0

40

80

120

160

Figure 9 Pb210 activity in dpmg for core 19B

Activity (dpmg)

Dep

th (c

m)

000 100 200 300 400 500 600

0-2

6-8

12-14

18-20

24-26

30-32

36-38

42-44

48-50

54-56

60-62

66-68

72-74

78-80

84-86

90-92

96-98

102-104

108-110

114-116

120-122

126-128

132-134

138-140

144-146

150-152

156-158

Figure 10 210Pb activity in dpmg for core 19C

completed for core 19A we can not be certain of its significance because our assumption ofsimilar sedimentation rates for cores 19A and 19B may not be correct

Two peaks in dinocyst abundance (cystsgram) occur in the samples examined 118-104 cm(approximately 1898-1909) and 82-80 cm (approximately 1927-1929) These occur during aperiod of near normal marine (30 ppt) and stable salinity as indicated by the benthicforaminifera These periods may represent increased dinocyst production and decreased sedimentsupply but the composition of the dinocyst assemblages remains relatively stable throughout thecore

The pattern of increased salinity upcore documented here for Russell Banks 19B is consistentwith patterns seen in core T24 from the mouth of Taylor Creek in Little Madeira Bay (Ishman etal 1996) and in core 6A from Bob Allen mudbank (Wingard et al 1995) The correspondencebetween changes in salinity and onshore changes in vegetation is also consistent with resultsfrom the previous cores These patterns will continue to be investigated at additional sites inFlorida Bay and the terrestrial Everglades in order to establish the sequence and timing of eventsthroughout the ecosystem and to determine linkages between the marine and terrestrial systems

REFERENCES CITED

Benninghoff WS 1962 Calculation of pollen and spore density in sediments by addition of exotic pollen in known quantities Pollen et Spores v 4 p 332-333

Brewster-Wingard GL Ishman SE Edwards LE and Willard DA 1996 Preliminary report on the distribution of modern fauna and flora at selected sites in north-central and north-eastern Florida Bay US Geological Survey Open-File Report 96-732 34 p

Davis JC 1973 Statistics and Data Analysis in Geology New York John Wiley amp Sons 550 p

Ishman SE Brewster-Wingard GL Willard DA Cronin TM Edwards LE and Holmes CW 1996 Preliminary paleontologic report on core T-24 Little Madeira Bay Florida US Geological Survey Open-File Report 96-543 47 p

Maker LJ Jr 1981 Statistics for microfossil concentration measurements employing samples spiked with marker grains Review of Paleobotany and Palynology v 32 p153-191

Robbins JA Holmes CW Halley RB Bothner Michael Shinn EA Graney Joseph Keller Gerald tenBrinck Marilyn Rudnick David in press Time constraints characterizing predeposition integration of 137Ce and Pb fluxes to sediments in Florida Bay Geochemica et Cosmochemica

Stockmarr Jens 1971 Tablets with spores used in abolute pollen analysis Pollen et Spores v 8 p 615-621

Wall David Dale Barrie Lohmann GP and Smith WK 1977 The environmental and climatic distribution of dinoflagellate cysts in modern marine sediments from regions in the North and South Atlantic Oceans and Adjacent seas Marine Micropaleontology v 2 p 121-200

Wingard GL Ishman SE Cronin TM Edwards LE Willard DA and Halley RB 1995 Preliminary analysis of down-core biotic assemblages Bob Allen Keys Everglades National Park Florida Bay US Geological Survey Open-File Report 95-628 35 p

  • Title Page
  • Table of Contents
  • Abstract
  • Acknowledgements
  • Methods
  • Discussion of Fauna
  • Discussion of Flora
  • Age Model
  • Summary
  • References
Page 3: Preliminary Paleontologic Report on Cores 19A and 19B, from ...

Preliminary Paleontologic Report on Cores 19A and 19B from Russell BankEverglades National Park Florida Bay

ABSTRACT

The fauna and flora preserved in two cores 19A and 19B from the south side of Russell Bank(N 25 03831rsquo W 80 37486rsquo) in north-central Florida Bay Everglades NationalPark Florida record a history of environmental change over the last century The benthicforaminifera and molluscs indicate fluctuating salinities with increasing average salinity upcorein core 19B Shifts from low salinity (12-15 ppt) to higher average salinity (30 ppt) occurred at70-66 cm and 24-18 cm in core 19B (approximately 1937-1940 and 1975-1980) The inverseshifts from periods of higher average salinity to periods of lower salinity occurred at 140 cm 90cm and 42 cm (approximately 1880 1921 and 1960) Significant changes in the molluscanfauna indicative of specific substrate types occur at 88 cm 68 cm and 22 cm The lower portionof the core is dominated by a mixture of sediment and grass dwellers the middle portion bysediment dwellers and the upper portion of the core by grass and finally grass and algaedwellers Changes occur in the floral assemblages in core 19A but the significance of thesechanges is unclear Three subtle shifts occur in the pollen assemblages indicating the onshorevegetation was responding to some environmental factor Two peaks in dinocyst abundanceoccur in core 19A but the composition of dinocyst assemblages remains relatively stablethroughout the core Correspondence between changes in salinity and onshore vegetationchanges is consistent with results from previous cores The pattern of increased salinity upcore isconsistent with patterns seen in core T24 from the mouth of Taylor Creek and in core 6A fromBob Allen mudbank

INTRODUCTION

The fragile and unique ecosystems of southern Florida including Florida Bay the terrestrialEverglades and Biscayne Bay have been the focus of a substantial scientific effort in responseto environmental economic and political concerns These concerns are focused on returning theEverglades to its natural state as mandated by the Everglades Forever Act (passed in 1994)while at the same time addressing the conflicting interests of the ever-growing population ofsouthern Florida the environmentalists the farmers and the tourist industry among othersConsequently Federal State and local jurisdictions are faced with decisions related to theecosystem restoration goals mediation of conflicting interests and monitoring of change

An essential part of the decision making process is to understand the history of the ecosystemprior to significant human alteration and to separate natural variability in the ecosystem fromhuman-induced change The US Geological Survey (USGS) in cooperation with NationalOceanic and Atmospheric Administration (NOAA) South Florida Water Management District(SFWMD) the National Park Service (NPS) the Army Corps of Engineers (ACOE) and otherFederal State and local agencies is conducting research to provide information on the history of

the Everglades ecosystem over the last 150-200 years The distribution of fauna and flora in aseries of sediment cores taken throughout the Everglades ecosystem provides information on thebiological physical and chemical parameters of the system over time

Sediment cores were taken in February of 1995 by researchers from the US GeologicalSurvey (St Petersburg FL) in cooperation with South Florida Water Management District(SFWMD) and the Everglades National Park (ENP) for use by USGS investigators conductingresearch in Florida Bay Three cores were taken from the south side of Russell Bank (N 2503831rsquo W 80 37486rsquo) in north-central Florida Bay (Figure 1) Cores 19A and 19B arereplicate cores taken side by side from a grass bed in 051 m of water Core 19C was taken 54 mnorth of 19A and 19B from a mud flat on top of the south side of Russell Bank Core 19Apenetrated 140 cm of sediment spanning approximately 115 years and has been sampled for210Pb and palynologic analyses Core 19B penetrated 144 cm of sediment spanningapproximately 118 years and has been sampled for 210Pb and calcareous fossil analyses Core19C penetrated 158 cm of sediment and has been sampled for 210Pb analysis

This report is produced by the Ecosystem History of Florida Bay and the Southwest Coastcomponent of the US Geological Surveyrsquos Ecosystem Program and is one of a series of USGSOpen-File Reports on the distribution of biogenic components in sediments sampled from thesouthern Florida region The data presented in these reports can be used to estimate changes insalinity substrate and other critical components of the ecosystem over time

ACKNOWLEDGMENTS

We would like to thank Robert Halley and Gene Shinn US Geological Survey StPetersburg FL for collecting the cores and making them available to us for analysis We wouldlike to thank our colleagues at South Florida Water Management District National Oceanic andAtmospheric Administration and Everglades National Park for their cooperation and assistancein this investigation We have benefited from discussions with William Lyons Florida MarineResearch Institute St Petersburg FL and Thomas Scott Florida Geological SurveyTallahassee FL Our reviewers Thomas Cronin and John Sutter US Geological SurveyReston VA provided helpful comments and suggestions to improve this manuscript

Marci Marot US Geological Survey St Petersburg FL prepared the samples for isotopicand calcareous analysis Assistance in sample processing was provided by Jill DrsquoAmbrosio IanGraham Lisa Weimer Neil Waibel Patrick Buchanan Nancy Carlin and Steve Wandrei of theUS Geological Survey Reston VA Rob Stamm and Patrick Buchanan US GeologicalSurvey Reston VA assisted in the preparation of illustrations for this report and JillDrsquoAmbrosio assisted in compiling the final report

MODERN SAMPLING SITES

Seasonal collecting startingFebruary 1995Seasonal collecting startingFebruary 1996

Seasonal collecting startingFebruary 1997

8

1

3

4 59

11

12

1314

15

16

17 19

18

10 6

7

2

Florida Bay

Atlantic OceanC

AP

E S A B L E JOHN PENNEKAMP

CORAL REEF

STATE PARK

EVERGLADES NATIONALPARK

PARK BOUNDARY

1

1

0

0

1

1

5

5

10

10

Kilometers

Miles

WATER DEPTH

lt 3 ft

gt 3 ft

25

26

23

24

21

20

22

Figure 1 Location of Russell Bank (N25 03831 W80 37486) cores 19A 19B and 19C

Russell Bank Site

METHODS OF INVESTIGATION

Benthic Foraminifers and Molluscs

Sediment samples from core 19B were collected at 2 cm intervals and every other samplestarting with 0-2 cm and totaling 34 samples was analyzed for calcareous benthic fauna Thesamples were washed through a 63micro m sieve and dried at lt50 degrees C When possible a total of300 benthic foraminifer specimens were picked from the sample and mounted on griddedmicropaleontologic slides Large samples were put through a sample splitter to randomly reducethe number of specimens For samples containing fewer than 300 benthic foraminiferindividuals all of the specimens present were picked Molluscs were picked from the gt =850micro m size fraction All molluscs and fragments of molluscs recognizable to the generic levelpresent in each interval were picked Species abundances for the benthic fauna were standardizedby calculating relative abundances (percent)

Pollen and Dinocysts

Material for palynological analysis was extracted from 1-2 cm sections of core 19A For eachpalynological sample 7-40 g of material (dry weight) was treated in hydrochloric andhydrofluoric acids and processed for palynological studies All samples were treated with warmKOH for 2-5 minutes given ultrasonic pulse treatment for 5 seconds acetolysed and sievedbetween 8-200micro m mesh A tablet of Lycopodium marker grains was added to each sample Formost samples at least 300 pollen grains were counted for calculation of percent abundances andabsolute pollen concentration To calculate absolute concentration of palynomorphs the marker-grain method was used (Benninghoff 1962 Maker 1981 Stockmarr 1971) For two samplespollen was sparse enough that fewer than 300 grains were counted For nine samples one slidewas completely examined for dinocysts and all dinocyst taxa were tabulated For two samples (0-1 cm and 80-82 cm) two slides were examined completely for dinocysts

Isotopic Analyses

Samples were collected every 2 cm from cores 19B and 19C and analyzed for 210Pb Ra137Ce 7Be and total Pb Analysis of 210Pb has been completed for 19B and Ra and 210Pb havebeen completed for 19C For details of the method see Robbins et al (in press)

ANALYSIS AND DISCUSSION OF THE BENTHIC FAUNA IN CORE 19B

Benthic Foraminifers

A total of 31 benthic foraminiferal species were identified and counted The foraminiferal datawas standardized to relative abundance (percent of assemblage Table 1) and was used for allquantitative analyses Species diversity as measured by Simpsonrsquos Index ranged from 011 to026 and the number of species ranged from 12 to 19

The foraminiferal assemblages are dominated by calcareous benthic forms with thedominance patterns alternating between rotaliid taxa Ammonia parkinsoniana tepida Aparkinsoniana typica Elphidium galvestonense mexicanum E galvestonense typica and Epoeyanum and miliolid taxa Miliolinella cirlcularis M labiosa Quinqueloculina bosciana Qseminulum Q tenagos Q polygona Q poeyana and Triloculina tricarinata Other significantspecies include Archaias angulatus Peneroplis proteus Rosalina floridana and Quinqueloculinaagglutinans

Two dominant assemblages can be identified in the cores an Ammonia-Elphidium (A-E)assemblage and a miliolid assemblage Observations of the foraminiferal faunal changesthroughout core 19B show four intervals dominated by the miliolid assemblage (140 cm 118-90cm 70-42 cm and 18-0 cm) interrupted by three intervals of A-E assemblage dominance (140-118 cm 90-70 cm and 42-18 cm)

Molluscs

Twenty-six molluscan taxonomic categories were recognized and counted in the Russell Bank19B core The number of specimens per sample ranged from 2 to 517 so the faunal counts werestandardized to relative percent abundance (Table 2) The Simpsonrsquos Diversity Index wascalculated for each sample (Table 2) Three sections in the core contained few individualspecimens (lt40) and few molluscan taxonomic groups (1-9) 122-112cm 62-52cm 38-28cmTwo species Brachiodontes sp and Transennella sp make up greater than 50 percent of themolluscan fauna in the entire core

A cluster analysis of Pearsons Correlation coefficient values calculated for the molluscanpercent abundance data and plotted using average linkage method (Figure 2) revealed 3 primarydivisions of the molluscan assemblages within the core 142-68 cm 68-22 cm and 22-0 cm Theinterval from 142-68 cm is dominated by Transennella sp Brachiodontes sp and Cerithiumspp Bittium varium Rissoina spp and Chione cancellata also are present in significantamounts (5) throughout the interval The interval from 66-22 cm has the lowest within-groupsimilarity of the three molluscan assemblages in the core and is represented by 2 clusters in theanlaysis This interval from 66-22 cm contains 2 zones of very low molluscan abundance (62-52cm and 38-28 cm) Brachiodontes sp and Cerithium spp dominate the 66-22 cm interval with anumber of other species present in significant amounts (10) in individual samples (see Table

Table 1Russell Bank 19B

Percent Abundance of Benthic Foraminifera

Depth in Core Am

mon

ia p

arki

nson

iana

tepi

da

Am

mon

ia p

arki

nson

iana

typi

ca

Arc

haia

s an

gula

tus

Bol

ivin

a lo

wm

ani

Bol

ivin

a ps

eudo

plic

ata

Cla

vulin

a tri

carin

ata

Cyc

logy

ra p

lano

rbis

Elp

hidi

um d

elic

atul

um

Elp

hidi

um g

alve

ston

ense

typi

cum

Elp

hidi

um g

alve

ston

ense

mex

ican

um

Elp

hidi

um p

oeya

num

Gra

ss d

wel

ler

Mili

olin

ella

circ

ular

is

Mili

olin

ella

fich

telia

na

Mili

olin

ella

labi

osa

Nod

osar

iidae

Pen

erop

lis p

rote

us

Qui

nque

locu

lina

aggl

utin

ans

Qui

nque

locu

lina

bosc

iana

0-2 cm 000 107 000 000 000 000 000 000 1123 107 000 080 1203 000 000 000 027 000 17914-6 cm 000 098 164 000 000 000 000 000 918 328 000 033 787 000 000 000 000 066 1443

8-10 cm 000 523 000 000 000 000 000 000 1463 418 000 070 592 000 000 000 070 000 167212-14 cm 000 642 520 000 000 000 000 000 887 1376 000 000 673 000 031 000 092 061 76516-18 cm 000 761 543 000 000 000 000 000 2174 1957 000 000 543 000 000 000 000 326 54324-26 cm 000 888 164 000 000 000 000 000 559 1086 000 066 329 033 000 000 066 395 217128-30 cm 000 1738 066 000 000 000 000 000 1770 2787 000 033 492 000 000 033 033 000 45932-34 cm 000 1294 129 000 000 000 000 000 1974 1909 000 000 388 000 000 000 000 000 301036-38 cm 000 2347 144 000 000 000 072 000 1011 1227 000 072 217 072 000 000 000 072 245540-42 cm 000 556 065 000 000 000 065 000 1242 000 000 196 752 000 000 000 000 033 356244-46 cm 000 525 031 000 000 000 093 000 1265 556 000 154 741 000 000 000 000 185 256248-50 cm 000 994 000 000 029 000 029 000 000 3129 000 175 292 000 000 000 000 029 242752-54 cm 000 664 000 035 000 000 140 000 1364 699 000 385 699 000 000 000 000 000 255256-58 cm 000 281 112 000 000 000 056 000 1180 534 000 871 927 000 000 000 000 056 238860-62 cm 000 975 144 000 000 000 036 000 903 1733 000 325 722 000 000 000 000 072 227464-66 cm 000 767 184 000 000 031 061 000 706 1626 000 276 736 000 000 000 061 123 144268-70 cm 000 1536 031 000 000 063 000 000 972 3103 000 063 1348 000 000 000 000 000 43972-74 cm 000 1691 344 000 000 000 000 000 1261 2436 000 086 802 000 000 000 000 115 86076-78 cm 000 1467 367 000 000 000 000 000 900 3767 000 000 500 000 067 000 000 000 26780-82 cm 000 1921 213 000 000 000 000 000 793 3994 000 000 213 000 000 000 000 122 03084-86 cm 000 2097 032 000 000 000 000 000 806 3419 1129 000 226 000 000 000 000 000 16188-90 cm 000 1864 034 000 000 000 000 000 000 3932 1153 000 237 000 000 000 034 034 10292-94 cm 000 329 033 000 000 000 000 000 757 1217 2303 000 921 000 000 000 000 033 78996-98 cm 000 538 028 000 000 000 000 2720 652 1133 000 000 737 000 000 000 000 000 1416

100-102 cm 000 1148 033 000 000 000 000 2230 000 2590 000 000 590 000 000 000 000 000 295104-106 cm 000 635 159 000 000 000 000 2032 317 1333 000 000 794 000 000 000 063 127 1556108-110 cm 000 1655 338 000 000 000 000 439 270 2601 000 000 1250 068 000 000 000 338 000112-114 cm 080 479 133 000 000 000 000 000 1729 1064 000 000 1596 027 000 000 053 133 1941116-118 cm 000 1181 139 000 000 000 000 000 2847 2014 000 000 972 000 000 000 000 000 243120-122 cm 000 1761 066 000 000 000 000 000 2093 2292 000 000 532 000 000 000 000 066 000124-126 cm 000 3142 453 000 000 060 000 121 000 4350 000 000 242 000 000 000 000 242 000128-130 cm 000 2786 352 000 000 000 000 528 000 4164 000 000 587 000 000 000 000 411 029132-134 cm 000 1705 129 000 000 000 000 904 233 3178 000 000 956 000 000 000 000 052 310136-138 cm 000 843 421 000 000 000 000 899 393 1236 000 000 2444 000 028 000 084 197 449140-142 cm 000 2032 581 000 000 000 000 000 645 3903 000 000 645 000 000 000 000 290 000

Table 1Russell Bank 19B

Percent Abundance of Benthic Foraminifera

Depth in Core

0-2 cm 4-6 cm

8-10 cm 12-14 cm 16-18 cm 24-26 cm 28-30 cm 32-34 cm 36-38 cm 40-42 cm 44-46 cm 48-50 cm 52-54 cm 56-58 cm 60-62 cm 64-66 cm 68-70 cm 72-74 cm 76-78 cm 80-82 cm 84-86 cm 88-90 cm 92-94 cm 96-98 cm

100-102 cm 104-106 cm 108-110 cm 112-114 cm 116-118 cm 120-122 cm 124-126 cm 128-130 cm 132-134 cm 136-138 cm 140-142 cm

Qui

nque

locu

lina

sem

inul

um

Qui

nque

locu

lina

tena

gos

Qui

nque

locu

lina

poly

gona

Qui

nque

locu

lina

poey

ana

Ros

alin

a flo

ridan

a

Ros

alin

a gl

obul

aris

Spi

rolo

culin

a an

tilla

rium

Trilo

culin

a lin

eian

a

Trilo

culin

a ro

tund

a

Trilo

culin

a tri

locu

lina

Val

vulin

a s

p

Val

vulin

eria

laev

igat

a

Num

ber o

f Spe

cies

Sim

pson

s D

iver

sity

Inde

x

1337 107 481 3235 214 000 027 000 000 160 000 000 14 019525 000 1279 3934 066 000 098 000 000 262 000 000 14 021732 279 244 3275 035 000 000 000 000 627 000 000 13 018367 153 214 2875 092 000 000 000 031 1009 000 214 17 014217 000 652 1413 000 000 109 000 000 761 000 000 12 013230 954 691 1480 099 000 000 000 493 164 000 132 18 011885 000 393 1082 230 000 000 000 000 000 000 000 13 017000 000 647 583 065 000 000 000 000 000 000 000 9 019072 289 217 1372 000 000 000 000 217 108 036 000 17 016

1046 163 163 1993 065 000 000 000 065 000 000 033 15 020648 340 370 2377 154 000 000 000 000 000 000 000 14 016322 175 117 1637 205 000 000 000 205 234 000 000 15 020245 140 000 2797 140 000 000 000 000 140 000 000 13 018365 000 169 2669 056 000 000 000 000 337 000 000 14 016

1011 181 397 1227 000 000 000 000 000 000 000 000 13 013521 215 706 1933 245 000 000 000 123 215 000 031 19 011878 000 000 1317 219 000 000 000 000 031 000 000 12 018201 086 401 1146 115 000 000 000 000 401 000 057 15 014667 000 467 1100 133 000 000 000 000 267 000 033 13 020549 000 671 732 000 000 000 000 213 488 000 061 13 022290 000 032 1516 000 000 000 000 097 194 000 000 12 021881 000 508 780 000 000 000 000 136 271 000 034 14 022

1908 099 296 1184 132 000 000 000 000 000 000 000 13 014878 000 227 1020 170 000 142 000 340 000 000 000 13 014

1541 000 426 787 033 000 066 000 197 066 000 000 13 0171238 000 222 1397 095 032 000 000 000 000 000 000 14 0131014 034 574 777 000 000 000 000 236 338 000 068 15 014

984 000 293 1011 213 000 000 000 133 080 000 053 17 0131632 104 208 486 035 000 000 000 035 104 000 000 13 0182093 000 166 565 100 000 000 000 033 100 133 000 13 018

000 272 242 393 000 000 000 030 091 363 000 000 13 030000 029 235 323 029 000 000 000 059 411 000 059 14 026

1111 000 207 620 052 000 000 000 336 207 000 000 14 017983 140 253 955 169 000 000 000 112 253 000 140 18 012258 032 419 548 000 000 065 000 065 258 000 258 14 021

Table 2Russell Bank 19B

Percent Abundance of Molluscan Fauna

Depth in Core G

astro

pods

Act

eoci

na c

anal

icul

ata

Am

aea

spp

Bitt

ium

var

ium

Bul

la s

p

Cae

cum

pu

chel

lum

flor

idan

um

Cer

ithid

ea s

pp

Cer

ithiu

m s

pp

Con

us s

p

Cre

pidu

la s

p

Mar

gine

llids

Mod

ulus

mod

ulus

Oliv

ella

sp

Ris

soin

a s

pp

Turr

itella

exo

leta

Vitr

inel

lids

Rar

e G

astro

pods

Uni

dent

ified

gas

tropo

d fra

gmen

ts u

nkno

wn

sp

and

juve

nile

s

0-2 cm 000 000 128 000 147 000 568 000 073 092 183 000 220 000 037 037 0554-6 cm 000 000 347 000 087 000 723 000 116 116 347 000 145 000 116 116 260

8-10 cm 000 000 172 000 000 000 259 000 000 086 517 000 345 000 345 086 34512-14 cm 000 000 244 000 244 000 488 000 000 061 244 244 488 244 000 061 36616-18 cm 000 000 244 000 000 000 610 000 122 000 122 122 854 000 000 122 36620-22 cm 000 000 270 135 135 000 270 000 135 000 000 000 135 000 000 135 27024-26 cm 172 000 345 000 345 172 1552 000 690 000 000 172 172 000 000 000 17228-30 cm 000 000 000 000 000 000 000 000 000 000 000 000 000 000 000 000 00032-34 cm 000 000 714 714 000 000 2143 000 000 000 714 000 714 000 000 000 00036-38 cm 000 000 2143 000 000 000 3571 357 000 000 357 1071 000 000 000 000 107140-42 cm 000 000 1237 515 000 000 1856 000 309 000 103 206 412 000 000 103 41244-46 cm 000 000 215 000 000 000 860 000 000 000 645 108 968 000 108 000 43048-50 cm 000 000 1111 000 000 000 1852 000 000 000 556 000 741 000 000 000 74152-54 cm 000 000 000 000 000 000 811 000 000 000 4324 000 270 000 000 000 54156-58 cm 000 000 000 000 1000 000 4000 000 4000 000 000 000 000 000 000 000 00060-62 cm 000 000 313 000 000 000 000 625 000 000 000 000 625 000 000 313 187564-66 cm 000 000 800 200 100 000 1400 000 300 100 200 000 300 000 000 000 40068-70 cm 000 000 1569 000 196 000 1765 000 392 196 196 000 980 000 000 392 58872-74 cm 000 000 1918 000 137 000 1918 000 685 000 137 000 000 000 000 000 54876-78 cm 000 000 562 000 000 000 1124 000 000 562 337 225 562 112 000 000 168580-82 cm 000 000 414 000 000 000 552 000 000 138 069 138 000 138 000 000 96684-86 cm 000 000 933 000 400 000 1333 267 133 000 267 267 533 000 000 000 133388-90 cm 000 000 219 000 000 000 1606 000 000 000 000 292 803 219 000 146 153392-94 cm 000 000 432 000 144 000 1007 000 000 000 072 288 504 144 000 000 93596-98 cm 303 000 152 000 152 000 1364 000 152 000 000 152 758 152 000 303 152

100-102 cm 000 000 000 000 138 000 483 000 000 069 000 207 345 000 000 000 483104-106 cm 000 067 738 000 067 134 1611 067 000 134 000 134 470 067 000 134 470108-110 cm 000 238 714 000 000 000 952 000 000 079 000 397 1190 079 000 159 1825112-114 cm 286 000 857 000 000 000 1714 000 286 000 286 000 000 000 000 000 1143116-118 cm 000 000 000 000 000 000 000 000 000 000 000 000 000 000 000 000 2000120-122 cm 000 000 345 000 345 000 690 000 000 000 000 345 690 1034 000 000 345124-126 cm 075 000 970 000 000 149 1343 000 075 000 821 224 373 149 149 149 224128-130 cm 000 143 257 000 086 000 857 000 114 086 086 000 286 029 000 029 571132-134 cm 000 000 723 000 000 000 1205 000 000 000 000 120 482 602 000 000 1084136-138 cm 051 051 769 051 103 103 615 000 000 103 000 103 000 256 103 256 410140-142 cm 055 000 656 000 000 000 710 055 109 000 000 383 601 109 000 000 874

Table 2Russell Bank 19B

Percent Abundance of Molluscan Fauna

Depth in Core0-2 cm 4-6 cm

8-10 cm 12-14 cm 16-18 cm 20-22 cm 24-26 cm 28-30 cm 32-34 cm 36-38 cm 40-42 cm 44-46 cm 48-50 cm 52-54 cm 56-58 cm 60-62 cm 64-66 cm 68-70 cm 72-74 cm 76-78 cm 80-82 cm 84-86 cm 88-90 cm 92-94 cm 96-98 cm

100-102 cm 104-106 cm 108-110 cm 112-114 cm 116-118 cm 120-122 cm 124-126 cm 128-130 cm 132-134 cm 136-138 cm 140-142 cm

Pel

ecyp

ods

Ano

mal

ocar

dia

sp

Arc

opsi

s ad

amsi

Bra

chio

dont

es s

p

Chi

one

canc

ella

ta

Cum

ingi

a te

llino

idea

Laev

ecar

dium

spp

Nuc

ula

prox

ima

Pec

tinid

Pin

ctad

a ra

diat

a

Telli

na s

pp

Tran

senn

ella

spp

Rar

e P

elec

ypod

s

Uni

dent

ified

Pel

ecy

Fr

ags

Tota

l num

ber o

f in

divi

dual

spe

cim

ens

Num

ber o

f fau

nal g

roup

s

Sim

pson

s D

iver

sity

Inde

x

000 018 7033 073 055 000 000 000 1264 000 000 018 000 517 16 052000 116 6416 087 000 000 000 000 954 000 000 029 029 331 16 043000 000 7328 086 000 000 000 000 259 000 000 000 172 49 12 055000 183 5732 244 061 000 000 000 1037 000 000 000 061 145 16 035000 000 5732 366 122 000 000 000 244 000 732 000 244 62 14 035000 000 7703 000 000 000 000 000 000 000 270 000 541 62 11 060000 000 2414 345 000 172 000 000 172 172 1724 000 1207 50 16 014000 000 000 000 000 000 000 000 000 000 5000 000 5000 2 2 050000 000 1429 1429 000 000 000 000 000 000 2143 000 000 12 8 015000 000 1429 000 000 000 000 000 000 000 000 000 000 28 7 022000 103 4124 309 000 000 000 103 206 000 000 000 000 97 14 023000 430 968 4624 108 000 000 000 000 108 000 000 430 93 13 025000 926 926 370 926 000 000 185 926 370 000 000 370 54 13 010000 000 2703 000 270 000 000 000 811 000 000 000 270 37 8 028000 000 000 000 000 000 000 000 000 000 000 000 1000 10 4 034000 000 5000 000 000 313 000 000 313 000 000 000 625 32 9 030000 000 2900 100 000 100 000 1000 900 200 300 100 600 100 18 014000 000 588 588 196 000 000 196 000 000 980 000 1176 51 15 010000 000 1918 548 000 000 274 000 000 000 1918 000 000 73 10 016000 112 1910 000 000 000 000 000 337 000 787 000 1685 89 13 012000 207 2690 897 000 000 000 000 138 000 2414 345 897 145 14 016000 000 800 933 000 000 000 000 267 000 1200 000 1333 75 14 010438 000 438 657 073 000 000 000 000 073 2847 000 657 137 14 015216 288 719 647 000 072 000 000 504 000 2734 000 1295 139 16 013152 000 606 455 000 152 000 000 000 000 4545 000 455 66 16 024000 000 1241 483 000 000 000 000 000 000 4897 000 1655 145 10 029671 000 067 134 000 000 000 000 067 000 3624 000 1342 149 18 019000 000 714 238 000 079 159 000 159 000 2302 000 714 126 16 013000 000 000 571 000 000 000 000 000 000 3714 000 1143 35 9 021000 000 000 000 000 000 000 000 000 000 6000 000 2000 5 3 044000 000 2759 000 000 000 000 000 000 000 2069 000 1379 29 10 016373 000 821 672 075 075 000 000 224 000 2463 000 597 134 20 012000 029 857 314 057 000 000 000 200 000 5429 029 543 350 19 032000 000 602 964 241 000 120 000 241 000 2048 000 1566 83 13 012000 103 923 923 000 256 205 000 308 103 3179 000 1026 195 22 014000 109 1967 656 109 000 055 000 273 000 3115 000 164 183 17 016

0-2

4-6

12-14

16-18

20-22

36-38

56-58

116-118

100-102

128-130

96-98

88-90

92-94

112-114

104-106

124-126

136-138

140-142

108-110

132-134

84-86

76-78

120-122

80-82

72-74

68-70

48-50

64-66

24-26

32-34

40-42

60-62

52-54

44-46

28-30

8-10

00 01 02 03 04 05 080706

Figure 2 Q-mode cluster diagram of molluscan assemblages from core 19B Distancesare expressed as Pearsons Correlation coefficient values calculated on the molluscanpercent abundance data (see Table 2) and plotted using average linkage methodShaded areas represent clusters formed by samples from the upper portion of the core(0-22 cm) and the lower portion of the core (68-142 cm)

Sam

ple

(iden

tifie

d by

dep

th in

cm

)

2) The cluster containing samples from the interval from 22-0 cm has high Pearsons Correlationcoefficient values for within-group similarity and the largest between-group distances (seeFigure 2) This upper portion of the core is dominated by Brachiodontes sp which comprisesgreater than 50 of the molluscan assemblage in each sample from this section Pinctadaradiata and Cerithium spp are present in significant amounts (5) in some samples from 22-0cm

Benthic Faunal Patterns

Comparison of the benthic fauna present in core 19B with our modern data set enables us tointerpret the salinity history for the Russell Banks site The foraminiferal and molluscan recordsfrom core 19B show distinct oscillations in salinity with a gradual increase in salinity toward thetop of the core (Figure 3) In addition a positive correlation (ρ =052) exists between increasingSimpson diversity indices and decreasing salinity for the benthic foraminfera

The two dominant foraminiferal assemblages Ammonia-Elphidium and miliolid are verysimilar to the Ammonia-Elphidium and Archaias-miliolid assemblages described from modernFlorida Bay sediments (Brewster-Wingard et al 1996) The distribution of modern benthicforaminifers in Florida Bay shows a strong association between the occurrence of Aparkinsoniana and E galvestonense mexicanum and typica with salinities less than 25 ppt(Brewster-Wingard et al 1996) Conversely miliolids dominate where salinities are near normalmarine values (30 ppt) The intervals dominated by the miliolid assemblage (140 cm 118-90 cm70-42 cm and 18-0 cm) therefore indicate more stable and relatively higher average salinity (32-35 ppt) These segments are interrupted by three periods of A-E assemblage dominance (140-118cm 90-70 cm and 42-18 cm) indicating unstable and relatively low average salinity (lt32 ppt)

Molluscs are not as sensitive to variations in salinity as benthic foraminifers consequently themolluscan data do not show the degree of fluctuation seen in the foraminiferal data (Figure 3)The general trend of increasing percent abundance of euhaline and euhaline-polyhaline molluscsupcore does follow the general trend of the foraminiferal plot showing a gradual increase insalinity upcore No molluscan faunas restricted to terrestrial fresh water marsh or upperestuarine environments are present in core 19B indicating this area has been relatively open bayover the last century and the salinity has probably not dropped below 12-15 ppt

Both the benthic foraminiferal assemblages and the molluscan assemblages show significantchanges between 70-66 cm and between 24-18 cm These zones correspond to shifts from A-Edominated assemblages to miliolid dominated assemblages but the molluscs do not seem torespond significantly to the decreases in salinity that mark the shift from miliolid assemblagesback to A-E assemblages Almost all of the molluscs present in this core can be classified aspolyhaline and are tolerant of a wide range of salinities (from approximately 12 or 15 ppt to 30-35 ppt) which could explain the patterns seen for the molluscs If however the salinity haddropped below ~15ppt during the periods of A-E dominance then the molluscs would mostlikely have shown a response The areas of A-E dominance in the core represent salinities of 15-25 ppt with the lower number delineated by the absence of species of molluscs found in lowsalinity waters of Florida Bay and the upper number constrained by the presence of low salinitybenthic foraminifera The miliolid dominated zones represent salinities of 30 ppt or higher

Figure 3 Plot of percent abundance of benthic foraminifers molluscs and the two datasets combined that indicate increasing salinity for core 19B The benthic foraminifersindicate salinity gt 30 ppt The mollusc species have wider salinity tolerances thespecies illustrated on this plot are classified as euhaline or euhalinepolyhaline andrepresent salinities of 20-25 ppt or greater The positions of the benthic foraminiferalassemblages (Milliolid-gray Ammonia-Elphidium-white) discussed in the text are shownon the right of the plot

ForaminifersMolluscsCombined

900080007000600050004000300020001000000

0-2

8-10

16-18

24-26

32-34

40-42

48-50

56-58

64-66

72-74

80-82

88-90

96-98

104-106

112-114

120-122

128-130

136-138

140-142

abundance

Dep

th in

Cen

timet

ers

Miliolid Assemblage

Miliolid Assemblageat 140-142 cm

Miliolid Assemblage

Miliolid Assemblage

Ammonia- ElphidiumAssemblage

Ammonia- ElphidiumAssemblage

Ammonia- ElphidiumAssemblage

1981

1962

1939

1922

1898

1878

Hard Surface

Coarse Sediment or Sponges

Coarse Sediment

Coarse or Fine Sediment

Fine Sediment

Grass Beds or Sediment

Grass Beds or Coarse Sediment

Grass and Algae Beds

Grass Beds

Pecent AbundanceD

epth

in C

ore

(cm

)

0 10 20 30 40 50 60 70 80 90 1000-2

8-10

16-18

24-26

32-34

40-42

48-50

56-58

64-66

72-74

80-82

88-90

96-98

104-106

112-114

120-122

128-130

136-138

Figure 4 Area diagram of percent abundance of molluscs indicative of specific substrate types for core 19B Data plotted at the 116 cm and 28 cm depths represent averages of the overlying and underlying samples these two samples did not contain enough individual specimens to be statistically valid

The suite of molluscs present in core 19B is more indicative of changes in substrate thanchanges in salinity Figure 4 illustrates the substrate patterns within the core based on thepercent abundance of molluscs known to prefer those substrate types The lowest portion of thecore from 142-110 cm has significant numbers of both sediment dwellers and grass dwellerspresent with dominance of either group fluctuating From 106-88 cm sediment dwellersdominate although grass dwellers are still present in significant numbers The segment from 88-22 cm is dominated by grass dwellers above 68 cm the presence of species indicative of asediment substrate is negligible The uppermost portion of the core from 22 cm to the top isdominated by species that could live on either algae or grass

The shifts in abundance of molluscan substrate indicators at 88 cm 68 cm and 22 cmcorrespond to changes seen in the benthic foraminiferal salinity indicators but at this point thesignificance of this relationship is not understood However since the benthic foraminifers usedfor salinity indicators are not sensitive to changes in substrate we believe the changingforaminiferal patterns reflect changing salinity

ANALYSIS AND DISCUSSION OF THE FLORA IN CORE 19A

Pollen

The percent abundance data on pollen is presented in Table 3 Three pollen zones aredistinguishable based on both percent abundance and absolute pollen concentration (pollengrainsgram dry sediment) The bottom zone (140-80 cm) is characterized by the highestpercentages of Pinus (pine) pollen (80-90) and the lowest percentages of Quercus (oak)(lt6) and pollen of the ChenopodiaceaeAmaranthaceae (pigweed family) and Asteraceae(aster family) (Figure 5) No pollen of the Cyperaceae (sawgrass family) is present in this zoneTotal pollen concentration in this zone and the middle zone ranges from about 500-1200grainsgram and the concentration of Quercus pollen is lower than the other zones with lt50grainsgram (Figure 6)

The middle zone (80-32 cm) is characterized by lower percentages of Pinus pollen (54-73)higher percentages of Quercus (6-10) and higher concentrations of Quercus pollen (50-100grainsgram) In both this and the upper zone pollen of the ChenopodiaceaeAmaranthaceae andAsteraceae are more abundant comprising 3 and 2 of the assemblages respectively Pollenof the Cyperaceae is present in low percentages in this and the upper zone

The upper zone has the highest pollen concentrations of the core with most samples rangingfrom 1200-4600 grainsgram Several taxa contribute to these higher values including PinusQuercus Myrica (wax myrtle) ChenopodiaceaeAmaranthaceae and Asteraceae Cephalanthus(buttonbush) is present in low abundances (lt1) in this zone and Liquidambar (sweet gum) isabsent from this zone

Table 3Russell Bank 19A

Percent Abundance of Pollen

Depth in core Aln

us

Api

acea

e

Ast

erac

eae

Avi

cenn

ia

Bet

ula

Bum

elia

Bur

sera

sim

arub

a

Car

ya

Cas

uarin

a

Cel

tis

Cep

hala

nthu

s

Che

nopo

diac

eae

A

mar

anth

acea

e

Con

ocar

pus

Cyp

erac

eae

Dec

odon

Eric

acea

e

Eup

horb

iace

ae

Faba

ceae

Frax

inus

Ilex

Jugl

ans

0-1 cm 000 000 255 000 000 000 000 000 482 000 028 425 000 000 000 000 000 142 000 000 000 4-5 cm 057 000 201 000 000 000 000 029 115 000 029 287 029 115 000 000 029 057 000 029 029 8-9 cm 032 000 322 000 000 000 000 000 129 000 032 096 000 064 000 000 000 032 000 000 000

20-21 cm 000 000 409 031 000 000 000 000 314 000 063 597 000 000 000 000 000 220 000 000 00032-34 cm 030 000 332 000 030 030 000 000 211 000 000 332 030 030 000 000 000 121 000 030 03044-46 cm 080 000 777 000 000 000 000 027 214 000 000 429 000 080 000 000 027 107 000 054 00056-58 cm 031 000 439 000 000 000 000 031 157 000 000 690 000 063 000 063 000 094 031 000 00068-70 cm 168 000 251 000 028 000 028 084 056 000 000 307 000 056 000 000 000 084 000 000 00080-82 cm 000 000 238 000 000 000 000 000 000 000 000 476 000 000 000 000 000 000 000 000 00092-94 cm 054 000 054 000 000 027 000 082 027 000 000 054 000 000 000 000 000 082 027 000 000

104-106 cm 000 029 115 000 000 000 000 000 000 000 000 230 000 000 057 000 000 115 000 000 000116-118 cm 062 000 062 000 000 000 000 000 000 031 000 185 031 000 000 000 000 062 000 000 000128-130 cm 000 000 061 000 000 000 000 030 000 000 000 091 000 000 000 030 000 061 000 000 000136-138 cm 060 000 060 030 000 030 060 181 000 000 000 091 000 000 000 000 000 000 000 000 000138-140 cm 000 000 000 000 000 000 000 081 000 000 000 244 000 000 000 000 000 000 000 000 000

Table 3Russell Bank 19A

Percent Abundance of Pollen

Depth in core0-1 cm

4-5 cm 8-9 cm

20-21 cm 32-34 cm 44-46 cm 56-58 cm 68-70 cm 80-82 cm 92-94 cm

104-106 cm 116-118 cm 128-130 cm 136-138 cm 138-140 cm

Liqu

idam

bar

Mag

nolia

Myr

ica

Nys

sa

Ost

rya

Car

pinu

s

Pin

us

Pla

nera

Poa

ceae

Que

rcus

Rhi

zoph

ora

Rut

acea

e

Sag

ittar

ia

Sal

ix

Taxo

diac

eae

C

upre

ssac

eae

Tax

acea

e

Typh

a

Ulm

us

Tota

l Pol

len

Cou

nted

000 000 283 000 028 6856 000 028 1076 028 000 028 000 000 000 057 353000 000 086 000 000 6905 000 029 1375 029 000 029 000 000 000 000 349000 000 225 000 000 7395 000 032 932 096 032 032 032 000 096 032 321000 000 1069 000 063 5660 000 031 1101 000 000 000 000 000 031 000 321030 000 846 000 000 6737 000 030 634 000 000 000 030 030 030 000 332107 000 429 027 000 5416 000 107 1046 027 000 000 027 027 054 054 378000 031 376 000 000 6395 000 031 690 094 000 031 031 031 063 031 320028 028 447 000 000 7346 000 000 615 028 000 000 028 000 112 028 358119 000 357 000 000 7976 000 000 595 000 000 000 000 000 000 000 85082 000 408 000 000 8696 000 000 245 027 000 000 000 027 000 000 371029 000 747 000 000 8017 000 029 316 057 000 000 000 029 029 000 350000 000 338 000 000 8923 000 031 123 031 000 000 031 000 031 000 326030 000 396 000 000 8628 000 030 457 000 000 000 030 000 000 000 331030 000 242 000 000 8792 030 000 181 000 000 000 000 000 030 000 332081 000 163 000 000 8862 000 000 569 000 000 000 000 000 000 000 123

0 10 20 30 40 50 60 70 80

10

20

30

40

50

60

70

80

90

100

110

120

130

Depthcm Pinu

sQue

rcus

Casua

rina

Rhizop

hora

Myrica

Cepha

lanthu

s

Cheno

podia

ceae

Amara

nthac

eae

Poace

ae

Cypera

ceae

Asterac

eae

10

20

30

40

50

60

70

80

90

100

110

120

130

0 10 0 0 0 10 0 0 0 0 05 5 5 5 5 5 5 55

(Pine

)(O

ak)

(Aus

tralia

n Pine

)

(Red

Man

grove

)

(Wax

Myrt

le)

(Pig

Wee

d)

(Gras

s Fam

ily)

(Saw

grass

Family

)

(Aste

r Fam

ily)

(Butt

on B

ush)

Figure 5 Percent abundance of selected pollen groups for core Russell Bank 19A (note different scales)

0 50 100 150 200 250 300 350 400

Querc

us

0 50

Casua

rina

0 50 100 150 200 250 300

Myr

ica

0 50 100 150

Cheno

pods

0

Cyper

acea

e

0 50 100

Astera

ceae

10

20

30

40

50

60

70

80

90

100

110

120

130

Depthcm Pinu

s

0 1000 2000 3000

Total

Pollen

Con

cent

ratio

n

10

20

30

40

50

60

70

80

90

100

110

120

130

0 1000 2000 3000 4000

Figure 6 Total concentration of pollen (grainsgram) for core Russell Bank 19A (note different scales)

Dinocysts

Dinocyst recovery in all samples was low Most microscope slides are heavily dominated byorganic debris and the maximum number of specimens observed in any sample was 214Absolute abundance ranges from 779 to 4736 cystsgram These values are one to two orders ofmagnitude below those reported by Wall et al (1977) for samples from the Middle AtlanticBight and western South Africa and are consistent with high sedimentation rates These absoluteabundances in the sediments are far below bloom concentrations in which the number of livingcells per ml of water may exceed 50 million

The dinocyst assemblages in the Russell Bank 19A core consist of less than 10 taxa (Table 4)Various species of the genus Spiniferites Mantell dominate all samples (61 to 79 percent) Due topoor preservation and taxonomic difficulties the individual species of this genus were notdifferentiated S mirabilis (Rossignol) Sarjeant S ramosus (Ehrenberg) Mantell S scabratus(Wall) Sarjeant and other forms are present Operculodinium Wall spp (O israelianum(Rossignol) Wall or Operculodinium species undifferentiated) are present in all samples inamounts of 5 to 19 percent Polysphaeridium zoharyi (Rossignol) Bujak et al is present in allsamples and comprises up to 16 percent of the assemblages Most samples included low numbersof Lingulodinium machaerophorum (Deflandre amp Cookson) Wall Nematosphaeropsis rigidaWrenn and (or) Tectatodinium pellitum Wall Only two samples contained a single specimeneach of the family Congruentidiaceae

Most samples from Russell Bank core 19A are quite similar to one another (Figure 7)Throughout the core the dinocyst Polysphaeridium zoharyi ranges in abundance from 0-16percent which is considerably lower than in the Bob Allen 6A (Wingard et al 1995) and LittleMadeira Bay T24 (Ishman et al 1996) cores With one exception (80-82 cm) increased absoluteabundance of Spiniferites spp is accompanied by increased absolute abundance of P zoharyi(Figure 8) This relationship suggests that absolute abundances in this core are a function ofsediment supply rather than cyst production The sample at 80-82 cm is anomalous the highabsolute abundance of cysts is attributable to Spiniferites spp and fewer than 30 total cysts werefound on each slide This sample may represent a case of an increase in Spiniferites cystproduction and an increase in the amount of organic debris in proportion to sediment supply Thelowest samples (132-134 cm and 136-138 cm) show both low absolute abundances of all cysttypes and low percentages of P zoharyi

Floral Patterns

Changes occur in the pollen and dinocyst assemblages in core 19A but the significance ofthese changes is unclear Three zones are distinguishable for the pollen but the differencesamong them are very subtle and any interpretation of patterns of vegetational change would bepremature However it is apparent that the vegetation changed in response to someenvironmental factor at those times correlation with on-shore cores would be necessary toestablish the nature of the changes Dinocyst abundance fluctuates in the core with two peaks at118-104 cm and 82-80 cm but the assemblages are relatively stable throughout the core

Table 4 Dinocyst data from Russell Bank 19A

Pol

ysph

aerid

ium

zoh

aryi

Spi

nife

rites

spp

Ope

rcul

odin

ium

spp

Nem

atos

phae

rops

is ri

gida

Ling

ulod

iniu

m m

acha

erop

horu

m

Tect

atod

iniu

m p

ellit

um

Tube

rcul

odin

ium

van

cam

poae

Con

grue

ntid

iace

ae

Oth

er

TOTA

L D

INO

CY

STS

CO

UN

TED

Depth (cm)

Wt (g) Cystsg

Slides examined

0-1 74 779 2 129 742 97 00 32 00 00 00 00 3120-21 115 1363 1 123 630 74 49 49 62 00 12 00 8144-46 363 921 1 24 750 95 36 48 12 00 00 36 8468-70 358 1454 1 114 705 95 10 38 29 00 10 00 10580-82 337 3732 2 19 811 132 00 38 00 00 00 00 5392-94 385 2049 1 84 720 119 49 28 00 00 00 00 143

104-106 331 4736 1 128 636 133 77 10 05 00 00 10 195116-118 350 3451 1 141 676 106 07 63 07 00 00 00 142128-130 390 1854 1 121 612 178 51 28 05 05 00 00 214132-134 321 1288 1 34 754 127 68 17 00 00 00 00 118136-138 371 2028 1 66 747 110 55 11 11 00 00 00 91

Species

Percent abundance

Comparison of these data to additional terrestrial and marine cores may lead to a betterunderstanding of the patterns seen here

210PB AGE MODEL FOR THE RUSSELL BANKS SITE

The activity of 210Pb (dpmgram) is shown for 19B and 19C in Figures 9 and 10 Thesedimentation rate for the Russell Bank site is based on the results from 19C because both 210Pband Ra analyses have been completed for that core the rate equals 122 cmyear +- 005The 210Pb curves for cores 19B and 19C are almost identical therefore we make the assumptionthat the rate of sediment accumulation is the same in the two cores No 210Pb analyses have beendone for core 19A to date

SUMMARY

The fauna and flora present in the Russell Bank cores 19A and 19B record an approximately120-year history of fluctuating environmental changes The benthic foraminifera documentperiods of fluctuating salinity with a gradual increase in salinity upcore The molluscan data areconsistent with the foraminiferal data showing increasing salinity upcore but without the degreeof fluctuation indicated by the benthic foraminifera The benthic fauna show significant changesin the assemblages at 70-66 cm and 24-18 cm which correspond to approximately 1937-1940and 1975-1980 A similar shift occurred at 118 cm (approximately 1898) which is not as clearlyseen in the molluscan faunal data These periods represent shifts from low salinity (12-15 ppt) tohigher average salinity (30 ppt) In addition the benthic foraminiferal assemblages shift fromperiods of higher average salinity to periods of lower salinity at 140 cm 90 cm and 42 cmwhich correspond to approximately 1880 1921 and 1960 respectively

The molluscan fauna indicate changes occurring in the substrate at the Russell Banks siteSediment and grass (probably Thalassia) apparently were equally available for habitation from142-110 cm or approximately 1878-1904 Although grass was still available bare-sedimentdominated the area from 106-88 cm or approximately 1908-1922 From 88-22 cm orapproximately 1922-1976 grass was the dominant substrate and from approximately 1939 (68cm) to the present the presence of bare-sediment bottoms was negligible at the siteSignificantly from 22 cm or approximately 1976 to the present the molluscan fauna isdominated by species that can live equally well on algae or seagrass

The pollen present in core 19A show three periods of subtle shifts in the onshore vegetation inresponse to some environmental factor These changes occur at 80 cm and at 32 cm orapproximately 1929 and 1968 If we assume that core 19A and 19B have similar sedimentationrates then the shifts in the onshore vegetation indicated by the pollen seen in 19A occurapproximately 7-8 years prior to changes in Florida Bay as indicated by the benthic fauna in19B However until we see this pattern repeated in the same core or until a 210Pb analysis is

0 20 40 60 80 100

0-1

20-21

44-46

68-70

80-82

92-94

104-106

116-118

128-130132-134136-138

Operculodinium spp

Nematosphaeropsis rigida

Lingulodinium machaerophorum

Spiniferites spp

Polysphaeridium zoharyi

All others

Percent Cystsgram 0 100 200 300 400 500

Figure 7 Percent and absolute abundances of dinocysts for core 19A

Dep

th (

cm)

0 100 200 300 4000

20

40

60

80

100

120

140

Spiniferites

Cystsgram

Dep

th (

cm)

Polysphaeridium zoharyi

Figure 8 Absolute abundances of Polysphaeridium zoharyi and Spiniferites spp in core 19 A

000 200 400 600

Activity (dpmg)

Dep

th (c

m)

0

40

80

120

160

Figure 9 Pb210 activity in dpmg for core 19B

Activity (dpmg)

Dep

th (c

m)

000 100 200 300 400 500 600

0-2

6-8

12-14

18-20

24-26

30-32

36-38

42-44

48-50

54-56

60-62

66-68

72-74

78-80

84-86

90-92

96-98

102-104

108-110

114-116

120-122

126-128

132-134

138-140

144-146

150-152

156-158

Figure 10 210Pb activity in dpmg for core 19C

completed for core 19A we can not be certain of its significance because our assumption ofsimilar sedimentation rates for cores 19A and 19B may not be correct

Two peaks in dinocyst abundance (cystsgram) occur in the samples examined 118-104 cm(approximately 1898-1909) and 82-80 cm (approximately 1927-1929) These occur during aperiod of near normal marine (30 ppt) and stable salinity as indicated by the benthicforaminifera These periods may represent increased dinocyst production and decreased sedimentsupply but the composition of the dinocyst assemblages remains relatively stable throughout thecore

The pattern of increased salinity upcore documented here for Russell Banks 19B is consistentwith patterns seen in core T24 from the mouth of Taylor Creek in Little Madeira Bay (Ishman etal 1996) and in core 6A from Bob Allen mudbank (Wingard et al 1995) The correspondencebetween changes in salinity and onshore changes in vegetation is also consistent with resultsfrom the previous cores These patterns will continue to be investigated at additional sites inFlorida Bay and the terrestrial Everglades in order to establish the sequence and timing of eventsthroughout the ecosystem and to determine linkages between the marine and terrestrial systems

REFERENCES CITED

Benninghoff WS 1962 Calculation of pollen and spore density in sediments by addition of exotic pollen in known quantities Pollen et Spores v 4 p 332-333

Brewster-Wingard GL Ishman SE Edwards LE and Willard DA 1996 Preliminary report on the distribution of modern fauna and flora at selected sites in north-central and north-eastern Florida Bay US Geological Survey Open-File Report 96-732 34 p

Davis JC 1973 Statistics and Data Analysis in Geology New York John Wiley amp Sons 550 p

Ishman SE Brewster-Wingard GL Willard DA Cronin TM Edwards LE and Holmes CW 1996 Preliminary paleontologic report on core T-24 Little Madeira Bay Florida US Geological Survey Open-File Report 96-543 47 p

Maker LJ Jr 1981 Statistics for microfossil concentration measurements employing samples spiked with marker grains Review of Paleobotany and Palynology v 32 p153-191

Robbins JA Holmes CW Halley RB Bothner Michael Shinn EA Graney Joseph Keller Gerald tenBrinck Marilyn Rudnick David in press Time constraints characterizing predeposition integration of 137Ce and Pb fluxes to sediments in Florida Bay Geochemica et Cosmochemica

Stockmarr Jens 1971 Tablets with spores used in abolute pollen analysis Pollen et Spores v 8 p 615-621

Wall David Dale Barrie Lohmann GP and Smith WK 1977 The environmental and climatic distribution of dinoflagellate cysts in modern marine sediments from regions in the North and South Atlantic Oceans and Adjacent seas Marine Micropaleontology v 2 p 121-200

Wingard GL Ishman SE Cronin TM Edwards LE Willard DA and Halley RB 1995 Preliminary analysis of down-core biotic assemblages Bob Allen Keys Everglades National Park Florida Bay US Geological Survey Open-File Report 95-628 35 p

  • Title Page
  • Table of Contents
  • Abstract
  • Acknowledgements
  • Methods
  • Discussion of Fauna
  • Discussion of Flora
  • Age Model
  • Summary
  • References
Page 4: Preliminary Paleontologic Report on Cores 19A and 19B, from ...

the Everglades ecosystem over the last 150-200 years The distribution of fauna and flora in aseries of sediment cores taken throughout the Everglades ecosystem provides information on thebiological physical and chemical parameters of the system over time

Sediment cores were taken in February of 1995 by researchers from the US GeologicalSurvey (St Petersburg FL) in cooperation with South Florida Water Management District(SFWMD) and the Everglades National Park (ENP) for use by USGS investigators conductingresearch in Florida Bay Three cores were taken from the south side of Russell Bank (N 2503831rsquo W 80 37486rsquo) in north-central Florida Bay (Figure 1) Cores 19A and 19B arereplicate cores taken side by side from a grass bed in 051 m of water Core 19C was taken 54 mnorth of 19A and 19B from a mud flat on top of the south side of Russell Bank Core 19Apenetrated 140 cm of sediment spanning approximately 115 years and has been sampled for210Pb and palynologic analyses Core 19B penetrated 144 cm of sediment spanningapproximately 118 years and has been sampled for 210Pb and calcareous fossil analyses Core19C penetrated 158 cm of sediment and has been sampled for 210Pb analysis

This report is produced by the Ecosystem History of Florida Bay and the Southwest Coastcomponent of the US Geological Surveyrsquos Ecosystem Program and is one of a series of USGSOpen-File Reports on the distribution of biogenic components in sediments sampled from thesouthern Florida region The data presented in these reports can be used to estimate changes insalinity substrate and other critical components of the ecosystem over time

ACKNOWLEDGMENTS

We would like to thank Robert Halley and Gene Shinn US Geological Survey StPetersburg FL for collecting the cores and making them available to us for analysis We wouldlike to thank our colleagues at South Florida Water Management District National Oceanic andAtmospheric Administration and Everglades National Park for their cooperation and assistancein this investigation We have benefited from discussions with William Lyons Florida MarineResearch Institute St Petersburg FL and Thomas Scott Florida Geological SurveyTallahassee FL Our reviewers Thomas Cronin and John Sutter US Geological SurveyReston VA provided helpful comments and suggestions to improve this manuscript

Marci Marot US Geological Survey St Petersburg FL prepared the samples for isotopicand calcareous analysis Assistance in sample processing was provided by Jill DrsquoAmbrosio IanGraham Lisa Weimer Neil Waibel Patrick Buchanan Nancy Carlin and Steve Wandrei of theUS Geological Survey Reston VA Rob Stamm and Patrick Buchanan US GeologicalSurvey Reston VA assisted in the preparation of illustrations for this report and JillDrsquoAmbrosio assisted in compiling the final report

MODERN SAMPLING SITES

Seasonal collecting startingFebruary 1995Seasonal collecting startingFebruary 1996

Seasonal collecting startingFebruary 1997

8

1

3

4 59

11

12

1314

15

16

17 19

18

10 6

7

2

Florida Bay

Atlantic OceanC

AP

E S A B L E JOHN PENNEKAMP

CORAL REEF

STATE PARK

EVERGLADES NATIONALPARK

PARK BOUNDARY

1

1

0

0

1

1

5

5

10

10

Kilometers

Miles

WATER DEPTH

lt 3 ft

gt 3 ft

25

26

23

24

21

20

22

Figure 1 Location of Russell Bank (N25 03831 W80 37486) cores 19A 19B and 19C

Russell Bank Site

METHODS OF INVESTIGATION

Benthic Foraminifers and Molluscs

Sediment samples from core 19B were collected at 2 cm intervals and every other samplestarting with 0-2 cm and totaling 34 samples was analyzed for calcareous benthic fauna Thesamples were washed through a 63micro m sieve and dried at lt50 degrees C When possible a total of300 benthic foraminifer specimens were picked from the sample and mounted on griddedmicropaleontologic slides Large samples were put through a sample splitter to randomly reducethe number of specimens For samples containing fewer than 300 benthic foraminiferindividuals all of the specimens present were picked Molluscs were picked from the gt =850micro m size fraction All molluscs and fragments of molluscs recognizable to the generic levelpresent in each interval were picked Species abundances for the benthic fauna were standardizedby calculating relative abundances (percent)

Pollen and Dinocysts

Material for palynological analysis was extracted from 1-2 cm sections of core 19A For eachpalynological sample 7-40 g of material (dry weight) was treated in hydrochloric andhydrofluoric acids and processed for palynological studies All samples were treated with warmKOH for 2-5 minutes given ultrasonic pulse treatment for 5 seconds acetolysed and sievedbetween 8-200micro m mesh A tablet of Lycopodium marker grains was added to each sample Formost samples at least 300 pollen grains were counted for calculation of percent abundances andabsolute pollen concentration To calculate absolute concentration of palynomorphs the marker-grain method was used (Benninghoff 1962 Maker 1981 Stockmarr 1971) For two samplespollen was sparse enough that fewer than 300 grains were counted For nine samples one slidewas completely examined for dinocysts and all dinocyst taxa were tabulated For two samples (0-1 cm and 80-82 cm) two slides were examined completely for dinocysts

Isotopic Analyses

Samples were collected every 2 cm from cores 19B and 19C and analyzed for 210Pb Ra137Ce 7Be and total Pb Analysis of 210Pb has been completed for 19B and Ra and 210Pb havebeen completed for 19C For details of the method see Robbins et al (in press)

ANALYSIS AND DISCUSSION OF THE BENTHIC FAUNA IN CORE 19B

Benthic Foraminifers

A total of 31 benthic foraminiferal species were identified and counted The foraminiferal datawas standardized to relative abundance (percent of assemblage Table 1) and was used for allquantitative analyses Species diversity as measured by Simpsonrsquos Index ranged from 011 to026 and the number of species ranged from 12 to 19

The foraminiferal assemblages are dominated by calcareous benthic forms with thedominance patterns alternating between rotaliid taxa Ammonia parkinsoniana tepida Aparkinsoniana typica Elphidium galvestonense mexicanum E galvestonense typica and Epoeyanum and miliolid taxa Miliolinella cirlcularis M labiosa Quinqueloculina bosciana Qseminulum Q tenagos Q polygona Q poeyana and Triloculina tricarinata Other significantspecies include Archaias angulatus Peneroplis proteus Rosalina floridana and Quinqueloculinaagglutinans

Two dominant assemblages can be identified in the cores an Ammonia-Elphidium (A-E)assemblage and a miliolid assemblage Observations of the foraminiferal faunal changesthroughout core 19B show four intervals dominated by the miliolid assemblage (140 cm 118-90cm 70-42 cm and 18-0 cm) interrupted by three intervals of A-E assemblage dominance (140-118 cm 90-70 cm and 42-18 cm)

Molluscs

Twenty-six molluscan taxonomic categories were recognized and counted in the Russell Bank19B core The number of specimens per sample ranged from 2 to 517 so the faunal counts werestandardized to relative percent abundance (Table 2) The Simpsonrsquos Diversity Index wascalculated for each sample (Table 2) Three sections in the core contained few individualspecimens (lt40) and few molluscan taxonomic groups (1-9) 122-112cm 62-52cm 38-28cmTwo species Brachiodontes sp and Transennella sp make up greater than 50 percent of themolluscan fauna in the entire core

A cluster analysis of Pearsons Correlation coefficient values calculated for the molluscanpercent abundance data and plotted using average linkage method (Figure 2) revealed 3 primarydivisions of the molluscan assemblages within the core 142-68 cm 68-22 cm and 22-0 cm Theinterval from 142-68 cm is dominated by Transennella sp Brachiodontes sp and Cerithiumspp Bittium varium Rissoina spp and Chione cancellata also are present in significantamounts (5) throughout the interval The interval from 66-22 cm has the lowest within-groupsimilarity of the three molluscan assemblages in the core and is represented by 2 clusters in theanlaysis This interval from 66-22 cm contains 2 zones of very low molluscan abundance (62-52cm and 38-28 cm) Brachiodontes sp and Cerithium spp dominate the 66-22 cm interval with anumber of other species present in significant amounts (10) in individual samples (see Table

Table 1Russell Bank 19B

Percent Abundance of Benthic Foraminifera

Depth in Core Am

mon

ia p

arki

nson

iana

tepi

da

Am

mon

ia p

arki

nson

iana

typi

ca

Arc

haia

s an

gula

tus

Bol

ivin

a lo

wm

ani

Bol

ivin

a ps

eudo

plic

ata

Cla

vulin

a tri

carin

ata

Cyc

logy

ra p

lano

rbis

Elp

hidi

um d

elic

atul

um

Elp

hidi

um g

alve

ston

ense

typi

cum

Elp

hidi

um g

alve

ston

ense

mex

ican

um

Elp

hidi

um p

oeya

num

Gra

ss d

wel

ler

Mili

olin

ella

circ

ular

is

Mili

olin

ella

fich

telia

na

Mili

olin

ella

labi

osa

Nod

osar

iidae

Pen

erop

lis p

rote

us

Qui

nque

locu

lina

aggl

utin

ans

Qui

nque

locu

lina

bosc

iana

0-2 cm 000 107 000 000 000 000 000 000 1123 107 000 080 1203 000 000 000 027 000 17914-6 cm 000 098 164 000 000 000 000 000 918 328 000 033 787 000 000 000 000 066 1443

8-10 cm 000 523 000 000 000 000 000 000 1463 418 000 070 592 000 000 000 070 000 167212-14 cm 000 642 520 000 000 000 000 000 887 1376 000 000 673 000 031 000 092 061 76516-18 cm 000 761 543 000 000 000 000 000 2174 1957 000 000 543 000 000 000 000 326 54324-26 cm 000 888 164 000 000 000 000 000 559 1086 000 066 329 033 000 000 066 395 217128-30 cm 000 1738 066 000 000 000 000 000 1770 2787 000 033 492 000 000 033 033 000 45932-34 cm 000 1294 129 000 000 000 000 000 1974 1909 000 000 388 000 000 000 000 000 301036-38 cm 000 2347 144 000 000 000 072 000 1011 1227 000 072 217 072 000 000 000 072 245540-42 cm 000 556 065 000 000 000 065 000 1242 000 000 196 752 000 000 000 000 033 356244-46 cm 000 525 031 000 000 000 093 000 1265 556 000 154 741 000 000 000 000 185 256248-50 cm 000 994 000 000 029 000 029 000 000 3129 000 175 292 000 000 000 000 029 242752-54 cm 000 664 000 035 000 000 140 000 1364 699 000 385 699 000 000 000 000 000 255256-58 cm 000 281 112 000 000 000 056 000 1180 534 000 871 927 000 000 000 000 056 238860-62 cm 000 975 144 000 000 000 036 000 903 1733 000 325 722 000 000 000 000 072 227464-66 cm 000 767 184 000 000 031 061 000 706 1626 000 276 736 000 000 000 061 123 144268-70 cm 000 1536 031 000 000 063 000 000 972 3103 000 063 1348 000 000 000 000 000 43972-74 cm 000 1691 344 000 000 000 000 000 1261 2436 000 086 802 000 000 000 000 115 86076-78 cm 000 1467 367 000 000 000 000 000 900 3767 000 000 500 000 067 000 000 000 26780-82 cm 000 1921 213 000 000 000 000 000 793 3994 000 000 213 000 000 000 000 122 03084-86 cm 000 2097 032 000 000 000 000 000 806 3419 1129 000 226 000 000 000 000 000 16188-90 cm 000 1864 034 000 000 000 000 000 000 3932 1153 000 237 000 000 000 034 034 10292-94 cm 000 329 033 000 000 000 000 000 757 1217 2303 000 921 000 000 000 000 033 78996-98 cm 000 538 028 000 000 000 000 2720 652 1133 000 000 737 000 000 000 000 000 1416

100-102 cm 000 1148 033 000 000 000 000 2230 000 2590 000 000 590 000 000 000 000 000 295104-106 cm 000 635 159 000 000 000 000 2032 317 1333 000 000 794 000 000 000 063 127 1556108-110 cm 000 1655 338 000 000 000 000 439 270 2601 000 000 1250 068 000 000 000 338 000112-114 cm 080 479 133 000 000 000 000 000 1729 1064 000 000 1596 027 000 000 053 133 1941116-118 cm 000 1181 139 000 000 000 000 000 2847 2014 000 000 972 000 000 000 000 000 243120-122 cm 000 1761 066 000 000 000 000 000 2093 2292 000 000 532 000 000 000 000 066 000124-126 cm 000 3142 453 000 000 060 000 121 000 4350 000 000 242 000 000 000 000 242 000128-130 cm 000 2786 352 000 000 000 000 528 000 4164 000 000 587 000 000 000 000 411 029132-134 cm 000 1705 129 000 000 000 000 904 233 3178 000 000 956 000 000 000 000 052 310136-138 cm 000 843 421 000 000 000 000 899 393 1236 000 000 2444 000 028 000 084 197 449140-142 cm 000 2032 581 000 000 000 000 000 645 3903 000 000 645 000 000 000 000 290 000

Table 1Russell Bank 19B

Percent Abundance of Benthic Foraminifera

Depth in Core

0-2 cm 4-6 cm

8-10 cm 12-14 cm 16-18 cm 24-26 cm 28-30 cm 32-34 cm 36-38 cm 40-42 cm 44-46 cm 48-50 cm 52-54 cm 56-58 cm 60-62 cm 64-66 cm 68-70 cm 72-74 cm 76-78 cm 80-82 cm 84-86 cm 88-90 cm 92-94 cm 96-98 cm

100-102 cm 104-106 cm 108-110 cm 112-114 cm 116-118 cm 120-122 cm 124-126 cm 128-130 cm 132-134 cm 136-138 cm 140-142 cm

Qui

nque

locu

lina

sem

inul

um

Qui

nque

locu

lina

tena

gos

Qui

nque

locu

lina

poly

gona

Qui

nque

locu

lina

poey

ana

Ros

alin

a flo

ridan

a

Ros

alin

a gl

obul

aris

Spi

rolo

culin

a an

tilla

rium

Trilo

culin

a lin

eian

a

Trilo

culin

a ro

tund

a

Trilo

culin

a tri

locu

lina

Val

vulin

a s

p

Val

vulin

eria

laev

igat

a

Num

ber o

f Spe

cies

Sim

pson

s D

iver

sity

Inde

x

1337 107 481 3235 214 000 027 000 000 160 000 000 14 019525 000 1279 3934 066 000 098 000 000 262 000 000 14 021732 279 244 3275 035 000 000 000 000 627 000 000 13 018367 153 214 2875 092 000 000 000 031 1009 000 214 17 014217 000 652 1413 000 000 109 000 000 761 000 000 12 013230 954 691 1480 099 000 000 000 493 164 000 132 18 011885 000 393 1082 230 000 000 000 000 000 000 000 13 017000 000 647 583 065 000 000 000 000 000 000 000 9 019072 289 217 1372 000 000 000 000 217 108 036 000 17 016

1046 163 163 1993 065 000 000 000 065 000 000 033 15 020648 340 370 2377 154 000 000 000 000 000 000 000 14 016322 175 117 1637 205 000 000 000 205 234 000 000 15 020245 140 000 2797 140 000 000 000 000 140 000 000 13 018365 000 169 2669 056 000 000 000 000 337 000 000 14 016

1011 181 397 1227 000 000 000 000 000 000 000 000 13 013521 215 706 1933 245 000 000 000 123 215 000 031 19 011878 000 000 1317 219 000 000 000 000 031 000 000 12 018201 086 401 1146 115 000 000 000 000 401 000 057 15 014667 000 467 1100 133 000 000 000 000 267 000 033 13 020549 000 671 732 000 000 000 000 213 488 000 061 13 022290 000 032 1516 000 000 000 000 097 194 000 000 12 021881 000 508 780 000 000 000 000 136 271 000 034 14 022

1908 099 296 1184 132 000 000 000 000 000 000 000 13 014878 000 227 1020 170 000 142 000 340 000 000 000 13 014

1541 000 426 787 033 000 066 000 197 066 000 000 13 0171238 000 222 1397 095 032 000 000 000 000 000 000 14 0131014 034 574 777 000 000 000 000 236 338 000 068 15 014

984 000 293 1011 213 000 000 000 133 080 000 053 17 0131632 104 208 486 035 000 000 000 035 104 000 000 13 0182093 000 166 565 100 000 000 000 033 100 133 000 13 018

000 272 242 393 000 000 000 030 091 363 000 000 13 030000 029 235 323 029 000 000 000 059 411 000 059 14 026

1111 000 207 620 052 000 000 000 336 207 000 000 14 017983 140 253 955 169 000 000 000 112 253 000 140 18 012258 032 419 548 000 000 065 000 065 258 000 258 14 021

Table 2Russell Bank 19B

Percent Abundance of Molluscan Fauna

Depth in Core G

astro

pods

Act

eoci

na c

anal

icul

ata

Am

aea

spp

Bitt

ium

var

ium

Bul

la s

p

Cae

cum

pu

chel

lum

flor

idan

um

Cer

ithid

ea s

pp

Cer

ithiu

m s

pp

Con

us s

p

Cre

pidu

la s

p

Mar

gine

llids

Mod

ulus

mod

ulus

Oliv

ella

sp

Ris

soin

a s

pp

Turr

itella

exo

leta

Vitr

inel

lids

Rar

e G

astro

pods

Uni

dent

ified

gas

tropo

d fra

gmen

ts u

nkno

wn

sp

and

juve

nile

s

0-2 cm 000 000 128 000 147 000 568 000 073 092 183 000 220 000 037 037 0554-6 cm 000 000 347 000 087 000 723 000 116 116 347 000 145 000 116 116 260

8-10 cm 000 000 172 000 000 000 259 000 000 086 517 000 345 000 345 086 34512-14 cm 000 000 244 000 244 000 488 000 000 061 244 244 488 244 000 061 36616-18 cm 000 000 244 000 000 000 610 000 122 000 122 122 854 000 000 122 36620-22 cm 000 000 270 135 135 000 270 000 135 000 000 000 135 000 000 135 27024-26 cm 172 000 345 000 345 172 1552 000 690 000 000 172 172 000 000 000 17228-30 cm 000 000 000 000 000 000 000 000 000 000 000 000 000 000 000 000 00032-34 cm 000 000 714 714 000 000 2143 000 000 000 714 000 714 000 000 000 00036-38 cm 000 000 2143 000 000 000 3571 357 000 000 357 1071 000 000 000 000 107140-42 cm 000 000 1237 515 000 000 1856 000 309 000 103 206 412 000 000 103 41244-46 cm 000 000 215 000 000 000 860 000 000 000 645 108 968 000 108 000 43048-50 cm 000 000 1111 000 000 000 1852 000 000 000 556 000 741 000 000 000 74152-54 cm 000 000 000 000 000 000 811 000 000 000 4324 000 270 000 000 000 54156-58 cm 000 000 000 000 1000 000 4000 000 4000 000 000 000 000 000 000 000 00060-62 cm 000 000 313 000 000 000 000 625 000 000 000 000 625 000 000 313 187564-66 cm 000 000 800 200 100 000 1400 000 300 100 200 000 300 000 000 000 40068-70 cm 000 000 1569 000 196 000 1765 000 392 196 196 000 980 000 000 392 58872-74 cm 000 000 1918 000 137 000 1918 000 685 000 137 000 000 000 000 000 54876-78 cm 000 000 562 000 000 000 1124 000 000 562 337 225 562 112 000 000 168580-82 cm 000 000 414 000 000 000 552 000 000 138 069 138 000 138 000 000 96684-86 cm 000 000 933 000 400 000 1333 267 133 000 267 267 533 000 000 000 133388-90 cm 000 000 219 000 000 000 1606 000 000 000 000 292 803 219 000 146 153392-94 cm 000 000 432 000 144 000 1007 000 000 000 072 288 504 144 000 000 93596-98 cm 303 000 152 000 152 000 1364 000 152 000 000 152 758 152 000 303 152

100-102 cm 000 000 000 000 138 000 483 000 000 069 000 207 345 000 000 000 483104-106 cm 000 067 738 000 067 134 1611 067 000 134 000 134 470 067 000 134 470108-110 cm 000 238 714 000 000 000 952 000 000 079 000 397 1190 079 000 159 1825112-114 cm 286 000 857 000 000 000 1714 000 286 000 286 000 000 000 000 000 1143116-118 cm 000 000 000 000 000 000 000 000 000 000 000 000 000 000 000 000 2000120-122 cm 000 000 345 000 345 000 690 000 000 000 000 345 690 1034 000 000 345124-126 cm 075 000 970 000 000 149 1343 000 075 000 821 224 373 149 149 149 224128-130 cm 000 143 257 000 086 000 857 000 114 086 086 000 286 029 000 029 571132-134 cm 000 000 723 000 000 000 1205 000 000 000 000 120 482 602 000 000 1084136-138 cm 051 051 769 051 103 103 615 000 000 103 000 103 000 256 103 256 410140-142 cm 055 000 656 000 000 000 710 055 109 000 000 383 601 109 000 000 874

Table 2Russell Bank 19B

Percent Abundance of Molluscan Fauna

Depth in Core0-2 cm 4-6 cm

8-10 cm 12-14 cm 16-18 cm 20-22 cm 24-26 cm 28-30 cm 32-34 cm 36-38 cm 40-42 cm 44-46 cm 48-50 cm 52-54 cm 56-58 cm 60-62 cm 64-66 cm 68-70 cm 72-74 cm 76-78 cm 80-82 cm 84-86 cm 88-90 cm 92-94 cm 96-98 cm

100-102 cm 104-106 cm 108-110 cm 112-114 cm 116-118 cm 120-122 cm 124-126 cm 128-130 cm 132-134 cm 136-138 cm 140-142 cm

Pel

ecyp

ods

Ano

mal

ocar

dia

sp

Arc

opsi

s ad

amsi

Bra

chio

dont

es s

p

Chi

one

canc

ella

ta

Cum

ingi

a te

llino

idea

Laev

ecar

dium

spp

Nuc

ula

prox

ima

Pec

tinid

Pin

ctad

a ra

diat

a

Telli

na s

pp

Tran

senn

ella

spp

Rar

e P

elec

ypod

s

Uni

dent

ified

Pel

ecy

Fr

ags

Tota

l num

ber o

f in

divi

dual

spe

cim

ens

Num

ber o

f fau

nal g

roup

s

Sim

pson

s D

iver

sity

Inde

x

000 018 7033 073 055 000 000 000 1264 000 000 018 000 517 16 052000 116 6416 087 000 000 000 000 954 000 000 029 029 331 16 043000 000 7328 086 000 000 000 000 259 000 000 000 172 49 12 055000 183 5732 244 061 000 000 000 1037 000 000 000 061 145 16 035000 000 5732 366 122 000 000 000 244 000 732 000 244 62 14 035000 000 7703 000 000 000 000 000 000 000 270 000 541 62 11 060000 000 2414 345 000 172 000 000 172 172 1724 000 1207 50 16 014000 000 000 000 000 000 000 000 000 000 5000 000 5000 2 2 050000 000 1429 1429 000 000 000 000 000 000 2143 000 000 12 8 015000 000 1429 000 000 000 000 000 000 000 000 000 000 28 7 022000 103 4124 309 000 000 000 103 206 000 000 000 000 97 14 023000 430 968 4624 108 000 000 000 000 108 000 000 430 93 13 025000 926 926 370 926 000 000 185 926 370 000 000 370 54 13 010000 000 2703 000 270 000 000 000 811 000 000 000 270 37 8 028000 000 000 000 000 000 000 000 000 000 000 000 1000 10 4 034000 000 5000 000 000 313 000 000 313 000 000 000 625 32 9 030000 000 2900 100 000 100 000 1000 900 200 300 100 600 100 18 014000 000 588 588 196 000 000 196 000 000 980 000 1176 51 15 010000 000 1918 548 000 000 274 000 000 000 1918 000 000 73 10 016000 112 1910 000 000 000 000 000 337 000 787 000 1685 89 13 012000 207 2690 897 000 000 000 000 138 000 2414 345 897 145 14 016000 000 800 933 000 000 000 000 267 000 1200 000 1333 75 14 010438 000 438 657 073 000 000 000 000 073 2847 000 657 137 14 015216 288 719 647 000 072 000 000 504 000 2734 000 1295 139 16 013152 000 606 455 000 152 000 000 000 000 4545 000 455 66 16 024000 000 1241 483 000 000 000 000 000 000 4897 000 1655 145 10 029671 000 067 134 000 000 000 000 067 000 3624 000 1342 149 18 019000 000 714 238 000 079 159 000 159 000 2302 000 714 126 16 013000 000 000 571 000 000 000 000 000 000 3714 000 1143 35 9 021000 000 000 000 000 000 000 000 000 000 6000 000 2000 5 3 044000 000 2759 000 000 000 000 000 000 000 2069 000 1379 29 10 016373 000 821 672 075 075 000 000 224 000 2463 000 597 134 20 012000 029 857 314 057 000 000 000 200 000 5429 029 543 350 19 032000 000 602 964 241 000 120 000 241 000 2048 000 1566 83 13 012000 103 923 923 000 256 205 000 308 103 3179 000 1026 195 22 014000 109 1967 656 109 000 055 000 273 000 3115 000 164 183 17 016

0-2

4-6

12-14

16-18

20-22

36-38

56-58

116-118

100-102

128-130

96-98

88-90

92-94

112-114

104-106

124-126

136-138

140-142

108-110

132-134

84-86

76-78

120-122

80-82

72-74

68-70

48-50

64-66

24-26

32-34

40-42

60-62

52-54

44-46

28-30

8-10

00 01 02 03 04 05 080706

Figure 2 Q-mode cluster diagram of molluscan assemblages from core 19B Distancesare expressed as Pearsons Correlation coefficient values calculated on the molluscanpercent abundance data (see Table 2) and plotted using average linkage methodShaded areas represent clusters formed by samples from the upper portion of the core(0-22 cm) and the lower portion of the core (68-142 cm)

Sam

ple

(iden

tifie

d by

dep

th in

cm

)

2) The cluster containing samples from the interval from 22-0 cm has high Pearsons Correlationcoefficient values for within-group similarity and the largest between-group distances (seeFigure 2) This upper portion of the core is dominated by Brachiodontes sp which comprisesgreater than 50 of the molluscan assemblage in each sample from this section Pinctadaradiata and Cerithium spp are present in significant amounts (5) in some samples from 22-0cm

Benthic Faunal Patterns

Comparison of the benthic fauna present in core 19B with our modern data set enables us tointerpret the salinity history for the Russell Banks site The foraminiferal and molluscan recordsfrom core 19B show distinct oscillations in salinity with a gradual increase in salinity toward thetop of the core (Figure 3) In addition a positive correlation (ρ =052) exists between increasingSimpson diversity indices and decreasing salinity for the benthic foraminfera

The two dominant foraminiferal assemblages Ammonia-Elphidium and miliolid are verysimilar to the Ammonia-Elphidium and Archaias-miliolid assemblages described from modernFlorida Bay sediments (Brewster-Wingard et al 1996) The distribution of modern benthicforaminifers in Florida Bay shows a strong association between the occurrence of Aparkinsoniana and E galvestonense mexicanum and typica with salinities less than 25 ppt(Brewster-Wingard et al 1996) Conversely miliolids dominate where salinities are near normalmarine values (30 ppt) The intervals dominated by the miliolid assemblage (140 cm 118-90 cm70-42 cm and 18-0 cm) therefore indicate more stable and relatively higher average salinity (32-35 ppt) These segments are interrupted by three periods of A-E assemblage dominance (140-118cm 90-70 cm and 42-18 cm) indicating unstable and relatively low average salinity (lt32 ppt)

Molluscs are not as sensitive to variations in salinity as benthic foraminifers consequently themolluscan data do not show the degree of fluctuation seen in the foraminiferal data (Figure 3)The general trend of increasing percent abundance of euhaline and euhaline-polyhaline molluscsupcore does follow the general trend of the foraminiferal plot showing a gradual increase insalinity upcore No molluscan faunas restricted to terrestrial fresh water marsh or upperestuarine environments are present in core 19B indicating this area has been relatively open bayover the last century and the salinity has probably not dropped below 12-15 ppt

Both the benthic foraminiferal assemblages and the molluscan assemblages show significantchanges between 70-66 cm and between 24-18 cm These zones correspond to shifts from A-Edominated assemblages to miliolid dominated assemblages but the molluscs do not seem torespond significantly to the decreases in salinity that mark the shift from miliolid assemblagesback to A-E assemblages Almost all of the molluscs present in this core can be classified aspolyhaline and are tolerant of a wide range of salinities (from approximately 12 or 15 ppt to 30-35 ppt) which could explain the patterns seen for the molluscs If however the salinity haddropped below ~15ppt during the periods of A-E dominance then the molluscs would mostlikely have shown a response The areas of A-E dominance in the core represent salinities of 15-25 ppt with the lower number delineated by the absence of species of molluscs found in lowsalinity waters of Florida Bay and the upper number constrained by the presence of low salinitybenthic foraminifera The miliolid dominated zones represent salinities of 30 ppt or higher

Figure 3 Plot of percent abundance of benthic foraminifers molluscs and the two datasets combined that indicate increasing salinity for core 19B The benthic foraminifersindicate salinity gt 30 ppt The mollusc species have wider salinity tolerances thespecies illustrated on this plot are classified as euhaline or euhalinepolyhaline andrepresent salinities of 20-25 ppt or greater The positions of the benthic foraminiferalassemblages (Milliolid-gray Ammonia-Elphidium-white) discussed in the text are shownon the right of the plot

ForaminifersMolluscsCombined

900080007000600050004000300020001000000

0-2

8-10

16-18

24-26

32-34

40-42

48-50

56-58

64-66

72-74

80-82

88-90

96-98

104-106

112-114

120-122

128-130

136-138

140-142

abundance

Dep

th in

Cen

timet

ers

Miliolid Assemblage

Miliolid Assemblageat 140-142 cm

Miliolid Assemblage

Miliolid Assemblage

Ammonia- ElphidiumAssemblage

Ammonia- ElphidiumAssemblage

Ammonia- ElphidiumAssemblage

1981

1962

1939

1922

1898

1878

Hard Surface

Coarse Sediment or Sponges

Coarse Sediment

Coarse or Fine Sediment

Fine Sediment

Grass Beds or Sediment

Grass Beds or Coarse Sediment

Grass and Algae Beds

Grass Beds

Pecent AbundanceD

epth

in C

ore

(cm

)

0 10 20 30 40 50 60 70 80 90 1000-2

8-10

16-18

24-26

32-34

40-42

48-50

56-58

64-66

72-74

80-82

88-90

96-98

104-106

112-114

120-122

128-130

136-138

Figure 4 Area diagram of percent abundance of molluscs indicative of specific substrate types for core 19B Data plotted at the 116 cm and 28 cm depths represent averages of the overlying and underlying samples these two samples did not contain enough individual specimens to be statistically valid

The suite of molluscs present in core 19B is more indicative of changes in substrate thanchanges in salinity Figure 4 illustrates the substrate patterns within the core based on thepercent abundance of molluscs known to prefer those substrate types The lowest portion of thecore from 142-110 cm has significant numbers of both sediment dwellers and grass dwellerspresent with dominance of either group fluctuating From 106-88 cm sediment dwellersdominate although grass dwellers are still present in significant numbers The segment from 88-22 cm is dominated by grass dwellers above 68 cm the presence of species indicative of asediment substrate is negligible The uppermost portion of the core from 22 cm to the top isdominated by species that could live on either algae or grass

The shifts in abundance of molluscan substrate indicators at 88 cm 68 cm and 22 cmcorrespond to changes seen in the benthic foraminiferal salinity indicators but at this point thesignificance of this relationship is not understood However since the benthic foraminifers usedfor salinity indicators are not sensitive to changes in substrate we believe the changingforaminiferal patterns reflect changing salinity

ANALYSIS AND DISCUSSION OF THE FLORA IN CORE 19A

Pollen

The percent abundance data on pollen is presented in Table 3 Three pollen zones aredistinguishable based on both percent abundance and absolute pollen concentration (pollengrainsgram dry sediment) The bottom zone (140-80 cm) is characterized by the highestpercentages of Pinus (pine) pollen (80-90) and the lowest percentages of Quercus (oak)(lt6) and pollen of the ChenopodiaceaeAmaranthaceae (pigweed family) and Asteraceae(aster family) (Figure 5) No pollen of the Cyperaceae (sawgrass family) is present in this zoneTotal pollen concentration in this zone and the middle zone ranges from about 500-1200grainsgram and the concentration of Quercus pollen is lower than the other zones with lt50grainsgram (Figure 6)

The middle zone (80-32 cm) is characterized by lower percentages of Pinus pollen (54-73)higher percentages of Quercus (6-10) and higher concentrations of Quercus pollen (50-100grainsgram) In both this and the upper zone pollen of the ChenopodiaceaeAmaranthaceae andAsteraceae are more abundant comprising 3 and 2 of the assemblages respectively Pollenof the Cyperaceae is present in low percentages in this and the upper zone

The upper zone has the highest pollen concentrations of the core with most samples rangingfrom 1200-4600 grainsgram Several taxa contribute to these higher values including PinusQuercus Myrica (wax myrtle) ChenopodiaceaeAmaranthaceae and Asteraceae Cephalanthus(buttonbush) is present in low abundances (lt1) in this zone and Liquidambar (sweet gum) isabsent from this zone

Table 3Russell Bank 19A

Percent Abundance of Pollen

Depth in core Aln

us

Api

acea

e

Ast

erac

eae

Avi

cenn

ia

Bet

ula

Bum

elia

Bur

sera

sim

arub

a

Car

ya

Cas

uarin

a

Cel

tis

Cep

hala

nthu

s

Che

nopo

diac

eae

A

mar

anth

acea

e

Con

ocar

pus

Cyp

erac

eae

Dec

odon

Eric

acea

e

Eup

horb

iace

ae

Faba

ceae

Frax

inus

Ilex

Jugl

ans

0-1 cm 000 000 255 000 000 000 000 000 482 000 028 425 000 000 000 000 000 142 000 000 000 4-5 cm 057 000 201 000 000 000 000 029 115 000 029 287 029 115 000 000 029 057 000 029 029 8-9 cm 032 000 322 000 000 000 000 000 129 000 032 096 000 064 000 000 000 032 000 000 000

20-21 cm 000 000 409 031 000 000 000 000 314 000 063 597 000 000 000 000 000 220 000 000 00032-34 cm 030 000 332 000 030 030 000 000 211 000 000 332 030 030 000 000 000 121 000 030 03044-46 cm 080 000 777 000 000 000 000 027 214 000 000 429 000 080 000 000 027 107 000 054 00056-58 cm 031 000 439 000 000 000 000 031 157 000 000 690 000 063 000 063 000 094 031 000 00068-70 cm 168 000 251 000 028 000 028 084 056 000 000 307 000 056 000 000 000 084 000 000 00080-82 cm 000 000 238 000 000 000 000 000 000 000 000 476 000 000 000 000 000 000 000 000 00092-94 cm 054 000 054 000 000 027 000 082 027 000 000 054 000 000 000 000 000 082 027 000 000

104-106 cm 000 029 115 000 000 000 000 000 000 000 000 230 000 000 057 000 000 115 000 000 000116-118 cm 062 000 062 000 000 000 000 000 000 031 000 185 031 000 000 000 000 062 000 000 000128-130 cm 000 000 061 000 000 000 000 030 000 000 000 091 000 000 000 030 000 061 000 000 000136-138 cm 060 000 060 030 000 030 060 181 000 000 000 091 000 000 000 000 000 000 000 000 000138-140 cm 000 000 000 000 000 000 000 081 000 000 000 244 000 000 000 000 000 000 000 000 000

Table 3Russell Bank 19A

Percent Abundance of Pollen

Depth in core0-1 cm

4-5 cm 8-9 cm

20-21 cm 32-34 cm 44-46 cm 56-58 cm 68-70 cm 80-82 cm 92-94 cm

104-106 cm 116-118 cm 128-130 cm 136-138 cm 138-140 cm

Liqu

idam

bar

Mag

nolia

Myr

ica

Nys

sa

Ost

rya

Car

pinu

s

Pin

us

Pla

nera

Poa

ceae

Que

rcus

Rhi

zoph

ora

Rut

acea

e

Sag

ittar

ia

Sal

ix

Taxo

diac

eae

C

upre

ssac

eae

Tax

acea

e

Typh

a

Ulm

us

Tota

l Pol

len

Cou

nted

000 000 283 000 028 6856 000 028 1076 028 000 028 000 000 000 057 353000 000 086 000 000 6905 000 029 1375 029 000 029 000 000 000 000 349000 000 225 000 000 7395 000 032 932 096 032 032 032 000 096 032 321000 000 1069 000 063 5660 000 031 1101 000 000 000 000 000 031 000 321030 000 846 000 000 6737 000 030 634 000 000 000 030 030 030 000 332107 000 429 027 000 5416 000 107 1046 027 000 000 027 027 054 054 378000 031 376 000 000 6395 000 031 690 094 000 031 031 031 063 031 320028 028 447 000 000 7346 000 000 615 028 000 000 028 000 112 028 358119 000 357 000 000 7976 000 000 595 000 000 000 000 000 000 000 85082 000 408 000 000 8696 000 000 245 027 000 000 000 027 000 000 371029 000 747 000 000 8017 000 029 316 057 000 000 000 029 029 000 350000 000 338 000 000 8923 000 031 123 031 000 000 031 000 031 000 326030 000 396 000 000 8628 000 030 457 000 000 000 030 000 000 000 331030 000 242 000 000 8792 030 000 181 000 000 000 000 000 030 000 332081 000 163 000 000 8862 000 000 569 000 000 000 000 000 000 000 123

0 10 20 30 40 50 60 70 80

10

20

30

40

50

60

70

80

90

100

110

120

130

Depthcm Pinu

sQue

rcus

Casua

rina

Rhizop

hora

Myrica

Cepha

lanthu

s

Cheno

podia

ceae

Amara

nthac

eae

Poace

ae

Cypera

ceae

Asterac

eae

10

20

30

40

50

60

70

80

90

100

110

120

130

0 10 0 0 0 10 0 0 0 0 05 5 5 5 5 5 5 55

(Pine

)(O

ak)

(Aus

tralia

n Pine

)

(Red

Man

grove

)

(Wax

Myrt

le)

(Pig

Wee

d)

(Gras

s Fam

ily)

(Saw

grass

Family

)

(Aste

r Fam

ily)

(Butt

on B

ush)

Figure 5 Percent abundance of selected pollen groups for core Russell Bank 19A (note different scales)

0 50 100 150 200 250 300 350 400

Querc

us

0 50

Casua

rina

0 50 100 150 200 250 300

Myr

ica

0 50 100 150

Cheno

pods

0

Cyper

acea

e

0 50 100

Astera

ceae

10

20

30

40

50

60

70

80

90

100

110

120

130

Depthcm Pinu

s

0 1000 2000 3000

Total

Pollen

Con

cent

ratio

n

10

20

30

40

50

60

70

80

90

100

110

120

130

0 1000 2000 3000 4000

Figure 6 Total concentration of pollen (grainsgram) for core Russell Bank 19A (note different scales)

Dinocysts

Dinocyst recovery in all samples was low Most microscope slides are heavily dominated byorganic debris and the maximum number of specimens observed in any sample was 214Absolute abundance ranges from 779 to 4736 cystsgram These values are one to two orders ofmagnitude below those reported by Wall et al (1977) for samples from the Middle AtlanticBight and western South Africa and are consistent with high sedimentation rates These absoluteabundances in the sediments are far below bloom concentrations in which the number of livingcells per ml of water may exceed 50 million

The dinocyst assemblages in the Russell Bank 19A core consist of less than 10 taxa (Table 4)Various species of the genus Spiniferites Mantell dominate all samples (61 to 79 percent) Due topoor preservation and taxonomic difficulties the individual species of this genus were notdifferentiated S mirabilis (Rossignol) Sarjeant S ramosus (Ehrenberg) Mantell S scabratus(Wall) Sarjeant and other forms are present Operculodinium Wall spp (O israelianum(Rossignol) Wall or Operculodinium species undifferentiated) are present in all samples inamounts of 5 to 19 percent Polysphaeridium zoharyi (Rossignol) Bujak et al is present in allsamples and comprises up to 16 percent of the assemblages Most samples included low numbersof Lingulodinium machaerophorum (Deflandre amp Cookson) Wall Nematosphaeropsis rigidaWrenn and (or) Tectatodinium pellitum Wall Only two samples contained a single specimeneach of the family Congruentidiaceae

Most samples from Russell Bank core 19A are quite similar to one another (Figure 7)Throughout the core the dinocyst Polysphaeridium zoharyi ranges in abundance from 0-16percent which is considerably lower than in the Bob Allen 6A (Wingard et al 1995) and LittleMadeira Bay T24 (Ishman et al 1996) cores With one exception (80-82 cm) increased absoluteabundance of Spiniferites spp is accompanied by increased absolute abundance of P zoharyi(Figure 8) This relationship suggests that absolute abundances in this core are a function ofsediment supply rather than cyst production The sample at 80-82 cm is anomalous the highabsolute abundance of cysts is attributable to Spiniferites spp and fewer than 30 total cysts werefound on each slide This sample may represent a case of an increase in Spiniferites cystproduction and an increase in the amount of organic debris in proportion to sediment supply Thelowest samples (132-134 cm and 136-138 cm) show both low absolute abundances of all cysttypes and low percentages of P zoharyi

Floral Patterns

Changes occur in the pollen and dinocyst assemblages in core 19A but the significance ofthese changes is unclear Three zones are distinguishable for the pollen but the differencesamong them are very subtle and any interpretation of patterns of vegetational change would bepremature However it is apparent that the vegetation changed in response to someenvironmental factor at those times correlation with on-shore cores would be necessary toestablish the nature of the changes Dinocyst abundance fluctuates in the core with two peaks at118-104 cm and 82-80 cm but the assemblages are relatively stable throughout the core

Table 4 Dinocyst data from Russell Bank 19A

Pol

ysph

aerid

ium

zoh

aryi

Spi

nife

rites

spp

Ope

rcul

odin

ium

spp

Nem

atos

phae

rops

is ri

gida

Ling

ulod

iniu

m m

acha

erop

horu

m

Tect

atod

iniu

m p

ellit

um

Tube

rcul

odin

ium

van

cam

poae

Con

grue

ntid

iace

ae

Oth

er

TOTA

L D

INO

CY

STS

CO

UN

TED

Depth (cm)

Wt (g) Cystsg

Slides examined

0-1 74 779 2 129 742 97 00 32 00 00 00 00 3120-21 115 1363 1 123 630 74 49 49 62 00 12 00 8144-46 363 921 1 24 750 95 36 48 12 00 00 36 8468-70 358 1454 1 114 705 95 10 38 29 00 10 00 10580-82 337 3732 2 19 811 132 00 38 00 00 00 00 5392-94 385 2049 1 84 720 119 49 28 00 00 00 00 143

104-106 331 4736 1 128 636 133 77 10 05 00 00 10 195116-118 350 3451 1 141 676 106 07 63 07 00 00 00 142128-130 390 1854 1 121 612 178 51 28 05 05 00 00 214132-134 321 1288 1 34 754 127 68 17 00 00 00 00 118136-138 371 2028 1 66 747 110 55 11 11 00 00 00 91

Species

Percent abundance

Comparison of these data to additional terrestrial and marine cores may lead to a betterunderstanding of the patterns seen here

210PB AGE MODEL FOR THE RUSSELL BANKS SITE

The activity of 210Pb (dpmgram) is shown for 19B and 19C in Figures 9 and 10 Thesedimentation rate for the Russell Bank site is based on the results from 19C because both 210Pband Ra analyses have been completed for that core the rate equals 122 cmyear +- 005The 210Pb curves for cores 19B and 19C are almost identical therefore we make the assumptionthat the rate of sediment accumulation is the same in the two cores No 210Pb analyses have beendone for core 19A to date

SUMMARY

The fauna and flora present in the Russell Bank cores 19A and 19B record an approximately120-year history of fluctuating environmental changes The benthic foraminifera documentperiods of fluctuating salinity with a gradual increase in salinity upcore The molluscan data areconsistent with the foraminiferal data showing increasing salinity upcore but without the degreeof fluctuation indicated by the benthic foraminifera The benthic fauna show significant changesin the assemblages at 70-66 cm and 24-18 cm which correspond to approximately 1937-1940and 1975-1980 A similar shift occurred at 118 cm (approximately 1898) which is not as clearlyseen in the molluscan faunal data These periods represent shifts from low salinity (12-15 ppt) tohigher average salinity (30 ppt) In addition the benthic foraminiferal assemblages shift fromperiods of higher average salinity to periods of lower salinity at 140 cm 90 cm and 42 cmwhich correspond to approximately 1880 1921 and 1960 respectively

The molluscan fauna indicate changes occurring in the substrate at the Russell Banks siteSediment and grass (probably Thalassia) apparently were equally available for habitation from142-110 cm or approximately 1878-1904 Although grass was still available bare-sedimentdominated the area from 106-88 cm or approximately 1908-1922 From 88-22 cm orapproximately 1922-1976 grass was the dominant substrate and from approximately 1939 (68cm) to the present the presence of bare-sediment bottoms was negligible at the siteSignificantly from 22 cm or approximately 1976 to the present the molluscan fauna isdominated by species that can live equally well on algae or seagrass

The pollen present in core 19A show three periods of subtle shifts in the onshore vegetation inresponse to some environmental factor These changes occur at 80 cm and at 32 cm orapproximately 1929 and 1968 If we assume that core 19A and 19B have similar sedimentationrates then the shifts in the onshore vegetation indicated by the pollen seen in 19A occurapproximately 7-8 years prior to changes in Florida Bay as indicated by the benthic fauna in19B However until we see this pattern repeated in the same core or until a 210Pb analysis is

0 20 40 60 80 100

0-1

20-21

44-46

68-70

80-82

92-94

104-106

116-118

128-130132-134136-138

Operculodinium spp

Nematosphaeropsis rigida

Lingulodinium machaerophorum

Spiniferites spp

Polysphaeridium zoharyi

All others

Percent Cystsgram 0 100 200 300 400 500

Figure 7 Percent and absolute abundances of dinocysts for core 19A

Dep

th (

cm)

0 100 200 300 4000

20

40

60

80

100

120

140

Spiniferites

Cystsgram

Dep

th (

cm)

Polysphaeridium zoharyi

Figure 8 Absolute abundances of Polysphaeridium zoharyi and Spiniferites spp in core 19 A

000 200 400 600

Activity (dpmg)

Dep

th (c

m)

0

40

80

120

160

Figure 9 Pb210 activity in dpmg for core 19B

Activity (dpmg)

Dep

th (c

m)

000 100 200 300 400 500 600

0-2

6-8

12-14

18-20

24-26

30-32

36-38

42-44

48-50

54-56

60-62

66-68

72-74

78-80

84-86

90-92

96-98

102-104

108-110

114-116

120-122

126-128

132-134

138-140

144-146

150-152

156-158

Figure 10 210Pb activity in dpmg for core 19C

completed for core 19A we can not be certain of its significance because our assumption ofsimilar sedimentation rates for cores 19A and 19B may not be correct

Two peaks in dinocyst abundance (cystsgram) occur in the samples examined 118-104 cm(approximately 1898-1909) and 82-80 cm (approximately 1927-1929) These occur during aperiod of near normal marine (30 ppt) and stable salinity as indicated by the benthicforaminifera These periods may represent increased dinocyst production and decreased sedimentsupply but the composition of the dinocyst assemblages remains relatively stable throughout thecore

The pattern of increased salinity upcore documented here for Russell Banks 19B is consistentwith patterns seen in core T24 from the mouth of Taylor Creek in Little Madeira Bay (Ishman etal 1996) and in core 6A from Bob Allen mudbank (Wingard et al 1995) The correspondencebetween changes in salinity and onshore changes in vegetation is also consistent with resultsfrom the previous cores These patterns will continue to be investigated at additional sites inFlorida Bay and the terrestrial Everglades in order to establish the sequence and timing of eventsthroughout the ecosystem and to determine linkages between the marine and terrestrial systems

REFERENCES CITED

Benninghoff WS 1962 Calculation of pollen and spore density in sediments by addition of exotic pollen in known quantities Pollen et Spores v 4 p 332-333

Brewster-Wingard GL Ishman SE Edwards LE and Willard DA 1996 Preliminary report on the distribution of modern fauna and flora at selected sites in north-central and north-eastern Florida Bay US Geological Survey Open-File Report 96-732 34 p

Davis JC 1973 Statistics and Data Analysis in Geology New York John Wiley amp Sons 550 p

Ishman SE Brewster-Wingard GL Willard DA Cronin TM Edwards LE and Holmes CW 1996 Preliminary paleontologic report on core T-24 Little Madeira Bay Florida US Geological Survey Open-File Report 96-543 47 p

Maker LJ Jr 1981 Statistics for microfossil concentration measurements employing samples spiked with marker grains Review of Paleobotany and Palynology v 32 p153-191

Robbins JA Holmes CW Halley RB Bothner Michael Shinn EA Graney Joseph Keller Gerald tenBrinck Marilyn Rudnick David in press Time constraints characterizing predeposition integration of 137Ce and Pb fluxes to sediments in Florida Bay Geochemica et Cosmochemica

Stockmarr Jens 1971 Tablets with spores used in abolute pollen analysis Pollen et Spores v 8 p 615-621

Wall David Dale Barrie Lohmann GP and Smith WK 1977 The environmental and climatic distribution of dinoflagellate cysts in modern marine sediments from regions in the North and South Atlantic Oceans and Adjacent seas Marine Micropaleontology v 2 p 121-200

Wingard GL Ishman SE Cronin TM Edwards LE Willard DA and Halley RB 1995 Preliminary analysis of down-core biotic assemblages Bob Allen Keys Everglades National Park Florida Bay US Geological Survey Open-File Report 95-628 35 p

  • Title Page
  • Table of Contents
  • Abstract
  • Acknowledgements
  • Methods
  • Discussion of Fauna
  • Discussion of Flora
  • Age Model
  • Summary
  • References
Page 5: Preliminary Paleontologic Report on Cores 19A and 19B, from ...

MODERN SAMPLING SITES

Seasonal collecting startingFebruary 1995Seasonal collecting startingFebruary 1996

Seasonal collecting startingFebruary 1997

8

1

3

4 59

11

12

1314

15

16

17 19

18

10 6

7

2

Florida Bay

Atlantic OceanC

AP

E S A B L E JOHN PENNEKAMP

CORAL REEF

STATE PARK

EVERGLADES NATIONALPARK

PARK BOUNDARY

1

1

0

0

1

1

5

5

10

10

Kilometers

Miles

WATER DEPTH

lt 3 ft

gt 3 ft

25

26

23

24

21

20

22

Figure 1 Location of Russell Bank (N25 03831 W80 37486) cores 19A 19B and 19C

Russell Bank Site

METHODS OF INVESTIGATION

Benthic Foraminifers and Molluscs

Sediment samples from core 19B were collected at 2 cm intervals and every other samplestarting with 0-2 cm and totaling 34 samples was analyzed for calcareous benthic fauna Thesamples were washed through a 63micro m sieve and dried at lt50 degrees C When possible a total of300 benthic foraminifer specimens were picked from the sample and mounted on griddedmicropaleontologic slides Large samples were put through a sample splitter to randomly reducethe number of specimens For samples containing fewer than 300 benthic foraminiferindividuals all of the specimens present were picked Molluscs were picked from the gt =850micro m size fraction All molluscs and fragments of molluscs recognizable to the generic levelpresent in each interval were picked Species abundances for the benthic fauna were standardizedby calculating relative abundances (percent)

Pollen and Dinocysts

Material for palynological analysis was extracted from 1-2 cm sections of core 19A For eachpalynological sample 7-40 g of material (dry weight) was treated in hydrochloric andhydrofluoric acids and processed for palynological studies All samples were treated with warmKOH for 2-5 minutes given ultrasonic pulse treatment for 5 seconds acetolysed and sievedbetween 8-200micro m mesh A tablet of Lycopodium marker grains was added to each sample Formost samples at least 300 pollen grains were counted for calculation of percent abundances andabsolute pollen concentration To calculate absolute concentration of palynomorphs the marker-grain method was used (Benninghoff 1962 Maker 1981 Stockmarr 1971) For two samplespollen was sparse enough that fewer than 300 grains were counted For nine samples one slidewas completely examined for dinocysts and all dinocyst taxa were tabulated For two samples (0-1 cm and 80-82 cm) two slides were examined completely for dinocysts

Isotopic Analyses

Samples were collected every 2 cm from cores 19B and 19C and analyzed for 210Pb Ra137Ce 7Be and total Pb Analysis of 210Pb has been completed for 19B and Ra and 210Pb havebeen completed for 19C For details of the method see Robbins et al (in press)

ANALYSIS AND DISCUSSION OF THE BENTHIC FAUNA IN CORE 19B

Benthic Foraminifers

A total of 31 benthic foraminiferal species were identified and counted The foraminiferal datawas standardized to relative abundance (percent of assemblage Table 1) and was used for allquantitative analyses Species diversity as measured by Simpsonrsquos Index ranged from 011 to026 and the number of species ranged from 12 to 19

The foraminiferal assemblages are dominated by calcareous benthic forms with thedominance patterns alternating between rotaliid taxa Ammonia parkinsoniana tepida Aparkinsoniana typica Elphidium galvestonense mexicanum E galvestonense typica and Epoeyanum and miliolid taxa Miliolinella cirlcularis M labiosa Quinqueloculina bosciana Qseminulum Q tenagos Q polygona Q poeyana and Triloculina tricarinata Other significantspecies include Archaias angulatus Peneroplis proteus Rosalina floridana and Quinqueloculinaagglutinans

Two dominant assemblages can be identified in the cores an Ammonia-Elphidium (A-E)assemblage and a miliolid assemblage Observations of the foraminiferal faunal changesthroughout core 19B show four intervals dominated by the miliolid assemblage (140 cm 118-90cm 70-42 cm and 18-0 cm) interrupted by three intervals of A-E assemblage dominance (140-118 cm 90-70 cm and 42-18 cm)

Molluscs

Twenty-six molluscan taxonomic categories were recognized and counted in the Russell Bank19B core The number of specimens per sample ranged from 2 to 517 so the faunal counts werestandardized to relative percent abundance (Table 2) The Simpsonrsquos Diversity Index wascalculated for each sample (Table 2) Three sections in the core contained few individualspecimens (lt40) and few molluscan taxonomic groups (1-9) 122-112cm 62-52cm 38-28cmTwo species Brachiodontes sp and Transennella sp make up greater than 50 percent of themolluscan fauna in the entire core

A cluster analysis of Pearsons Correlation coefficient values calculated for the molluscanpercent abundance data and plotted using average linkage method (Figure 2) revealed 3 primarydivisions of the molluscan assemblages within the core 142-68 cm 68-22 cm and 22-0 cm Theinterval from 142-68 cm is dominated by Transennella sp Brachiodontes sp and Cerithiumspp Bittium varium Rissoina spp and Chione cancellata also are present in significantamounts (5) throughout the interval The interval from 66-22 cm has the lowest within-groupsimilarity of the three molluscan assemblages in the core and is represented by 2 clusters in theanlaysis This interval from 66-22 cm contains 2 zones of very low molluscan abundance (62-52cm and 38-28 cm) Brachiodontes sp and Cerithium spp dominate the 66-22 cm interval with anumber of other species present in significant amounts (10) in individual samples (see Table

Table 1Russell Bank 19B

Percent Abundance of Benthic Foraminifera

Depth in Core Am

mon

ia p

arki

nson

iana

tepi

da

Am

mon

ia p

arki

nson

iana

typi

ca

Arc

haia

s an

gula

tus

Bol

ivin

a lo

wm

ani

Bol

ivin

a ps

eudo

plic

ata

Cla

vulin

a tri

carin

ata

Cyc

logy

ra p

lano

rbis

Elp

hidi

um d

elic

atul

um

Elp

hidi

um g

alve

ston

ense

typi

cum

Elp

hidi

um g

alve

ston

ense

mex

ican

um

Elp

hidi

um p

oeya

num

Gra

ss d

wel

ler

Mili

olin

ella

circ

ular

is

Mili

olin

ella

fich

telia

na

Mili

olin

ella

labi

osa

Nod

osar

iidae

Pen

erop

lis p

rote

us

Qui

nque

locu

lina

aggl

utin

ans

Qui

nque

locu

lina

bosc

iana

0-2 cm 000 107 000 000 000 000 000 000 1123 107 000 080 1203 000 000 000 027 000 17914-6 cm 000 098 164 000 000 000 000 000 918 328 000 033 787 000 000 000 000 066 1443

8-10 cm 000 523 000 000 000 000 000 000 1463 418 000 070 592 000 000 000 070 000 167212-14 cm 000 642 520 000 000 000 000 000 887 1376 000 000 673 000 031 000 092 061 76516-18 cm 000 761 543 000 000 000 000 000 2174 1957 000 000 543 000 000 000 000 326 54324-26 cm 000 888 164 000 000 000 000 000 559 1086 000 066 329 033 000 000 066 395 217128-30 cm 000 1738 066 000 000 000 000 000 1770 2787 000 033 492 000 000 033 033 000 45932-34 cm 000 1294 129 000 000 000 000 000 1974 1909 000 000 388 000 000 000 000 000 301036-38 cm 000 2347 144 000 000 000 072 000 1011 1227 000 072 217 072 000 000 000 072 245540-42 cm 000 556 065 000 000 000 065 000 1242 000 000 196 752 000 000 000 000 033 356244-46 cm 000 525 031 000 000 000 093 000 1265 556 000 154 741 000 000 000 000 185 256248-50 cm 000 994 000 000 029 000 029 000 000 3129 000 175 292 000 000 000 000 029 242752-54 cm 000 664 000 035 000 000 140 000 1364 699 000 385 699 000 000 000 000 000 255256-58 cm 000 281 112 000 000 000 056 000 1180 534 000 871 927 000 000 000 000 056 238860-62 cm 000 975 144 000 000 000 036 000 903 1733 000 325 722 000 000 000 000 072 227464-66 cm 000 767 184 000 000 031 061 000 706 1626 000 276 736 000 000 000 061 123 144268-70 cm 000 1536 031 000 000 063 000 000 972 3103 000 063 1348 000 000 000 000 000 43972-74 cm 000 1691 344 000 000 000 000 000 1261 2436 000 086 802 000 000 000 000 115 86076-78 cm 000 1467 367 000 000 000 000 000 900 3767 000 000 500 000 067 000 000 000 26780-82 cm 000 1921 213 000 000 000 000 000 793 3994 000 000 213 000 000 000 000 122 03084-86 cm 000 2097 032 000 000 000 000 000 806 3419 1129 000 226 000 000 000 000 000 16188-90 cm 000 1864 034 000 000 000 000 000 000 3932 1153 000 237 000 000 000 034 034 10292-94 cm 000 329 033 000 000 000 000 000 757 1217 2303 000 921 000 000 000 000 033 78996-98 cm 000 538 028 000 000 000 000 2720 652 1133 000 000 737 000 000 000 000 000 1416

100-102 cm 000 1148 033 000 000 000 000 2230 000 2590 000 000 590 000 000 000 000 000 295104-106 cm 000 635 159 000 000 000 000 2032 317 1333 000 000 794 000 000 000 063 127 1556108-110 cm 000 1655 338 000 000 000 000 439 270 2601 000 000 1250 068 000 000 000 338 000112-114 cm 080 479 133 000 000 000 000 000 1729 1064 000 000 1596 027 000 000 053 133 1941116-118 cm 000 1181 139 000 000 000 000 000 2847 2014 000 000 972 000 000 000 000 000 243120-122 cm 000 1761 066 000 000 000 000 000 2093 2292 000 000 532 000 000 000 000 066 000124-126 cm 000 3142 453 000 000 060 000 121 000 4350 000 000 242 000 000 000 000 242 000128-130 cm 000 2786 352 000 000 000 000 528 000 4164 000 000 587 000 000 000 000 411 029132-134 cm 000 1705 129 000 000 000 000 904 233 3178 000 000 956 000 000 000 000 052 310136-138 cm 000 843 421 000 000 000 000 899 393 1236 000 000 2444 000 028 000 084 197 449140-142 cm 000 2032 581 000 000 000 000 000 645 3903 000 000 645 000 000 000 000 290 000

Table 1Russell Bank 19B

Percent Abundance of Benthic Foraminifera

Depth in Core

0-2 cm 4-6 cm

8-10 cm 12-14 cm 16-18 cm 24-26 cm 28-30 cm 32-34 cm 36-38 cm 40-42 cm 44-46 cm 48-50 cm 52-54 cm 56-58 cm 60-62 cm 64-66 cm 68-70 cm 72-74 cm 76-78 cm 80-82 cm 84-86 cm 88-90 cm 92-94 cm 96-98 cm

100-102 cm 104-106 cm 108-110 cm 112-114 cm 116-118 cm 120-122 cm 124-126 cm 128-130 cm 132-134 cm 136-138 cm 140-142 cm

Qui

nque

locu

lina

sem

inul

um

Qui

nque

locu

lina

tena

gos

Qui

nque

locu

lina

poly

gona

Qui

nque

locu

lina

poey

ana

Ros

alin

a flo

ridan

a

Ros

alin

a gl

obul

aris

Spi

rolo

culin

a an

tilla

rium

Trilo

culin

a lin

eian

a

Trilo

culin

a ro

tund

a

Trilo

culin

a tri

locu

lina

Val

vulin

a s

p

Val

vulin

eria

laev

igat

a

Num

ber o

f Spe

cies

Sim

pson

s D

iver

sity

Inde

x

1337 107 481 3235 214 000 027 000 000 160 000 000 14 019525 000 1279 3934 066 000 098 000 000 262 000 000 14 021732 279 244 3275 035 000 000 000 000 627 000 000 13 018367 153 214 2875 092 000 000 000 031 1009 000 214 17 014217 000 652 1413 000 000 109 000 000 761 000 000 12 013230 954 691 1480 099 000 000 000 493 164 000 132 18 011885 000 393 1082 230 000 000 000 000 000 000 000 13 017000 000 647 583 065 000 000 000 000 000 000 000 9 019072 289 217 1372 000 000 000 000 217 108 036 000 17 016

1046 163 163 1993 065 000 000 000 065 000 000 033 15 020648 340 370 2377 154 000 000 000 000 000 000 000 14 016322 175 117 1637 205 000 000 000 205 234 000 000 15 020245 140 000 2797 140 000 000 000 000 140 000 000 13 018365 000 169 2669 056 000 000 000 000 337 000 000 14 016

1011 181 397 1227 000 000 000 000 000 000 000 000 13 013521 215 706 1933 245 000 000 000 123 215 000 031 19 011878 000 000 1317 219 000 000 000 000 031 000 000 12 018201 086 401 1146 115 000 000 000 000 401 000 057 15 014667 000 467 1100 133 000 000 000 000 267 000 033 13 020549 000 671 732 000 000 000 000 213 488 000 061 13 022290 000 032 1516 000 000 000 000 097 194 000 000 12 021881 000 508 780 000 000 000 000 136 271 000 034 14 022

1908 099 296 1184 132 000 000 000 000 000 000 000 13 014878 000 227 1020 170 000 142 000 340 000 000 000 13 014

1541 000 426 787 033 000 066 000 197 066 000 000 13 0171238 000 222 1397 095 032 000 000 000 000 000 000 14 0131014 034 574 777 000 000 000 000 236 338 000 068 15 014

984 000 293 1011 213 000 000 000 133 080 000 053 17 0131632 104 208 486 035 000 000 000 035 104 000 000 13 0182093 000 166 565 100 000 000 000 033 100 133 000 13 018

000 272 242 393 000 000 000 030 091 363 000 000 13 030000 029 235 323 029 000 000 000 059 411 000 059 14 026

1111 000 207 620 052 000 000 000 336 207 000 000 14 017983 140 253 955 169 000 000 000 112 253 000 140 18 012258 032 419 548 000 000 065 000 065 258 000 258 14 021

Table 2Russell Bank 19B

Percent Abundance of Molluscan Fauna

Depth in Core G

astro

pods

Act

eoci

na c

anal

icul

ata

Am

aea

spp

Bitt

ium

var

ium

Bul

la s

p

Cae

cum

pu

chel

lum

flor

idan

um

Cer

ithid

ea s

pp

Cer

ithiu

m s

pp

Con

us s

p

Cre

pidu

la s

p

Mar

gine

llids

Mod

ulus

mod

ulus

Oliv

ella

sp

Ris

soin

a s

pp

Turr

itella

exo

leta

Vitr

inel

lids

Rar

e G

astro

pods

Uni

dent

ified

gas

tropo

d fra

gmen

ts u

nkno

wn

sp

and

juve

nile

s

0-2 cm 000 000 128 000 147 000 568 000 073 092 183 000 220 000 037 037 0554-6 cm 000 000 347 000 087 000 723 000 116 116 347 000 145 000 116 116 260

8-10 cm 000 000 172 000 000 000 259 000 000 086 517 000 345 000 345 086 34512-14 cm 000 000 244 000 244 000 488 000 000 061 244 244 488 244 000 061 36616-18 cm 000 000 244 000 000 000 610 000 122 000 122 122 854 000 000 122 36620-22 cm 000 000 270 135 135 000 270 000 135 000 000 000 135 000 000 135 27024-26 cm 172 000 345 000 345 172 1552 000 690 000 000 172 172 000 000 000 17228-30 cm 000 000 000 000 000 000 000 000 000 000 000 000 000 000 000 000 00032-34 cm 000 000 714 714 000 000 2143 000 000 000 714 000 714 000 000 000 00036-38 cm 000 000 2143 000 000 000 3571 357 000 000 357 1071 000 000 000 000 107140-42 cm 000 000 1237 515 000 000 1856 000 309 000 103 206 412 000 000 103 41244-46 cm 000 000 215 000 000 000 860 000 000 000 645 108 968 000 108 000 43048-50 cm 000 000 1111 000 000 000 1852 000 000 000 556 000 741 000 000 000 74152-54 cm 000 000 000 000 000 000 811 000 000 000 4324 000 270 000 000 000 54156-58 cm 000 000 000 000 1000 000 4000 000 4000 000 000 000 000 000 000 000 00060-62 cm 000 000 313 000 000 000 000 625 000 000 000 000 625 000 000 313 187564-66 cm 000 000 800 200 100 000 1400 000 300 100 200 000 300 000 000 000 40068-70 cm 000 000 1569 000 196 000 1765 000 392 196 196 000 980 000 000 392 58872-74 cm 000 000 1918 000 137 000 1918 000 685 000 137 000 000 000 000 000 54876-78 cm 000 000 562 000 000 000 1124 000 000 562 337 225 562 112 000 000 168580-82 cm 000 000 414 000 000 000 552 000 000 138 069 138 000 138 000 000 96684-86 cm 000 000 933 000 400 000 1333 267 133 000 267 267 533 000 000 000 133388-90 cm 000 000 219 000 000 000 1606 000 000 000 000 292 803 219 000 146 153392-94 cm 000 000 432 000 144 000 1007 000 000 000 072 288 504 144 000 000 93596-98 cm 303 000 152 000 152 000 1364 000 152 000 000 152 758 152 000 303 152

100-102 cm 000 000 000 000 138 000 483 000 000 069 000 207 345 000 000 000 483104-106 cm 000 067 738 000 067 134 1611 067 000 134 000 134 470 067 000 134 470108-110 cm 000 238 714 000 000 000 952 000 000 079 000 397 1190 079 000 159 1825112-114 cm 286 000 857 000 000 000 1714 000 286 000 286 000 000 000 000 000 1143116-118 cm 000 000 000 000 000 000 000 000 000 000 000 000 000 000 000 000 2000120-122 cm 000 000 345 000 345 000 690 000 000 000 000 345 690 1034 000 000 345124-126 cm 075 000 970 000 000 149 1343 000 075 000 821 224 373 149 149 149 224128-130 cm 000 143 257 000 086 000 857 000 114 086 086 000 286 029 000 029 571132-134 cm 000 000 723 000 000 000 1205 000 000 000 000 120 482 602 000 000 1084136-138 cm 051 051 769 051 103 103 615 000 000 103 000 103 000 256 103 256 410140-142 cm 055 000 656 000 000 000 710 055 109 000 000 383 601 109 000 000 874

Table 2Russell Bank 19B

Percent Abundance of Molluscan Fauna

Depth in Core0-2 cm 4-6 cm

8-10 cm 12-14 cm 16-18 cm 20-22 cm 24-26 cm 28-30 cm 32-34 cm 36-38 cm 40-42 cm 44-46 cm 48-50 cm 52-54 cm 56-58 cm 60-62 cm 64-66 cm 68-70 cm 72-74 cm 76-78 cm 80-82 cm 84-86 cm 88-90 cm 92-94 cm 96-98 cm

100-102 cm 104-106 cm 108-110 cm 112-114 cm 116-118 cm 120-122 cm 124-126 cm 128-130 cm 132-134 cm 136-138 cm 140-142 cm

Pel

ecyp

ods

Ano

mal

ocar

dia

sp

Arc

opsi

s ad

amsi

Bra

chio

dont

es s

p

Chi

one

canc

ella

ta

Cum

ingi

a te

llino

idea

Laev

ecar

dium

spp

Nuc

ula

prox

ima

Pec

tinid

Pin

ctad

a ra

diat

a

Telli

na s

pp

Tran

senn

ella

spp

Rar

e P

elec

ypod

s

Uni

dent

ified

Pel

ecy

Fr

ags

Tota

l num

ber o

f in

divi

dual

spe

cim

ens

Num

ber o

f fau

nal g

roup

s

Sim

pson

s D

iver

sity

Inde

x

000 018 7033 073 055 000 000 000 1264 000 000 018 000 517 16 052000 116 6416 087 000 000 000 000 954 000 000 029 029 331 16 043000 000 7328 086 000 000 000 000 259 000 000 000 172 49 12 055000 183 5732 244 061 000 000 000 1037 000 000 000 061 145 16 035000 000 5732 366 122 000 000 000 244 000 732 000 244 62 14 035000 000 7703 000 000 000 000 000 000 000 270 000 541 62 11 060000 000 2414 345 000 172 000 000 172 172 1724 000 1207 50 16 014000 000 000 000 000 000 000 000 000 000 5000 000 5000 2 2 050000 000 1429 1429 000 000 000 000 000 000 2143 000 000 12 8 015000 000 1429 000 000 000 000 000 000 000 000 000 000 28 7 022000 103 4124 309 000 000 000 103 206 000 000 000 000 97 14 023000 430 968 4624 108 000 000 000 000 108 000 000 430 93 13 025000 926 926 370 926 000 000 185 926 370 000 000 370 54 13 010000 000 2703 000 270 000 000 000 811 000 000 000 270 37 8 028000 000 000 000 000 000 000 000 000 000 000 000 1000 10 4 034000 000 5000 000 000 313 000 000 313 000 000 000 625 32 9 030000 000 2900 100 000 100 000 1000 900 200 300 100 600 100 18 014000 000 588 588 196 000 000 196 000 000 980 000 1176 51 15 010000 000 1918 548 000 000 274 000 000 000 1918 000 000 73 10 016000 112 1910 000 000 000 000 000 337 000 787 000 1685 89 13 012000 207 2690 897 000 000 000 000 138 000 2414 345 897 145 14 016000 000 800 933 000 000 000 000 267 000 1200 000 1333 75 14 010438 000 438 657 073 000 000 000 000 073 2847 000 657 137 14 015216 288 719 647 000 072 000 000 504 000 2734 000 1295 139 16 013152 000 606 455 000 152 000 000 000 000 4545 000 455 66 16 024000 000 1241 483 000 000 000 000 000 000 4897 000 1655 145 10 029671 000 067 134 000 000 000 000 067 000 3624 000 1342 149 18 019000 000 714 238 000 079 159 000 159 000 2302 000 714 126 16 013000 000 000 571 000 000 000 000 000 000 3714 000 1143 35 9 021000 000 000 000 000 000 000 000 000 000 6000 000 2000 5 3 044000 000 2759 000 000 000 000 000 000 000 2069 000 1379 29 10 016373 000 821 672 075 075 000 000 224 000 2463 000 597 134 20 012000 029 857 314 057 000 000 000 200 000 5429 029 543 350 19 032000 000 602 964 241 000 120 000 241 000 2048 000 1566 83 13 012000 103 923 923 000 256 205 000 308 103 3179 000 1026 195 22 014000 109 1967 656 109 000 055 000 273 000 3115 000 164 183 17 016

0-2

4-6

12-14

16-18

20-22

36-38

56-58

116-118

100-102

128-130

96-98

88-90

92-94

112-114

104-106

124-126

136-138

140-142

108-110

132-134

84-86

76-78

120-122

80-82

72-74

68-70

48-50

64-66

24-26

32-34

40-42

60-62

52-54

44-46

28-30

8-10

00 01 02 03 04 05 080706

Figure 2 Q-mode cluster diagram of molluscan assemblages from core 19B Distancesare expressed as Pearsons Correlation coefficient values calculated on the molluscanpercent abundance data (see Table 2) and plotted using average linkage methodShaded areas represent clusters formed by samples from the upper portion of the core(0-22 cm) and the lower portion of the core (68-142 cm)

Sam

ple

(iden

tifie

d by

dep

th in

cm

)

2) The cluster containing samples from the interval from 22-0 cm has high Pearsons Correlationcoefficient values for within-group similarity and the largest between-group distances (seeFigure 2) This upper portion of the core is dominated by Brachiodontes sp which comprisesgreater than 50 of the molluscan assemblage in each sample from this section Pinctadaradiata and Cerithium spp are present in significant amounts (5) in some samples from 22-0cm

Benthic Faunal Patterns

Comparison of the benthic fauna present in core 19B with our modern data set enables us tointerpret the salinity history for the Russell Banks site The foraminiferal and molluscan recordsfrom core 19B show distinct oscillations in salinity with a gradual increase in salinity toward thetop of the core (Figure 3) In addition a positive correlation (ρ =052) exists between increasingSimpson diversity indices and decreasing salinity for the benthic foraminfera

The two dominant foraminiferal assemblages Ammonia-Elphidium and miliolid are verysimilar to the Ammonia-Elphidium and Archaias-miliolid assemblages described from modernFlorida Bay sediments (Brewster-Wingard et al 1996) The distribution of modern benthicforaminifers in Florida Bay shows a strong association between the occurrence of Aparkinsoniana and E galvestonense mexicanum and typica with salinities less than 25 ppt(Brewster-Wingard et al 1996) Conversely miliolids dominate where salinities are near normalmarine values (30 ppt) The intervals dominated by the miliolid assemblage (140 cm 118-90 cm70-42 cm and 18-0 cm) therefore indicate more stable and relatively higher average salinity (32-35 ppt) These segments are interrupted by three periods of A-E assemblage dominance (140-118cm 90-70 cm and 42-18 cm) indicating unstable and relatively low average salinity (lt32 ppt)

Molluscs are not as sensitive to variations in salinity as benthic foraminifers consequently themolluscan data do not show the degree of fluctuation seen in the foraminiferal data (Figure 3)The general trend of increasing percent abundance of euhaline and euhaline-polyhaline molluscsupcore does follow the general trend of the foraminiferal plot showing a gradual increase insalinity upcore No molluscan faunas restricted to terrestrial fresh water marsh or upperestuarine environments are present in core 19B indicating this area has been relatively open bayover the last century and the salinity has probably not dropped below 12-15 ppt

Both the benthic foraminiferal assemblages and the molluscan assemblages show significantchanges between 70-66 cm and between 24-18 cm These zones correspond to shifts from A-Edominated assemblages to miliolid dominated assemblages but the molluscs do not seem torespond significantly to the decreases in salinity that mark the shift from miliolid assemblagesback to A-E assemblages Almost all of the molluscs present in this core can be classified aspolyhaline and are tolerant of a wide range of salinities (from approximately 12 or 15 ppt to 30-35 ppt) which could explain the patterns seen for the molluscs If however the salinity haddropped below ~15ppt during the periods of A-E dominance then the molluscs would mostlikely have shown a response The areas of A-E dominance in the core represent salinities of 15-25 ppt with the lower number delineated by the absence of species of molluscs found in lowsalinity waters of Florida Bay and the upper number constrained by the presence of low salinitybenthic foraminifera The miliolid dominated zones represent salinities of 30 ppt or higher

Figure 3 Plot of percent abundance of benthic foraminifers molluscs and the two datasets combined that indicate increasing salinity for core 19B The benthic foraminifersindicate salinity gt 30 ppt The mollusc species have wider salinity tolerances thespecies illustrated on this plot are classified as euhaline or euhalinepolyhaline andrepresent salinities of 20-25 ppt or greater The positions of the benthic foraminiferalassemblages (Milliolid-gray Ammonia-Elphidium-white) discussed in the text are shownon the right of the plot

ForaminifersMolluscsCombined

900080007000600050004000300020001000000

0-2

8-10

16-18

24-26

32-34

40-42

48-50

56-58

64-66

72-74

80-82

88-90

96-98

104-106

112-114

120-122

128-130

136-138

140-142

abundance

Dep

th in

Cen

timet

ers

Miliolid Assemblage

Miliolid Assemblageat 140-142 cm

Miliolid Assemblage

Miliolid Assemblage

Ammonia- ElphidiumAssemblage

Ammonia- ElphidiumAssemblage

Ammonia- ElphidiumAssemblage

1981

1962

1939

1922

1898

1878

Hard Surface

Coarse Sediment or Sponges

Coarse Sediment

Coarse or Fine Sediment

Fine Sediment

Grass Beds or Sediment

Grass Beds or Coarse Sediment

Grass and Algae Beds

Grass Beds

Pecent AbundanceD

epth

in C

ore

(cm

)

0 10 20 30 40 50 60 70 80 90 1000-2

8-10

16-18

24-26

32-34

40-42

48-50

56-58

64-66

72-74

80-82

88-90

96-98

104-106

112-114

120-122

128-130

136-138

Figure 4 Area diagram of percent abundance of molluscs indicative of specific substrate types for core 19B Data plotted at the 116 cm and 28 cm depths represent averages of the overlying and underlying samples these two samples did not contain enough individual specimens to be statistically valid

The suite of molluscs present in core 19B is more indicative of changes in substrate thanchanges in salinity Figure 4 illustrates the substrate patterns within the core based on thepercent abundance of molluscs known to prefer those substrate types The lowest portion of thecore from 142-110 cm has significant numbers of both sediment dwellers and grass dwellerspresent with dominance of either group fluctuating From 106-88 cm sediment dwellersdominate although grass dwellers are still present in significant numbers The segment from 88-22 cm is dominated by grass dwellers above 68 cm the presence of species indicative of asediment substrate is negligible The uppermost portion of the core from 22 cm to the top isdominated by species that could live on either algae or grass

The shifts in abundance of molluscan substrate indicators at 88 cm 68 cm and 22 cmcorrespond to changes seen in the benthic foraminiferal salinity indicators but at this point thesignificance of this relationship is not understood However since the benthic foraminifers usedfor salinity indicators are not sensitive to changes in substrate we believe the changingforaminiferal patterns reflect changing salinity

ANALYSIS AND DISCUSSION OF THE FLORA IN CORE 19A

Pollen

The percent abundance data on pollen is presented in Table 3 Three pollen zones aredistinguishable based on both percent abundance and absolute pollen concentration (pollengrainsgram dry sediment) The bottom zone (140-80 cm) is characterized by the highestpercentages of Pinus (pine) pollen (80-90) and the lowest percentages of Quercus (oak)(lt6) and pollen of the ChenopodiaceaeAmaranthaceae (pigweed family) and Asteraceae(aster family) (Figure 5) No pollen of the Cyperaceae (sawgrass family) is present in this zoneTotal pollen concentration in this zone and the middle zone ranges from about 500-1200grainsgram and the concentration of Quercus pollen is lower than the other zones with lt50grainsgram (Figure 6)

The middle zone (80-32 cm) is characterized by lower percentages of Pinus pollen (54-73)higher percentages of Quercus (6-10) and higher concentrations of Quercus pollen (50-100grainsgram) In both this and the upper zone pollen of the ChenopodiaceaeAmaranthaceae andAsteraceae are more abundant comprising 3 and 2 of the assemblages respectively Pollenof the Cyperaceae is present in low percentages in this and the upper zone

The upper zone has the highest pollen concentrations of the core with most samples rangingfrom 1200-4600 grainsgram Several taxa contribute to these higher values including PinusQuercus Myrica (wax myrtle) ChenopodiaceaeAmaranthaceae and Asteraceae Cephalanthus(buttonbush) is present in low abundances (lt1) in this zone and Liquidambar (sweet gum) isabsent from this zone

Table 3Russell Bank 19A

Percent Abundance of Pollen

Depth in core Aln

us

Api

acea

e

Ast

erac

eae

Avi

cenn

ia

Bet

ula

Bum

elia

Bur

sera

sim

arub

a

Car

ya

Cas

uarin

a

Cel

tis

Cep

hala

nthu

s

Che

nopo

diac

eae

A

mar

anth

acea

e

Con

ocar

pus

Cyp

erac

eae

Dec

odon

Eric

acea

e

Eup

horb

iace

ae

Faba

ceae

Frax

inus

Ilex

Jugl

ans

0-1 cm 000 000 255 000 000 000 000 000 482 000 028 425 000 000 000 000 000 142 000 000 000 4-5 cm 057 000 201 000 000 000 000 029 115 000 029 287 029 115 000 000 029 057 000 029 029 8-9 cm 032 000 322 000 000 000 000 000 129 000 032 096 000 064 000 000 000 032 000 000 000

20-21 cm 000 000 409 031 000 000 000 000 314 000 063 597 000 000 000 000 000 220 000 000 00032-34 cm 030 000 332 000 030 030 000 000 211 000 000 332 030 030 000 000 000 121 000 030 03044-46 cm 080 000 777 000 000 000 000 027 214 000 000 429 000 080 000 000 027 107 000 054 00056-58 cm 031 000 439 000 000 000 000 031 157 000 000 690 000 063 000 063 000 094 031 000 00068-70 cm 168 000 251 000 028 000 028 084 056 000 000 307 000 056 000 000 000 084 000 000 00080-82 cm 000 000 238 000 000 000 000 000 000 000 000 476 000 000 000 000 000 000 000 000 00092-94 cm 054 000 054 000 000 027 000 082 027 000 000 054 000 000 000 000 000 082 027 000 000

104-106 cm 000 029 115 000 000 000 000 000 000 000 000 230 000 000 057 000 000 115 000 000 000116-118 cm 062 000 062 000 000 000 000 000 000 031 000 185 031 000 000 000 000 062 000 000 000128-130 cm 000 000 061 000 000 000 000 030 000 000 000 091 000 000 000 030 000 061 000 000 000136-138 cm 060 000 060 030 000 030 060 181 000 000 000 091 000 000 000 000 000 000 000 000 000138-140 cm 000 000 000 000 000 000 000 081 000 000 000 244 000 000 000 000 000 000 000 000 000

Table 3Russell Bank 19A

Percent Abundance of Pollen

Depth in core0-1 cm

4-5 cm 8-9 cm

20-21 cm 32-34 cm 44-46 cm 56-58 cm 68-70 cm 80-82 cm 92-94 cm

104-106 cm 116-118 cm 128-130 cm 136-138 cm 138-140 cm

Liqu

idam

bar

Mag

nolia

Myr

ica

Nys

sa

Ost

rya

Car

pinu

s

Pin

us

Pla

nera

Poa

ceae

Que

rcus

Rhi

zoph

ora

Rut

acea

e

Sag

ittar

ia

Sal

ix

Taxo

diac

eae

C

upre

ssac

eae

Tax

acea

e

Typh

a

Ulm

us

Tota

l Pol

len

Cou

nted

000 000 283 000 028 6856 000 028 1076 028 000 028 000 000 000 057 353000 000 086 000 000 6905 000 029 1375 029 000 029 000 000 000 000 349000 000 225 000 000 7395 000 032 932 096 032 032 032 000 096 032 321000 000 1069 000 063 5660 000 031 1101 000 000 000 000 000 031 000 321030 000 846 000 000 6737 000 030 634 000 000 000 030 030 030 000 332107 000 429 027 000 5416 000 107 1046 027 000 000 027 027 054 054 378000 031 376 000 000 6395 000 031 690 094 000 031 031 031 063 031 320028 028 447 000 000 7346 000 000 615 028 000 000 028 000 112 028 358119 000 357 000 000 7976 000 000 595 000 000 000 000 000 000 000 85082 000 408 000 000 8696 000 000 245 027 000 000 000 027 000 000 371029 000 747 000 000 8017 000 029 316 057 000 000 000 029 029 000 350000 000 338 000 000 8923 000 031 123 031 000 000 031 000 031 000 326030 000 396 000 000 8628 000 030 457 000 000 000 030 000 000 000 331030 000 242 000 000 8792 030 000 181 000 000 000 000 000 030 000 332081 000 163 000 000 8862 000 000 569 000 000 000 000 000 000 000 123

0 10 20 30 40 50 60 70 80

10

20

30

40

50

60

70

80

90

100

110

120

130

Depthcm Pinu

sQue

rcus

Casua

rina

Rhizop

hora

Myrica

Cepha

lanthu

s

Cheno

podia

ceae

Amara

nthac

eae

Poace

ae

Cypera

ceae

Asterac

eae

10

20

30

40

50

60

70

80

90

100

110

120

130

0 10 0 0 0 10 0 0 0 0 05 5 5 5 5 5 5 55

(Pine

)(O

ak)

(Aus

tralia

n Pine

)

(Red

Man

grove

)

(Wax

Myrt

le)

(Pig

Wee

d)

(Gras

s Fam

ily)

(Saw

grass

Family

)

(Aste

r Fam

ily)

(Butt

on B

ush)

Figure 5 Percent abundance of selected pollen groups for core Russell Bank 19A (note different scales)

0 50 100 150 200 250 300 350 400

Querc

us

0 50

Casua

rina

0 50 100 150 200 250 300

Myr

ica

0 50 100 150

Cheno

pods

0

Cyper

acea

e

0 50 100

Astera

ceae

10

20

30

40

50

60

70

80

90

100

110

120

130

Depthcm Pinu

s

0 1000 2000 3000

Total

Pollen

Con

cent

ratio

n

10

20

30

40

50

60

70

80

90

100

110

120

130

0 1000 2000 3000 4000

Figure 6 Total concentration of pollen (grainsgram) for core Russell Bank 19A (note different scales)

Dinocysts

Dinocyst recovery in all samples was low Most microscope slides are heavily dominated byorganic debris and the maximum number of specimens observed in any sample was 214Absolute abundance ranges from 779 to 4736 cystsgram These values are one to two orders ofmagnitude below those reported by Wall et al (1977) for samples from the Middle AtlanticBight and western South Africa and are consistent with high sedimentation rates These absoluteabundances in the sediments are far below bloom concentrations in which the number of livingcells per ml of water may exceed 50 million

The dinocyst assemblages in the Russell Bank 19A core consist of less than 10 taxa (Table 4)Various species of the genus Spiniferites Mantell dominate all samples (61 to 79 percent) Due topoor preservation and taxonomic difficulties the individual species of this genus were notdifferentiated S mirabilis (Rossignol) Sarjeant S ramosus (Ehrenberg) Mantell S scabratus(Wall) Sarjeant and other forms are present Operculodinium Wall spp (O israelianum(Rossignol) Wall or Operculodinium species undifferentiated) are present in all samples inamounts of 5 to 19 percent Polysphaeridium zoharyi (Rossignol) Bujak et al is present in allsamples and comprises up to 16 percent of the assemblages Most samples included low numbersof Lingulodinium machaerophorum (Deflandre amp Cookson) Wall Nematosphaeropsis rigidaWrenn and (or) Tectatodinium pellitum Wall Only two samples contained a single specimeneach of the family Congruentidiaceae

Most samples from Russell Bank core 19A are quite similar to one another (Figure 7)Throughout the core the dinocyst Polysphaeridium zoharyi ranges in abundance from 0-16percent which is considerably lower than in the Bob Allen 6A (Wingard et al 1995) and LittleMadeira Bay T24 (Ishman et al 1996) cores With one exception (80-82 cm) increased absoluteabundance of Spiniferites spp is accompanied by increased absolute abundance of P zoharyi(Figure 8) This relationship suggests that absolute abundances in this core are a function ofsediment supply rather than cyst production The sample at 80-82 cm is anomalous the highabsolute abundance of cysts is attributable to Spiniferites spp and fewer than 30 total cysts werefound on each slide This sample may represent a case of an increase in Spiniferites cystproduction and an increase in the amount of organic debris in proportion to sediment supply Thelowest samples (132-134 cm and 136-138 cm) show both low absolute abundances of all cysttypes and low percentages of P zoharyi

Floral Patterns

Changes occur in the pollen and dinocyst assemblages in core 19A but the significance ofthese changes is unclear Three zones are distinguishable for the pollen but the differencesamong them are very subtle and any interpretation of patterns of vegetational change would bepremature However it is apparent that the vegetation changed in response to someenvironmental factor at those times correlation with on-shore cores would be necessary toestablish the nature of the changes Dinocyst abundance fluctuates in the core with two peaks at118-104 cm and 82-80 cm but the assemblages are relatively stable throughout the core

Table 4 Dinocyst data from Russell Bank 19A

Pol

ysph

aerid

ium

zoh

aryi

Spi

nife

rites

spp

Ope

rcul

odin

ium

spp

Nem

atos

phae

rops

is ri

gida

Ling

ulod

iniu

m m

acha

erop

horu

m

Tect

atod

iniu

m p

ellit

um

Tube

rcul

odin

ium

van

cam

poae

Con

grue

ntid

iace

ae

Oth

er

TOTA

L D

INO

CY

STS

CO

UN

TED

Depth (cm)

Wt (g) Cystsg

Slides examined

0-1 74 779 2 129 742 97 00 32 00 00 00 00 3120-21 115 1363 1 123 630 74 49 49 62 00 12 00 8144-46 363 921 1 24 750 95 36 48 12 00 00 36 8468-70 358 1454 1 114 705 95 10 38 29 00 10 00 10580-82 337 3732 2 19 811 132 00 38 00 00 00 00 5392-94 385 2049 1 84 720 119 49 28 00 00 00 00 143

104-106 331 4736 1 128 636 133 77 10 05 00 00 10 195116-118 350 3451 1 141 676 106 07 63 07 00 00 00 142128-130 390 1854 1 121 612 178 51 28 05 05 00 00 214132-134 321 1288 1 34 754 127 68 17 00 00 00 00 118136-138 371 2028 1 66 747 110 55 11 11 00 00 00 91

Species

Percent abundance

Comparison of these data to additional terrestrial and marine cores may lead to a betterunderstanding of the patterns seen here

210PB AGE MODEL FOR THE RUSSELL BANKS SITE

The activity of 210Pb (dpmgram) is shown for 19B and 19C in Figures 9 and 10 Thesedimentation rate for the Russell Bank site is based on the results from 19C because both 210Pband Ra analyses have been completed for that core the rate equals 122 cmyear +- 005The 210Pb curves for cores 19B and 19C are almost identical therefore we make the assumptionthat the rate of sediment accumulation is the same in the two cores No 210Pb analyses have beendone for core 19A to date

SUMMARY

The fauna and flora present in the Russell Bank cores 19A and 19B record an approximately120-year history of fluctuating environmental changes The benthic foraminifera documentperiods of fluctuating salinity with a gradual increase in salinity upcore The molluscan data areconsistent with the foraminiferal data showing increasing salinity upcore but without the degreeof fluctuation indicated by the benthic foraminifera The benthic fauna show significant changesin the assemblages at 70-66 cm and 24-18 cm which correspond to approximately 1937-1940and 1975-1980 A similar shift occurred at 118 cm (approximately 1898) which is not as clearlyseen in the molluscan faunal data These periods represent shifts from low salinity (12-15 ppt) tohigher average salinity (30 ppt) In addition the benthic foraminiferal assemblages shift fromperiods of higher average salinity to periods of lower salinity at 140 cm 90 cm and 42 cmwhich correspond to approximately 1880 1921 and 1960 respectively

The molluscan fauna indicate changes occurring in the substrate at the Russell Banks siteSediment and grass (probably Thalassia) apparently were equally available for habitation from142-110 cm or approximately 1878-1904 Although grass was still available bare-sedimentdominated the area from 106-88 cm or approximately 1908-1922 From 88-22 cm orapproximately 1922-1976 grass was the dominant substrate and from approximately 1939 (68cm) to the present the presence of bare-sediment bottoms was negligible at the siteSignificantly from 22 cm or approximately 1976 to the present the molluscan fauna isdominated by species that can live equally well on algae or seagrass

The pollen present in core 19A show three periods of subtle shifts in the onshore vegetation inresponse to some environmental factor These changes occur at 80 cm and at 32 cm orapproximately 1929 and 1968 If we assume that core 19A and 19B have similar sedimentationrates then the shifts in the onshore vegetation indicated by the pollen seen in 19A occurapproximately 7-8 years prior to changes in Florida Bay as indicated by the benthic fauna in19B However until we see this pattern repeated in the same core or until a 210Pb analysis is

0 20 40 60 80 100

0-1

20-21

44-46

68-70

80-82

92-94

104-106

116-118

128-130132-134136-138

Operculodinium spp

Nematosphaeropsis rigida

Lingulodinium machaerophorum

Spiniferites spp

Polysphaeridium zoharyi

All others

Percent Cystsgram 0 100 200 300 400 500

Figure 7 Percent and absolute abundances of dinocysts for core 19A

Dep

th (

cm)

0 100 200 300 4000

20

40

60

80

100

120

140

Spiniferites

Cystsgram

Dep

th (

cm)

Polysphaeridium zoharyi

Figure 8 Absolute abundances of Polysphaeridium zoharyi and Spiniferites spp in core 19 A

000 200 400 600

Activity (dpmg)

Dep

th (c

m)

0

40

80

120

160

Figure 9 Pb210 activity in dpmg for core 19B

Activity (dpmg)

Dep

th (c

m)

000 100 200 300 400 500 600

0-2

6-8

12-14

18-20

24-26

30-32

36-38

42-44

48-50

54-56

60-62

66-68

72-74

78-80

84-86

90-92

96-98

102-104

108-110

114-116

120-122

126-128

132-134

138-140

144-146

150-152

156-158

Figure 10 210Pb activity in dpmg for core 19C

completed for core 19A we can not be certain of its significance because our assumption ofsimilar sedimentation rates for cores 19A and 19B may not be correct

Two peaks in dinocyst abundance (cystsgram) occur in the samples examined 118-104 cm(approximately 1898-1909) and 82-80 cm (approximately 1927-1929) These occur during aperiod of near normal marine (30 ppt) and stable salinity as indicated by the benthicforaminifera These periods may represent increased dinocyst production and decreased sedimentsupply but the composition of the dinocyst assemblages remains relatively stable throughout thecore

The pattern of increased salinity upcore documented here for Russell Banks 19B is consistentwith patterns seen in core T24 from the mouth of Taylor Creek in Little Madeira Bay (Ishman etal 1996) and in core 6A from Bob Allen mudbank (Wingard et al 1995) The correspondencebetween changes in salinity and onshore changes in vegetation is also consistent with resultsfrom the previous cores These patterns will continue to be investigated at additional sites inFlorida Bay and the terrestrial Everglades in order to establish the sequence and timing of eventsthroughout the ecosystem and to determine linkages between the marine and terrestrial systems

REFERENCES CITED

Benninghoff WS 1962 Calculation of pollen and spore density in sediments by addition of exotic pollen in known quantities Pollen et Spores v 4 p 332-333

Brewster-Wingard GL Ishman SE Edwards LE and Willard DA 1996 Preliminary report on the distribution of modern fauna and flora at selected sites in north-central and north-eastern Florida Bay US Geological Survey Open-File Report 96-732 34 p

Davis JC 1973 Statistics and Data Analysis in Geology New York John Wiley amp Sons 550 p

Ishman SE Brewster-Wingard GL Willard DA Cronin TM Edwards LE and Holmes CW 1996 Preliminary paleontologic report on core T-24 Little Madeira Bay Florida US Geological Survey Open-File Report 96-543 47 p

Maker LJ Jr 1981 Statistics for microfossil concentration measurements employing samples spiked with marker grains Review of Paleobotany and Palynology v 32 p153-191

Robbins JA Holmes CW Halley RB Bothner Michael Shinn EA Graney Joseph Keller Gerald tenBrinck Marilyn Rudnick David in press Time constraints characterizing predeposition integration of 137Ce and Pb fluxes to sediments in Florida Bay Geochemica et Cosmochemica

Stockmarr Jens 1971 Tablets with spores used in abolute pollen analysis Pollen et Spores v 8 p 615-621

Wall David Dale Barrie Lohmann GP and Smith WK 1977 The environmental and climatic distribution of dinoflagellate cysts in modern marine sediments from regions in the North and South Atlantic Oceans and Adjacent seas Marine Micropaleontology v 2 p 121-200

Wingard GL Ishman SE Cronin TM Edwards LE Willard DA and Halley RB 1995 Preliminary analysis of down-core biotic assemblages Bob Allen Keys Everglades National Park Florida Bay US Geological Survey Open-File Report 95-628 35 p

  • Title Page
  • Table of Contents
  • Abstract
  • Acknowledgements
  • Methods
  • Discussion of Fauna
  • Discussion of Flora
  • Age Model
  • Summary
  • References
Page 6: Preliminary Paleontologic Report on Cores 19A and 19B, from ...

METHODS OF INVESTIGATION

Benthic Foraminifers and Molluscs

Sediment samples from core 19B were collected at 2 cm intervals and every other samplestarting with 0-2 cm and totaling 34 samples was analyzed for calcareous benthic fauna Thesamples were washed through a 63micro m sieve and dried at lt50 degrees C When possible a total of300 benthic foraminifer specimens were picked from the sample and mounted on griddedmicropaleontologic slides Large samples were put through a sample splitter to randomly reducethe number of specimens For samples containing fewer than 300 benthic foraminiferindividuals all of the specimens present were picked Molluscs were picked from the gt =850micro m size fraction All molluscs and fragments of molluscs recognizable to the generic levelpresent in each interval were picked Species abundances for the benthic fauna were standardizedby calculating relative abundances (percent)

Pollen and Dinocysts

Material for palynological analysis was extracted from 1-2 cm sections of core 19A For eachpalynological sample 7-40 g of material (dry weight) was treated in hydrochloric andhydrofluoric acids and processed for palynological studies All samples were treated with warmKOH for 2-5 minutes given ultrasonic pulse treatment for 5 seconds acetolysed and sievedbetween 8-200micro m mesh A tablet of Lycopodium marker grains was added to each sample Formost samples at least 300 pollen grains were counted for calculation of percent abundances andabsolute pollen concentration To calculate absolute concentration of palynomorphs the marker-grain method was used (Benninghoff 1962 Maker 1981 Stockmarr 1971) For two samplespollen was sparse enough that fewer than 300 grains were counted For nine samples one slidewas completely examined for dinocysts and all dinocyst taxa were tabulated For two samples (0-1 cm and 80-82 cm) two slides were examined completely for dinocysts

Isotopic Analyses

Samples were collected every 2 cm from cores 19B and 19C and analyzed for 210Pb Ra137Ce 7Be and total Pb Analysis of 210Pb has been completed for 19B and Ra and 210Pb havebeen completed for 19C For details of the method see Robbins et al (in press)

ANALYSIS AND DISCUSSION OF THE BENTHIC FAUNA IN CORE 19B

Benthic Foraminifers

A total of 31 benthic foraminiferal species were identified and counted The foraminiferal datawas standardized to relative abundance (percent of assemblage Table 1) and was used for allquantitative analyses Species diversity as measured by Simpsonrsquos Index ranged from 011 to026 and the number of species ranged from 12 to 19

The foraminiferal assemblages are dominated by calcareous benthic forms with thedominance patterns alternating between rotaliid taxa Ammonia parkinsoniana tepida Aparkinsoniana typica Elphidium galvestonense mexicanum E galvestonense typica and Epoeyanum and miliolid taxa Miliolinella cirlcularis M labiosa Quinqueloculina bosciana Qseminulum Q tenagos Q polygona Q poeyana and Triloculina tricarinata Other significantspecies include Archaias angulatus Peneroplis proteus Rosalina floridana and Quinqueloculinaagglutinans

Two dominant assemblages can be identified in the cores an Ammonia-Elphidium (A-E)assemblage and a miliolid assemblage Observations of the foraminiferal faunal changesthroughout core 19B show four intervals dominated by the miliolid assemblage (140 cm 118-90cm 70-42 cm and 18-0 cm) interrupted by three intervals of A-E assemblage dominance (140-118 cm 90-70 cm and 42-18 cm)

Molluscs

Twenty-six molluscan taxonomic categories were recognized and counted in the Russell Bank19B core The number of specimens per sample ranged from 2 to 517 so the faunal counts werestandardized to relative percent abundance (Table 2) The Simpsonrsquos Diversity Index wascalculated for each sample (Table 2) Three sections in the core contained few individualspecimens (lt40) and few molluscan taxonomic groups (1-9) 122-112cm 62-52cm 38-28cmTwo species Brachiodontes sp and Transennella sp make up greater than 50 percent of themolluscan fauna in the entire core

A cluster analysis of Pearsons Correlation coefficient values calculated for the molluscanpercent abundance data and plotted using average linkage method (Figure 2) revealed 3 primarydivisions of the molluscan assemblages within the core 142-68 cm 68-22 cm and 22-0 cm Theinterval from 142-68 cm is dominated by Transennella sp Brachiodontes sp and Cerithiumspp Bittium varium Rissoina spp and Chione cancellata also are present in significantamounts (5) throughout the interval The interval from 66-22 cm has the lowest within-groupsimilarity of the three molluscan assemblages in the core and is represented by 2 clusters in theanlaysis This interval from 66-22 cm contains 2 zones of very low molluscan abundance (62-52cm and 38-28 cm) Brachiodontes sp and Cerithium spp dominate the 66-22 cm interval with anumber of other species present in significant amounts (10) in individual samples (see Table

Table 1Russell Bank 19B

Percent Abundance of Benthic Foraminifera

Depth in Core Am

mon

ia p

arki

nson

iana

tepi

da

Am

mon

ia p

arki

nson

iana

typi

ca

Arc

haia

s an

gula

tus

Bol

ivin

a lo

wm

ani

Bol

ivin

a ps

eudo

plic

ata

Cla

vulin

a tri

carin

ata

Cyc

logy

ra p

lano

rbis

Elp

hidi

um d

elic

atul

um

Elp

hidi

um g

alve

ston

ense

typi

cum

Elp

hidi

um g

alve

ston

ense

mex

ican

um

Elp

hidi

um p

oeya

num

Gra

ss d

wel

ler

Mili

olin

ella

circ

ular

is

Mili

olin

ella

fich

telia

na

Mili

olin

ella

labi

osa

Nod

osar

iidae

Pen

erop

lis p

rote

us

Qui

nque

locu

lina

aggl

utin

ans

Qui

nque

locu

lina

bosc

iana

0-2 cm 000 107 000 000 000 000 000 000 1123 107 000 080 1203 000 000 000 027 000 17914-6 cm 000 098 164 000 000 000 000 000 918 328 000 033 787 000 000 000 000 066 1443

8-10 cm 000 523 000 000 000 000 000 000 1463 418 000 070 592 000 000 000 070 000 167212-14 cm 000 642 520 000 000 000 000 000 887 1376 000 000 673 000 031 000 092 061 76516-18 cm 000 761 543 000 000 000 000 000 2174 1957 000 000 543 000 000 000 000 326 54324-26 cm 000 888 164 000 000 000 000 000 559 1086 000 066 329 033 000 000 066 395 217128-30 cm 000 1738 066 000 000 000 000 000 1770 2787 000 033 492 000 000 033 033 000 45932-34 cm 000 1294 129 000 000 000 000 000 1974 1909 000 000 388 000 000 000 000 000 301036-38 cm 000 2347 144 000 000 000 072 000 1011 1227 000 072 217 072 000 000 000 072 245540-42 cm 000 556 065 000 000 000 065 000 1242 000 000 196 752 000 000 000 000 033 356244-46 cm 000 525 031 000 000 000 093 000 1265 556 000 154 741 000 000 000 000 185 256248-50 cm 000 994 000 000 029 000 029 000 000 3129 000 175 292 000 000 000 000 029 242752-54 cm 000 664 000 035 000 000 140 000 1364 699 000 385 699 000 000 000 000 000 255256-58 cm 000 281 112 000 000 000 056 000 1180 534 000 871 927 000 000 000 000 056 238860-62 cm 000 975 144 000 000 000 036 000 903 1733 000 325 722 000 000 000 000 072 227464-66 cm 000 767 184 000 000 031 061 000 706 1626 000 276 736 000 000 000 061 123 144268-70 cm 000 1536 031 000 000 063 000 000 972 3103 000 063 1348 000 000 000 000 000 43972-74 cm 000 1691 344 000 000 000 000 000 1261 2436 000 086 802 000 000 000 000 115 86076-78 cm 000 1467 367 000 000 000 000 000 900 3767 000 000 500 000 067 000 000 000 26780-82 cm 000 1921 213 000 000 000 000 000 793 3994 000 000 213 000 000 000 000 122 03084-86 cm 000 2097 032 000 000 000 000 000 806 3419 1129 000 226 000 000 000 000 000 16188-90 cm 000 1864 034 000 000 000 000 000 000 3932 1153 000 237 000 000 000 034 034 10292-94 cm 000 329 033 000 000 000 000 000 757 1217 2303 000 921 000 000 000 000 033 78996-98 cm 000 538 028 000 000 000 000 2720 652 1133 000 000 737 000 000 000 000 000 1416

100-102 cm 000 1148 033 000 000 000 000 2230 000 2590 000 000 590 000 000 000 000 000 295104-106 cm 000 635 159 000 000 000 000 2032 317 1333 000 000 794 000 000 000 063 127 1556108-110 cm 000 1655 338 000 000 000 000 439 270 2601 000 000 1250 068 000 000 000 338 000112-114 cm 080 479 133 000 000 000 000 000 1729 1064 000 000 1596 027 000 000 053 133 1941116-118 cm 000 1181 139 000 000 000 000 000 2847 2014 000 000 972 000 000 000 000 000 243120-122 cm 000 1761 066 000 000 000 000 000 2093 2292 000 000 532 000 000 000 000 066 000124-126 cm 000 3142 453 000 000 060 000 121 000 4350 000 000 242 000 000 000 000 242 000128-130 cm 000 2786 352 000 000 000 000 528 000 4164 000 000 587 000 000 000 000 411 029132-134 cm 000 1705 129 000 000 000 000 904 233 3178 000 000 956 000 000 000 000 052 310136-138 cm 000 843 421 000 000 000 000 899 393 1236 000 000 2444 000 028 000 084 197 449140-142 cm 000 2032 581 000 000 000 000 000 645 3903 000 000 645 000 000 000 000 290 000

Table 1Russell Bank 19B

Percent Abundance of Benthic Foraminifera

Depth in Core

0-2 cm 4-6 cm

8-10 cm 12-14 cm 16-18 cm 24-26 cm 28-30 cm 32-34 cm 36-38 cm 40-42 cm 44-46 cm 48-50 cm 52-54 cm 56-58 cm 60-62 cm 64-66 cm 68-70 cm 72-74 cm 76-78 cm 80-82 cm 84-86 cm 88-90 cm 92-94 cm 96-98 cm

100-102 cm 104-106 cm 108-110 cm 112-114 cm 116-118 cm 120-122 cm 124-126 cm 128-130 cm 132-134 cm 136-138 cm 140-142 cm

Qui

nque

locu

lina

sem

inul

um

Qui

nque

locu

lina

tena

gos

Qui

nque

locu

lina

poly

gona

Qui

nque

locu

lina

poey

ana

Ros

alin

a flo

ridan

a

Ros

alin

a gl

obul

aris

Spi

rolo

culin

a an

tilla

rium

Trilo

culin

a lin

eian

a

Trilo

culin

a ro

tund

a

Trilo

culin

a tri

locu

lina

Val

vulin

a s

p

Val

vulin

eria

laev

igat

a

Num

ber o

f Spe

cies

Sim

pson

s D

iver

sity

Inde

x

1337 107 481 3235 214 000 027 000 000 160 000 000 14 019525 000 1279 3934 066 000 098 000 000 262 000 000 14 021732 279 244 3275 035 000 000 000 000 627 000 000 13 018367 153 214 2875 092 000 000 000 031 1009 000 214 17 014217 000 652 1413 000 000 109 000 000 761 000 000 12 013230 954 691 1480 099 000 000 000 493 164 000 132 18 011885 000 393 1082 230 000 000 000 000 000 000 000 13 017000 000 647 583 065 000 000 000 000 000 000 000 9 019072 289 217 1372 000 000 000 000 217 108 036 000 17 016

1046 163 163 1993 065 000 000 000 065 000 000 033 15 020648 340 370 2377 154 000 000 000 000 000 000 000 14 016322 175 117 1637 205 000 000 000 205 234 000 000 15 020245 140 000 2797 140 000 000 000 000 140 000 000 13 018365 000 169 2669 056 000 000 000 000 337 000 000 14 016

1011 181 397 1227 000 000 000 000 000 000 000 000 13 013521 215 706 1933 245 000 000 000 123 215 000 031 19 011878 000 000 1317 219 000 000 000 000 031 000 000 12 018201 086 401 1146 115 000 000 000 000 401 000 057 15 014667 000 467 1100 133 000 000 000 000 267 000 033 13 020549 000 671 732 000 000 000 000 213 488 000 061 13 022290 000 032 1516 000 000 000 000 097 194 000 000 12 021881 000 508 780 000 000 000 000 136 271 000 034 14 022

1908 099 296 1184 132 000 000 000 000 000 000 000 13 014878 000 227 1020 170 000 142 000 340 000 000 000 13 014

1541 000 426 787 033 000 066 000 197 066 000 000 13 0171238 000 222 1397 095 032 000 000 000 000 000 000 14 0131014 034 574 777 000 000 000 000 236 338 000 068 15 014

984 000 293 1011 213 000 000 000 133 080 000 053 17 0131632 104 208 486 035 000 000 000 035 104 000 000 13 0182093 000 166 565 100 000 000 000 033 100 133 000 13 018

000 272 242 393 000 000 000 030 091 363 000 000 13 030000 029 235 323 029 000 000 000 059 411 000 059 14 026

1111 000 207 620 052 000 000 000 336 207 000 000 14 017983 140 253 955 169 000 000 000 112 253 000 140 18 012258 032 419 548 000 000 065 000 065 258 000 258 14 021

Table 2Russell Bank 19B

Percent Abundance of Molluscan Fauna

Depth in Core G

astro

pods

Act

eoci

na c

anal

icul

ata

Am

aea

spp

Bitt

ium

var

ium

Bul

la s

p

Cae

cum

pu

chel

lum

flor

idan

um

Cer

ithid

ea s

pp

Cer

ithiu

m s

pp

Con

us s

p

Cre

pidu

la s

p

Mar

gine

llids

Mod

ulus

mod

ulus

Oliv

ella

sp

Ris

soin

a s

pp

Turr

itella

exo

leta

Vitr

inel

lids

Rar

e G

astro

pods

Uni

dent

ified

gas

tropo

d fra

gmen

ts u

nkno

wn

sp

and

juve

nile

s

0-2 cm 000 000 128 000 147 000 568 000 073 092 183 000 220 000 037 037 0554-6 cm 000 000 347 000 087 000 723 000 116 116 347 000 145 000 116 116 260

8-10 cm 000 000 172 000 000 000 259 000 000 086 517 000 345 000 345 086 34512-14 cm 000 000 244 000 244 000 488 000 000 061 244 244 488 244 000 061 36616-18 cm 000 000 244 000 000 000 610 000 122 000 122 122 854 000 000 122 36620-22 cm 000 000 270 135 135 000 270 000 135 000 000 000 135 000 000 135 27024-26 cm 172 000 345 000 345 172 1552 000 690 000 000 172 172 000 000 000 17228-30 cm 000 000 000 000 000 000 000 000 000 000 000 000 000 000 000 000 00032-34 cm 000 000 714 714 000 000 2143 000 000 000 714 000 714 000 000 000 00036-38 cm 000 000 2143 000 000 000 3571 357 000 000 357 1071 000 000 000 000 107140-42 cm 000 000 1237 515 000 000 1856 000 309 000 103 206 412 000 000 103 41244-46 cm 000 000 215 000 000 000 860 000 000 000 645 108 968 000 108 000 43048-50 cm 000 000 1111 000 000 000 1852 000 000 000 556 000 741 000 000 000 74152-54 cm 000 000 000 000 000 000 811 000 000 000 4324 000 270 000 000 000 54156-58 cm 000 000 000 000 1000 000 4000 000 4000 000 000 000 000 000 000 000 00060-62 cm 000 000 313 000 000 000 000 625 000 000 000 000 625 000 000 313 187564-66 cm 000 000 800 200 100 000 1400 000 300 100 200 000 300 000 000 000 40068-70 cm 000 000 1569 000 196 000 1765 000 392 196 196 000 980 000 000 392 58872-74 cm 000 000 1918 000 137 000 1918 000 685 000 137 000 000 000 000 000 54876-78 cm 000 000 562 000 000 000 1124 000 000 562 337 225 562 112 000 000 168580-82 cm 000 000 414 000 000 000 552 000 000 138 069 138 000 138 000 000 96684-86 cm 000 000 933 000 400 000 1333 267 133 000 267 267 533 000 000 000 133388-90 cm 000 000 219 000 000 000 1606 000 000 000 000 292 803 219 000 146 153392-94 cm 000 000 432 000 144 000 1007 000 000 000 072 288 504 144 000 000 93596-98 cm 303 000 152 000 152 000 1364 000 152 000 000 152 758 152 000 303 152

100-102 cm 000 000 000 000 138 000 483 000 000 069 000 207 345 000 000 000 483104-106 cm 000 067 738 000 067 134 1611 067 000 134 000 134 470 067 000 134 470108-110 cm 000 238 714 000 000 000 952 000 000 079 000 397 1190 079 000 159 1825112-114 cm 286 000 857 000 000 000 1714 000 286 000 286 000 000 000 000 000 1143116-118 cm 000 000 000 000 000 000 000 000 000 000 000 000 000 000 000 000 2000120-122 cm 000 000 345 000 345 000 690 000 000 000 000 345 690 1034 000 000 345124-126 cm 075 000 970 000 000 149 1343 000 075 000 821 224 373 149 149 149 224128-130 cm 000 143 257 000 086 000 857 000 114 086 086 000 286 029 000 029 571132-134 cm 000 000 723 000 000 000 1205 000 000 000 000 120 482 602 000 000 1084136-138 cm 051 051 769 051 103 103 615 000 000 103 000 103 000 256 103 256 410140-142 cm 055 000 656 000 000 000 710 055 109 000 000 383 601 109 000 000 874

Table 2Russell Bank 19B

Percent Abundance of Molluscan Fauna

Depth in Core0-2 cm 4-6 cm

8-10 cm 12-14 cm 16-18 cm 20-22 cm 24-26 cm 28-30 cm 32-34 cm 36-38 cm 40-42 cm 44-46 cm 48-50 cm 52-54 cm 56-58 cm 60-62 cm 64-66 cm 68-70 cm 72-74 cm 76-78 cm 80-82 cm 84-86 cm 88-90 cm 92-94 cm 96-98 cm

100-102 cm 104-106 cm 108-110 cm 112-114 cm 116-118 cm 120-122 cm 124-126 cm 128-130 cm 132-134 cm 136-138 cm 140-142 cm

Pel

ecyp

ods

Ano

mal

ocar

dia

sp

Arc

opsi

s ad

amsi

Bra

chio

dont

es s

p

Chi

one

canc

ella

ta

Cum

ingi

a te

llino

idea

Laev

ecar

dium

spp

Nuc

ula

prox

ima

Pec

tinid

Pin

ctad

a ra

diat

a

Telli

na s

pp

Tran

senn

ella

spp

Rar

e P

elec

ypod

s

Uni

dent

ified

Pel

ecy

Fr

ags

Tota

l num

ber o

f in

divi

dual

spe

cim

ens

Num

ber o

f fau

nal g

roup

s

Sim

pson

s D

iver

sity

Inde

x

000 018 7033 073 055 000 000 000 1264 000 000 018 000 517 16 052000 116 6416 087 000 000 000 000 954 000 000 029 029 331 16 043000 000 7328 086 000 000 000 000 259 000 000 000 172 49 12 055000 183 5732 244 061 000 000 000 1037 000 000 000 061 145 16 035000 000 5732 366 122 000 000 000 244 000 732 000 244 62 14 035000 000 7703 000 000 000 000 000 000 000 270 000 541 62 11 060000 000 2414 345 000 172 000 000 172 172 1724 000 1207 50 16 014000 000 000 000 000 000 000 000 000 000 5000 000 5000 2 2 050000 000 1429 1429 000 000 000 000 000 000 2143 000 000 12 8 015000 000 1429 000 000 000 000 000 000 000 000 000 000 28 7 022000 103 4124 309 000 000 000 103 206 000 000 000 000 97 14 023000 430 968 4624 108 000 000 000 000 108 000 000 430 93 13 025000 926 926 370 926 000 000 185 926 370 000 000 370 54 13 010000 000 2703 000 270 000 000 000 811 000 000 000 270 37 8 028000 000 000 000 000 000 000 000 000 000 000 000 1000 10 4 034000 000 5000 000 000 313 000 000 313 000 000 000 625 32 9 030000 000 2900 100 000 100 000 1000 900 200 300 100 600 100 18 014000 000 588 588 196 000 000 196 000 000 980 000 1176 51 15 010000 000 1918 548 000 000 274 000 000 000 1918 000 000 73 10 016000 112 1910 000 000 000 000 000 337 000 787 000 1685 89 13 012000 207 2690 897 000 000 000 000 138 000 2414 345 897 145 14 016000 000 800 933 000 000 000 000 267 000 1200 000 1333 75 14 010438 000 438 657 073 000 000 000 000 073 2847 000 657 137 14 015216 288 719 647 000 072 000 000 504 000 2734 000 1295 139 16 013152 000 606 455 000 152 000 000 000 000 4545 000 455 66 16 024000 000 1241 483 000 000 000 000 000 000 4897 000 1655 145 10 029671 000 067 134 000 000 000 000 067 000 3624 000 1342 149 18 019000 000 714 238 000 079 159 000 159 000 2302 000 714 126 16 013000 000 000 571 000 000 000 000 000 000 3714 000 1143 35 9 021000 000 000 000 000 000 000 000 000 000 6000 000 2000 5 3 044000 000 2759 000 000 000 000 000 000 000 2069 000 1379 29 10 016373 000 821 672 075 075 000 000 224 000 2463 000 597 134 20 012000 029 857 314 057 000 000 000 200 000 5429 029 543 350 19 032000 000 602 964 241 000 120 000 241 000 2048 000 1566 83 13 012000 103 923 923 000 256 205 000 308 103 3179 000 1026 195 22 014000 109 1967 656 109 000 055 000 273 000 3115 000 164 183 17 016

0-2

4-6

12-14

16-18

20-22

36-38

56-58

116-118

100-102

128-130

96-98

88-90

92-94

112-114

104-106

124-126

136-138

140-142

108-110

132-134

84-86

76-78

120-122

80-82

72-74

68-70

48-50

64-66

24-26

32-34

40-42

60-62

52-54

44-46

28-30

8-10

00 01 02 03 04 05 080706

Figure 2 Q-mode cluster diagram of molluscan assemblages from core 19B Distancesare expressed as Pearsons Correlation coefficient values calculated on the molluscanpercent abundance data (see Table 2) and plotted using average linkage methodShaded areas represent clusters formed by samples from the upper portion of the core(0-22 cm) and the lower portion of the core (68-142 cm)

Sam

ple

(iden

tifie

d by

dep

th in

cm

)

2) The cluster containing samples from the interval from 22-0 cm has high Pearsons Correlationcoefficient values for within-group similarity and the largest between-group distances (seeFigure 2) This upper portion of the core is dominated by Brachiodontes sp which comprisesgreater than 50 of the molluscan assemblage in each sample from this section Pinctadaradiata and Cerithium spp are present in significant amounts (5) in some samples from 22-0cm

Benthic Faunal Patterns

Comparison of the benthic fauna present in core 19B with our modern data set enables us tointerpret the salinity history for the Russell Banks site The foraminiferal and molluscan recordsfrom core 19B show distinct oscillations in salinity with a gradual increase in salinity toward thetop of the core (Figure 3) In addition a positive correlation (ρ =052) exists between increasingSimpson diversity indices and decreasing salinity for the benthic foraminfera

The two dominant foraminiferal assemblages Ammonia-Elphidium and miliolid are verysimilar to the Ammonia-Elphidium and Archaias-miliolid assemblages described from modernFlorida Bay sediments (Brewster-Wingard et al 1996) The distribution of modern benthicforaminifers in Florida Bay shows a strong association between the occurrence of Aparkinsoniana and E galvestonense mexicanum and typica with salinities less than 25 ppt(Brewster-Wingard et al 1996) Conversely miliolids dominate where salinities are near normalmarine values (30 ppt) The intervals dominated by the miliolid assemblage (140 cm 118-90 cm70-42 cm and 18-0 cm) therefore indicate more stable and relatively higher average salinity (32-35 ppt) These segments are interrupted by three periods of A-E assemblage dominance (140-118cm 90-70 cm and 42-18 cm) indicating unstable and relatively low average salinity (lt32 ppt)

Molluscs are not as sensitive to variations in salinity as benthic foraminifers consequently themolluscan data do not show the degree of fluctuation seen in the foraminiferal data (Figure 3)The general trend of increasing percent abundance of euhaline and euhaline-polyhaline molluscsupcore does follow the general trend of the foraminiferal plot showing a gradual increase insalinity upcore No molluscan faunas restricted to terrestrial fresh water marsh or upperestuarine environments are present in core 19B indicating this area has been relatively open bayover the last century and the salinity has probably not dropped below 12-15 ppt

Both the benthic foraminiferal assemblages and the molluscan assemblages show significantchanges between 70-66 cm and between 24-18 cm These zones correspond to shifts from A-Edominated assemblages to miliolid dominated assemblages but the molluscs do not seem torespond significantly to the decreases in salinity that mark the shift from miliolid assemblagesback to A-E assemblages Almost all of the molluscs present in this core can be classified aspolyhaline and are tolerant of a wide range of salinities (from approximately 12 or 15 ppt to 30-35 ppt) which could explain the patterns seen for the molluscs If however the salinity haddropped below ~15ppt during the periods of A-E dominance then the molluscs would mostlikely have shown a response The areas of A-E dominance in the core represent salinities of 15-25 ppt with the lower number delineated by the absence of species of molluscs found in lowsalinity waters of Florida Bay and the upper number constrained by the presence of low salinitybenthic foraminifera The miliolid dominated zones represent salinities of 30 ppt or higher

Figure 3 Plot of percent abundance of benthic foraminifers molluscs and the two datasets combined that indicate increasing salinity for core 19B The benthic foraminifersindicate salinity gt 30 ppt The mollusc species have wider salinity tolerances thespecies illustrated on this plot are classified as euhaline or euhalinepolyhaline andrepresent salinities of 20-25 ppt or greater The positions of the benthic foraminiferalassemblages (Milliolid-gray Ammonia-Elphidium-white) discussed in the text are shownon the right of the plot

ForaminifersMolluscsCombined

900080007000600050004000300020001000000

0-2

8-10

16-18

24-26

32-34

40-42

48-50

56-58

64-66

72-74

80-82

88-90

96-98

104-106

112-114

120-122

128-130

136-138

140-142

abundance

Dep

th in

Cen

timet

ers

Miliolid Assemblage

Miliolid Assemblageat 140-142 cm

Miliolid Assemblage

Miliolid Assemblage

Ammonia- ElphidiumAssemblage

Ammonia- ElphidiumAssemblage

Ammonia- ElphidiumAssemblage

1981

1962

1939

1922

1898

1878

Hard Surface

Coarse Sediment or Sponges

Coarse Sediment

Coarse or Fine Sediment

Fine Sediment

Grass Beds or Sediment

Grass Beds or Coarse Sediment

Grass and Algae Beds

Grass Beds

Pecent AbundanceD

epth

in C

ore

(cm

)

0 10 20 30 40 50 60 70 80 90 1000-2

8-10

16-18

24-26

32-34

40-42

48-50

56-58

64-66

72-74

80-82

88-90

96-98

104-106

112-114

120-122

128-130

136-138

Figure 4 Area diagram of percent abundance of molluscs indicative of specific substrate types for core 19B Data plotted at the 116 cm and 28 cm depths represent averages of the overlying and underlying samples these two samples did not contain enough individual specimens to be statistically valid

The suite of molluscs present in core 19B is more indicative of changes in substrate thanchanges in salinity Figure 4 illustrates the substrate patterns within the core based on thepercent abundance of molluscs known to prefer those substrate types The lowest portion of thecore from 142-110 cm has significant numbers of both sediment dwellers and grass dwellerspresent with dominance of either group fluctuating From 106-88 cm sediment dwellersdominate although grass dwellers are still present in significant numbers The segment from 88-22 cm is dominated by grass dwellers above 68 cm the presence of species indicative of asediment substrate is negligible The uppermost portion of the core from 22 cm to the top isdominated by species that could live on either algae or grass

The shifts in abundance of molluscan substrate indicators at 88 cm 68 cm and 22 cmcorrespond to changes seen in the benthic foraminiferal salinity indicators but at this point thesignificance of this relationship is not understood However since the benthic foraminifers usedfor salinity indicators are not sensitive to changes in substrate we believe the changingforaminiferal patterns reflect changing salinity

ANALYSIS AND DISCUSSION OF THE FLORA IN CORE 19A

Pollen

The percent abundance data on pollen is presented in Table 3 Three pollen zones aredistinguishable based on both percent abundance and absolute pollen concentration (pollengrainsgram dry sediment) The bottom zone (140-80 cm) is characterized by the highestpercentages of Pinus (pine) pollen (80-90) and the lowest percentages of Quercus (oak)(lt6) and pollen of the ChenopodiaceaeAmaranthaceae (pigweed family) and Asteraceae(aster family) (Figure 5) No pollen of the Cyperaceae (sawgrass family) is present in this zoneTotal pollen concentration in this zone and the middle zone ranges from about 500-1200grainsgram and the concentration of Quercus pollen is lower than the other zones with lt50grainsgram (Figure 6)

The middle zone (80-32 cm) is characterized by lower percentages of Pinus pollen (54-73)higher percentages of Quercus (6-10) and higher concentrations of Quercus pollen (50-100grainsgram) In both this and the upper zone pollen of the ChenopodiaceaeAmaranthaceae andAsteraceae are more abundant comprising 3 and 2 of the assemblages respectively Pollenof the Cyperaceae is present in low percentages in this and the upper zone

The upper zone has the highest pollen concentrations of the core with most samples rangingfrom 1200-4600 grainsgram Several taxa contribute to these higher values including PinusQuercus Myrica (wax myrtle) ChenopodiaceaeAmaranthaceae and Asteraceae Cephalanthus(buttonbush) is present in low abundances (lt1) in this zone and Liquidambar (sweet gum) isabsent from this zone

Table 3Russell Bank 19A

Percent Abundance of Pollen

Depth in core Aln

us

Api

acea

e

Ast

erac

eae

Avi

cenn

ia

Bet

ula

Bum

elia

Bur

sera

sim

arub

a

Car

ya

Cas

uarin

a

Cel

tis

Cep

hala

nthu

s

Che

nopo

diac

eae

A

mar

anth

acea

e

Con

ocar

pus

Cyp

erac

eae

Dec

odon

Eric

acea

e

Eup

horb

iace

ae

Faba

ceae

Frax

inus

Ilex

Jugl

ans

0-1 cm 000 000 255 000 000 000 000 000 482 000 028 425 000 000 000 000 000 142 000 000 000 4-5 cm 057 000 201 000 000 000 000 029 115 000 029 287 029 115 000 000 029 057 000 029 029 8-9 cm 032 000 322 000 000 000 000 000 129 000 032 096 000 064 000 000 000 032 000 000 000

20-21 cm 000 000 409 031 000 000 000 000 314 000 063 597 000 000 000 000 000 220 000 000 00032-34 cm 030 000 332 000 030 030 000 000 211 000 000 332 030 030 000 000 000 121 000 030 03044-46 cm 080 000 777 000 000 000 000 027 214 000 000 429 000 080 000 000 027 107 000 054 00056-58 cm 031 000 439 000 000 000 000 031 157 000 000 690 000 063 000 063 000 094 031 000 00068-70 cm 168 000 251 000 028 000 028 084 056 000 000 307 000 056 000 000 000 084 000 000 00080-82 cm 000 000 238 000 000 000 000 000 000 000 000 476 000 000 000 000 000 000 000 000 00092-94 cm 054 000 054 000 000 027 000 082 027 000 000 054 000 000 000 000 000 082 027 000 000

104-106 cm 000 029 115 000 000 000 000 000 000 000 000 230 000 000 057 000 000 115 000 000 000116-118 cm 062 000 062 000 000 000 000 000 000 031 000 185 031 000 000 000 000 062 000 000 000128-130 cm 000 000 061 000 000 000 000 030 000 000 000 091 000 000 000 030 000 061 000 000 000136-138 cm 060 000 060 030 000 030 060 181 000 000 000 091 000 000 000 000 000 000 000 000 000138-140 cm 000 000 000 000 000 000 000 081 000 000 000 244 000 000 000 000 000 000 000 000 000

Table 3Russell Bank 19A

Percent Abundance of Pollen

Depth in core0-1 cm

4-5 cm 8-9 cm

20-21 cm 32-34 cm 44-46 cm 56-58 cm 68-70 cm 80-82 cm 92-94 cm

104-106 cm 116-118 cm 128-130 cm 136-138 cm 138-140 cm

Liqu

idam

bar

Mag

nolia

Myr

ica

Nys

sa

Ost

rya

Car

pinu

s

Pin

us

Pla

nera

Poa

ceae

Que

rcus

Rhi

zoph

ora

Rut

acea

e

Sag

ittar

ia

Sal

ix

Taxo

diac

eae

C

upre

ssac

eae

Tax

acea

e

Typh

a

Ulm

us

Tota

l Pol

len

Cou

nted

000 000 283 000 028 6856 000 028 1076 028 000 028 000 000 000 057 353000 000 086 000 000 6905 000 029 1375 029 000 029 000 000 000 000 349000 000 225 000 000 7395 000 032 932 096 032 032 032 000 096 032 321000 000 1069 000 063 5660 000 031 1101 000 000 000 000 000 031 000 321030 000 846 000 000 6737 000 030 634 000 000 000 030 030 030 000 332107 000 429 027 000 5416 000 107 1046 027 000 000 027 027 054 054 378000 031 376 000 000 6395 000 031 690 094 000 031 031 031 063 031 320028 028 447 000 000 7346 000 000 615 028 000 000 028 000 112 028 358119 000 357 000 000 7976 000 000 595 000 000 000 000 000 000 000 85082 000 408 000 000 8696 000 000 245 027 000 000 000 027 000 000 371029 000 747 000 000 8017 000 029 316 057 000 000 000 029 029 000 350000 000 338 000 000 8923 000 031 123 031 000 000 031 000 031 000 326030 000 396 000 000 8628 000 030 457 000 000 000 030 000 000 000 331030 000 242 000 000 8792 030 000 181 000 000 000 000 000 030 000 332081 000 163 000 000 8862 000 000 569 000 000 000 000 000 000 000 123

0 10 20 30 40 50 60 70 80

10

20

30

40

50

60

70

80

90

100

110

120

130

Depthcm Pinu

sQue

rcus

Casua

rina

Rhizop

hora

Myrica

Cepha

lanthu

s

Cheno

podia

ceae

Amara

nthac

eae

Poace

ae

Cypera

ceae

Asterac

eae

10

20

30

40

50

60

70

80

90

100

110

120

130

0 10 0 0 0 10 0 0 0 0 05 5 5 5 5 5 5 55

(Pine

)(O

ak)

(Aus

tralia

n Pine

)

(Red

Man

grove

)

(Wax

Myrt

le)

(Pig

Wee

d)

(Gras

s Fam

ily)

(Saw

grass

Family

)

(Aste

r Fam

ily)

(Butt

on B

ush)

Figure 5 Percent abundance of selected pollen groups for core Russell Bank 19A (note different scales)

0 50 100 150 200 250 300 350 400

Querc

us

0 50

Casua

rina

0 50 100 150 200 250 300

Myr

ica

0 50 100 150

Cheno

pods

0

Cyper

acea

e

0 50 100

Astera

ceae

10

20

30

40

50

60

70

80

90

100

110

120

130

Depthcm Pinu

s

0 1000 2000 3000

Total

Pollen

Con

cent

ratio

n

10

20

30

40

50

60

70

80

90

100

110

120

130

0 1000 2000 3000 4000

Figure 6 Total concentration of pollen (grainsgram) for core Russell Bank 19A (note different scales)

Dinocysts

Dinocyst recovery in all samples was low Most microscope slides are heavily dominated byorganic debris and the maximum number of specimens observed in any sample was 214Absolute abundance ranges from 779 to 4736 cystsgram These values are one to two orders ofmagnitude below those reported by Wall et al (1977) for samples from the Middle AtlanticBight and western South Africa and are consistent with high sedimentation rates These absoluteabundances in the sediments are far below bloom concentrations in which the number of livingcells per ml of water may exceed 50 million

The dinocyst assemblages in the Russell Bank 19A core consist of less than 10 taxa (Table 4)Various species of the genus Spiniferites Mantell dominate all samples (61 to 79 percent) Due topoor preservation and taxonomic difficulties the individual species of this genus were notdifferentiated S mirabilis (Rossignol) Sarjeant S ramosus (Ehrenberg) Mantell S scabratus(Wall) Sarjeant and other forms are present Operculodinium Wall spp (O israelianum(Rossignol) Wall or Operculodinium species undifferentiated) are present in all samples inamounts of 5 to 19 percent Polysphaeridium zoharyi (Rossignol) Bujak et al is present in allsamples and comprises up to 16 percent of the assemblages Most samples included low numbersof Lingulodinium machaerophorum (Deflandre amp Cookson) Wall Nematosphaeropsis rigidaWrenn and (or) Tectatodinium pellitum Wall Only two samples contained a single specimeneach of the family Congruentidiaceae

Most samples from Russell Bank core 19A are quite similar to one another (Figure 7)Throughout the core the dinocyst Polysphaeridium zoharyi ranges in abundance from 0-16percent which is considerably lower than in the Bob Allen 6A (Wingard et al 1995) and LittleMadeira Bay T24 (Ishman et al 1996) cores With one exception (80-82 cm) increased absoluteabundance of Spiniferites spp is accompanied by increased absolute abundance of P zoharyi(Figure 8) This relationship suggests that absolute abundances in this core are a function ofsediment supply rather than cyst production The sample at 80-82 cm is anomalous the highabsolute abundance of cysts is attributable to Spiniferites spp and fewer than 30 total cysts werefound on each slide This sample may represent a case of an increase in Spiniferites cystproduction and an increase in the amount of organic debris in proportion to sediment supply Thelowest samples (132-134 cm and 136-138 cm) show both low absolute abundances of all cysttypes and low percentages of P zoharyi

Floral Patterns

Changes occur in the pollen and dinocyst assemblages in core 19A but the significance ofthese changes is unclear Three zones are distinguishable for the pollen but the differencesamong them are very subtle and any interpretation of patterns of vegetational change would bepremature However it is apparent that the vegetation changed in response to someenvironmental factor at those times correlation with on-shore cores would be necessary toestablish the nature of the changes Dinocyst abundance fluctuates in the core with two peaks at118-104 cm and 82-80 cm but the assemblages are relatively stable throughout the core

Table 4 Dinocyst data from Russell Bank 19A

Pol

ysph

aerid

ium

zoh

aryi

Spi

nife

rites

spp

Ope

rcul

odin

ium

spp

Nem

atos

phae

rops

is ri

gida

Ling

ulod

iniu

m m

acha

erop

horu

m

Tect

atod

iniu

m p

ellit

um

Tube

rcul

odin

ium

van

cam

poae

Con

grue

ntid

iace

ae

Oth

er

TOTA

L D

INO

CY

STS

CO

UN

TED

Depth (cm)

Wt (g) Cystsg

Slides examined

0-1 74 779 2 129 742 97 00 32 00 00 00 00 3120-21 115 1363 1 123 630 74 49 49 62 00 12 00 8144-46 363 921 1 24 750 95 36 48 12 00 00 36 8468-70 358 1454 1 114 705 95 10 38 29 00 10 00 10580-82 337 3732 2 19 811 132 00 38 00 00 00 00 5392-94 385 2049 1 84 720 119 49 28 00 00 00 00 143

104-106 331 4736 1 128 636 133 77 10 05 00 00 10 195116-118 350 3451 1 141 676 106 07 63 07 00 00 00 142128-130 390 1854 1 121 612 178 51 28 05 05 00 00 214132-134 321 1288 1 34 754 127 68 17 00 00 00 00 118136-138 371 2028 1 66 747 110 55 11 11 00 00 00 91

Species

Percent abundance

Comparison of these data to additional terrestrial and marine cores may lead to a betterunderstanding of the patterns seen here

210PB AGE MODEL FOR THE RUSSELL BANKS SITE

The activity of 210Pb (dpmgram) is shown for 19B and 19C in Figures 9 and 10 Thesedimentation rate for the Russell Bank site is based on the results from 19C because both 210Pband Ra analyses have been completed for that core the rate equals 122 cmyear +- 005The 210Pb curves for cores 19B and 19C are almost identical therefore we make the assumptionthat the rate of sediment accumulation is the same in the two cores No 210Pb analyses have beendone for core 19A to date

SUMMARY

The fauna and flora present in the Russell Bank cores 19A and 19B record an approximately120-year history of fluctuating environmental changes The benthic foraminifera documentperiods of fluctuating salinity with a gradual increase in salinity upcore The molluscan data areconsistent with the foraminiferal data showing increasing salinity upcore but without the degreeof fluctuation indicated by the benthic foraminifera The benthic fauna show significant changesin the assemblages at 70-66 cm and 24-18 cm which correspond to approximately 1937-1940and 1975-1980 A similar shift occurred at 118 cm (approximately 1898) which is not as clearlyseen in the molluscan faunal data These periods represent shifts from low salinity (12-15 ppt) tohigher average salinity (30 ppt) In addition the benthic foraminiferal assemblages shift fromperiods of higher average salinity to periods of lower salinity at 140 cm 90 cm and 42 cmwhich correspond to approximately 1880 1921 and 1960 respectively

The molluscan fauna indicate changes occurring in the substrate at the Russell Banks siteSediment and grass (probably Thalassia) apparently were equally available for habitation from142-110 cm or approximately 1878-1904 Although grass was still available bare-sedimentdominated the area from 106-88 cm or approximately 1908-1922 From 88-22 cm orapproximately 1922-1976 grass was the dominant substrate and from approximately 1939 (68cm) to the present the presence of bare-sediment bottoms was negligible at the siteSignificantly from 22 cm or approximately 1976 to the present the molluscan fauna isdominated by species that can live equally well on algae or seagrass

The pollen present in core 19A show three periods of subtle shifts in the onshore vegetation inresponse to some environmental factor These changes occur at 80 cm and at 32 cm orapproximately 1929 and 1968 If we assume that core 19A and 19B have similar sedimentationrates then the shifts in the onshore vegetation indicated by the pollen seen in 19A occurapproximately 7-8 years prior to changes in Florida Bay as indicated by the benthic fauna in19B However until we see this pattern repeated in the same core or until a 210Pb analysis is

0 20 40 60 80 100

0-1

20-21

44-46

68-70

80-82

92-94

104-106

116-118

128-130132-134136-138

Operculodinium spp

Nematosphaeropsis rigida

Lingulodinium machaerophorum

Spiniferites spp

Polysphaeridium zoharyi

All others

Percent Cystsgram 0 100 200 300 400 500

Figure 7 Percent and absolute abundances of dinocysts for core 19A

Dep

th (

cm)

0 100 200 300 4000

20

40

60

80

100

120

140

Spiniferites

Cystsgram

Dep

th (

cm)

Polysphaeridium zoharyi

Figure 8 Absolute abundances of Polysphaeridium zoharyi and Spiniferites spp in core 19 A

000 200 400 600

Activity (dpmg)

Dep

th (c

m)

0

40

80

120

160

Figure 9 Pb210 activity in dpmg for core 19B

Activity (dpmg)

Dep

th (c

m)

000 100 200 300 400 500 600

0-2

6-8

12-14

18-20

24-26

30-32

36-38

42-44

48-50

54-56

60-62

66-68

72-74

78-80

84-86

90-92

96-98

102-104

108-110

114-116

120-122

126-128

132-134

138-140

144-146

150-152

156-158

Figure 10 210Pb activity in dpmg for core 19C

completed for core 19A we can not be certain of its significance because our assumption ofsimilar sedimentation rates for cores 19A and 19B may not be correct

Two peaks in dinocyst abundance (cystsgram) occur in the samples examined 118-104 cm(approximately 1898-1909) and 82-80 cm (approximately 1927-1929) These occur during aperiod of near normal marine (30 ppt) and stable salinity as indicated by the benthicforaminifera These periods may represent increased dinocyst production and decreased sedimentsupply but the composition of the dinocyst assemblages remains relatively stable throughout thecore

The pattern of increased salinity upcore documented here for Russell Banks 19B is consistentwith patterns seen in core T24 from the mouth of Taylor Creek in Little Madeira Bay (Ishman etal 1996) and in core 6A from Bob Allen mudbank (Wingard et al 1995) The correspondencebetween changes in salinity and onshore changes in vegetation is also consistent with resultsfrom the previous cores These patterns will continue to be investigated at additional sites inFlorida Bay and the terrestrial Everglades in order to establish the sequence and timing of eventsthroughout the ecosystem and to determine linkages between the marine and terrestrial systems

REFERENCES CITED

Benninghoff WS 1962 Calculation of pollen and spore density in sediments by addition of exotic pollen in known quantities Pollen et Spores v 4 p 332-333

Brewster-Wingard GL Ishman SE Edwards LE and Willard DA 1996 Preliminary report on the distribution of modern fauna and flora at selected sites in north-central and north-eastern Florida Bay US Geological Survey Open-File Report 96-732 34 p

Davis JC 1973 Statistics and Data Analysis in Geology New York John Wiley amp Sons 550 p

Ishman SE Brewster-Wingard GL Willard DA Cronin TM Edwards LE and Holmes CW 1996 Preliminary paleontologic report on core T-24 Little Madeira Bay Florida US Geological Survey Open-File Report 96-543 47 p

Maker LJ Jr 1981 Statistics for microfossil concentration measurements employing samples spiked with marker grains Review of Paleobotany and Palynology v 32 p153-191

Robbins JA Holmes CW Halley RB Bothner Michael Shinn EA Graney Joseph Keller Gerald tenBrinck Marilyn Rudnick David in press Time constraints characterizing predeposition integration of 137Ce and Pb fluxes to sediments in Florida Bay Geochemica et Cosmochemica

Stockmarr Jens 1971 Tablets with spores used in abolute pollen analysis Pollen et Spores v 8 p 615-621

Wall David Dale Barrie Lohmann GP and Smith WK 1977 The environmental and climatic distribution of dinoflagellate cysts in modern marine sediments from regions in the North and South Atlantic Oceans and Adjacent seas Marine Micropaleontology v 2 p 121-200

Wingard GL Ishman SE Cronin TM Edwards LE Willard DA and Halley RB 1995 Preliminary analysis of down-core biotic assemblages Bob Allen Keys Everglades National Park Florida Bay US Geological Survey Open-File Report 95-628 35 p

  • Title Page
  • Table of Contents
  • Abstract
  • Acknowledgements
  • Methods
  • Discussion of Fauna
  • Discussion of Flora
  • Age Model
  • Summary
  • References
Page 7: Preliminary Paleontologic Report on Cores 19A and 19B, from ...

ANALYSIS AND DISCUSSION OF THE BENTHIC FAUNA IN CORE 19B

Benthic Foraminifers

A total of 31 benthic foraminiferal species were identified and counted The foraminiferal datawas standardized to relative abundance (percent of assemblage Table 1) and was used for allquantitative analyses Species diversity as measured by Simpsonrsquos Index ranged from 011 to026 and the number of species ranged from 12 to 19

The foraminiferal assemblages are dominated by calcareous benthic forms with thedominance patterns alternating between rotaliid taxa Ammonia parkinsoniana tepida Aparkinsoniana typica Elphidium galvestonense mexicanum E galvestonense typica and Epoeyanum and miliolid taxa Miliolinella cirlcularis M labiosa Quinqueloculina bosciana Qseminulum Q tenagos Q polygona Q poeyana and Triloculina tricarinata Other significantspecies include Archaias angulatus Peneroplis proteus Rosalina floridana and Quinqueloculinaagglutinans

Two dominant assemblages can be identified in the cores an Ammonia-Elphidium (A-E)assemblage and a miliolid assemblage Observations of the foraminiferal faunal changesthroughout core 19B show four intervals dominated by the miliolid assemblage (140 cm 118-90cm 70-42 cm and 18-0 cm) interrupted by three intervals of A-E assemblage dominance (140-118 cm 90-70 cm and 42-18 cm)

Molluscs

Twenty-six molluscan taxonomic categories were recognized and counted in the Russell Bank19B core The number of specimens per sample ranged from 2 to 517 so the faunal counts werestandardized to relative percent abundance (Table 2) The Simpsonrsquos Diversity Index wascalculated for each sample (Table 2) Three sections in the core contained few individualspecimens (lt40) and few molluscan taxonomic groups (1-9) 122-112cm 62-52cm 38-28cmTwo species Brachiodontes sp and Transennella sp make up greater than 50 percent of themolluscan fauna in the entire core

A cluster analysis of Pearsons Correlation coefficient values calculated for the molluscanpercent abundance data and plotted using average linkage method (Figure 2) revealed 3 primarydivisions of the molluscan assemblages within the core 142-68 cm 68-22 cm and 22-0 cm Theinterval from 142-68 cm is dominated by Transennella sp Brachiodontes sp and Cerithiumspp Bittium varium Rissoina spp and Chione cancellata also are present in significantamounts (5) throughout the interval The interval from 66-22 cm has the lowest within-groupsimilarity of the three molluscan assemblages in the core and is represented by 2 clusters in theanlaysis This interval from 66-22 cm contains 2 zones of very low molluscan abundance (62-52cm and 38-28 cm) Brachiodontes sp and Cerithium spp dominate the 66-22 cm interval with anumber of other species present in significant amounts (10) in individual samples (see Table

Table 1Russell Bank 19B

Percent Abundance of Benthic Foraminifera

Depth in Core Am

mon

ia p

arki

nson

iana

tepi

da

Am

mon

ia p

arki

nson

iana

typi

ca

Arc

haia

s an

gula

tus

Bol

ivin

a lo

wm

ani

Bol

ivin

a ps

eudo

plic

ata

Cla

vulin

a tri

carin

ata

Cyc

logy

ra p

lano

rbis

Elp

hidi

um d

elic

atul

um

Elp

hidi

um g

alve

ston

ense

typi

cum

Elp

hidi

um g

alve

ston

ense

mex

ican

um

Elp

hidi

um p

oeya

num

Gra

ss d

wel

ler

Mili

olin

ella

circ

ular

is

Mili

olin

ella

fich

telia

na

Mili

olin

ella

labi

osa

Nod

osar

iidae

Pen

erop

lis p

rote

us

Qui

nque

locu

lina

aggl

utin

ans

Qui

nque

locu

lina

bosc

iana

0-2 cm 000 107 000 000 000 000 000 000 1123 107 000 080 1203 000 000 000 027 000 17914-6 cm 000 098 164 000 000 000 000 000 918 328 000 033 787 000 000 000 000 066 1443

8-10 cm 000 523 000 000 000 000 000 000 1463 418 000 070 592 000 000 000 070 000 167212-14 cm 000 642 520 000 000 000 000 000 887 1376 000 000 673 000 031 000 092 061 76516-18 cm 000 761 543 000 000 000 000 000 2174 1957 000 000 543 000 000 000 000 326 54324-26 cm 000 888 164 000 000 000 000 000 559 1086 000 066 329 033 000 000 066 395 217128-30 cm 000 1738 066 000 000 000 000 000 1770 2787 000 033 492 000 000 033 033 000 45932-34 cm 000 1294 129 000 000 000 000 000 1974 1909 000 000 388 000 000 000 000 000 301036-38 cm 000 2347 144 000 000 000 072 000 1011 1227 000 072 217 072 000 000 000 072 245540-42 cm 000 556 065 000 000 000 065 000 1242 000 000 196 752 000 000 000 000 033 356244-46 cm 000 525 031 000 000 000 093 000 1265 556 000 154 741 000 000 000 000 185 256248-50 cm 000 994 000 000 029 000 029 000 000 3129 000 175 292 000 000 000 000 029 242752-54 cm 000 664 000 035 000 000 140 000 1364 699 000 385 699 000 000 000 000 000 255256-58 cm 000 281 112 000 000 000 056 000 1180 534 000 871 927 000 000 000 000 056 238860-62 cm 000 975 144 000 000 000 036 000 903 1733 000 325 722 000 000 000 000 072 227464-66 cm 000 767 184 000 000 031 061 000 706 1626 000 276 736 000 000 000 061 123 144268-70 cm 000 1536 031 000 000 063 000 000 972 3103 000 063 1348 000 000 000 000 000 43972-74 cm 000 1691 344 000 000 000 000 000 1261 2436 000 086 802 000 000 000 000 115 86076-78 cm 000 1467 367 000 000 000 000 000 900 3767 000 000 500 000 067 000 000 000 26780-82 cm 000 1921 213 000 000 000 000 000 793 3994 000 000 213 000 000 000 000 122 03084-86 cm 000 2097 032 000 000 000 000 000 806 3419 1129 000 226 000 000 000 000 000 16188-90 cm 000 1864 034 000 000 000 000 000 000 3932 1153 000 237 000 000 000 034 034 10292-94 cm 000 329 033 000 000 000 000 000 757 1217 2303 000 921 000 000 000 000 033 78996-98 cm 000 538 028 000 000 000 000 2720 652 1133 000 000 737 000 000 000 000 000 1416

100-102 cm 000 1148 033 000 000 000 000 2230 000 2590 000 000 590 000 000 000 000 000 295104-106 cm 000 635 159 000 000 000 000 2032 317 1333 000 000 794 000 000 000 063 127 1556108-110 cm 000 1655 338 000 000 000 000 439 270 2601 000 000 1250 068 000 000 000 338 000112-114 cm 080 479 133 000 000 000 000 000 1729 1064 000 000 1596 027 000 000 053 133 1941116-118 cm 000 1181 139 000 000 000 000 000 2847 2014 000 000 972 000 000 000 000 000 243120-122 cm 000 1761 066 000 000 000 000 000 2093 2292 000 000 532 000 000 000 000 066 000124-126 cm 000 3142 453 000 000 060 000 121 000 4350 000 000 242 000 000 000 000 242 000128-130 cm 000 2786 352 000 000 000 000 528 000 4164 000 000 587 000 000 000 000 411 029132-134 cm 000 1705 129 000 000 000 000 904 233 3178 000 000 956 000 000 000 000 052 310136-138 cm 000 843 421 000 000 000 000 899 393 1236 000 000 2444 000 028 000 084 197 449140-142 cm 000 2032 581 000 000 000 000 000 645 3903 000 000 645 000 000 000 000 290 000

Table 1Russell Bank 19B

Percent Abundance of Benthic Foraminifera

Depth in Core

0-2 cm 4-6 cm

8-10 cm 12-14 cm 16-18 cm 24-26 cm 28-30 cm 32-34 cm 36-38 cm 40-42 cm 44-46 cm 48-50 cm 52-54 cm 56-58 cm 60-62 cm 64-66 cm 68-70 cm 72-74 cm 76-78 cm 80-82 cm 84-86 cm 88-90 cm 92-94 cm 96-98 cm

100-102 cm 104-106 cm 108-110 cm 112-114 cm 116-118 cm 120-122 cm 124-126 cm 128-130 cm 132-134 cm 136-138 cm 140-142 cm

Qui

nque

locu

lina

sem

inul

um

Qui

nque

locu

lina

tena

gos

Qui

nque

locu

lina

poly

gona

Qui

nque

locu

lina

poey

ana

Ros

alin

a flo

ridan

a

Ros

alin

a gl

obul

aris

Spi

rolo

culin

a an

tilla

rium

Trilo

culin

a lin

eian

a

Trilo

culin

a ro

tund

a

Trilo

culin

a tri

locu

lina

Val

vulin

a s

p

Val

vulin

eria

laev

igat

a

Num

ber o

f Spe

cies

Sim

pson

s D

iver

sity

Inde

x

1337 107 481 3235 214 000 027 000 000 160 000 000 14 019525 000 1279 3934 066 000 098 000 000 262 000 000 14 021732 279 244 3275 035 000 000 000 000 627 000 000 13 018367 153 214 2875 092 000 000 000 031 1009 000 214 17 014217 000 652 1413 000 000 109 000 000 761 000 000 12 013230 954 691 1480 099 000 000 000 493 164 000 132 18 011885 000 393 1082 230 000 000 000 000 000 000 000 13 017000 000 647 583 065 000 000 000 000 000 000 000 9 019072 289 217 1372 000 000 000 000 217 108 036 000 17 016

1046 163 163 1993 065 000 000 000 065 000 000 033 15 020648 340 370 2377 154 000 000 000 000 000 000 000 14 016322 175 117 1637 205 000 000 000 205 234 000 000 15 020245 140 000 2797 140 000 000 000 000 140 000 000 13 018365 000 169 2669 056 000 000 000 000 337 000 000 14 016

1011 181 397 1227 000 000 000 000 000 000 000 000 13 013521 215 706 1933 245 000 000 000 123 215 000 031 19 011878 000 000 1317 219 000 000 000 000 031 000 000 12 018201 086 401 1146 115 000 000 000 000 401 000 057 15 014667 000 467 1100 133 000 000 000 000 267 000 033 13 020549 000 671 732 000 000 000 000 213 488 000 061 13 022290 000 032 1516 000 000 000 000 097 194 000 000 12 021881 000 508 780 000 000 000 000 136 271 000 034 14 022

1908 099 296 1184 132 000 000 000 000 000 000 000 13 014878 000 227 1020 170 000 142 000 340 000 000 000 13 014

1541 000 426 787 033 000 066 000 197 066 000 000 13 0171238 000 222 1397 095 032 000 000 000 000 000 000 14 0131014 034 574 777 000 000 000 000 236 338 000 068 15 014

984 000 293 1011 213 000 000 000 133 080 000 053 17 0131632 104 208 486 035 000 000 000 035 104 000 000 13 0182093 000 166 565 100 000 000 000 033 100 133 000 13 018

000 272 242 393 000 000 000 030 091 363 000 000 13 030000 029 235 323 029 000 000 000 059 411 000 059 14 026

1111 000 207 620 052 000 000 000 336 207 000 000 14 017983 140 253 955 169 000 000 000 112 253 000 140 18 012258 032 419 548 000 000 065 000 065 258 000 258 14 021

Table 2Russell Bank 19B

Percent Abundance of Molluscan Fauna

Depth in Core G

astro

pods

Act

eoci

na c

anal

icul

ata

Am

aea

spp

Bitt

ium

var

ium

Bul

la s

p

Cae

cum

pu

chel

lum

flor

idan

um

Cer

ithid

ea s

pp

Cer

ithiu

m s

pp

Con

us s

p

Cre

pidu

la s

p

Mar

gine

llids

Mod

ulus

mod

ulus

Oliv

ella

sp

Ris

soin

a s

pp

Turr

itella

exo

leta

Vitr

inel

lids

Rar

e G

astro

pods

Uni

dent

ified

gas

tropo

d fra

gmen

ts u

nkno

wn

sp

and

juve

nile

s

0-2 cm 000 000 128 000 147 000 568 000 073 092 183 000 220 000 037 037 0554-6 cm 000 000 347 000 087 000 723 000 116 116 347 000 145 000 116 116 260

8-10 cm 000 000 172 000 000 000 259 000 000 086 517 000 345 000 345 086 34512-14 cm 000 000 244 000 244 000 488 000 000 061 244 244 488 244 000 061 36616-18 cm 000 000 244 000 000 000 610 000 122 000 122 122 854 000 000 122 36620-22 cm 000 000 270 135 135 000 270 000 135 000 000 000 135 000 000 135 27024-26 cm 172 000 345 000 345 172 1552 000 690 000 000 172 172 000 000 000 17228-30 cm 000 000 000 000 000 000 000 000 000 000 000 000 000 000 000 000 00032-34 cm 000 000 714 714 000 000 2143 000 000 000 714 000 714 000 000 000 00036-38 cm 000 000 2143 000 000 000 3571 357 000 000 357 1071 000 000 000 000 107140-42 cm 000 000 1237 515 000 000 1856 000 309 000 103 206 412 000 000 103 41244-46 cm 000 000 215 000 000 000 860 000 000 000 645 108 968 000 108 000 43048-50 cm 000 000 1111 000 000 000 1852 000 000 000 556 000 741 000 000 000 74152-54 cm 000 000 000 000 000 000 811 000 000 000 4324 000 270 000 000 000 54156-58 cm 000 000 000 000 1000 000 4000 000 4000 000 000 000 000 000 000 000 00060-62 cm 000 000 313 000 000 000 000 625 000 000 000 000 625 000 000 313 187564-66 cm 000 000 800 200 100 000 1400 000 300 100 200 000 300 000 000 000 40068-70 cm 000 000 1569 000 196 000 1765 000 392 196 196 000 980 000 000 392 58872-74 cm 000 000 1918 000 137 000 1918 000 685 000 137 000 000 000 000 000 54876-78 cm 000 000 562 000 000 000 1124 000 000 562 337 225 562 112 000 000 168580-82 cm 000 000 414 000 000 000 552 000 000 138 069 138 000 138 000 000 96684-86 cm 000 000 933 000 400 000 1333 267 133 000 267 267 533 000 000 000 133388-90 cm 000 000 219 000 000 000 1606 000 000 000 000 292 803 219 000 146 153392-94 cm 000 000 432 000 144 000 1007 000 000 000 072 288 504 144 000 000 93596-98 cm 303 000 152 000 152 000 1364 000 152 000 000 152 758 152 000 303 152

100-102 cm 000 000 000 000 138 000 483 000 000 069 000 207 345 000 000 000 483104-106 cm 000 067 738 000 067 134 1611 067 000 134 000 134 470 067 000 134 470108-110 cm 000 238 714 000 000 000 952 000 000 079 000 397 1190 079 000 159 1825112-114 cm 286 000 857 000 000 000 1714 000 286 000 286 000 000 000 000 000 1143116-118 cm 000 000 000 000 000 000 000 000 000 000 000 000 000 000 000 000 2000120-122 cm 000 000 345 000 345 000 690 000 000 000 000 345 690 1034 000 000 345124-126 cm 075 000 970 000 000 149 1343 000 075 000 821 224 373 149 149 149 224128-130 cm 000 143 257 000 086 000 857 000 114 086 086 000 286 029 000 029 571132-134 cm 000 000 723 000 000 000 1205 000 000 000 000 120 482 602 000 000 1084136-138 cm 051 051 769 051 103 103 615 000 000 103 000 103 000 256 103 256 410140-142 cm 055 000 656 000 000 000 710 055 109 000 000 383 601 109 000 000 874

Table 2Russell Bank 19B

Percent Abundance of Molluscan Fauna

Depth in Core0-2 cm 4-6 cm

8-10 cm 12-14 cm 16-18 cm 20-22 cm 24-26 cm 28-30 cm 32-34 cm 36-38 cm 40-42 cm 44-46 cm 48-50 cm 52-54 cm 56-58 cm 60-62 cm 64-66 cm 68-70 cm 72-74 cm 76-78 cm 80-82 cm 84-86 cm 88-90 cm 92-94 cm 96-98 cm

100-102 cm 104-106 cm 108-110 cm 112-114 cm 116-118 cm 120-122 cm 124-126 cm 128-130 cm 132-134 cm 136-138 cm 140-142 cm

Pel

ecyp

ods

Ano

mal

ocar

dia

sp

Arc

opsi

s ad

amsi

Bra

chio

dont

es s

p

Chi

one

canc

ella

ta

Cum

ingi

a te

llino

idea

Laev

ecar

dium

spp

Nuc

ula

prox

ima

Pec

tinid

Pin

ctad

a ra

diat

a

Telli

na s

pp

Tran

senn

ella

spp

Rar

e P

elec

ypod

s

Uni

dent

ified

Pel

ecy

Fr

ags

Tota

l num

ber o

f in

divi

dual

spe

cim

ens

Num

ber o

f fau

nal g

roup

s

Sim

pson

s D

iver

sity

Inde

x

000 018 7033 073 055 000 000 000 1264 000 000 018 000 517 16 052000 116 6416 087 000 000 000 000 954 000 000 029 029 331 16 043000 000 7328 086 000 000 000 000 259 000 000 000 172 49 12 055000 183 5732 244 061 000 000 000 1037 000 000 000 061 145 16 035000 000 5732 366 122 000 000 000 244 000 732 000 244 62 14 035000 000 7703 000 000 000 000 000 000 000 270 000 541 62 11 060000 000 2414 345 000 172 000 000 172 172 1724 000 1207 50 16 014000 000 000 000 000 000 000 000 000 000 5000 000 5000 2 2 050000 000 1429 1429 000 000 000 000 000 000 2143 000 000 12 8 015000 000 1429 000 000 000 000 000 000 000 000 000 000 28 7 022000 103 4124 309 000 000 000 103 206 000 000 000 000 97 14 023000 430 968 4624 108 000 000 000 000 108 000 000 430 93 13 025000 926 926 370 926 000 000 185 926 370 000 000 370 54 13 010000 000 2703 000 270 000 000 000 811 000 000 000 270 37 8 028000 000 000 000 000 000 000 000 000 000 000 000 1000 10 4 034000 000 5000 000 000 313 000 000 313 000 000 000 625 32 9 030000 000 2900 100 000 100 000 1000 900 200 300 100 600 100 18 014000 000 588 588 196 000 000 196 000 000 980 000 1176 51 15 010000 000 1918 548 000 000 274 000 000 000 1918 000 000 73 10 016000 112 1910 000 000 000 000 000 337 000 787 000 1685 89 13 012000 207 2690 897 000 000 000 000 138 000 2414 345 897 145 14 016000 000 800 933 000 000 000 000 267 000 1200 000 1333 75 14 010438 000 438 657 073 000 000 000 000 073 2847 000 657 137 14 015216 288 719 647 000 072 000 000 504 000 2734 000 1295 139 16 013152 000 606 455 000 152 000 000 000 000 4545 000 455 66 16 024000 000 1241 483 000 000 000 000 000 000 4897 000 1655 145 10 029671 000 067 134 000 000 000 000 067 000 3624 000 1342 149 18 019000 000 714 238 000 079 159 000 159 000 2302 000 714 126 16 013000 000 000 571 000 000 000 000 000 000 3714 000 1143 35 9 021000 000 000 000 000 000 000 000 000 000 6000 000 2000 5 3 044000 000 2759 000 000 000 000 000 000 000 2069 000 1379 29 10 016373 000 821 672 075 075 000 000 224 000 2463 000 597 134 20 012000 029 857 314 057 000 000 000 200 000 5429 029 543 350 19 032000 000 602 964 241 000 120 000 241 000 2048 000 1566 83 13 012000 103 923 923 000 256 205 000 308 103 3179 000 1026 195 22 014000 109 1967 656 109 000 055 000 273 000 3115 000 164 183 17 016

0-2

4-6

12-14

16-18

20-22

36-38

56-58

116-118

100-102

128-130

96-98

88-90

92-94

112-114

104-106

124-126

136-138

140-142

108-110

132-134

84-86

76-78

120-122

80-82

72-74

68-70

48-50

64-66

24-26

32-34

40-42

60-62

52-54

44-46

28-30

8-10

00 01 02 03 04 05 080706

Figure 2 Q-mode cluster diagram of molluscan assemblages from core 19B Distancesare expressed as Pearsons Correlation coefficient values calculated on the molluscanpercent abundance data (see Table 2) and plotted using average linkage methodShaded areas represent clusters formed by samples from the upper portion of the core(0-22 cm) and the lower portion of the core (68-142 cm)

Sam

ple

(iden

tifie

d by

dep

th in

cm

)

2) The cluster containing samples from the interval from 22-0 cm has high Pearsons Correlationcoefficient values for within-group similarity and the largest between-group distances (seeFigure 2) This upper portion of the core is dominated by Brachiodontes sp which comprisesgreater than 50 of the molluscan assemblage in each sample from this section Pinctadaradiata and Cerithium spp are present in significant amounts (5) in some samples from 22-0cm

Benthic Faunal Patterns

Comparison of the benthic fauna present in core 19B with our modern data set enables us tointerpret the salinity history for the Russell Banks site The foraminiferal and molluscan recordsfrom core 19B show distinct oscillations in salinity with a gradual increase in salinity toward thetop of the core (Figure 3) In addition a positive correlation (ρ =052) exists between increasingSimpson diversity indices and decreasing salinity for the benthic foraminfera

The two dominant foraminiferal assemblages Ammonia-Elphidium and miliolid are verysimilar to the Ammonia-Elphidium and Archaias-miliolid assemblages described from modernFlorida Bay sediments (Brewster-Wingard et al 1996) The distribution of modern benthicforaminifers in Florida Bay shows a strong association between the occurrence of Aparkinsoniana and E galvestonense mexicanum and typica with salinities less than 25 ppt(Brewster-Wingard et al 1996) Conversely miliolids dominate where salinities are near normalmarine values (30 ppt) The intervals dominated by the miliolid assemblage (140 cm 118-90 cm70-42 cm and 18-0 cm) therefore indicate more stable and relatively higher average salinity (32-35 ppt) These segments are interrupted by three periods of A-E assemblage dominance (140-118cm 90-70 cm and 42-18 cm) indicating unstable and relatively low average salinity (lt32 ppt)

Molluscs are not as sensitive to variations in salinity as benthic foraminifers consequently themolluscan data do not show the degree of fluctuation seen in the foraminiferal data (Figure 3)The general trend of increasing percent abundance of euhaline and euhaline-polyhaline molluscsupcore does follow the general trend of the foraminiferal plot showing a gradual increase insalinity upcore No molluscan faunas restricted to terrestrial fresh water marsh or upperestuarine environments are present in core 19B indicating this area has been relatively open bayover the last century and the salinity has probably not dropped below 12-15 ppt

Both the benthic foraminiferal assemblages and the molluscan assemblages show significantchanges between 70-66 cm and between 24-18 cm These zones correspond to shifts from A-Edominated assemblages to miliolid dominated assemblages but the molluscs do not seem torespond significantly to the decreases in salinity that mark the shift from miliolid assemblagesback to A-E assemblages Almost all of the molluscs present in this core can be classified aspolyhaline and are tolerant of a wide range of salinities (from approximately 12 or 15 ppt to 30-35 ppt) which could explain the patterns seen for the molluscs If however the salinity haddropped below ~15ppt during the periods of A-E dominance then the molluscs would mostlikely have shown a response The areas of A-E dominance in the core represent salinities of 15-25 ppt with the lower number delineated by the absence of species of molluscs found in lowsalinity waters of Florida Bay and the upper number constrained by the presence of low salinitybenthic foraminifera The miliolid dominated zones represent salinities of 30 ppt or higher

Figure 3 Plot of percent abundance of benthic foraminifers molluscs and the two datasets combined that indicate increasing salinity for core 19B The benthic foraminifersindicate salinity gt 30 ppt The mollusc species have wider salinity tolerances thespecies illustrated on this plot are classified as euhaline or euhalinepolyhaline andrepresent salinities of 20-25 ppt or greater The positions of the benthic foraminiferalassemblages (Milliolid-gray Ammonia-Elphidium-white) discussed in the text are shownon the right of the plot

ForaminifersMolluscsCombined

900080007000600050004000300020001000000

0-2

8-10

16-18

24-26

32-34

40-42

48-50

56-58

64-66

72-74

80-82

88-90

96-98

104-106

112-114

120-122

128-130

136-138

140-142

abundance

Dep

th in

Cen

timet

ers

Miliolid Assemblage

Miliolid Assemblageat 140-142 cm

Miliolid Assemblage

Miliolid Assemblage

Ammonia- ElphidiumAssemblage

Ammonia- ElphidiumAssemblage

Ammonia- ElphidiumAssemblage

1981

1962

1939

1922

1898

1878

Hard Surface

Coarse Sediment or Sponges

Coarse Sediment

Coarse or Fine Sediment

Fine Sediment

Grass Beds or Sediment

Grass Beds or Coarse Sediment

Grass and Algae Beds

Grass Beds

Pecent AbundanceD

epth

in C

ore

(cm

)

0 10 20 30 40 50 60 70 80 90 1000-2

8-10

16-18

24-26

32-34

40-42

48-50

56-58

64-66

72-74

80-82

88-90

96-98

104-106

112-114

120-122

128-130

136-138

Figure 4 Area diagram of percent abundance of molluscs indicative of specific substrate types for core 19B Data plotted at the 116 cm and 28 cm depths represent averages of the overlying and underlying samples these two samples did not contain enough individual specimens to be statistically valid

The suite of molluscs present in core 19B is more indicative of changes in substrate thanchanges in salinity Figure 4 illustrates the substrate patterns within the core based on thepercent abundance of molluscs known to prefer those substrate types The lowest portion of thecore from 142-110 cm has significant numbers of both sediment dwellers and grass dwellerspresent with dominance of either group fluctuating From 106-88 cm sediment dwellersdominate although grass dwellers are still present in significant numbers The segment from 88-22 cm is dominated by grass dwellers above 68 cm the presence of species indicative of asediment substrate is negligible The uppermost portion of the core from 22 cm to the top isdominated by species that could live on either algae or grass

The shifts in abundance of molluscan substrate indicators at 88 cm 68 cm and 22 cmcorrespond to changes seen in the benthic foraminiferal salinity indicators but at this point thesignificance of this relationship is not understood However since the benthic foraminifers usedfor salinity indicators are not sensitive to changes in substrate we believe the changingforaminiferal patterns reflect changing salinity

ANALYSIS AND DISCUSSION OF THE FLORA IN CORE 19A

Pollen

The percent abundance data on pollen is presented in Table 3 Three pollen zones aredistinguishable based on both percent abundance and absolute pollen concentration (pollengrainsgram dry sediment) The bottom zone (140-80 cm) is characterized by the highestpercentages of Pinus (pine) pollen (80-90) and the lowest percentages of Quercus (oak)(lt6) and pollen of the ChenopodiaceaeAmaranthaceae (pigweed family) and Asteraceae(aster family) (Figure 5) No pollen of the Cyperaceae (sawgrass family) is present in this zoneTotal pollen concentration in this zone and the middle zone ranges from about 500-1200grainsgram and the concentration of Quercus pollen is lower than the other zones with lt50grainsgram (Figure 6)

The middle zone (80-32 cm) is characterized by lower percentages of Pinus pollen (54-73)higher percentages of Quercus (6-10) and higher concentrations of Quercus pollen (50-100grainsgram) In both this and the upper zone pollen of the ChenopodiaceaeAmaranthaceae andAsteraceae are more abundant comprising 3 and 2 of the assemblages respectively Pollenof the Cyperaceae is present in low percentages in this and the upper zone

The upper zone has the highest pollen concentrations of the core with most samples rangingfrom 1200-4600 grainsgram Several taxa contribute to these higher values including PinusQuercus Myrica (wax myrtle) ChenopodiaceaeAmaranthaceae and Asteraceae Cephalanthus(buttonbush) is present in low abundances (lt1) in this zone and Liquidambar (sweet gum) isabsent from this zone

Table 3Russell Bank 19A

Percent Abundance of Pollen

Depth in core Aln

us

Api

acea

e

Ast

erac

eae

Avi

cenn

ia

Bet

ula

Bum

elia

Bur

sera

sim

arub

a

Car

ya

Cas

uarin

a

Cel

tis

Cep

hala

nthu

s

Che

nopo

diac

eae

A

mar

anth

acea

e

Con

ocar

pus

Cyp

erac

eae

Dec

odon

Eric

acea

e

Eup

horb

iace

ae

Faba

ceae

Frax

inus

Ilex

Jugl

ans

0-1 cm 000 000 255 000 000 000 000 000 482 000 028 425 000 000 000 000 000 142 000 000 000 4-5 cm 057 000 201 000 000 000 000 029 115 000 029 287 029 115 000 000 029 057 000 029 029 8-9 cm 032 000 322 000 000 000 000 000 129 000 032 096 000 064 000 000 000 032 000 000 000

20-21 cm 000 000 409 031 000 000 000 000 314 000 063 597 000 000 000 000 000 220 000 000 00032-34 cm 030 000 332 000 030 030 000 000 211 000 000 332 030 030 000 000 000 121 000 030 03044-46 cm 080 000 777 000 000 000 000 027 214 000 000 429 000 080 000 000 027 107 000 054 00056-58 cm 031 000 439 000 000 000 000 031 157 000 000 690 000 063 000 063 000 094 031 000 00068-70 cm 168 000 251 000 028 000 028 084 056 000 000 307 000 056 000 000 000 084 000 000 00080-82 cm 000 000 238 000 000 000 000 000 000 000 000 476 000 000 000 000 000 000 000 000 00092-94 cm 054 000 054 000 000 027 000 082 027 000 000 054 000 000 000 000 000 082 027 000 000

104-106 cm 000 029 115 000 000 000 000 000 000 000 000 230 000 000 057 000 000 115 000 000 000116-118 cm 062 000 062 000 000 000 000 000 000 031 000 185 031 000 000 000 000 062 000 000 000128-130 cm 000 000 061 000 000 000 000 030 000 000 000 091 000 000 000 030 000 061 000 000 000136-138 cm 060 000 060 030 000 030 060 181 000 000 000 091 000 000 000 000 000 000 000 000 000138-140 cm 000 000 000 000 000 000 000 081 000 000 000 244 000 000 000 000 000 000 000 000 000

Table 3Russell Bank 19A

Percent Abundance of Pollen

Depth in core0-1 cm

4-5 cm 8-9 cm

20-21 cm 32-34 cm 44-46 cm 56-58 cm 68-70 cm 80-82 cm 92-94 cm

104-106 cm 116-118 cm 128-130 cm 136-138 cm 138-140 cm

Liqu

idam

bar

Mag

nolia

Myr

ica

Nys

sa

Ost

rya

Car

pinu

s

Pin

us

Pla

nera

Poa

ceae

Que

rcus

Rhi

zoph

ora

Rut

acea

e

Sag

ittar

ia

Sal

ix

Taxo

diac

eae

C

upre

ssac

eae

Tax

acea

e

Typh

a

Ulm

us

Tota

l Pol

len

Cou

nted

000 000 283 000 028 6856 000 028 1076 028 000 028 000 000 000 057 353000 000 086 000 000 6905 000 029 1375 029 000 029 000 000 000 000 349000 000 225 000 000 7395 000 032 932 096 032 032 032 000 096 032 321000 000 1069 000 063 5660 000 031 1101 000 000 000 000 000 031 000 321030 000 846 000 000 6737 000 030 634 000 000 000 030 030 030 000 332107 000 429 027 000 5416 000 107 1046 027 000 000 027 027 054 054 378000 031 376 000 000 6395 000 031 690 094 000 031 031 031 063 031 320028 028 447 000 000 7346 000 000 615 028 000 000 028 000 112 028 358119 000 357 000 000 7976 000 000 595 000 000 000 000 000 000 000 85082 000 408 000 000 8696 000 000 245 027 000 000 000 027 000 000 371029 000 747 000 000 8017 000 029 316 057 000 000 000 029 029 000 350000 000 338 000 000 8923 000 031 123 031 000 000 031 000 031 000 326030 000 396 000 000 8628 000 030 457 000 000 000 030 000 000 000 331030 000 242 000 000 8792 030 000 181 000 000 000 000 000 030 000 332081 000 163 000 000 8862 000 000 569 000 000 000 000 000 000 000 123

0 10 20 30 40 50 60 70 80

10

20

30

40

50

60

70

80

90

100

110

120

130

Depthcm Pinu

sQue

rcus

Casua

rina

Rhizop

hora

Myrica

Cepha

lanthu

s

Cheno

podia

ceae

Amara

nthac

eae

Poace

ae

Cypera

ceae

Asterac

eae

10

20

30

40

50

60

70

80

90

100

110

120

130

0 10 0 0 0 10 0 0 0 0 05 5 5 5 5 5 5 55

(Pine

)(O

ak)

(Aus

tralia

n Pine

)

(Red

Man

grove

)

(Wax

Myrt

le)

(Pig

Wee

d)

(Gras

s Fam

ily)

(Saw

grass

Family

)

(Aste

r Fam

ily)

(Butt

on B

ush)

Figure 5 Percent abundance of selected pollen groups for core Russell Bank 19A (note different scales)

0 50 100 150 200 250 300 350 400

Querc

us

0 50

Casua

rina

0 50 100 150 200 250 300

Myr

ica

0 50 100 150

Cheno

pods

0

Cyper

acea

e

0 50 100

Astera

ceae

10

20

30

40

50

60

70

80

90

100

110

120

130

Depthcm Pinu

s

0 1000 2000 3000

Total

Pollen

Con

cent

ratio

n

10

20

30

40

50

60

70

80

90

100

110

120

130

0 1000 2000 3000 4000

Figure 6 Total concentration of pollen (grainsgram) for core Russell Bank 19A (note different scales)

Dinocysts

Dinocyst recovery in all samples was low Most microscope slides are heavily dominated byorganic debris and the maximum number of specimens observed in any sample was 214Absolute abundance ranges from 779 to 4736 cystsgram These values are one to two orders ofmagnitude below those reported by Wall et al (1977) for samples from the Middle AtlanticBight and western South Africa and are consistent with high sedimentation rates These absoluteabundances in the sediments are far below bloom concentrations in which the number of livingcells per ml of water may exceed 50 million

The dinocyst assemblages in the Russell Bank 19A core consist of less than 10 taxa (Table 4)Various species of the genus Spiniferites Mantell dominate all samples (61 to 79 percent) Due topoor preservation and taxonomic difficulties the individual species of this genus were notdifferentiated S mirabilis (Rossignol) Sarjeant S ramosus (Ehrenberg) Mantell S scabratus(Wall) Sarjeant and other forms are present Operculodinium Wall spp (O israelianum(Rossignol) Wall or Operculodinium species undifferentiated) are present in all samples inamounts of 5 to 19 percent Polysphaeridium zoharyi (Rossignol) Bujak et al is present in allsamples and comprises up to 16 percent of the assemblages Most samples included low numbersof Lingulodinium machaerophorum (Deflandre amp Cookson) Wall Nematosphaeropsis rigidaWrenn and (or) Tectatodinium pellitum Wall Only two samples contained a single specimeneach of the family Congruentidiaceae

Most samples from Russell Bank core 19A are quite similar to one another (Figure 7)Throughout the core the dinocyst Polysphaeridium zoharyi ranges in abundance from 0-16percent which is considerably lower than in the Bob Allen 6A (Wingard et al 1995) and LittleMadeira Bay T24 (Ishman et al 1996) cores With one exception (80-82 cm) increased absoluteabundance of Spiniferites spp is accompanied by increased absolute abundance of P zoharyi(Figure 8) This relationship suggests that absolute abundances in this core are a function ofsediment supply rather than cyst production The sample at 80-82 cm is anomalous the highabsolute abundance of cysts is attributable to Spiniferites spp and fewer than 30 total cysts werefound on each slide This sample may represent a case of an increase in Spiniferites cystproduction and an increase in the amount of organic debris in proportion to sediment supply Thelowest samples (132-134 cm and 136-138 cm) show both low absolute abundances of all cysttypes and low percentages of P zoharyi

Floral Patterns

Changes occur in the pollen and dinocyst assemblages in core 19A but the significance ofthese changes is unclear Three zones are distinguishable for the pollen but the differencesamong them are very subtle and any interpretation of patterns of vegetational change would bepremature However it is apparent that the vegetation changed in response to someenvironmental factor at those times correlation with on-shore cores would be necessary toestablish the nature of the changes Dinocyst abundance fluctuates in the core with two peaks at118-104 cm and 82-80 cm but the assemblages are relatively stable throughout the core

Table 4 Dinocyst data from Russell Bank 19A

Pol

ysph

aerid

ium

zoh

aryi

Spi

nife

rites

spp

Ope

rcul

odin

ium

spp

Nem

atos

phae

rops

is ri

gida

Ling

ulod

iniu

m m

acha

erop

horu

m

Tect

atod

iniu

m p

ellit

um

Tube

rcul

odin

ium

van

cam

poae

Con

grue

ntid

iace

ae

Oth

er

TOTA

L D

INO

CY

STS

CO

UN

TED

Depth (cm)

Wt (g) Cystsg

Slides examined

0-1 74 779 2 129 742 97 00 32 00 00 00 00 3120-21 115 1363 1 123 630 74 49 49 62 00 12 00 8144-46 363 921 1 24 750 95 36 48 12 00 00 36 8468-70 358 1454 1 114 705 95 10 38 29 00 10 00 10580-82 337 3732 2 19 811 132 00 38 00 00 00 00 5392-94 385 2049 1 84 720 119 49 28 00 00 00 00 143

104-106 331 4736 1 128 636 133 77 10 05 00 00 10 195116-118 350 3451 1 141 676 106 07 63 07 00 00 00 142128-130 390 1854 1 121 612 178 51 28 05 05 00 00 214132-134 321 1288 1 34 754 127 68 17 00 00 00 00 118136-138 371 2028 1 66 747 110 55 11 11 00 00 00 91

Species

Percent abundance

Comparison of these data to additional terrestrial and marine cores may lead to a betterunderstanding of the patterns seen here

210PB AGE MODEL FOR THE RUSSELL BANKS SITE

The activity of 210Pb (dpmgram) is shown for 19B and 19C in Figures 9 and 10 Thesedimentation rate for the Russell Bank site is based on the results from 19C because both 210Pband Ra analyses have been completed for that core the rate equals 122 cmyear +- 005The 210Pb curves for cores 19B and 19C are almost identical therefore we make the assumptionthat the rate of sediment accumulation is the same in the two cores No 210Pb analyses have beendone for core 19A to date

SUMMARY

The fauna and flora present in the Russell Bank cores 19A and 19B record an approximately120-year history of fluctuating environmental changes The benthic foraminifera documentperiods of fluctuating salinity with a gradual increase in salinity upcore The molluscan data areconsistent with the foraminiferal data showing increasing salinity upcore but without the degreeof fluctuation indicated by the benthic foraminifera The benthic fauna show significant changesin the assemblages at 70-66 cm and 24-18 cm which correspond to approximately 1937-1940and 1975-1980 A similar shift occurred at 118 cm (approximately 1898) which is not as clearlyseen in the molluscan faunal data These periods represent shifts from low salinity (12-15 ppt) tohigher average salinity (30 ppt) In addition the benthic foraminiferal assemblages shift fromperiods of higher average salinity to periods of lower salinity at 140 cm 90 cm and 42 cmwhich correspond to approximately 1880 1921 and 1960 respectively

The molluscan fauna indicate changes occurring in the substrate at the Russell Banks siteSediment and grass (probably Thalassia) apparently were equally available for habitation from142-110 cm or approximately 1878-1904 Although grass was still available bare-sedimentdominated the area from 106-88 cm or approximately 1908-1922 From 88-22 cm orapproximately 1922-1976 grass was the dominant substrate and from approximately 1939 (68cm) to the present the presence of bare-sediment bottoms was negligible at the siteSignificantly from 22 cm or approximately 1976 to the present the molluscan fauna isdominated by species that can live equally well on algae or seagrass

The pollen present in core 19A show three periods of subtle shifts in the onshore vegetation inresponse to some environmental factor These changes occur at 80 cm and at 32 cm orapproximately 1929 and 1968 If we assume that core 19A and 19B have similar sedimentationrates then the shifts in the onshore vegetation indicated by the pollen seen in 19A occurapproximately 7-8 years prior to changes in Florida Bay as indicated by the benthic fauna in19B However until we see this pattern repeated in the same core or until a 210Pb analysis is

0 20 40 60 80 100

0-1

20-21

44-46

68-70

80-82

92-94

104-106

116-118

128-130132-134136-138

Operculodinium spp

Nematosphaeropsis rigida

Lingulodinium machaerophorum

Spiniferites spp

Polysphaeridium zoharyi

All others

Percent Cystsgram 0 100 200 300 400 500

Figure 7 Percent and absolute abundances of dinocysts for core 19A

Dep

th (

cm)

0 100 200 300 4000

20

40

60

80

100

120

140

Spiniferites

Cystsgram

Dep

th (

cm)

Polysphaeridium zoharyi

Figure 8 Absolute abundances of Polysphaeridium zoharyi and Spiniferites spp in core 19 A

000 200 400 600

Activity (dpmg)

Dep

th (c

m)

0

40

80

120

160

Figure 9 Pb210 activity in dpmg for core 19B

Activity (dpmg)

Dep

th (c

m)

000 100 200 300 400 500 600

0-2

6-8

12-14

18-20

24-26

30-32

36-38

42-44

48-50

54-56

60-62

66-68

72-74

78-80

84-86

90-92

96-98

102-104

108-110

114-116

120-122

126-128

132-134

138-140

144-146

150-152

156-158

Figure 10 210Pb activity in dpmg for core 19C

completed for core 19A we can not be certain of its significance because our assumption ofsimilar sedimentation rates for cores 19A and 19B may not be correct

Two peaks in dinocyst abundance (cystsgram) occur in the samples examined 118-104 cm(approximately 1898-1909) and 82-80 cm (approximately 1927-1929) These occur during aperiod of near normal marine (30 ppt) and stable salinity as indicated by the benthicforaminifera These periods may represent increased dinocyst production and decreased sedimentsupply but the composition of the dinocyst assemblages remains relatively stable throughout thecore

The pattern of increased salinity upcore documented here for Russell Banks 19B is consistentwith patterns seen in core T24 from the mouth of Taylor Creek in Little Madeira Bay (Ishman etal 1996) and in core 6A from Bob Allen mudbank (Wingard et al 1995) The correspondencebetween changes in salinity and onshore changes in vegetation is also consistent with resultsfrom the previous cores These patterns will continue to be investigated at additional sites inFlorida Bay and the terrestrial Everglades in order to establish the sequence and timing of eventsthroughout the ecosystem and to determine linkages between the marine and terrestrial systems

REFERENCES CITED

Benninghoff WS 1962 Calculation of pollen and spore density in sediments by addition of exotic pollen in known quantities Pollen et Spores v 4 p 332-333

Brewster-Wingard GL Ishman SE Edwards LE and Willard DA 1996 Preliminary report on the distribution of modern fauna and flora at selected sites in north-central and north-eastern Florida Bay US Geological Survey Open-File Report 96-732 34 p

Davis JC 1973 Statistics and Data Analysis in Geology New York John Wiley amp Sons 550 p

Ishman SE Brewster-Wingard GL Willard DA Cronin TM Edwards LE and Holmes CW 1996 Preliminary paleontologic report on core T-24 Little Madeira Bay Florida US Geological Survey Open-File Report 96-543 47 p

Maker LJ Jr 1981 Statistics for microfossil concentration measurements employing samples spiked with marker grains Review of Paleobotany and Palynology v 32 p153-191

Robbins JA Holmes CW Halley RB Bothner Michael Shinn EA Graney Joseph Keller Gerald tenBrinck Marilyn Rudnick David in press Time constraints characterizing predeposition integration of 137Ce and Pb fluxes to sediments in Florida Bay Geochemica et Cosmochemica

Stockmarr Jens 1971 Tablets with spores used in abolute pollen analysis Pollen et Spores v 8 p 615-621

Wall David Dale Barrie Lohmann GP and Smith WK 1977 The environmental and climatic distribution of dinoflagellate cysts in modern marine sediments from regions in the North and South Atlantic Oceans and Adjacent seas Marine Micropaleontology v 2 p 121-200

Wingard GL Ishman SE Cronin TM Edwards LE Willard DA and Halley RB 1995 Preliminary analysis of down-core biotic assemblages Bob Allen Keys Everglades National Park Florida Bay US Geological Survey Open-File Report 95-628 35 p

  • Title Page
  • Table of Contents
  • Abstract
  • Acknowledgements
  • Methods
  • Discussion of Fauna
  • Discussion of Flora
  • Age Model
  • Summary
  • References
Page 8: Preliminary Paleontologic Report on Cores 19A and 19B, from ...

Table 1Russell Bank 19B

Percent Abundance of Benthic Foraminifera

Depth in Core Am

mon

ia p

arki

nson

iana

tepi

da

Am

mon

ia p

arki

nson

iana

typi

ca

Arc

haia

s an

gula

tus

Bol

ivin

a lo

wm

ani

Bol

ivin

a ps

eudo

plic

ata

Cla

vulin

a tri

carin

ata

Cyc

logy

ra p

lano

rbis

Elp

hidi

um d

elic

atul

um

Elp

hidi

um g

alve

ston

ense

typi

cum

Elp

hidi

um g

alve

ston

ense

mex

ican

um

Elp

hidi

um p

oeya

num

Gra

ss d

wel

ler

Mili

olin

ella

circ

ular

is

Mili

olin

ella

fich

telia

na

Mili

olin

ella

labi

osa

Nod

osar

iidae

Pen

erop

lis p

rote

us

Qui

nque

locu

lina

aggl

utin

ans

Qui

nque

locu

lina

bosc

iana

0-2 cm 000 107 000 000 000 000 000 000 1123 107 000 080 1203 000 000 000 027 000 17914-6 cm 000 098 164 000 000 000 000 000 918 328 000 033 787 000 000 000 000 066 1443

8-10 cm 000 523 000 000 000 000 000 000 1463 418 000 070 592 000 000 000 070 000 167212-14 cm 000 642 520 000 000 000 000 000 887 1376 000 000 673 000 031 000 092 061 76516-18 cm 000 761 543 000 000 000 000 000 2174 1957 000 000 543 000 000 000 000 326 54324-26 cm 000 888 164 000 000 000 000 000 559 1086 000 066 329 033 000 000 066 395 217128-30 cm 000 1738 066 000 000 000 000 000 1770 2787 000 033 492 000 000 033 033 000 45932-34 cm 000 1294 129 000 000 000 000 000 1974 1909 000 000 388 000 000 000 000 000 301036-38 cm 000 2347 144 000 000 000 072 000 1011 1227 000 072 217 072 000 000 000 072 245540-42 cm 000 556 065 000 000 000 065 000 1242 000 000 196 752 000 000 000 000 033 356244-46 cm 000 525 031 000 000 000 093 000 1265 556 000 154 741 000 000 000 000 185 256248-50 cm 000 994 000 000 029 000 029 000 000 3129 000 175 292 000 000 000 000 029 242752-54 cm 000 664 000 035 000 000 140 000 1364 699 000 385 699 000 000 000 000 000 255256-58 cm 000 281 112 000 000 000 056 000 1180 534 000 871 927 000 000 000 000 056 238860-62 cm 000 975 144 000 000 000 036 000 903 1733 000 325 722 000 000 000 000 072 227464-66 cm 000 767 184 000 000 031 061 000 706 1626 000 276 736 000 000 000 061 123 144268-70 cm 000 1536 031 000 000 063 000 000 972 3103 000 063 1348 000 000 000 000 000 43972-74 cm 000 1691 344 000 000 000 000 000 1261 2436 000 086 802 000 000 000 000 115 86076-78 cm 000 1467 367 000 000 000 000 000 900 3767 000 000 500 000 067 000 000 000 26780-82 cm 000 1921 213 000 000 000 000 000 793 3994 000 000 213 000 000 000 000 122 03084-86 cm 000 2097 032 000 000 000 000 000 806 3419 1129 000 226 000 000 000 000 000 16188-90 cm 000 1864 034 000 000 000 000 000 000 3932 1153 000 237 000 000 000 034 034 10292-94 cm 000 329 033 000 000 000 000 000 757 1217 2303 000 921 000 000 000 000 033 78996-98 cm 000 538 028 000 000 000 000 2720 652 1133 000 000 737 000 000 000 000 000 1416

100-102 cm 000 1148 033 000 000 000 000 2230 000 2590 000 000 590 000 000 000 000 000 295104-106 cm 000 635 159 000 000 000 000 2032 317 1333 000 000 794 000 000 000 063 127 1556108-110 cm 000 1655 338 000 000 000 000 439 270 2601 000 000 1250 068 000 000 000 338 000112-114 cm 080 479 133 000 000 000 000 000 1729 1064 000 000 1596 027 000 000 053 133 1941116-118 cm 000 1181 139 000 000 000 000 000 2847 2014 000 000 972 000 000 000 000 000 243120-122 cm 000 1761 066 000 000 000 000 000 2093 2292 000 000 532 000 000 000 000 066 000124-126 cm 000 3142 453 000 000 060 000 121 000 4350 000 000 242 000 000 000 000 242 000128-130 cm 000 2786 352 000 000 000 000 528 000 4164 000 000 587 000 000 000 000 411 029132-134 cm 000 1705 129 000 000 000 000 904 233 3178 000 000 956 000 000 000 000 052 310136-138 cm 000 843 421 000 000 000 000 899 393 1236 000 000 2444 000 028 000 084 197 449140-142 cm 000 2032 581 000 000 000 000 000 645 3903 000 000 645 000 000 000 000 290 000

Table 1Russell Bank 19B

Percent Abundance of Benthic Foraminifera

Depth in Core

0-2 cm 4-6 cm

8-10 cm 12-14 cm 16-18 cm 24-26 cm 28-30 cm 32-34 cm 36-38 cm 40-42 cm 44-46 cm 48-50 cm 52-54 cm 56-58 cm 60-62 cm 64-66 cm 68-70 cm 72-74 cm 76-78 cm 80-82 cm 84-86 cm 88-90 cm 92-94 cm 96-98 cm

100-102 cm 104-106 cm 108-110 cm 112-114 cm 116-118 cm 120-122 cm 124-126 cm 128-130 cm 132-134 cm 136-138 cm 140-142 cm

Qui

nque

locu

lina

sem

inul

um

Qui

nque

locu

lina

tena

gos

Qui

nque

locu

lina

poly

gona

Qui

nque

locu

lina

poey

ana

Ros

alin

a flo

ridan

a

Ros

alin

a gl

obul

aris

Spi

rolo

culin

a an

tilla

rium

Trilo

culin

a lin

eian

a

Trilo

culin

a ro

tund

a

Trilo

culin

a tri

locu

lina

Val

vulin

a s

p

Val

vulin

eria

laev

igat

a

Num

ber o

f Spe

cies

Sim

pson

s D

iver

sity

Inde

x

1337 107 481 3235 214 000 027 000 000 160 000 000 14 019525 000 1279 3934 066 000 098 000 000 262 000 000 14 021732 279 244 3275 035 000 000 000 000 627 000 000 13 018367 153 214 2875 092 000 000 000 031 1009 000 214 17 014217 000 652 1413 000 000 109 000 000 761 000 000 12 013230 954 691 1480 099 000 000 000 493 164 000 132 18 011885 000 393 1082 230 000 000 000 000 000 000 000 13 017000 000 647 583 065 000 000 000 000 000 000 000 9 019072 289 217 1372 000 000 000 000 217 108 036 000 17 016

1046 163 163 1993 065 000 000 000 065 000 000 033 15 020648 340 370 2377 154 000 000 000 000 000 000 000 14 016322 175 117 1637 205 000 000 000 205 234 000 000 15 020245 140 000 2797 140 000 000 000 000 140 000 000 13 018365 000 169 2669 056 000 000 000 000 337 000 000 14 016

1011 181 397 1227 000 000 000 000 000 000 000 000 13 013521 215 706 1933 245 000 000 000 123 215 000 031 19 011878 000 000 1317 219 000 000 000 000 031 000 000 12 018201 086 401 1146 115 000 000 000 000 401 000 057 15 014667 000 467 1100 133 000 000 000 000 267 000 033 13 020549 000 671 732 000 000 000 000 213 488 000 061 13 022290 000 032 1516 000 000 000 000 097 194 000 000 12 021881 000 508 780 000 000 000 000 136 271 000 034 14 022

1908 099 296 1184 132 000 000 000 000 000 000 000 13 014878 000 227 1020 170 000 142 000 340 000 000 000 13 014

1541 000 426 787 033 000 066 000 197 066 000 000 13 0171238 000 222 1397 095 032 000 000 000 000 000 000 14 0131014 034 574 777 000 000 000 000 236 338 000 068 15 014

984 000 293 1011 213 000 000 000 133 080 000 053 17 0131632 104 208 486 035 000 000 000 035 104 000 000 13 0182093 000 166 565 100 000 000 000 033 100 133 000 13 018

000 272 242 393 000 000 000 030 091 363 000 000 13 030000 029 235 323 029 000 000 000 059 411 000 059 14 026

1111 000 207 620 052 000 000 000 336 207 000 000 14 017983 140 253 955 169 000 000 000 112 253 000 140 18 012258 032 419 548 000 000 065 000 065 258 000 258 14 021

Table 2Russell Bank 19B

Percent Abundance of Molluscan Fauna

Depth in Core G

astro

pods

Act

eoci

na c

anal

icul

ata

Am

aea

spp

Bitt

ium

var

ium

Bul

la s

p

Cae

cum

pu

chel

lum

flor

idan

um

Cer

ithid

ea s

pp

Cer

ithiu

m s

pp

Con

us s

p

Cre

pidu

la s

p

Mar

gine

llids

Mod

ulus

mod

ulus

Oliv

ella

sp

Ris

soin

a s

pp

Turr

itella

exo

leta

Vitr

inel

lids

Rar

e G

astro

pods

Uni

dent

ified

gas

tropo

d fra

gmen

ts u

nkno

wn

sp

and

juve

nile

s

0-2 cm 000 000 128 000 147 000 568 000 073 092 183 000 220 000 037 037 0554-6 cm 000 000 347 000 087 000 723 000 116 116 347 000 145 000 116 116 260

8-10 cm 000 000 172 000 000 000 259 000 000 086 517 000 345 000 345 086 34512-14 cm 000 000 244 000 244 000 488 000 000 061 244 244 488 244 000 061 36616-18 cm 000 000 244 000 000 000 610 000 122 000 122 122 854 000 000 122 36620-22 cm 000 000 270 135 135 000 270 000 135 000 000 000 135 000 000 135 27024-26 cm 172 000 345 000 345 172 1552 000 690 000 000 172 172 000 000 000 17228-30 cm 000 000 000 000 000 000 000 000 000 000 000 000 000 000 000 000 00032-34 cm 000 000 714 714 000 000 2143 000 000 000 714 000 714 000 000 000 00036-38 cm 000 000 2143 000 000 000 3571 357 000 000 357 1071 000 000 000 000 107140-42 cm 000 000 1237 515 000 000 1856 000 309 000 103 206 412 000 000 103 41244-46 cm 000 000 215 000 000 000 860 000 000 000 645 108 968 000 108 000 43048-50 cm 000 000 1111 000 000 000 1852 000 000 000 556 000 741 000 000 000 74152-54 cm 000 000 000 000 000 000 811 000 000 000 4324 000 270 000 000 000 54156-58 cm 000 000 000 000 1000 000 4000 000 4000 000 000 000 000 000 000 000 00060-62 cm 000 000 313 000 000 000 000 625 000 000 000 000 625 000 000 313 187564-66 cm 000 000 800 200 100 000 1400 000 300 100 200 000 300 000 000 000 40068-70 cm 000 000 1569 000 196 000 1765 000 392 196 196 000 980 000 000 392 58872-74 cm 000 000 1918 000 137 000 1918 000 685 000 137 000 000 000 000 000 54876-78 cm 000 000 562 000 000 000 1124 000 000 562 337 225 562 112 000 000 168580-82 cm 000 000 414 000 000 000 552 000 000 138 069 138 000 138 000 000 96684-86 cm 000 000 933 000 400 000 1333 267 133 000 267 267 533 000 000 000 133388-90 cm 000 000 219 000 000 000 1606 000 000 000 000 292 803 219 000 146 153392-94 cm 000 000 432 000 144 000 1007 000 000 000 072 288 504 144 000 000 93596-98 cm 303 000 152 000 152 000 1364 000 152 000 000 152 758 152 000 303 152

100-102 cm 000 000 000 000 138 000 483 000 000 069 000 207 345 000 000 000 483104-106 cm 000 067 738 000 067 134 1611 067 000 134 000 134 470 067 000 134 470108-110 cm 000 238 714 000 000 000 952 000 000 079 000 397 1190 079 000 159 1825112-114 cm 286 000 857 000 000 000 1714 000 286 000 286 000 000 000 000 000 1143116-118 cm 000 000 000 000 000 000 000 000 000 000 000 000 000 000 000 000 2000120-122 cm 000 000 345 000 345 000 690 000 000 000 000 345 690 1034 000 000 345124-126 cm 075 000 970 000 000 149 1343 000 075 000 821 224 373 149 149 149 224128-130 cm 000 143 257 000 086 000 857 000 114 086 086 000 286 029 000 029 571132-134 cm 000 000 723 000 000 000 1205 000 000 000 000 120 482 602 000 000 1084136-138 cm 051 051 769 051 103 103 615 000 000 103 000 103 000 256 103 256 410140-142 cm 055 000 656 000 000 000 710 055 109 000 000 383 601 109 000 000 874

Table 2Russell Bank 19B

Percent Abundance of Molluscan Fauna

Depth in Core0-2 cm 4-6 cm

8-10 cm 12-14 cm 16-18 cm 20-22 cm 24-26 cm 28-30 cm 32-34 cm 36-38 cm 40-42 cm 44-46 cm 48-50 cm 52-54 cm 56-58 cm 60-62 cm 64-66 cm 68-70 cm 72-74 cm 76-78 cm 80-82 cm 84-86 cm 88-90 cm 92-94 cm 96-98 cm

100-102 cm 104-106 cm 108-110 cm 112-114 cm 116-118 cm 120-122 cm 124-126 cm 128-130 cm 132-134 cm 136-138 cm 140-142 cm

Pel

ecyp

ods

Ano

mal

ocar

dia

sp

Arc

opsi

s ad

amsi

Bra

chio

dont

es s

p

Chi

one

canc

ella

ta

Cum

ingi

a te

llino

idea

Laev

ecar

dium

spp

Nuc

ula

prox

ima

Pec

tinid

Pin

ctad

a ra

diat

a

Telli

na s

pp

Tran

senn

ella

spp

Rar

e P

elec

ypod

s

Uni

dent

ified

Pel

ecy

Fr

ags

Tota

l num

ber o

f in

divi

dual

spe

cim

ens

Num

ber o

f fau

nal g

roup

s

Sim

pson

s D

iver

sity

Inde

x

000 018 7033 073 055 000 000 000 1264 000 000 018 000 517 16 052000 116 6416 087 000 000 000 000 954 000 000 029 029 331 16 043000 000 7328 086 000 000 000 000 259 000 000 000 172 49 12 055000 183 5732 244 061 000 000 000 1037 000 000 000 061 145 16 035000 000 5732 366 122 000 000 000 244 000 732 000 244 62 14 035000 000 7703 000 000 000 000 000 000 000 270 000 541 62 11 060000 000 2414 345 000 172 000 000 172 172 1724 000 1207 50 16 014000 000 000 000 000 000 000 000 000 000 5000 000 5000 2 2 050000 000 1429 1429 000 000 000 000 000 000 2143 000 000 12 8 015000 000 1429 000 000 000 000 000 000 000 000 000 000 28 7 022000 103 4124 309 000 000 000 103 206 000 000 000 000 97 14 023000 430 968 4624 108 000 000 000 000 108 000 000 430 93 13 025000 926 926 370 926 000 000 185 926 370 000 000 370 54 13 010000 000 2703 000 270 000 000 000 811 000 000 000 270 37 8 028000 000 000 000 000 000 000 000 000 000 000 000 1000 10 4 034000 000 5000 000 000 313 000 000 313 000 000 000 625 32 9 030000 000 2900 100 000 100 000 1000 900 200 300 100 600 100 18 014000 000 588 588 196 000 000 196 000 000 980 000 1176 51 15 010000 000 1918 548 000 000 274 000 000 000 1918 000 000 73 10 016000 112 1910 000 000 000 000 000 337 000 787 000 1685 89 13 012000 207 2690 897 000 000 000 000 138 000 2414 345 897 145 14 016000 000 800 933 000 000 000 000 267 000 1200 000 1333 75 14 010438 000 438 657 073 000 000 000 000 073 2847 000 657 137 14 015216 288 719 647 000 072 000 000 504 000 2734 000 1295 139 16 013152 000 606 455 000 152 000 000 000 000 4545 000 455 66 16 024000 000 1241 483 000 000 000 000 000 000 4897 000 1655 145 10 029671 000 067 134 000 000 000 000 067 000 3624 000 1342 149 18 019000 000 714 238 000 079 159 000 159 000 2302 000 714 126 16 013000 000 000 571 000 000 000 000 000 000 3714 000 1143 35 9 021000 000 000 000 000 000 000 000 000 000 6000 000 2000 5 3 044000 000 2759 000 000 000 000 000 000 000 2069 000 1379 29 10 016373 000 821 672 075 075 000 000 224 000 2463 000 597 134 20 012000 029 857 314 057 000 000 000 200 000 5429 029 543 350 19 032000 000 602 964 241 000 120 000 241 000 2048 000 1566 83 13 012000 103 923 923 000 256 205 000 308 103 3179 000 1026 195 22 014000 109 1967 656 109 000 055 000 273 000 3115 000 164 183 17 016

0-2

4-6

12-14

16-18

20-22

36-38

56-58

116-118

100-102

128-130

96-98

88-90

92-94

112-114

104-106

124-126

136-138

140-142

108-110

132-134

84-86

76-78

120-122

80-82

72-74

68-70

48-50

64-66

24-26

32-34

40-42

60-62

52-54

44-46

28-30

8-10

00 01 02 03 04 05 080706

Figure 2 Q-mode cluster diagram of molluscan assemblages from core 19B Distancesare expressed as Pearsons Correlation coefficient values calculated on the molluscanpercent abundance data (see Table 2) and plotted using average linkage methodShaded areas represent clusters formed by samples from the upper portion of the core(0-22 cm) and the lower portion of the core (68-142 cm)

Sam

ple

(iden

tifie

d by

dep

th in

cm

)

2) The cluster containing samples from the interval from 22-0 cm has high Pearsons Correlationcoefficient values for within-group similarity and the largest between-group distances (seeFigure 2) This upper portion of the core is dominated by Brachiodontes sp which comprisesgreater than 50 of the molluscan assemblage in each sample from this section Pinctadaradiata and Cerithium spp are present in significant amounts (5) in some samples from 22-0cm

Benthic Faunal Patterns

Comparison of the benthic fauna present in core 19B with our modern data set enables us tointerpret the salinity history for the Russell Banks site The foraminiferal and molluscan recordsfrom core 19B show distinct oscillations in salinity with a gradual increase in salinity toward thetop of the core (Figure 3) In addition a positive correlation (ρ =052) exists between increasingSimpson diversity indices and decreasing salinity for the benthic foraminfera

The two dominant foraminiferal assemblages Ammonia-Elphidium and miliolid are verysimilar to the Ammonia-Elphidium and Archaias-miliolid assemblages described from modernFlorida Bay sediments (Brewster-Wingard et al 1996) The distribution of modern benthicforaminifers in Florida Bay shows a strong association between the occurrence of Aparkinsoniana and E galvestonense mexicanum and typica with salinities less than 25 ppt(Brewster-Wingard et al 1996) Conversely miliolids dominate where salinities are near normalmarine values (30 ppt) The intervals dominated by the miliolid assemblage (140 cm 118-90 cm70-42 cm and 18-0 cm) therefore indicate more stable and relatively higher average salinity (32-35 ppt) These segments are interrupted by three periods of A-E assemblage dominance (140-118cm 90-70 cm and 42-18 cm) indicating unstable and relatively low average salinity (lt32 ppt)

Molluscs are not as sensitive to variations in salinity as benthic foraminifers consequently themolluscan data do not show the degree of fluctuation seen in the foraminiferal data (Figure 3)The general trend of increasing percent abundance of euhaline and euhaline-polyhaline molluscsupcore does follow the general trend of the foraminiferal plot showing a gradual increase insalinity upcore No molluscan faunas restricted to terrestrial fresh water marsh or upperestuarine environments are present in core 19B indicating this area has been relatively open bayover the last century and the salinity has probably not dropped below 12-15 ppt

Both the benthic foraminiferal assemblages and the molluscan assemblages show significantchanges between 70-66 cm and between 24-18 cm These zones correspond to shifts from A-Edominated assemblages to miliolid dominated assemblages but the molluscs do not seem torespond significantly to the decreases in salinity that mark the shift from miliolid assemblagesback to A-E assemblages Almost all of the molluscs present in this core can be classified aspolyhaline and are tolerant of a wide range of salinities (from approximately 12 or 15 ppt to 30-35 ppt) which could explain the patterns seen for the molluscs If however the salinity haddropped below ~15ppt during the periods of A-E dominance then the molluscs would mostlikely have shown a response The areas of A-E dominance in the core represent salinities of 15-25 ppt with the lower number delineated by the absence of species of molluscs found in lowsalinity waters of Florida Bay and the upper number constrained by the presence of low salinitybenthic foraminifera The miliolid dominated zones represent salinities of 30 ppt or higher

Figure 3 Plot of percent abundance of benthic foraminifers molluscs and the two datasets combined that indicate increasing salinity for core 19B The benthic foraminifersindicate salinity gt 30 ppt The mollusc species have wider salinity tolerances thespecies illustrated on this plot are classified as euhaline or euhalinepolyhaline andrepresent salinities of 20-25 ppt or greater The positions of the benthic foraminiferalassemblages (Milliolid-gray Ammonia-Elphidium-white) discussed in the text are shownon the right of the plot

ForaminifersMolluscsCombined

900080007000600050004000300020001000000

0-2

8-10

16-18

24-26

32-34

40-42

48-50

56-58

64-66

72-74

80-82

88-90

96-98

104-106

112-114

120-122

128-130

136-138

140-142

abundance

Dep

th in

Cen

timet

ers

Miliolid Assemblage

Miliolid Assemblageat 140-142 cm

Miliolid Assemblage

Miliolid Assemblage

Ammonia- ElphidiumAssemblage

Ammonia- ElphidiumAssemblage

Ammonia- ElphidiumAssemblage

1981

1962

1939

1922

1898

1878

Hard Surface

Coarse Sediment or Sponges

Coarse Sediment

Coarse or Fine Sediment

Fine Sediment

Grass Beds or Sediment

Grass Beds or Coarse Sediment

Grass and Algae Beds

Grass Beds

Pecent AbundanceD

epth

in C

ore

(cm

)

0 10 20 30 40 50 60 70 80 90 1000-2

8-10

16-18

24-26

32-34

40-42

48-50

56-58

64-66

72-74

80-82

88-90

96-98

104-106

112-114

120-122

128-130

136-138

Figure 4 Area diagram of percent abundance of molluscs indicative of specific substrate types for core 19B Data plotted at the 116 cm and 28 cm depths represent averages of the overlying and underlying samples these two samples did not contain enough individual specimens to be statistically valid

The suite of molluscs present in core 19B is more indicative of changes in substrate thanchanges in salinity Figure 4 illustrates the substrate patterns within the core based on thepercent abundance of molluscs known to prefer those substrate types The lowest portion of thecore from 142-110 cm has significant numbers of both sediment dwellers and grass dwellerspresent with dominance of either group fluctuating From 106-88 cm sediment dwellersdominate although grass dwellers are still present in significant numbers The segment from 88-22 cm is dominated by grass dwellers above 68 cm the presence of species indicative of asediment substrate is negligible The uppermost portion of the core from 22 cm to the top isdominated by species that could live on either algae or grass

The shifts in abundance of molluscan substrate indicators at 88 cm 68 cm and 22 cmcorrespond to changes seen in the benthic foraminiferal salinity indicators but at this point thesignificance of this relationship is not understood However since the benthic foraminifers usedfor salinity indicators are not sensitive to changes in substrate we believe the changingforaminiferal patterns reflect changing salinity

ANALYSIS AND DISCUSSION OF THE FLORA IN CORE 19A

Pollen

The percent abundance data on pollen is presented in Table 3 Three pollen zones aredistinguishable based on both percent abundance and absolute pollen concentration (pollengrainsgram dry sediment) The bottom zone (140-80 cm) is characterized by the highestpercentages of Pinus (pine) pollen (80-90) and the lowest percentages of Quercus (oak)(lt6) and pollen of the ChenopodiaceaeAmaranthaceae (pigweed family) and Asteraceae(aster family) (Figure 5) No pollen of the Cyperaceae (sawgrass family) is present in this zoneTotal pollen concentration in this zone and the middle zone ranges from about 500-1200grainsgram and the concentration of Quercus pollen is lower than the other zones with lt50grainsgram (Figure 6)

The middle zone (80-32 cm) is characterized by lower percentages of Pinus pollen (54-73)higher percentages of Quercus (6-10) and higher concentrations of Quercus pollen (50-100grainsgram) In both this and the upper zone pollen of the ChenopodiaceaeAmaranthaceae andAsteraceae are more abundant comprising 3 and 2 of the assemblages respectively Pollenof the Cyperaceae is present in low percentages in this and the upper zone

The upper zone has the highest pollen concentrations of the core with most samples rangingfrom 1200-4600 grainsgram Several taxa contribute to these higher values including PinusQuercus Myrica (wax myrtle) ChenopodiaceaeAmaranthaceae and Asteraceae Cephalanthus(buttonbush) is present in low abundances (lt1) in this zone and Liquidambar (sweet gum) isabsent from this zone

Table 3Russell Bank 19A

Percent Abundance of Pollen

Depth in core Aln

us

Api

acea

e

Ast

erac

eae

Avi

cenn

ia

Bet

ula

Bum

elia

Bur

sera

sim

arub

a

Car

ya

Cas

uarin

a

Cel

tis

Cep

hala

nthu

s

Che

nopo

diac

eae

A

mar

anth

acea

e

Con

ocar

pus

Cyp

erac

eae

Dec

odon

Eric

acea

e

Eup

horb

iace

ae

Faba

ceae

Frax

inus

Ilex

Jugl

ans

0-1 cm 000 000 255 000 000 000 000 000 482 000 028 425 000 000 000 000 000 142 000 000 000 4-5 cm 057 000 201 000 000 000 000 029 115 000 029 287 029 115 000 000 029 057 000 029 029 8-9 cm 032 000 322 000 000 000 000 000 129 000 032 096 000 064 000 000 000 032 000 000 000

20-21 cm 000 000 409 031 000 000 000 000 314 000 063 597 000 000 000 000 000 220 000 000 00032-34 cm 030 000 332 000 030 030 000 000 211 000 000 332 030 030 000 000 000 121 000 030 03044-46 cm 080 000 777 000 000 000 000 027 214 000 000 429 000 080 000 000 027 107 000 054 00056-58 cm 031 000 439 000 000 000 000 031 157 000 000 690 000 063 000 063 000 094 031 000 00068-70 cm 168 000 251 000 028 000 028 084 056 000 000 307 000 056 000 000 000 084 000 000 00080-82 cm 000 000 238 000 000 000 000 000 000 000 000 476 000 000 000 000 000 000 000 000 00092-94 cm 054 000 054 000 000 027 000 082 027 000 000 054 000 000 000 000 000 082 027 000 000

104-106 cm 000 029 115 000 000 000 000 000 000 000 000 230 000 000 057 000 000 115 000 000 000116-118 cm 062 000 062 000 000 000 000 000 000 031 000 185 031 000 000 000 000 062 000 000 000128-130 cm 000 000 061 000 000 000 000 030 000 000 000 091 000 000 000 030 000 061 000 000 000136-138 cm 060 000 060 030 000 030 060 181 000 000 000 091 000 000 000 000 000 000 000 000 000138-140 cm 000 000 000 000 000 000 000 081 000 000 000 244 000 000 000 000 000 000 000 000 000

Table 3Russell Bank 19A

Percent Abundance of Pollen

Depth in core0-1 cm

4-5 cm 8-9 cm

20-21 cm 32-34 cm 44-46 cm 56-58 cm 68-70 cm 80-82 cm 92-94 cm

104-106 cm 116-118 cm 128-130 cm 136-138 cm 138-140 cm

Liqu

idam

bar

Mag

nolia

Myr

ica

Nys

sa

Ost

rya

Car

pinu

s

Pin

us

Pla

nera

Poa

ceae

Que

rcus

Rhi

zoph

ora

Rut

acea

e

Sag

ittar

ia

Sal

ix

Taxo

diac

eae

C

upre

ssac

eae

Tax

acea

e

Typh

a

Ulm

us

Tota

l Pol

len

Cou

nted

000 000 283 000 028 6856 000 028 1076 028 000 028 000 000 000 057 353000 000 086 000 000 6905 000 029 1375 029 000 029 000 000 000 000 349000 000 225 000 000 7395 000 032 932 096 032 032 032 000 096 032 321000 000 1069 000 063 5660 000 031 1101 000 000 000 000 000 031 000 321030 000 846 000 000 6737 000 030 634 000 000 000 030 030 030 000 332107 000 429 027 000 5416 000 107 1046 027 000 000 027 027 054 054 378000 031 376 000 000 6395 000 031 690 094 000 031 031 031 063 031 320028 028 447 000 000 7346 000 000 615 028 000 000 028 000 112 028 358119 000 357 000 000 7976 000 000 595 000 000 000 000 000 000 000 85082 000 408 000 000 8696 000 000 245 027 000 000 000 027 000 000 371029 000 747 000 000 8017 000 029 316 057 000 000 000 029 029 000 350000 000 338 000 000 8923 000 031 123 031 000 000 031 000 031 000 326030 000 396 000 000 8628 000 030 457 000 000 000 030 000 000 000 331030 000 242 000 000 8792 030 000 181 000 000 000 000 000 030 000 332081 000 163 000 000 8862 000 000 569 000 000 000 000 000 000 000 123

0 10 20 30 40 50 60 70 80

10

20

30

40

50

60

70

80

90

100

110

120

130

Depthcm Pinu

sQue

rcus

Casua

rina

Rhizop

hora

Myrica

Cepha

lanthu

s

Cheno

podia

ceae

Amara

nthac

eae

Poace

ae

Cypera

ceae

Asterac

eae

10

20

30

40

50

60

70

80

90

100

110

120

130

0 10 0 0 0 10 0 0 0 0 05 5 5 5 5 5 5 55

(Pine

)(O

ak)

(Aus

tralia

n Pine

)

(Red

Man

grove

)

(Wax

Myrt

le)

(Pig

Wee

d)

(Gras

s Fam

ily)

(Saw

grass

Family

)

(Aste

r Fam

ily)

(Butt

on B

ush)

Figure 5 Percent abundance of selected pollen groups for core Russell Bank 19A (note different scales)

0 50 100 150 200 250 300 350 400

Querc

us

0 50

Casua

rina

0 50 100 150 200 250 300

Myr

ica

0 50 100 150

Cheno

pods

0

Cyper

acea

e

0 50 100

Astera

ceae

10

20

30

40

50

60

70

80

90

100

110

120

130

Depthcm Pinu

s

0 1000 2000 3000

Total

Pollen

Con

cent

ratio

n

10

20

30

40

50

60

70

80

90

100

110

120

130

0 1000 2000 3000 4000

Figure 6 Total concentration of pollen (grainsgram) for core Russell Bank 19A (note different scales)

Dinocysts

Dinocyst recovery in all samples was low Most microscope slides are heavily dominated byorganic debris and the maximum number of specimens observed in any sample was 214Absolute abundance ranges from 779 to 4736 cystsgram These values are one to two orders ofmagnitude below those reported by Wall et al (1977) for samples from the Middle AtlanticBight and western South Africa and are consistent with high sedimentation rates These absoluteabundances in the sediments are far below bloom concentrations in which the number of livingcells per ml of water may exceed 50 million

The dinocyst assemblages in the Russell Bank 19A core consist of less than 10 taxa (Table 4)Various species of the genus Spiniferites Mantell dominate all samples (61 to 79 percent) Due topoor preservation and taxonomic difficulties the individual species of this genus were notdifferentiated S mirabilis (Rossignol) Sarjeant S ramosus (Ehrenberg) Mantell S scabratus(Wall) Sarjeant and other forms are present Operculodinium Wall spp (O israelianum(Rossignol) Wall or Operculodinium species undifferentiated) are present in all samples inamounts of 5 to 19 percent Polysphaeridium zoharyi (Rossignol) Bujak et al is present in allsamples and comprises up to 16 percent of the assemblages Most samples included low numbersof Lingulodinium machaerophorum (Deflandre amp Cookson) Wall Nematosphaeropsis rigidaWrenn and (or) Tectatodinium pellitum Wall Only two samples contained a single specimeneach of the family Congruentidiaceae

Most samples from Russell Bank core 19A are quite similar to one another (Figure 7)Throughout the core the dinocyst Polysphaeridium zoharyi ranges in abundance from 0-16percent which is considerably lower than in the Bob Allen 6A (Wingard et al 1995) and LittleMadeira Bay T24 (Ishman et al 1996) cores With one exception (80-82 cm) increased absoluteabundance of Spiniferites spp is accompanied by increased absolute abundance of P zoharyi(Figure 8) This relationship suggests that absolute abundances in this core are a function ofsediment supply rather than cyst production The sample at 80-82 cm is anomalous the highabsolute abundance of cysts is attributable to Spiniferites spp and fewer than 30 total cysts werefound on each slide This sample may represent a case of an increase in Spiniferites cystproduction and an increase in the amount of organic debris in proportion to sediment supply Thelowest samples (132-134 cm and 136-138 cm) show both low absolute abundances of all cysttypes and low percentages of P zoharyi

Floral Patterns

Changes occur in the pollen and dinocyst assemblages in core 19A but the significance ofthese changes is unclear Three zones are distinguishable for the pollen but the differencesamong them are very subtle and any interpretation of patterns of vegetational change would bepremature However it is apparent that the vegetation changed in response to someenvironmental factor at those times correlation with on-shore cores would be necessary toestablish the nature of the changes Dinocyst abundance fluctuates in the core with two peaks at118-104 cm and 82-80 cm but the assemblages are relatively stable throughout the core

Table 4 Dinocyst data from Russell Bank 19A

Pol

ysph

aerid

ium

zoh

aryi

Spi

nife

rites

spp

Ope

rcul

odin

ium

spp

Nem

atos

phae

rops

is ri

gida

Ling

ulod

iniu

m m

acha

erop

horu

m

Tect

atod

iniu

m p

ellit

um

Tube

rcul

odin

ium

van

cam

poae

Con

grue

ntid

iace

ae

Oth

er

TOTA

L D

INO

CY

STS

CO

UN

TED

Depth (cm)

Wt (g) Cystsg

Slides examined

0-1 74 779 2 129 742 97 00 32 00 00 00 00 3120-21 115 1363 1 123 630 74 49 49 62 00 12 00 8144-46 363 921 1 24 750 95 36 48 12 00 00 36 8468-70 358 1454 1 114 705 95 10 38 29 00 10 00 10580-82 337 3732 2 19 811 132 00 38 00 00 00 00 5392-94 385 2049 1 84 720 119 49 28 00 00 00 00 143

104-106 331 4736 1 128 636 133 77 10 05 00 00 10 195116-118 350 3451 1 141 676 106 07 63 07 00 00 00 142128-130 390 1854 1 121 612 178 51 28 05 05 00 00 214132-134 321 1288 1 34 754 127 68 17 00 00 00 00 118136-138 371 2028 1 66 747 110 55 11 11 00 00 00 91

Species

Percent abundance

Comparison of these data to additional terrestrial and marine cores may lead to a betterunderstanding of the patterns seen here

210PB AGE MODEL FOR THE RUSSELL BANKS SITE

The activity of 210Pb (dpmgram) is shown for 19B and 19C in Figures 9 and 10 Thesedimentation rate for the Russell Bank site is based on the results from 19C because both 210Pband Ra analyses have been completed for that core the rate equals 122 cmyear +- 005The 210Pb curves for cores 19B and 19C are almost identical therefore we make the assumptionthat the rate of sediment accumulation is the same in the two cores No 210Pb analyses have beendone for core 19A to date

SUMMARY

The fauna and flora present in the Russell Bank cores 19A and 19B record an approximately120-year history of fluctuating environmental changes The benthic foraminifera documentperiods of fluctuating salinity with a gradual increase in salinity upcore The molluscan data areconsistent with the foraminiferal data showing increasing salinity upcore but without the degreeof fluctuation indicated by the benthic foraminifera The benthic fauna show significant changesin the assemblages at 70-66 cm and 24-18 cm which correspond to approximately 1937-1940and 1975-1980 A similar shift occurred at 118 cm (approximately 1898) which is not as clearlyseen in the molluscan faunal data These periods represent shifts from low salinity (12-15 ppt) tohigher average salinity (30 ppt) In addition the benthic foraminiferal assemblages shift fromperiods of higher average salinity to periods of lower salinity at 140 cm 90 cm and 42 cmwhich correspond to approximately 1880 1921 and 1960 respectively

The molluscan fauna indicate changes occurring in the substrate at the Russell Banks siteSediment and grass (probably Thalassia) apparently were equally available for habitation from142-110 cm or approximately 1878-1904 Although grass was still available bare-sedimentdominated the area from 106-88 cm or approximately 1908-1922 From 88-22 cm orapproximately 1922-1976 grass was the dominant substrate and from approximately 1939 (68cm) to the present the presence of bare-sediment bottoms was negligible at the siteSignificantly from 22 cm or approximately 1976 to the present the molluscan fauna isdominated by species that can live equally well on algae or seagrass

The pollen present in core 19A show three periods of subtle shifts in the onshore vegetation inresponse to some environmental factor These changes occur at 80 cm and at 32 cm orapproximately 1929 and 1968 If we assume that core 19A and 19B have similar sedimentationrates then the shifts in the onshore vegetation indicated by the pollen seen in 19A occurapproximately 7-8 years prior to changes in Florida Bay as indicated by the benthic fauna in19B However until we see this pattern repeated in the same core or until a 210Pb analysis is

0 20 40 60 80 100

0-1

20-21

44-46

68-70

80-82

92-94

104-106

116-118

128-130132-134136-138

Operculodinium spp

Nematosphaeropsis rigida

Lingulodinium machaerophorum

Spiniferites spp

Polysphaeridium zoharyi

All others

Percent Cystsgram 0 100 200 300 400 500

Figure 7 Percent and absolute abundances of dinocysts for core 19A

Dep

th (

cm)

0 100 200 300 4000

20

40

60

80

100

120

140

Spiniferites

Cystsgram

Dep

th (

cm)

Polysphaeridium zoharyi

Figure 8 Absolute abundances of Polysphaeridium zoharyi and Spiniferites spp in core 19 A

000 200 400 600

Activity (dpmg)

Dep

th (c

m)

0

40

80

120

160

Figure 9 Pb210 activity in dpmg for core 19B

Activity (dpmg)

Dep

th (c

m)

000 100 200 300 400 500 600

0-2

6-8

12-14

18-20

24-26

30-32

36-38

42-44

48-50

54-56

60-62

66-68

72-74

78-80

84-86

90-92

96-98

102-104

108-110

114-116

120-122

126-128

132-134

138-140

144-146

150-152

156-158

Figure 10 210Pb activity in dpmg for core 19C

completed for core 19A we can not be certain of its significance because our assumption ofsimilar sedimentation rates for cores 19A and 19B may not be correct

Two peaks in dinocyst abundance (cystsgram) occur in the samples examined 118-104 cm(approximately 1898-1909) and 82-80 cm (approximately 1927-1929) These occur during aperiod of near normal marine (30 ppt) and stable salinity as indicated by the benthicforaminifera These periods may represent increased dinocyst production and decreased sedimentsupply but the composition of the dinocyst assemblages remains relatively stable throughout thecore

The pattern of increased salinity upcore documented here for Russell Banks 19B is consistentwith patterns seen in core T24 from the mouth of Taylor Creek in Little Madeira Bay (Ishman etal 1996) and in core 6A from Bob Allen mudbank (Wingard et al 1995) The correspondencebetween changes in salinity and onshore changes in vegetation is also consistent with resultsfrom the previous cores These patterns will continue to be investigated at additional sites inFlorida Bay and the terrestrial Everglades in order to establish the sequence and timing of eventsthroughout the ecosystem and to determine linkages between the marine and terrestrial systems

REFERENCES CITED

Benninghoff WS 1962 Calculation of pollen and spore density in sediments by addition of exotic pollen in known quantities Pollen et Spores v 4 p 332-333

Brewster-Wingard GL Ishman SE Edwards LE and Willard DA 1996 Preliminary report on the distribution of modern fauna and flora at selected sites in north-central and north-eastern Florida Bay US Geological Survey Open-File Report 96-732 34 p

Davis JC 1973 Statistics and Data Analysis in Geology New York John Wiley amp Sons 550 p

Ishman SE Brewster-Wingard GL Willard DA Cronin TM Edwards LE and Holmes CW 1996 Preliminary paleontologic report on core T-24 Little Madeira Bay Florida US Geological Survey Open-File Report 96-543 47 p

Maker LJ Jr 1981 Statistics for microfossil concentration measurements employing samples spiked with marker grains Review of Paleobotany and Palynology v 32 p153-191

Robbins JA Holmes CW Halley RB Bothner Michael Shinn EA Graney Joseph Keller Gerald tenBrinck Marilyn Rudnick David in press Time constraints characterizing predeposition integration of 137Ce and Pb fluxes to sediments in Florida Bay Geochemica et Cosmochemica

Stockmarr Jens 1971 Tablets with spores used in abolute pollen analysis Pollen et Spores v 8 p 615-621

Wall David Dale Barrie Lohmann GP and Smith WK 1977 The environmental and climatic distribution of dinoflagellate cysts in modern marine sediments from regions in the North and South Atlantic Oceans and Adjacent seas Marine Micropaleontology v 2 p 121-200

Wingard GL Ishman SE Cronin TM Edwards LE Willard DA and Halley RB 1995 Preliminary analysis of down-core biotic assemblages Bob Allen Keys Everglades National Park Florida Bay US Geological Survey Open-File Report 95-628 35 p

  • Title Page
  • Table of Contents
  • Abstract
  • Acknowledgements
  • Methods
  • Discussion of Fauna
  • Discussion of Flora
  • Age Model
  • Summary
  • References
Page 9: Preliminary Paleontologic Report on Cores 19A and 19B, from ...

Table 1Russell Bank 19B

Percent Abundance of Benthic Foraminifera

Depth in Core

0-2 cm 4-6 cm

8-10 cm 12-14 cm 16-18 cm 24-26 cm 28-30 cm 32-34 cm 36-38 cm 40-42 cm 44-46 cm 48-50 cm 52-54 cm 56-58 cm 60-62 cm 64-66 cm 68-70 cm 72-74 cm 76-78 cm 80-82 cm 84-86 cm 88-90 cm 92-94 cm 96-98 cm

100-102 cm 104-106 cm 108-110 cm 112-114 cm 116-118 cm 120-122 cm 124-126 cm 128-130 cm 132-134 cm 136-138 cm 140-142 cm

Qui

nque

locu

lina

sem

inul

um

Qui

nque

locu

lina

tena

gos

Qui

nque

locu

lina

poly

gona

Qui

nque

locu

lina

poey

ana

Ros

alin

a flo

ridan

a

Ros

alin

a gl

obul

aris

Spi

rolo

culin

a an

tilla

rium

Trilo

culin

a lin

eian

a

Trilo

culin

a ro

tund

a

Trilo

culin

a tri

locu

lina

Val

vulin

a s

p

Val

vulin

eria

laev

igat

a

Num

ber o

f Spe

cies

Sim

pson

s D

iver

sity

Inde

x

1337 107 481 3235 214 000 027 000 000 160 000 000 14 019525 000 1279 3934 066 000 098 000 000 262 000 000 14 021732 279 244 3275 035 000 000 000 000 627 000 000 13 018367 153 214 2875 092 000 000 000 031 1009 000 214 17 014217 000 652 1413 000 000 109 000 000 761 000 000 12 013230 954 691 1480 099 000 000 000 493 164 000 132 18 011885 000 393 1082 230 000 000 000 000 000 000 000 13 017000 000 647 583 065 000 000 000 000 000 000 000 9 019072 289 217 1372 000 000 000 000 217 108 036 000 17 016

1046 163 163 1993 065 000 000 000 065 000 000 033 15 020648 340 370 2377 154 000 000 000 000 000 000 000 14 016322 175 117 1637 205 000 000 000 205 234 000 000 15 020245 140 000 2797 140 000 000 000 000 140 000 000 13 018365 000 169 2669 056 000 000 000 000 337 000 000 14 016

1011 181 397 1227 000 000 000 000 000 000 000 000 13 013521 215 706 1933 245 000 000 000 123 215 000 031 19 011878 000 000 1317 219 000 000 000 000 031 000 000 12 018201 086 401 1146 115 000 000 000 000 401 000 057 15 014667 000 467 1100 133 000 000 000 000 267 000 033 13 020549 000 671 732 000 000 000 000 213 488 000 061 13 022290 000 032 1516 000 000 000 000 097 194 000 000 12 021881 000 508 780 000 000 000 000 136 271 000 034 14 022

1908 099 296 1184 132 000 000 000 000 000 000 000 13 014878 000 227 1020 170 000 142 000 340 000 000 000 13 014

1541 000 426 787 033 000 066 000 197 066 000 000 13 0171238 000 222 1397 095 032 000 000 000 000 000 000 14 0131014 034 574 777 000 000 000 000 236 338 000 068 15 014

984 000 293 1011 213 000 000 000 133 080 000 053 17 0131632 104 208 486 035 000 000 000 035 104 000 000 13 0182093 000 166 565 100 000 000 000 033 100 133 000 13 018

000 272 242 393 000 000 000 030 091 363 000 000 13 030000 029 235 323 029 000 000 000 059 411 000 059 14 026

1111 000 207 620 052 000 000 000 336 207 000 000 14 017983 140 253 955 169 000 000 000 112 253 000 140 18 012258 032 419 548 000 000 065 000 065 258 000 258 14 021

Table 2Russell Bank 19B

Percent Abundance of Molluscan Fauna

Depth in Core G

astro

pods

Act

eoci

na c

anal

icul

ata

Am

aea

spp

Bitt

ium

var

ium

Bul

la s

p

Cae

cum

pu

chel

lum

flor

idan

um

Cer

ithid

ea s

pp

Cer

ithiu

m s

pp

Con

us s

p

Cre

pidu

la s

p

Mar

gine

llids

Mod

ulus

mod

ulus

Oliv

ella

sp

Ris

soin

a s

pp

Turr

itella

exo

leta

Vitr

inel

lids

Rar

e G

astro

pods

Uni

dent

ified

gas

tropo

d fra

gmen

ts u

nkno

wn

sp

and

juve

nile

s

0-2 cm 000 000 128 000 147 000 568 000 073 092 183 000 220 000 037 037 0554-6 cm 000 000 347 000 087 000 723 000 116 116 347 000 145 000 116 116 260

8-10 cm 000 000 172 000 000 000 259 000 000 086 517 000 345 000 345 086 34512-14 cm 000 000 244 000 244 000 488 000 000 061 244 244 488 244 000 061 36616-18 cm 000 000 244 000 000 000 610 000 122 000 122 122 854 000 000 122 36620-22 cm 000 000 270 135 135 000 270 000 135 000 000 000 135 000 000 135 27024-26 cm 172 000 345 000 345 172 1552 000 690 000 000 172 172 000 000 000 17228-30 cm 000 000 000 000 000 000 000 000 000 000 000 000 000 000 000 000 00032-34 cm 000 000 714 714 000 000 2143 000 000 000 714 000 714 000 000 000 00036-38 cm 000 000 2143 000 000 000 3571 357 000 000 357 1071 000 000 000 000 107140-42 cm 000 000 1237 515 000 000 1856 000 309 000 103 206 412 000 000 103 41244-46 cm 000 000 215 000 000 000 860 000 000 000 645 108 968 000 108 000 43048-50 cm 000 000 1111 000 000 000 1852 000 000 000 556 000 741 000 000 000 74152-54 cm 000 000 000 000 000 000 811 000 000 000 4324 000 270 000 000 000 54156-58 cm 000 000 000 000 1000 000 4000 000 4000 000 000 000 000 000 000 000 00060-62 cm 000 000 313 000 000 000 000 625 000 000 000 000 625 000 000 313 187564-66 cm 000 000 800 200 100 000 1400 000 300 100 200 000 300 000 000 000 40068-70 cm 000 000 1569 000 196 000 1765 000 392 196 196 000 980 000 000 392 58872-74 cm 000 000 1918 000 137 000 1918 000 685 000 137 000 000 000 000 000 54876-78 cm 000 000 562 000 000 000 1124 000 000 562 337 225 562 112 000 000 168580-82 cm 000 000 414 000 000 000 552 000 000 138 069 138 000 138 000 000 96684-86 cm 000 000 933 000 400 000 1333 267 133 000 267 267 533 000 000 000 133388-90 cm 000 000 219 000 000 000 1606 000 000 000 000 292 803 219 000 146 153392-94 cm 000 000 432 000 144 000 1007 000 000 000 072 288 504 144 000 000 93596-98 cm 303 000 152 000 152 000 1364 000 152 000 000 152 758 152 000 303 152

100-102 cm 000 000 000 000 138 000 483 000 000 069 000 207 345 000 000 000 483104-106 cm 000 067 738 000 067 134 1611 067 000 134 000 134 470 067 000 134 470108-110 cm 000 238 714 000 000 000 952 000 000 079 000 397 1190 079 000 159 1825112-114 cm 286 000 857 000 000 000 1714 000 286 000 286 000 000 000 000 000 1143116-118 cm 000 000 000 000 000 000 000 000 000 000 000 000 000 000 000 000 2000120-122 cm 000 000 345 000 345 000 690 000 000 000 000 345 690 1034 000 000 345124-126 cm 075 000 970 000 000 149 1343 000 075 000 821 224 373 149 149 149 224128-130 cm 000 143 257 000 086 000 857 000 114 086 086 000 286 029 000 029 571132-134 cm 000 000 723 000 000 000 1205 000 000 000 000 120 482 602 000 000 1084136-138 cm 051 051 769 051 103 103 615 000 000 103 000 103 000 256 103 256 410140-142 cm 055 000 656 000 000 000 710 055 109 000 000 383 601 109 000 000 874

Table 2Russell Bank 19B

Percent Abundance of Molluscan Fauna

Depth in Core0-2 cm 4-6 cm

8-10 cm 12-14 cm 16-18 cm 20-22 cm 24-26 cm 28-30 cm 32-34 cm 36-38 cm 40-42 cm 44-46 cm 48-50 cm 52-54 cm 56-58 cm 60-62 cm 64-66 cm 68-70 cm 72-74 cm 76-78 cm 80-82 cm 84-86 cm 88-90 cm 92-94 cm 96-98 cm

100-102 cm 104-106 cm 108-110 cm 112-114 cm 116-118 cm 120-122 cm 124-126 cm 128-130 cm 132-134 cm 136-138 cm 140-142 cm

Pel

ecyp

ods

Ano

mal

ocar

dia

sp

Arc

opsi

s ad

amsi

Bra

chio

dont

es s

p

Chi

one

canc

ella

ta

Cum

ingi

a te

llino

idea

Laev

ecar

dium

spp

Nuc

ula

prox

ima

Pec

tinid

Pin

ctad

a ra

diat

a

Telli

na s

pp

Tran

senn

ella

spp

Rar

e P

elec

ypod

s

Uni

dent

ified

Pel

ecy

Fr

ags

Tota

l num

ber o

f in

divi

dual

spe

cim

ens

Num

ber o

f fau

nal g

roup

s

Sim

pson

s D

iver

sity

Inde

x

000 018 7033 073 055 000 000 000 1264 000 000 018 000 517 16 052000 116 6416 087 000 000 000 000 954 000 000 029 029 331 16 043000 000 7328 086 000 000 000 000 259 000 000 000 172 49 12 055000 183 5732 244 061 000 000 000 1037 000 000 000 061 145 16 035000 000 5732 366 122 000 000 000 244 000 732 000 244 62 14 035000 000 7703 000 000 000 000 000 000 000 270 000 541 62 11 060000 000 2414 345 000 172 000 000 172 172 1724 000 1207 50 16 014000 000 000 000 000 000 000 000 000 000 5000 000 5000 2 2 050000 000 1429 1429 000 000 000 000 000 000 2143 000 000 12 8 015000 000 1429 000 000 000 000 000 000 000 000 000 000 28 7 022000 103 4124 309 000 000 000 103 206 000 000 000 000 97 14 023000 430 968 4624 108 000 000 000 000 108 000 000 430 93 13 025000 926 926 370 926 000 000 185 926 370 000 000 370 54 13 010000 000 2703 000 270 000 000 000 811 000 000 000 270 37 8 028000 000 000 000 000 000 000 000 000 000 000 000 1000 10 4 034000 000 5000 000 000 313 000 000 313 000 000 000 625 32 9 030000 000 2900 100 000 100 000 1000 900 200 300 100 600 100 18 014000 000 588 588 196 000 000 196 000 000 980 000 1176 51 15 010000 000 1918 548 000 000 274 000 000 000 1918 000 000 73 10 016000 112 1910 000 000 000 000 000 337 000 787 000 1685 89 13 012000 207 2690 897 000 000 000 000 138 000 2414 345 897 145 14 016000 000 800 933 000 000 000 000 267 000 1200 000 1333 75 14 010438 000 438 657 073 000 000 000 000 073 2847 000 657 137 14 015216 288 719 647 000 072 000 000 504 000 2734 000 1295 139 16 013152 000 606 455 000 152 000 000 000 000 4545 000 455 66 16 024000 000 1241 483 000 000 000 000 000 000 4897 000 1655 145 10 029671 000 067 134 000 000 000 000 067 000 3624 000 1342 149 18 019000 000 714 238 000 079 159 000 159 000 2302 000 714 126 16 013000 000 000 571 000 000 000 000 000 000 3714 000 1143 35 9 021000 000 000 000 000 000 000 000 000 000 6000 000 2000 5 3 044000 000 2759 000 000 000 000 000 000 000 2069 000 1379 29 10 016373 000 821 672 075 075 000 000 224 000 2463 000 597 134 20 012000 029 857 314 057 000 000 000 200 000 5429 029 543 350 19 032000 000 602 964 241 000 120 000 241 000 2048 000 1566 83 13 012000 103 923 923 000 256 205 000 308 103 3179 000 1026 195 22 014000 109 1967 656 109 000 055 000 273 000 3115 000 164 183 17 016

0-2

4-6

12-14

16-18

20-22

36-38

56-58

116-118

100-102

128-130

96-98

88-90

92-94

112-114

104-106

124-126

136-138

140-142

108-110

132-134

84-86

76-78

120-122

80-82

72-74

68-70

48-50

64-66

24-26

32-34

40-42

60-62

52-54

44-46

28-30

8-10

00 01 02 03 04 05 080706

Figure 2 Q-mode cluster diagram of molluscan assemblages from core 19B Distancesare expressed as Pearsons Correlation coefficient values calculated on the molluscanpercent abundance data (see Table 2) and plotted using average linkage methodShaded areas represent clusters formed by samples from the upper portion of the core(0-22 cm) and the lower portion of the core (68-142 cm)

Sam

ple

(iden

tifie

d by

dep

th in

cm

)

2) The cluster containing samples from the interval from 22-0 cm has high Pearsons Correlationcoefficient values for within-group similarity and the largest between-group distances (seeFigure 2) This upper portion of the core is dominated by Brachiodontes sp which comprisesgreater than 50 of the molluscan assemblage in each sample from this section Pinctadaradiata and Cerithium spp are present in significant amounts (5) in some samples from 22-0cm

Benthic Faunal Patterns

Comparison of the benthic fauna present in core 19B with our modern data set enables us tointerpret the salinity history for the Russell Banks site The foraminiferal and molluscan recordsfrom core 19B show distinct oscillations in salinity with a gradual increase in salinity toward thetop of the core (Figure 3) In addition a positive correlation (ρ =052) exists between increasingSimpson diversity indices and decreasing salinity for the benthic foraminfera

The two dominant foraminiferal assemblages Ammonia-Elphidium and miliolid are verysimilar to the Ammonia-Elphidium and Archaias-miliolid assemblages described from modernFlorida Bay sediments (Brewster-Wingard et al 1996) The distribution of modern benthicforaminifers in Florida Bay shows a strong association between the occurrence of Aparkinsoniana and E galvestonense mexicanum and typica with salinities less than 25 ppt(Brewster-Wingard et al 1996) Conversely miliolids dominate where salinities are near normalmarine values (30 ppt) The intervals dominated by the miliolid assemblage (140 cm 118-90 cm70-42 cm and 18-0 cm) therefore indicate more stable and relatively higher average salinity (32-35 ppt) These segments are interrupted by three periods of A-E assemblage dominance (140-118cm 90-70 cm and 42-18 cm) indicating unstable and relatively low average salinity (lt32 ppt)

Molluscs are not as sensitive to variations in salinity as benthic foraminifers consequently themolluscan data do not show the degree of fluctuation seen in the foraminiferal data (Figure 3)The general trend of increasing percent abundance of euhaline and euhaline-polyhaline molluscsupcore does follow the general trend of the foraminiferal plot showing a gradual increase insalinity upcore No molluscan faunas restricted to terrestrial fresh water marsh or upperestuarine environments are present in core 19B indicating this area has been relatively open bayover the last century and the salinity has probably not dropped below 12-15 ppt

Both the benthic foraminiferal assemblages and the molluscan assemblages show significantchanges between 70-66 cm and between 24-18 cm These zones correspond to shifts from A-Edominated assemblages to miliolid dominated assemblages but the molluscs do not seem torespond significantly to the decreases in salinity that mark the shift from miliolid assemblagesback to A-E assemblages Almost all of the molluscs present in this core can be classified aspolyhaline and are tolerant of a wide range of salinities (from approximately 12 or 15 ppt to 30-35 ppt) which could explain the patterns seen for the molluscs If however the salinity haddropped below ~15ppt during the periods of A-E dominance then the molluscs would mostlikely have shown a response The areas of A-E dominance in the core represent salinities of 15-25 ppt with the lower number delineated by the absence of species of molluscs found in lowsalinity waters of Florida Bay and the upper number constrained by the presence of low salinitybenthic foraminifera The miliolid dominated zones represent salinities of 30 ppt or higher

Figure 3 Plot of percent abundance of benthic foraminifers molluscs and the two datasets combined that indicate increasing salinity for core 19B The benthic foraminifersindicate salinity gt 30 ppt The mollusc species have wider salinity tolerances thespecies illustrated on this plot are classified as euhaline or euhalinepolyhaline andrepresent salinities of 20-25 ppt or greater The positions of the benthic foraminiferalassemblages (Milliolid-gray Ammonia-Elphidium-white) discussed in the text are shownon the right of the plot

ForaminifersMolluscsCombined

900080007000600050004000300020001000000

0-2

8-10

16-18

24-26

32-34

40-42

48-50

56-58

64-66

72-74

80-82

88-90

96-98

104-106

112-114

120-122

128-130

136-138

140-142

abundance

Dep

th in

Cen

timet

ers

Miliolid Assemblage

Miliolid Assemblageat 140-142 cm

Miliolid Assemblage

Miliolid Assemblage

Ammonia- ElphidiumAssemblage

Ammonia- ElphidiumAssemblage

Ammonia- ElphidiumAssemblage

1981

1962

1939

1922

1898

1878

Hard Surface

Coarse Sediment or Sponges

Coarse Sediment

Coarse or Fine Sediment

Fine Sediment

Grass Beds or Sediment

Grass Beds or Coarse Sediment

Grass and Algae Beds

Grass Beds

Pecent AbundanceD

epth

in C

ore

(cm

)

0 10 20 30 40 50 60 70 80 90 1000-2

8-10

16-18

24-26

32-34

40-42

48-50

56-58

64-66

72-74

80-82

88-90

96-98

104-106

112-114

120-122

128-130

136-138

Figure 4 Area diagram of percent abundance of molluscs indicative of specific substrate types for core 19B Data plotted at the 116 cm and 28 cm depths represent averages of the overlying and underlying samples these two samples did not contain enough individual specimens to be statistically valid

The suite of molluscs present in core 19B is more indicative of changes in substrate thanchanges in salinity Figure 4 illustrates the substrate patterns within the core based on thepercent abundance of molluscs known to prefer those substrate types The lowest portion of thecore from 142-110 cm has significant numbers of both sediment dwellers and grass dwellerspresent with dominance of either group fluctuating From 106-88 cm sediment dwellersdominate although grass dwellers are still present in significant numbers The segment from 88-22 cm is dominated by grass dwellers above 68 cm the presence of species indicative of asediment substrate is negligible The uppermost portion of the core from 22 cm to the top isdominated by species that could live on either algae or grass

The shifts in abundance of molluscan substrate indicators at 88 cm 68 cm and 22 cmcorrespond to changes seen in the benthic foraminiferal salinity indicators but at this point thesignificance of this relationship is not understood However since the benthic foraminifers usedfor salinity indicators are not sensitive to changes in substrate we believe the changingforaminiferal patterns reflect changing salinity

ANALYSIS AND DISCUSSION OF THE FLORA IN CORE 19A

Pollen

The percent abundance data on pollen is presented in Table 3 Three pollen zones aredistinguishable based on both percent abundance and absolute pollen concentration (pollengrainsgram dry sediment) The bottom zone (140-80 cm) is characterized by the highestpercentages of Pinus (pine) pollen (80-90) and the lowest percentages of Quercus (oak)(lt6) and pollen of the ChenopodiaceaeAmaranthaceae (pigweed family) and Asteraceae(aster family) (Figure 5) No pollen of the Cyperaceae (sawgrass family) is present in this zoneTotal pollen concentration in this zone and the middle zone ranges from about 500-1200grainsgram and the concentration of Quercus pollen is lower than the other zones with lt50grainsgram (Figure 6)

The middle zone (80-32 cm) is characterized by lower percentages of Pinus pollen (54-73)higher percentages of Quercus (6-10) and higher concentrations of Quercus pollen (50-100grainsgram) In both this and the upper zone pollen of the ChenopodiaceaeAmaranthaceae andAsteraceae are more abundant comprising 3 and 2 of the assemblages respectively Pollenof the Cyperaceae is present in low percentages in this and the upper zone

The upper zone has the highest pollen concentrations of the core with most samples rangingfrom 1200-4600 grainsgram Several taxa contribute to these higher values including PinusQuercus Myrica (wax myrtle) ChenopodiaceaeAmaranthaceae and Asteraceae Cephalanthus(buttonbush) is present in low abundances (lt1) in this zone and Liquidambar (sweet gum) isabsent from this zone

Table 3Russell Bank 19A

Percent Abundance of Pollen

Depth in core Aln

us

Api

acea

e

Ast

erac

eae

Avi

cenn

ia

Bet

ula

Bum

elia

Bur

sera

sim

arub

a

Car

ya

Cas

uarin

a

Cel

tis

Cep

hala

nthu

s

Che

nopo

diac

eae

A

mar

anth

acea

e

Con

ocar

pus

Cyp

erac

eae

Dec

odon

Eric

acea

e

Eup

horb

iace

ae

Faba

ceae

Frax

inus

Ilex

Jugl

ans

0-1 cm 000 000 255 000 000 000 000 000 482 000 028 425 000 000 000 000 000 142 000 000 000 4-5 cm 057 000 201 000 000 000 000 029 115 000 029 287 029 115 000 000 029 057 000 029 029 8-9 cm 032 000 322 000 000 000 000 000 129 000 032 096 000 064 000 000 000 032 000 000 000

20-21 cm 000 000 409 031 000 000 000 000 314 000 063 597 000 000 000 000 000 220 000 000 00032-34 cm 030 000 332 000 030 030 000 000 211 000 000 332 030 030 000 000 000 121 000 030 03044-46 cm 080 000 777 000 000 000 000 027 214 000 000 429 000 080 000 000 027 107 000 054 00056-58 cm 031 000 439 000 000 000 000 031 157 000 000 690 000 063 000 063 000 094 031 000 00068-70 cm 168 000 251 000 028 000 028 084 056 000 000 307 000 056 000 000 000 084 000 000 00080-82 cm 000 000 238 000 000 000 000 000 000 000 000 476 000 000 000 000 000 000 000 000 00092-94 cm 054 000 054 000 000 027 000 082 027 000 000 054 000 000 000 000 000 082 027 000 000

104-106 cm 000 029 115 000 000 000 000 000 000 000 000 230 000 000 057 000 000 115 000 000 000116-118 cm 062 000 062 000 000 000 000 000 000 031 000 185 031 000 000 000 000 062 000 000 000128-130 cm 000 000 061 000 000 000 000 030 000 000 000 091 000 000 000 030 000 061 000 000 000136-138 cm 060 000 060 030 000 030 060 181 000 000 000 091 000 000 000 000 000 000 000 000 000138-140 cm 000 000 000 000 000 000 000 081 000 000 000 244 000 000 000 000 000 000 000 000 000

Table 3Russell Bank 19A

Percent Abundance of Pollen

Depth in core0-1 cm

4-5 cm 8-9 cm

20-21 cm 32-34 cm 44-46 cm 56-58 cm 68-70 cm 80-82 cm 92-94 cm

104-106 cm 116-118 cm 128-130 cm 136-138 cm 138-140 cm

Liqu

idam

bar

Mag

nolia

Myr

ica

Nys

sa

Ost

rya

Car

pinu

s

Pin

us

Pla

nera

Poa

ceae

Que

rcus

Rhi

zoph

ora

Rut

acea

e

Sag

ittar

ia

Sal

ix

Taxo

diac

eae

C

upre

ssac

eae

Tax

acea

e

Typh

a

Ulm

us

Tota

l Pol

len

Cou

nted

000 000 283 000 028 6856 000 028 1076 028 000 028 000 000 000 057 353000 000 086 000 000 6905 000 029 1375 029 000 029 000 000 000 000 349000 000 225 000 000 7395 000 032 932 096 032 032 032 000 096 032 321000 000 1069 000 063 5660 000 031 1101 000 000 000 000 000 031 000 321030 000 846 000 000 6737 000 030 634 000 000 000 030 030 030 000 332107 000 429 027 000 5416 000 107 1046 027 000 000 027 027 054 054 378000 031 376 000 000 6395 000 031 690 094 000 031 031 031 063 031 320028 028 447 000 000 7346 000 000 615 028 000 000 028 000 112 028 358119 000 357 000 000 7976 000 000 595 000 000 000 000 000 000 000 85082 000 408 000 000 8696 000 000 245 027 000 000 000 027 000 000 371029 000 747 000 000 8017 000 029 316 057 000 000 000 029 029 000 350000 000 338 000 000 8923 000 031 123 031 000 000 031 000 031 000 326030 000 396 000 000 8628 000 030 457 000 000 000 030 000 000 000 331030 000 242 000 000 8792 030 000 181 000 000 000 000 000 030 000 332081 000 163 000 000 8862 000 000 569 000 000 000 000 000 000 000 123

0 10 20 30 40 50 60 70 80

10

20

30

40

50

60

70

80

90

100

110

120

130

Depthcm Pinu

sQue

rcus

Casua

rina

Rhizop

hora

Myrica

Cepha

lanthu

s

Cheno

podia

ceae

Amara

nthac

eae

Poace

ae

Cypera

ceae

Asterac

eae

10

20

30

40

50

60

70

80

90

100

110

120

130

0 10 0 0 0 10 0 0 0 0 05 5 5 5 5 5 5 55

(Pine

)(O

ak)

(Aus

tralia

n Pine

)

(Red

Man

grove

)

(Wax

Myrt

le)

(Pig

Wee

d)

(Gras

s Fam

ily)

(Saw

grass

Family

)

(Aste

r Fam

ily)

(Butt

on B

ush)

Figure 5 Percent abundance of selected pollen groups for core Russell Bank 19A (note different scales)

0 50 100 150 200 250 300 350 400

Querc

us

0 50

Casua

rina

0 50 100 150 200 250 300

Myr

ica

0 50 100 150

Cheno

pods

0

Cyper

acea

e

0 50 100

Astera

ceae

10

20

30

40

50

60

70

80

90

100

110

120

130

Depthcm Pinu

s

0 1000 2000 3000

Total

Pollen

Con

cent

ratio

n

10

20

30

40

50

60

70

80

90

100

110

120

130

0 1000 2000 3000 4000

Figure 6 Total concentration of pollen (grainsgram) for core Russell Bank 19A (note different scales)

Dinocysts

Dinocyst recovery in all samples was low Most microscope slides are heavily dominated byorganic debris and the maximum number of specimens observed in any sample was 214Absolute abundance ranges from 779 to 4736 cystsgram These values are one to two orders ofmagnitude below those reported by Wall et al (1977) for samples from the Middle AtlanticBight and western South Africa and are consistent with high sedimentation rates These absoluteabundances in the sediments are far below bloom concentrations in which the number of livingcells per ml of water may exceed 50 million

The dinocyst assemblages in the Russell Bank 19A core consist of less than 10 taxa (Table 4)Various species of the genus Spiniferites Mantell dominate all samples (61 to 79 percent) Due topoor preservation and taxonomic difficulties the individual species of this genus were notdifferentiated S mirabilis (Rossignol) Sarjeant S ramosus (Ehrenberg) Mantell S scabratus(Wall) Sarjeant and other forms are present Operculodinium Wall spp (O israelianum(Rossignol) Wall or Operculodinium species undifferentiated) are present in all samples inamounts of 5 to 19 percent Polysphaeridium zoharyi (Rossignol) Bujak et al is present in allsamples and comprises up to 16 percent of the assemblages Most samples included low numbersof Lingulodinium machaerophorum (Deflandre amp Cookson) Wall Nematosphaeropsis rigidaWrenn and (or) Tectatodinium pellitum Wall Only two samples contained a single specimeneach of the family Congruentidiaceae

Most samples from Russell Bank core 19A are quite similar to one another (Figure 7)Throughout the core the dinocyst Polysphaeridium zoharyi ranges in abundance from 0-16percent which is considerably lower than in the Bob Allen 6A (Wingard et al 1995) and LittleMadeira Bay T24 (Ishman et al 1996) cores With one exception (80-82 cm) increased absoluteabundance of Spiniferites spp is accompanied by increased absolute abundance of P zoharyi(Figure 8) This relationship suggests that absolute abundances in this core are a function ofsediment supply rather than cyst production The sample at 80-82 cm is anomalous the highabsolute abundance of cysts is attributable to Spiniferites spp and fewer than 30 total cysts werefound on each slide This sample may represent a case of an increase in Spiniferites cystproduction and an increase in the amount of organic debris in proportion to sediment supply Thelowest samples (132-134 cm and 136-138 cm) show both low absolute abundances of all cysttypes and low percentages of P zoharyi

Floral Patterns

Changes occur in the pollen and dinocyst assemblages in core 19A but the significance ofthese changes is unclear Three zones are distinguishable for the pollen but the differencesamong them are very subtle and any interpretation of patterns of vegetational change would bepremature However it is apparent that the vegetation changed in response to someenvironmental factor at those times correlation with on-shore cores would be necessary toestablish the nature of the changes Dinocyst abundance fluctuates in the core with two peaks at118-104 cm and 82-80 cm but the assemblages are relatively stable throughout the core

Table 4 Dinocyst data from Russell Bank 19A

Pol

ysph

aerid

ium

zoh

aryi

Spi

nife

rites

spp

Ope

rcul

odin

ium

spp

Nem

atos

phae

rops

is ri

gida

Ling

ulod

iniu

m m

acha

erop

horu

m

Tect

atod

iniu

m p

ellit

um

Tube

rcul

odin

ium

van

cam

poae

Con

grue

ntid

iace

ae

Oth

er

TOTA

L D

INO

CY

STS

CO

UN

TED

Depth (cm)

Wt (g) Cystsg

Slides examined

0-1 74 779 2 129 742 97 00 32 00 00 00 00 3120-21 115 1363 1 123 630 74 49 49 62 00 12 00 8144-46 363 921 1 24 750 95 36 48 12 00 00 36 8468-70 358 1454 1 114 705 95 10 38 29 00 10 00 10580-82 337 3732 2 19 811 132 00 38 00 00 00 00 5392-94 385 2049 1 84 720 119 49 28 00 00 00 00 143

104-106 331 4736 1 128 636 133 77 10 05 00 00 10 195116-118 350 3451 1 141 676 106 07 63 07 00 00 00 142128-130 390 1854 1 121 612 178 51 28 05 05 00 00 214132-134 321 1288 1 34 754 127 68 17 00 00 00 00 118136-138 371 2028 1 66 747 110 55 11 11 00 00 00 91

Species

Percent abundance

Comparison of these data to additional terrestrial and marine cores may lead to a betterunderstanding of the patterns seen here

210PB AGE MODEL FOR THE RUSSELL BANKS SITE

The activity of 210Pb (dpmgram) is shown for 19B and 19C in Figures 9 and 10 Thesedimentation rate for the Russell Bank site is based on the results from 19C because both 210Pband Ra analyses have been completed for that core the rate equals 122 cmyear +- 005The 210Pb curves for cores 19B and 19C are almost identical therefore we make the assumptionthat the rate of sediment accumulation is the same in the two cores No 210Pb analyses have beendone for core 19A to date

SUMMARY

The fauna and flora present in the Russell Bank cores 19A and 19B record an approximately120-year history of fluctuating environmental changes The benthic foraminifera documentperiods of fluctuating salinity with a gradual increase in salinity upcore The molluscan data areconsistent with the foraminiferal data showing increasing salinity upcore but without the degreeof fluctuation indicated by the benthic foraminifera The benthic fauna show significant changesin the assemblages at 70-66 cm and 24-18 cm which correspond to approximately 1937-1940and 1975-1980 A similar shift occurred at 118 cm (approximately 1898) which is not as clearlyseen in the molluscan faunal data These periods represent shifts from low salinity (12-15 ppt) tohigher average salinity (30 ppt) In addition the benthic foraminiferal assemblages shift fromperiods of higher average salinity to periods of lower salinity at 140 cm 90 cm and 42 cmwhich correspond to approximately 1880 1921 and 1960 respectively

The molluscan fauna indicate changes occurring in the substrate at the Russell Banks siteSediment and grass (probably Thalassia) apparently were equally available for habitation from142-110 cm or approximately 1878-1904 Although grass was still available bare-sedimentdominated the area from 106-88 cm or approximately 1908-1922 From 88-22 cm orapproximately 1922-1976 grass was the dominant substrate and from approximately 1939 (68cm) to the present the presence of bare-sediment bottoms was negligible at the siteSignificantly from 22 cm or approximately 1976 to the present the molluscan fauna isdominated by species that can live equally well on algae or seagrass

The pollen present in core 19A show three periods of subtle shifts in the onshore vegetation inresponse to some environmental factor These changes occur at 80 cm and at 32 cm orapproximately 1929 and 1968 If we assume that core 19A and 19B have similar sedimentationrates then the shifts in the onshore vegetation indicated by the pollen seen in 19A occurapproximately 7-8 years prior to changes in Florida Bay as indicated by the benthic fauna in19B However until we see this pattern repeated in the same core or until a 210Pb analysis is

0 20 40 60 80 100

0-1

20-21

44-46

68-70

80-82

92-94

104-106

116-118

128-130132-134136-138

Operculodinium spp

Nematosphaeropsis rigida

Lingulodinium machaerophorum

Spiniferites spp

Polysphaeridium zoharyi

All others

Percent Cystsgram 0 100 200 300 400 500

Figure 7 Percent and absolute abundances of dinocysts for core 19A

Dep

th (

cm)

0 100 200 300 4000

20

40

60

80

100

120

140

Spiniferites

Cystsgram

Dep

th (

cm)

Polysphaeridium zoharyi

Figure 8 Absolute abundances of Polysphaeridium zoharyi and Spiniferites spp in core 19 A

000 200 400 600

Activity (dpmg)

Dep

th (c

m)

0

40

80

120

160

Figure 9 Pb210 activity in dpmg for core 19B

Activity (dpmg)

Dep

th (c

m)

000 100 200 300 400 500 600

0-2

6-8

12-14

18-20

24-26

30-32

36-38

42-44

48-50

54-56

60-62

66-68

72-74

78-80

84-86

90-92

96-98

102-104

108-110

114-116

120-122

126-128

132-134

138-140

144-146

150-152

156-158

Figure 10 210Pb activity in dpmg for core 19C

completed for core 19A we can not be certain of its significance because our assumption ofsimilar sedimentation rates for cores 19A and 19B may not be correct

Two peaks in dinocyst abundance (cystsgram) occur in the samples examined 118-104 cm(approximately 1898-1909) and 82-80 cm (approximately 1927-1929) These occur during aperiod of near normal marine (30 ppt) and stable salinity as indicated by the benthicforaminifera These periods may represent increased dinocyst production and decreased sedimentsupply but the composition of the dinocyst assemblages remains relatively stable throughout thecore

The pattern of increased salinity upcore documented here for Russell Banks 19B is consistentwith patterns seen in core T24 from the mouth of Taylor Creek in Little Madeira Bay (Ishman etal 1996) and in core 6A from Bob Allen mudbank (Wingard et al 1995) The correspondencebetween changes in salinity and onshore changes in vegetation is also consistent with resultsfrom the previous cores These patterns will continue to be investigated at additional sites inFlorida Bay and the terrestrial Everglades in order to establish the sequence and timing of eventsthroughout the ecosystem and to determine linkages between the marine and terrestrial systems

REFERENCES CITED

Benninghoff WS 1962 Calculation of pollen and spore density in sediments by addition of exotic pollen in known quantities Pollen et Spores v 4 p 332-333

Brewster-Wingard GL Ishman SE Edwards LE and Willard DA 1996 Preliminary report on the distribution of modern fauna and flora at selected sites in north-central and north-eastern Florida Bay US Geological Survey Open-File Report 96-732 34 p

Davis JC 1973 Statistics and Data Analysis in Geology New York John Wiley amp Sons 550 p

Ishman SE Brewster-Wingard GL Willard DA Cronin TM Edwards LE and Holmes CW 1996 Preliminary paleontologic report on core T-24 Little Madeira Bay Florida US Geological Survey Open-File Report 96-543 47 p

Maker LJ Jr 1981 Statistics for microfossil concentration measurements employing samples spiked with marker grains Review of Paleobotany and Palynology v 32 p153-191

Robbins JA Holmes CW Halley RB Bothner Michael Shinn EA Graney Joseph Keller Gerald tenBrinck Marilyn Rudnick David in press Time constraints characterizing predeposition integration of 137Ce and Pb fluxes to sediments in Florida Bay Geochemica et Cosmochemica

Stockmarr Jens 1971 Tablets with spores used in abolute pollen analysis Pollen et Spores v 8 p 615-621

Wall David Dale Barrie Lohmann GP and Smith WK 1977 The environmental and climatic distribution of dinoflagellate cysts in modern marine sediments from regions in the North and South Atlantic Oceans and Adjacent seas Marine Micropaleontology v 2 p 121-200

Wingard GL Ishman SE Cronin TM Edwards LE Willard DA and Halley RB 1995 Preliminary analysis of down-core biotic assemblages Bob Allen Keys Everglades National Park Florida Bay US Geological Survey Open-File Report 95-628 35 p

  • Title Page
  • Table of Contents
  • Abstract
  • Acknowledgements
  • Methods
  • Discussion of Fauna
  • Discussion of Flora
  • Age Model
  • Summary
  • References
Page 10: Preliminary Paleontologic Report on Cores 19A and 19B, from ...

Table 2Russell Bank 19B

Percent Abundance of Molluscan Fauna

Depth in Core G

astro

pods

Act

eoci

na c

anal

icul

ata

Am

aea

spp

Bitt

ium

var

ium

Bul

la s

p

Cae

cum

pu

chel

lum

flor

idan

um

Cer

ithid

ea s

pp

Cer

ithiu

m s

pp

Con

us s

p

Cre

pidu

la s

p

Mar

gine

llids

Mod

ulus

mod

ulus

Oliv

ella

sp

Ris

soin

a s

pp

Turr

itella

exo

leta

Vitr

inel

lids

Rar

e G

astro

pods

Uni

dent

ified

gas

tropo

d fra

gmen

ts u

nkno

wn

sp

and

juve

nile

s

0-2 cm 000 000 128 000 147 000 568 000 073 092 183 000 220 000 037 037 0554-6 cm 000 000 347 000 087 000 723 000 116 116 347 000 145 000 116 116 260

8-10 cm 000 000 172 000 000 000 259 000 000 086 517 000 345 000 345 086 34512-14 cm 000 000 244 000 244 000 488 000 000 061 244 244 488 244 000 061 36616-18 cm 000 000 244 000 000 000 610 000 122 000 122 122 854 000 000 122 36620-22 cm 000 000 270 135 135 000 270 000 135 000 000 000 135 000 000 135 27024-26 cm 172 000 345 000 345 172 1552 000 690 000 000 172 172 000 000 000 17228-30 cm 000 000 000 000 000 000 000 000 000 000 000 000 000 000 000 000 00032-34 cm 000 000 714 714 000 000 2143 000 000 000 714 000 714 000 000 000 00036-38 cm 000 000 2143 000 000 000 3571 357 000 000 357 1071 000 000 000 000 107140-42 cm 000 000 1237 515 000 000 1856 000 309 000 103 206 412 000 000 103 41244-46 cm 000 000 215 000 000 000 860 000 000 000 645 108 968 000 108 000 43048-50 cm 000 000 1111 000 000 000 1852 000 000 000 556 000 741 000 000 000 74152-54 cm 000 000 000 000 000 000 811 000 000 000 4324 000 270 000 000 000 54156-58 cm 000 000 000 000 1000 000 4000 000 4000 000 000 000 000 000 000 000 00060-62 cm 000 000 313 000 000 000 000 625 000 000 000 000 625 000 000 313 187564-66 cm 000 000 800 200 100 000 1400 000 300 100 200 000 300 000 000 000 40068-70 cm 000 000 1569 000 196 000 1765 000 392 196 196 000 980 000 000 392 58872-74 cm 000 000 1918 000 137 000 1918 000 685 000 137 000 000 000 000 000 54876-78 cm 000 000 562 000 000 000 1124 000 000 562 337 225 562 112 000 000 168580-82 cm 000 000 414 000 000 000 552 000 000 138 069 138 000 138 000 000 96684-86 cm 000 000 933 000 400 000 1333 267 133 000 267 267 533 000 000 000 133388-90 cm 000 000 219 000 000 000 1606 000 000 000 000 292 803 219 000 146 153392-94 cm 000 000 432 000 144 000 1007 000 000 000 072 288 504 144 000 000 93596-98 cm 303 000 152 000 152 000 1364 000 152 000 000 152 758 152 000 303 152

100-102 cm 000 000 000 000 138 000 483 000 000 069 000 207 345 000 000 000 483104-106 cm 000 067 738 000 067 134 1611 067 000 134 000 134 470 067 000 134 470108-110 cm 000 238 714 000 000 000 952 000 000 079 000 397 1190 079 000 159 1825112-114 cm 286 000 857 000 000 000 1714 000 286 000 286 000 000 000 000 000 1143116-118 cm 000 000 000 000 000 000 000 000 000 000 000 000 000 000 000 000 2000120-122 cm 000 000 345 000 345 000 690 000 000 000 000 345 690 1034 000 000 345124-126 cm 075 000 970 000 000 149 1343 000 075 000 821 224 373 149 149 149 224128-130 cm 000 143 257 000 086 000 857 000 114 086 086 000 286 029 000 029 571132-134 cm 000 000 723 000 000 000 1205 000 000 000 000 120 482 602 000 000 1084136-138 cm 051 051 769 051 103 103 615 000 000 103 000 103 000 256 103 256 410140-142 cm 055 000 656 000 000 000 710 055 109 000 000 383 601 109 000 000 874

Table 2Russell Bank 19B

Percent Abundance of Molluscan Fauna

Depth in Core0-2 cm 4-6 cm

8-10 cm 12-14 cm 16-18 cm 20-22 cm 24-26 cm 28-30 cm 32-34 cm 36-38 cm 40-42 cm 44-46 cm 48-50 cm 52-54 cm 56-58 cm 60-62 cm 64-66 cm 68-70 cm 72-74 cm 76-78 cm 80-82 cm 84-86 cm 88-90 cm 92-94 cm 96-98 cm

100-102 cm 104-106 cm 108-110 cm 112-114 cm 116-118 cm 120-122 cm 124-126 cm 128-130 cm 132-134 cm 136-138 cm 140-142 cm

Pel

ecyp

ods

Ano

mal

ocar

dia

sp

Arc

opsi

s ad

amsi

Bra

chio

dont

es s

p

Chi

one

canc

ella

ta

Cum

ingi

a te

llino

idea

Laev

ecar

dium

spp

Nuc

ula

prox

ima

Pec

tinid

Pin

ctad

a ra

diat

a

Telli

na s

pp

Tran

senn

ella

spp

Rar

e P

elec

ypod

s

Uni

dent

ified

Pel

ecy

Fr

ags

Tota

l num

ber o

f in

divi

dual

spe

cim

ens

Num

ber o

f fau

nal g

roup

s

Sim

pson

s D

iver

sity

Inde

x

000 018 7033 073 055 000 000 000 1264 000 000 018 000 517 16 052000 116 6416 087 000 000 000 000 954 000 000 029 029 331 16 043000 000 7328 086 000 000 000 000 259 000 000 000 172 49 12 055000 183 5732 244 061 000 000 000 1037 000 000 000 061 145 16 035000 000 5732 366 122 000 000 000 244 000 732 000 244 62 14 035000 000 7703 000 000 000 000 000 000 000 270 000 541 62 11 060000 000 2414 345 000 172 000 000 172 172 1724 000 1207 50 16 014000 000 000 000 000 000 000 000 000 000 5000 000 5000 2 2 050000 000 1429 1429 000 000 000 000 000 000 2143 000 000 12 8 015000 000 1429 000 000 000 000 000 000 000 000 000 000 28 7 022000 103 4124 309 000 000 000 103 206 000 000 000 000 97 14 023000 430 968 4624 108 000 000 000 000 108 000 000 430 93 13 025000 926 926 370 926 000 000 185 926 370 000 000 370 54 13 010000 000 2703 000 270 000 000 000 811 000 000 000 270 37 8 028000 000 000 000 000 000 000 000 000 000 000 000 1000 10 4 034000 000 5000 000 000 313 000 000 313 000 000 000 625 32 9 030000 000 2900 100 000 100 000 1000 900 200 300 100 600 100 18 014000 000 588 588 196 000 000 196 000 000 980 000 1176 51 15 010000 000 1918 548 000 000 274 000 000 000 1918 000 000 73 10 016000 112 1910 000 000 000 000 000 337 000 787 000 1685 89 13 012000 207 2690 897 000 000 000 000 138 000 2414 345 897 145 14 016000 000 800 933 000 000 000 000 267 000 1200 000 1333 75 14 010438 000 438 657 073 000 000 000 000 073 2847 000 657 137 14 015216 288 719 647 000 072 000 000 504 000 2734 000 1295 139 16 013152 000 606 455 000 152 000 000 000 000 4545 000 455 66 16 024000 000 1241 483 000 000 000 000 000 000 4897 000 1655 145 10 029671 000 067 134 000 000 000 000 067 000 3624 000 1342 149 18 019000 000 714 238 000 079 159 000 159 000 2302 000 714 126 16 013000 000 000 571 000 000 000 000 000 000 3714 000 1143 35 9 021000 000 000 000 000 000 000 000 000 000 6000 000 2000 5 3 044000 000 2759 000 000 000 000 000 000 000 2069 000 1379 29 10 016373 000 821 672 075 075 000 000 224 000 2463 000 597 134 20 012000 029 857 314 057 000 000 000 200 000 5429 029 543 350 19 032000 000 602 964 241 000 120 000 241 000 2048 000 1566 83 13 012000 103 923 923 000 256 205 000 308 103 3179 000 1026 195 22 014000 109 1967 656 109 000 055 000 273 000 3115 000 164 183 17 016

0-2

4-6

12-14

16-18

20-22

36-38

56-58

116-118

100-102

128-130

96-98

88-90

92-94

112-114

104-106

124-126

136-138

140-142

108-110

132-134

84-86

76-78

120-122

80-82

72-74

68-70

48-50

64-66

24-26

32-34

40-42

60-62

52-54

44-46

28-30

8-10

00 01 02 03 04 05 080706

Figure 2 Q-mode cluster diagram of molluscan assemblages from core 19B Distancesare expressed as Pearsons Correlation coefficient values calculated on the molluscanpercent abundance data (see Table 2) and plotted using average linkage methodShaded areas represent clusters formed by samples from the upper portion of the core(0-22 cm) and the lower portion of the core (68-142 cm)

Sam

ple

(iden

tifie

d by

dep

th in

cm

)

2) The cluster containing samples from the interval from 22-0 cm has high Pearsons Correlationcoefficient values for within-group similarity and the largest between-group distances (seeFigure 2) This upper portion of the core is dominated by Brachiodontes sp which comprisesgreater than 50 of the molluscan assemblage in each sample from this section Pinctadaradiata and Cerithium spp are present in significant amounts (5) in some samples from 22-0cm

Benthic Faunal Patterns

Comparison of the benthic fauna present in core 19B with our modern data set enables us tointerpret the salinity history for the Russell Banks site The foraminiferal and molluscan recordsfrom core 19B show distinct oscillations in salinity with a gradual increase in salinity toward thetop of the core (Figure 3) In addition a positive correlation (ρ =052) exists between increasingSimpson diversity indices and decreasing salinity for the benthic foraminfera

The two dominant foraminiferal assemblages Ammonia-Elphidium and miliolid are verysimilar to the Ammonia-Elphidium and Archaias-miliolid assemblages described from modernFlorida Bay sediments (Brewster-Wingard et al 1996) The distribution of modern benthicforaminifers in Florida Bay shows a strong association between the occurrence of Aparkinsoniana and E galvestonense mexicanum and typica with salinities less than 25 ppt(Brewster-Wingard et al 1996) Conversely miliolids dominate where salinities are near normalmarine values (30 ppt) The intervals dominated by the miliolid assemblage (140 cm 118-90 cm70-42 cm and 18-0 cm) therefore indicate more stable and relatively higher average salinity (32-35 ppt) These segments are interrupted by three periods of A-E assemblage dominance (140-118cm 90-70 cm and 42-18 cm) indicating unstable and relatively low average salinity (lt32 ppt)

Molluscs are not as sensitive to variations in salinity as benthic foraminifers consequently themolluscan data do not show the degree of fluctuation seen in the foraminiferal data (Figure 3)The general trend of increasing percent abundance of euhaline and euhaline-polyhaline molluscsupcore does follow the general trend of the foraminiferal plot showing a gradual increase insalinity upcore No molluscan faunas restricted to terrestrial fresh water marsh or upperestuarine environments are present in core 19B indicating this area has been relatively open bayover the last century and the salinity has probably not dropped below 12-15 ppt

Both the benthic foraminiferal assemblages and the molluscan assemblages show significantchanges between 70-66 cm and between 24-18 cm These zones correspond to shifts from A-Edominated assemblages to miliolid dominated assemblages but the molluscs do not seem torespond significantly to the decreases in salinity that mark the shift from miliolid assemblagesback to A-E assemblages Almost all of the molluscs present in this core can be classified aspolyhaline and are tolerant of a wide range of salinities (from approximately 12 or 15 ppt to 30-35 ppt) which could explain the patterns seen for the molluscs If however the salinity haddropped below ~15ppt during the periods of A-E dominance then the molluscs would mostlikely have shown a response The areas of A-E dominance in the core represent salinities of 15-25 ppt with the lower number delineated by the absence of species of molluscs found in lowsalinity waters of Florida Bay and the upper number constrained by the presence of low salinitybenthic foraminifera The miliolid dominated zones represent salinities of 30 ppt or higher

Figure 3 Plot of percent abundance of benthic foraminifers molluscs and the two datasets combined that indicate increasing salinity for core 19B The benthic foraminifersindicate salinity gt 30 ppt The mollusc species have wider salinity tolerances thespecies illustrated on this plot are classified as euhaline or euhalinepolyhaline andrepresent salinities of 20-25 ppt or greater The positions of the benthic foraminiferalassemblages (Milliolid-gray Ammonia-Elphidium-white) discussed in the text are shownon the right of the plot

ForaminifersMolluscsCombined

900080007000600050004000300020001000000

0-2

8-10

16-18

24-26

32-34

40-42

48-50

56-58

64-66

72-74

80-82

88-90

96-98

104-106

112-114

120-122

128-130

136-138

140-142

abundance

Dep

th in

Cen

timet

ers

Miliolid Assemblage

Miliolid Assemblageat 140-142 cm

Miliolid Assemblage

Miliolid Assemblage

Ammonia- ElphidiumAssemblage

Ammonia- ElphidiumAssemblage

Ammonia- ElphidiumAssemblage

1981

1962

1939

1922

1898

1878

Hard Surface

Coarse Sediment or Sponges

Coarse Sediment

Coarse or Fine Sediment

Fine Sediment

Grass Beds or Sediment

Grass Beds or Coarse Sediment

Grass and Algae Beds

Grass Beds

Pecent AbundanceD

epth

in C

ore

(cm

)

0 10 20 30 40 50 60 70 80 90 1000-2

8-10

16-18

24-26

32-34

40-42

48-50

56-58

64-66

72-74

80-82

88-90

96-98

104-106

112-114

120-122

128-130

136-138

Figure 4 Area diagram of percent abundance of molluscs indicative of specific substrate types for core 19B Data plotted at the 116 cm and 28 cm depths represent averages of the overlying and underlying samples these two samples did not contain enough individual specimens to be statistically valid

The suite of molluscs present in core 19B is more indicative of changes in substrate thanchanges in salinity Figure 4 illustrates the substrate patterns within the core based on thepercent abundance of molluscs known to prefer those substrate types The lowest portion of thecore from 142-110 cm has significant numbers of both sediment dwellers and grass dwellerspresent with dominance of either group fluctuating From 106-88 cm sediment dwellersdominate although grass dwellers are still present in significant numbers The segment from 88-22 cm is dominated by grass dwellers above 68 cm the presence of species indicative of asediment substrate is negligible The uppermost portion of the core from 22 cm to the top isdominated by species that could live on either algae or grass

The shifts in abundance of molluscan substrate indicators at 88 cm 68 cm and 22 cmcorrespond to changes seen in the benthic foraminiferal salinity indicators but at this point thesignificance of this relationship is not understood However since the benthic foraminifers usedfor salinity indicators are not sensitive to changes in substrate we believe the changingforaminiferal patterns reflect changing salinity

ANALYSIS AND DISCUSSION OF THE FLORA IN CORE 19A

Pollen

The percent abundance data on pollen is presented in Table 3 Three pollen zones aredistinguishable based on both percent abundance and absolute pollen concentration (pollengrainsgram dry sediment) The bottom zone (140-80 cm) is characterized by the highestpercentages of Pinus (pine) pollen (80-90) and the lowest percentages of Quercus (oak)(lt6) and pollen of the ChenopodiaceaeAmaranthaceae (pigweed family) and Asteraceae(aster family) (Figure 5) No pollen of the Cyperaceae (sawgrass family) is present in this zoneTotal pollen concentration in this zone and the middle zone ranges from about 500-1200grainsgram and the concentration of Quercus pollen is lower than the other zones with lt50grainsgram (Figure 6)

The middle zone (80-32 cm) is characterized by lower percentages of Pinus pollen (54-73)higher percentages of Quercus (6-10) and higher concentrations of Quercus pollen (50-100grainsgram) In both this and the upper zone pollen of the ChenopodiaceaeAmaranthaceae andAsteraceae are more abundant comprising 3 and 2 of the assemblages respectively Pollenof the Cyperaceae is present in low percentages in this and the upper zone

The upper zone has the highest pollen concentrations of the core with most samples rangingfrom 1200-4600 grainsgram Several taxa contribute to these higher values including PinusQuercus Myrica (wax myrtle) ChenopodiaceaeAmaranthaceae and Asteraceae Cephalanthus(buttonbush) is present in low abundances (lt1) in this zone and Liquidambar (sweet gum) isabsent from this zone

Table 3Russell Bank 19A

Percent Abundance of Pollen

Depth in core Aln

us

Api

acea

e

Ast

erac

eae

Avi

cenn

ia

Bet

ula

Bum

elia

Bur

sera

sim

arub

a

Car

ya

Cas

uarin

a

Cel

tis

Cep

hala

nthu

s

Che

nopo

diac

eae

A

mar

anth

acea

e

Con

ocar

pus

Cyp

erac

eae

Dec

odon

Eric

acea

e

Eup

horb

iace

ae

Faba

ceae

Frax

inus

Ilex

Jugl

ans

0-1 cm 000 000 255 000 000 000 000 000 482 000 028 425 000 000 000 000 000 142 000 000 000 4-5 cm 057 000 201 000 000 000 000 029 115 000 029 287 029 115 000 000 029 057 000 029 029 8-9 cm 032 000 322 000 000 000 000 000 129 000 032 096 000 064 000 000 000 032 000 000 000

20-21 cm 000 000 409 031 000 000 000 000 314 000 063 597 000 000 000 000 000 220 000 000 00032-34 cm 030 000 332 000 030 030 000 000 211 000 000 332 030 030 000 000 000 121 000 030 03044-46 cm 080 000 777 000 000 000 000 027 214 000 000 429 000 080 000 000 027 107 000 054 00056-58 cm 031 000 439 000 000 000 000 031 157 000 000 690 000 063 000 063 000 094 031 000 00068-70 cm 168 000 251 000 028 000 028 084 056 000 000 307 000 056 000 000 000 084 000 000 00080-82 cm 000 000 238 000 000 000 000 000 000 000 000 476 000 000 000 000 000 000 000 000 00092-94 cm 054 000 054 000 000 027 000 082 027 000 000 054 000 000 000 000 000 082 027 000 000

104-106 cm 000 029 115 000 000 000 000 000 000 000 000 230 000 000 057 000 000 115 000 000 000116-118 cm 062 000 062 000 000 000 000 000 000 031 000 185 031 000 000 000 000 062 000 000 000128-130 cm 000 000 061 000 000 000 000 030 000 000 000 091 000 000 000 030 000 061 000 000 000136-138 cm 060 000 060 030 000 030 060 181 000 000 000 091 000 000 000 000 000 000 000 000 000138-140 cm 000 000 000 000 000 000 000 081 000 000 000 244 000 000 000 000 000 000 000 000 000

Table 3Russell Bank 19A

Percent Abundance of Pollen

Depth in core0-1 cm

4-5 cm 8-9 cm

20-21 cm 32-34 cm 44-46 cm 56-58 cm 68-70 cm 80-82 cm 92-94 cm

104-106 cm 116-118 cm 128-130 cm 136-138 cm 138-140 cm

Liqu

idam

bar

Mag

nolia

Myr

ica

Nys

sa

Ost

rya

Car

pinu

s

Pin

us

Pla

nera

Poa

ceae

Que

rcus

Rhi

zoph

ora

Rut

acea

e

Sag

ittar

ia

Sal

ix

Taxo

diac

eae

C

upre

ssac

eae

Tax

acea

e

Typh

a

Ulm

us

Tota

l Pol

len

Cou

nted

000 000 283 000 028 6856 000 028 1076 028 000 028 000 000 000 057 353000 000 086 000 000 6905 000 029 1375 029 000 029 000 000 000 000 349000 000 225 000 000 7395 000 032 932 096 032 032 032 000 096 032 321000 000 1069 000 063 5660 000 031 1101 000 000 000 000 000 031 000 321030 000 846 000 000 6737 000 030 634 000 000 000 030 030 030 000 332107 000 429 027 000 5416 000 107 1046 027 000 000 027 027 054 054 378000 031 376 000 000 6395 000 031 690 094 000 031 031 031 063 031 320028 028 447 000 000 7346 000 000 615 028 000 000 028 000 112 028 358119 000 357 000 000 7976 000 000 595 000 000 000 000 000 000 000 85082 000 408 000 000 8696 000 000 245 027 000 000 000 027 000 000 371029 000 747 000 000 8017 000 029 316 057 000 000 000 029 029 000 350000 000 338 000 000 8923 000 031 123 031 000 000 031 000 031 000 326030 000 396 000 000 8628 000 030 457 000 000 000 030 000 000 000 331030 000 242 000 000 8792 030 000 181 000 000 000 000 000 030 000 332081 000 163 000 000 8862 000 000 569 000 000 000 000 000 000 000 123

0 10 20 30 40 50 60 70 80

10

20

30

40

50

60

70

80

90

100

110

120

130

Depthcm Pinu

sQue

rcus

Casua

rina

Rhizop

hora

Myrica

Cepha

lanthu

s

Cheno

podia

ceae

Amara

nthac

eae

Poace

ae

Cypera

ceae

Asterac

eae

10

20

30

40

50

60

70

80

90

100

110

120

130

0 10 0 0 0 10 0 0 0 0 05 5 5 5 5 5 5 55

(Pine

)(O

ak)

(Aus

tralia

n Pine

)

(Red

Man

grove

)

(Wax

Myrt

le)

(Pig

Wee

d)

(Gras

s Fam

ily)

(Saw

grass

Family

)

(Aste

r Fam

ily)

(Butt

on B

ush)

Figure 5 Percent abundance of selected pollen groups for core Russell Bank 19A (note different scales)

0 50 100 150 200 250 300 350 400

Querc

us

0 50

Casua

rina

0 50 100 150 200 250 300

Myr

ica

0 50 100 150

Cheno

pods

0

Cyper

acea

e

0 50 100

Astera

ceae

10

20

30

40

50

60

70

80

90

100

110

120

130

Depthcm Pinu

s

0 1000 2000 3000

Total

Pollen

Con

cent

ratio

n

10

20

30

40

50

60

70

80

90

100

110

120

130

0 1000 2000 3000 4000

Figure 6 Total concentration of pollen (grainsgram) for core Russell Bank 19A (note different scales)

Dinocysts

Dinocyst recovery in all samples was low Most microscope slides are heavily dominated byorganic debris and the maximum number of specimens observed in any sample was 214Absolute abundance ranges from 779 to 4736 cystsgram These values are one to two orders ofmagnitude below those reported by Wall et al (1977) for samples from the Middle AtlanticBight and western South Africa and are consistent with high sedimentation rates These absoluteabundances in the sediments are far below bloom concentrations in which the number of livingcells per ml of water may exceed 50 million

The dinocyst assemblages in the Russell Bank 19A core consist of less than 10 taxa (Table 4)Various species of the genus Spiniferites Mantell dominate all samples (61 to 79 percent) Due topoor preservation and taxonomic difficulties the individual species of this genus were notdifferentiated S mirabilis (Rossignol) Sarjeant S ramosus (Ehrenberg) Mantell S scabratus(Wall) Sarjeant and other forms are present Operculodinium Wall spp (O israelianum(Rossignol) Wall or Operculodinium species undifferentiated) are present in all samples inamounts of 5 to 19 percent Polysphaeridium zoharyi (Rossignol) Bujak et al is present in allsamples and comprises up to 16 percent of the assemblages Most samples included low numbersof Lingulodinium machaerophorum (Deflandre amp Cookson) Wall Nematosphaeropsis rigidaWrenn and (or) Tectatodinium pellitum Wall Only two samples contained a single specimeneach of the family Congruentidiaceae

Most samples from Russell Bank core 19A are quite similar to one another (Figure 7)Throughout the core the dinocyst Polysphaeridium zoharyi ranges in abundance from 0-16percent which is considerably lower than in the Bob Allen 6A (Wingard et al 1995) and LittleMadeira Bay T24 (Ishman et al 1996) cores With one exception (80-82 cm) increased absoluteabundance of Spiniferites spp is accompanied by increased absolute abundance of P zoharyi(Figure 8) This relationship suggests that absolute abundances in this core are a function ofsediment supply rather than cyst production The sample at 80-82 cm is anomalous the highabsolute abundance of cysts is attributable to Spiniferites spp and fewer than 30 total cysts werefound on each slide This sample may represent a case of an increase in Spiniferites cystproduction and an increase in the amount of organic debris in proportion to sediment supply Thelowest samples (132-134 cm and 136-138 cm) show both low absolute abundances of all cysttypes and low percentages of P zoharyi

Floral Patterns

Changes occur in the pollen and dinocyst assemblages in core 19A but the significance ofthese changes is unclear Three zones are distinguishable for the pollen but the differencesamong them are very subtle and any interpretation of patterns of vegetational change would bepremature However it is apparent that the vegetation changed in response to someenvironmental factor at those times correlation with on-shore cores would be necessary toestablish the nature of the changes Dinocyst abundance fluctuates in the core with two peaks at118-104 cm and 82-80 cm but the assemblages are relatively stable throughout the core

Table 4 Dinocyst data from Russell Bank 19A

Pol

ysph

aerid

ium

zoh

aryi

Spi

nife

rites

spp

Ope

rcul

odin

ium

spp

Nem

atos

phae

rops

is ri

gida

Ling

ulod

iniu

m m

acha

erop

horu

m

Tect

atod

iniu

m p

ellit

um

Tube

rcul

odin

ium

van

cam

poae

Con

grue

ntid

iace

ae

Oth

er

TOTA

L D

INO

CY

STS

CO

UN

TED

Depth (cm)

Wt (g) Cystsg

Slides examined

0-1 74 779 2 129 742 97 00 32 00 00 00 00 3120-21 115 1363 1 123 630 74 49 49 62 00 12 00 8144-46 363 921 1 24 750 95 36 48 12 00 00 36 8468-70 358 1454 1 114 705 95 10 38 29 00 10 00 10580-82 337 3732 2 19 811 132 00 38 00 00 00 00 5392-94 385 2049 1 84 720 119 49 28 00 00 00 00 143

104-106 331 4736 1 128 636 133 77 10 05 00 00 10 195116-118 350 3451 1 141 676 106 07 63 07 00 00 00 142128-130 390 1854 1 121 612 178 51 28 05 05 00 00 214132-134 321 1288 1 34 754 127 68 17 00 00 00 00 118136-138 371 2028 1 66 747 110 55 11 11 00 00 00 91

Species

Percent abundance

Comparison of these data to additional terrestrial and marine cores may lead to a betterunderstanding of the patterns seen here

210PB AGE MODEL FOR THE RUSSELL BANKS SITE

The activity of 210Pb (dpmgram) is shown for 19B and 19C in Figures 9 and 10 Thesedimentation rate for the Russell Bank site is based on the results from 19C because both 210Pband Ra analyses have been completed for that core the rate equals 122 cmyear +- 005The 210Pb curves for cores 19B and 19C are almost identical therefore we make the assumptionthat the rate of sediment accumulation is the same in the two cores No 210Pb analyses have beendone for core 19A to date

SUMMARY

The fauna and flora present in the Russell Bank cores 19A and 19B record an approximately120-year history of fluctuating environmental changes The benthic foraminifera documentperiods of fluctuating salinity with a gradual increase in salinity upcore The molluscan data areconsistent with the foraminiferal data showing increasing salinity upcore but without the degreeof fluctuation indicated by the benthic foraminifera The benthic fauna show significant changesin the assemblages at 70-66 cm and 24-18 cm which correspond to approximately 1937-1940and 1975-1980 A similar shift occurred at 118 cm (approximately 1898) which is not as clearlyseen in the molluscan faunal data These periods represent shifts from low salinity (12-15 ppt) tohigher average salinity (30 ppt) In addition the benthic foraminiferal assemblages shift fromperiods of higher average salinity to periods of lower salinity at 140 cm 90 cm and 42 cmwhich correspond to approximately 1880 1921 and 1960 respectively

The molluscan fauna indicate changes occurring in the substrate at the Russell Banks siteSediment and grass (probably Thalassia) apparently were equally available for habitation from142-110 cm or approximately 1878-1904 Although grass was still available bare-sedimentdominated the area from 106-88 cm or approximately 1908-1922 From 88-22 cm orapproximately 1922-1976 grass was the dominant substrate and from approximately 1939 (68cm) to the present the presence of bare-sediment bottoms was negligible at the siteSignificantly from 22 cm or approximately 1976 to the present the molluscan fauna isdominated by species that can live equally well on algae or seagrass

The pollen present in core 19A show three periods of subtle shifts in the onshore vegetation inresponse to some environmental factor These changes occur at 80 cm and at 32 cm orapproximately 1929 and 1968 If we assume that core 19A and 19B have similar sedimentationrates then the shifts in the onshore vegetation indicated by the pollen seen in 19A occurapproximately 7-8 years prior to changes in Florida Bay as indicated by the benthic fauna in19B However until we see this pattern repeated in the same core or until a 210Pb analysis is

0 20 40 60 80 100

0-1

20-21

44-46

68-70

80-82

92-94

104-106

116-118

128-130132-134136-138

Operculodinium spp

Nematosphaeropsis rigida

Lingulodinium machaerophorum

Spiniferites spp

Polysphaeridium zoharyi

All others

Percent Cystsgram 0 100 200 300 400 500

Figure 7 Percent and absolute abundances of dinocysts for core 19A

Dep

th (

cm)

0 100 200 300 4000

20

40

60

80

100

120

140

Spiniferites

Cystsgram

Dep

th (

cm)

Polysphaeridium zoharyi

Figure 8 Absolute abundances of Polysphaeridium zoharyi and Spiniferites spp in core 19 A

000 200 400 600

Activity (dpmg)

Dep

th (c

m)

0

40

80

120

160

Figure 9 Pb210 activity in dpmg for core 19B

Activity (dpmg)

Dep

th (c

m)

000 100 200 300 400 500 600

0-2

6-8

12-14

18-20

24-26

30-32

36-38

42-44

48-50

54-56

60-62

66-68

72-74

78-80

84-86

90-92

96-98

102-104

108-110

114-116

120-122

126-128

132-134

138-140

144-146

150-152

156-158

Figure 10 210Pb activity in dpmg for core 19C

completed for core 19A we can not be certain of its significance because our assumption ofsimilar sedimentation rates for cores 19A and 19B may not be correct

Two peaks in dinocyst abundance (cystsgram) occur in the samples examined 118-104 cm(approximately 1898-1909) and 82-80 cm (approximately 1927-1929) These occur during aperiod of near normal marine (30 ppt) and stable salinity as indicated by the benthicforaminifera These periods may represent increased dinocyst production and decreased sedimentsupply but the composition of the dinocyst assemblages remains relatively stable throughout thecore

The pattern of increased salinity upcore documented here for Russell Banks 19B is consistentwith patterns seen in core T24 from the mouth of Taylor Creek in Little Madeira Bay (Ishman etal 1996) and in core 6A from Bob Allen mudbank (Wingard et al 1995) The correspondencebetween changes in salinity and onshore changes in vegetation is also consistent with resultsfrom the previous cores These patterns will continue to be investigated at additional sites inFlorida Bay and the terrestrial Everglades in order to establish the sequence and timing of eventsthroughout the ecosystem and to determine linkages between the marine and terrestrial systems

REFERENCES CITED

Benninghoff WS 1962 Calculation of pollen and spore density in sediments by addition of exotic pollen in known quantities Pollen et Spores v 4 p 332-333

Brewster-Wingard GL Ishman SE Edwards LE and Willard DA 1996 Preliminary report on the distribution of modern fauna and flora at selected sites in north-central and north-eastern Florida Bay US Geological Survey Open-File Report 96-732 34 p

Davis JC 1973 Statistics and Data Analysis in Geology New York John Wiley amp Sons 550 p

Ishman SE Brewster-Wingard GL Willard DA Cronin TM Edwards LE and Holmes CW 1996 Preliminary paleontologic report on core T-24 Little Madeira Bay Florida US Geological Survey Open-File Report 96-543 47 p

Maker LJ Jr 1981 Statistics for microfossil concentration measurements employing samples spiked with marker grains Review of Paleobotany and Palynology v 32 p153-191

Robbins JA Holmes CW Halley RB Bothner Michael Shinn EA Graney Joseph Keller Gerald tenBrinck Marilyn Rudnick David in press Time constraints characterizing predeposition integration of 137Ce and Pb fluxes to sediments in Florida Bay Geochemica et Cosmochemica

Stockmarr Jens 1971 Tablets with spores used in abolute pollen analysis Pollen et Spores v 8 p 615-621

Wall David Dale Barrie Lohmann GP and Smith WK 1977 The environmental and climatic distribution of dinoflagellate cysts in modern marine sediments from regions in the North and South Atlantic Oceans and Adjacent seas Marine Micropaleontology v 2 p 121-200

Wingard GL Ishman SE Cronin TM Edwards LE Willard DA and Halley RB 1995 Preliminary analysis of down-core biotic assemblages Bob Allen Keys Everglades National Park Florida Bay US Geological Survey Open-File Report 95-628 35 p

  • Title Page
  • Table of Contents
  • Abstract
  • Acknowledgements
  • Methods
  • Discussion of Fauna
  • Discussion of Flora
  • Age Model
  • Summary
  • References
Page 11: Preliminary Paleontologic Report on Cores 19A and 19B, from ...

Table 2Russell Bank 19B

Percent Abundance of Molluscan Fauna

Depth in Core0-2 cm 4-6 cm

8-10 cm 12-14 cm 16-18 cm 20-22 cm 24-26 cm 28-30 cm 32-34 cm 36-38 cm 40-42 cm 44-46 cm 48-50 cm 52-54 cm 56-58 cm 60-62 cm 64-66 cm 68-70 cm 72-74 cm 76-78 cm 80-82 cm 84-86 cm 88-90 cm 92-94 cm 96-98 cm

100-102 cm 104-106 cm 108-110 cm 112-114 cm 116-118 cm 120-122 cm 124-126 cm 128-130 cm 132-134 cm 136-138 cm 140-142 cm

Pel

ecyp

ods

Ano

mal

ocar

dia

sp

Arc

opsi

s ad

amsi

Bra

chio

dont

es s

p

Chi

one

canc

ella

ta

Cum

ingi

a te

llino

idea

Laev

ecar

dium

spp

Nuc

ula

prox

ima

Pec

tinid

Pin

ctad

a ra

diat

a

Telli

na s

pp

Tran

senn

ella

spp

Rar

e P

elec

ypod

s

Uni

dent

ified

Pel

ecy

Fr

ags

Tota

l num

ber o

f in

divi

dual

spe

cim

ens

Num

ber o

f fau

nal g

roup

s

Sim

pson

s D

iver

sity

Inde

x

000 018 7033 073 055 000 000 000 1264 000 000 018 000 517 16 052000 116 6416 087 000 000 000 000 954 000 000 029 029 331 16 043000 000 7328 086 000 000 000 000 259 000 000 000 172 49 12 055000 183 5732 244 061 000 000 000 1037 000 000 000 061 145 16 035000 000 5732 366 122 000 000 000 244 000 732 000 244 62 14 035000 000 7703 000 000 000 000 000 000 000 270 000 541 62 11 060000 000 2414 345 000 172 000 000 172 172 1724 000 1207 50 16 014000 000 000 000 000 000 000 000 000 000 5000 000 5000 2 2 050000 000 1429 1429 000 000 000 000 000 000 2143 000 000 12 8 015000 000 1429 000 000 000 000 000 000 000 000 000 000 28 7 022000 103 4124 309 000 000 000 103 206 000 000 000 000 97 14 023000 430 968 4624 108 000 000 000 000 108 000 000 430 93 13 025000 926 926 370 926 000 000 185 926 370 000 000 370 54 13 010000 000 2703 000 270 000 000 000 811 000 000 000 270 37 8 028000 000 000 000 000 000 000 000 000 000 000 000 1000 10 4 034000 000 5000 000 000 313 000 000 313 000 000 000 625 32 9 030000 000 2900 100 000 100 000 1000 900 200 300 100 600 100 18 014000 000 588 588 196 000 000 196 000 000 980 000 1176 51 15 010000 000 1918 548 000 000 274 000 000 000 1918 000 000 73 10 016000 112 1910 000 000 000 000 000 337 000 787 000 1685 89 13 012000 207 2690 897 000 000 000 000 138 000 2414 345 897 145 14 016000 000 800 933 000 000 000 000 267 000 1200 000 1333 75 14 010438 000 438 657 073 000 000 000 000 073 2847 000 657 137 14 015216 288 719 647 000 072 000 000 504 000 2734 000 1295 139 16 013152 000 606 455 000 152 000 000 000 000 4545 000 455 66 16 024000 000 1241 483 000 000 000 000 000 000 4897 000 1655 145 10 029671 000 067 134 000 000 000 000 067 000 3624 000 1342 149 18 019000 000 714 238 000 079 159 000 159 000 2302 000 714 126 16 013000 000 000 571 000 000 000 000 000 000 3714 000 1143 35 9 021000 000 000 000 000 000 000 000 000 000 6000 000 2000 5 3 044000 000 2759 000 000 000 000 000 000 000 2069 000 1379 29 10 016373 000 821 672 075 075 000 000 224 000 2463 000 597 134 20 012000 029 857 314 057 000 000 000 200 000 5429 029 543 350 19 032000 000 602 964 241 000 120 000 241 000 2048 000 1566 83 13 012000 103 923 923 000 256 205 000 308 103 3179 000 1026 195 22 014000 109 1967 656 109 000 055 000 273 000 3115 000 164 183 17 016

0-2

4-6

12-14

16-18

20-22

36-38

56-58

116-118

100-102

128-130

96-98

88-90

92-94

112-114

104-106

124-126

136-138

140-142

108-110

132-134

84-86

76-78

120-122

80-82

72-74

68-70

48-50

64-66

24-26

32-34

40-42

60-62

52-54

44-46

28-30

8-10

00 01 02 03 04 05 080706

Figure 2 Q-mode cluster diagram of molluscan assemblages from core 19B Distancesare expressed as Pearsons Correlation coefficient values calculated on the molluscanpercent abundance data (see Table 2) and plotted using average linkage methodShaded areas represent clusters formed by samples from the upper portion of the core(0-22 cm) and the lower portion of the core (68-142 cm)

Sam

ple

(iden

tifie

d by

dep

th in

cm

)

2) The cluster containing samples from the interval from 22-0 cm has high Pearsons Correlationcoefficient values for within-group similarity and the largest between-group distances (seeFigure 2) This upper portion of the core is dominated by Brachiodontes sp which comprisesgreater than 50 of the molluscan assemblage in each sample from this section Pinctadaradiata and Cerithium spp are present in significant amounts (5) in some samples from 22-0cm

Benthic Faunal Patterns

Comparison of the benthic fauna present in core 19B with our modern data set enables us tointerpret the salinity history for the Russell Banks site The foraminiferal and molluscan recordsfrom core 19B show distinct oscillations in salinity with a gradual increase in salinity toward thetop of the core (Figure 3) In addition a positive correlation (ρ =052) exists between increasingSimpson diversity indices and decreasing salinity for the benthic foraminfera

The two dominant foraminiferal assemblages Ammonia-Elphidium and miliolid are verysimilar to the Ammonia-Elphidium and Archaias-miliolid assemblages described from modernFlorida Bay sediments (Brewster-Wingard et al 1996) The distribution of modern benthicforaminifers in Florida Bay shows a strong association between the occurrence of Aparkinsoniana and E galvestonense mexicanum and typica with salinities less than 25 ppt(Brewster-Wingard et al 1996) Conversely miliolids dominate where salinities are near normalmarine values (30 ppt) The intervals dominated by the miliolid assemblage (140 cm 118-90 cm70-42 cm and 18-0 cm) therefore indicate more stable and relatively higher average salinity (32-35 ppt) These segments are interrupted by three periods of A-E assemblage dominance (140-118cm 90-70 cm and 42-18 cm) indicating unstable and relatively low average salinity (lt32 ppt)

Molluscs are not as sensitive to variations in salinity as benthic foraminifers consequently themolluscan data do not show the degree of fluctuation seen in the foraminiferal data (Figure 3)The general trend of increasing percent abundance of euhaline and euhaline-polyhaline molluscsupcore does follow the general trend of the foraminiferal plot showing a gradual increase insalinity upcore No molluscan faunas restricted to terrestrial fresh water marsh or upperestuarine environments are present in core 19B indicating this area has been relatively open bayover the last century and the salinity has probably not dropped below 12-15 ppt

Both the benthic foraminiferal assemblages and the molluscan assemblages show significantchanges between 70-66 cm and between 24-18 cm These zones correspond to shifts from A-Edominated assemblages to miliolid dominated assemblages but the molluscs do not seem torespond significantly to the decreases in salinity that mark the shift from miliolid assemblagesback to A-E assemblages Almost all of the molluscs present in this core can be classified aspolyhaline and are tolerant of a wide range of salinities (from approximately 12 or 15 ppt to 30-35 ppt) which could explain the patterns seen for the molluscs If however the salinity haddropped below ~15ppt during the periods of A-E dominance then the molluscs would mostlikely have shown a response The areas of A-E dominance in the core represent salinities of 15-25 ppt with the lower number delineated by the absence of species of molluscs found in lowsalinity waters of Florida Bay and the upper number constrained by the presence of low salinitybenthic foraminifera The miliolid dominated zones represent salinities of 30 ppt or higher

Figure 3 Plot of percent abundance of benthic foraminifers molluscs and the two datasets combined that indicate increasing salinity for core 19B The benthic foraminifersindicate salinity gt 30 ppt The mollusc species have wider salinity tolerances thespecies illustrated on this plot are classified as euhaline or euhalinepolyhaline andrepresent salinities of 20-25 ppt or greater The positions of the benthic foraminiferalassemblages (Milliolid-gray Ammonia-Elphidium-white) discussed in the text are shownon the right of the plot

ForaminifersMolluscsCombined

900080007000600050004000300020001000000

0-2

8-10

16-18

24-26

32-34

40-42

48-50

56-58

64-66

72-74

80-82

88-90

96-98

104-106

112-114

120-122

128-130

136-138

140-142

abundance

Dep

th in

Cen

timet

ers

Miliolid Assemblage

Miliolid Assemblageat 140-142 cm

Miliolid Assemblage

Miliolid Assemblage

Ammonia- ElphidiumAssemblage

Ammonia- ElphidiumAssemblage

Ammonia- ElphidiumAssemblage

1981

1962

1939

1922

1898

1878

Hard Surface

Coarse Sediment or Sponges

Coarse Sediment

Coarse or Fine Sediment

Fine Sediment

Grass Beds or Sediment

Grass Beds or Coarse Sediment

Grass and Algae Beds

Grass Beds

Pecent AbundanceD

epth

in C

ore

(cm

)

0 10 20 30 40 50 60 70 80 90 1000-2

8-10

16-18

24-26

32-34

40-42

48-50

56-58

64-66

72-74

80-82

88-90

96-98

104-106

112-114

120-122

128-130

136-138

Figure 4 Area diagram of percent abundance of molluscs indicative of specific substrate types for core 19B Data plotted at the 116 cm and 28 cm depths represent averages of the overlying and underlying samples these two samples did not contain enough individual specimens to be statistically valid

The suite of molluscs present in core 19B is more indicative of changes in substrate thanchanges in salinity Figure 4 illustrates the substrate patterns within the core based on thepercent abundance of molluscs known to prefer those substrate types The lowest portion of thecore from 142-110 cm has significant numbers of both sediment dwellers and grass dwellerspresent with dominance of either group fluctuating From 106-88 cm sediment dwellersdominate although grass dwellers are still present in significant numbers The segment from 88-22 cm is dominated by grass dwellers above 68 cm the presence of species indicative of asediment substrate is negligible The uppermost portion of the core from 22 cm to the top isdominated by species that could live on either algae or grass

The shifts in abundance of molluscan substrate indicators at 88 cm 68 cm and 22 cmcorrespond to changes seen in the benthic foraminiferal salinity indicators but at this point thesignificance of this relationship is not understood However since the benthic foraminifers usedfor salinity indicators are not sensitive to changes in substrate we believe the changingforaminiferal patterns reflect changing salinity

ANALYSIS AND DISCUSSION OF THE FLORA IN CORE 19A

Pollen

The percent abundance data on pollen is presented in Table 3 Three pollen zones aredistinguishable based on both percent abundance and absolute pollen concentration (pollengrainsgram dry sediment) The bottom zone (140-80 cm) is characterized by the highestpercentages of Pinus (pine) pollen (80-90) and the lowest percentages of Quercus (oak)(lt6) and pollen of the ChenopodiaceaeAmaranthaceae (pigweed family) and Asteraceae(aster family) (Figure 5) No pollen of the Cyperaceae (sawgrass family) is present in this zoneTotal pollen concentration in this zone and the middle zone ranges from about 500-1200grainsgram and the concentration of Quercus pollen is lower than the other zones with lt50grainsgram (Figure 6)

The middle zone (80-32 cm) is characterized by lower percentages of Pinus pollen (54-73)higher percentages of Quercus (6-10) and higher concentrations of Quercus pollen (50-100grainsgram) In both this and the upper zone pollen of the ChenopodiaceaeAmaranthaceae andAsteraceae are more abundant comprising 3 and 2 of the assemblages respectively Pollenof the Cyperaceae is present in low percentages in this and the upper zone

The upper zone has the highest pollen concentrations of the core with most samples rangingfrom 1200-4600 grainsgram Several taxa contribute to these higher values including PinusQuercus Myrica (wax myrtle) ChenopodiaceaeAmaranthaceae and Asteraceae Cephalanthus(buttonbush) is present in low abundances (lt1) in this zone and Liquidambar (sweet gum) isabsent from this zone

Table 3Russell Bank 19A

Percent Abundance of Pollen

Depth in core Aln

us

Api

acea

e

Ast

erac

eae

Avi

cenn

ia

Bet

ula

Bum

elia

Bur

sera

sim

arub

a

Car

ya

Cas

uarin

a

Cel

tis

Cep

hala

nthu

s

Che

nopo

diac

eae

A

mar

anth

acea

e

Con

ocar

pus

Cyp

erac

eae

Dec

odon

Eric

acea

e

Eup

horb

iace

ae

Faba

ceae

Frax

inus

Ilex

Jugl

ans

0-1 cm 000 000 255 000 000 000 000 000 482 000 028 425 000 000 000 000 000 142 000 000 000 4-5 cm 057 000 201 000 000 000 000 029 115 000 029 287 029 115 000 000 029 057 000 029 029 8-9 cm 032 000 322 000 000 000 000 000 129 000 032 096 000 064 000 000 000 032 000 000 000

20-21 cm 000 000 409 031 000 000 000 000 314 000 063 597 000 000 000 000 000 220 000 000 00032-34 cm 030 000 332 000 030 030 000 000 211 000 000 332 030 030 000 000 000 121 000 030 03044-46 cm 080 000 777 000 000 000 000 027 214 000 000 429 000 080 000 000 027 107 000 054 00056-58 cm 031 000 439 000 000 000 000 031 157 000 000 690 000 063 000 063 000 094 031 000 00068-70 cm 168 000 251 000 028 000 028 084 056 000 000 307 000 056 000 000 000 084 000 000 00080-82 cm 000 000 238 000 000 000 000 000 000 000 000 476 000 000 000 000 000 000 000 000 00092-94 cm 054 000 054 000 000 027 000 082 027 000 000 054 000 000 000 000 000 082 027 000 000

104-106 cm 000 029 115 000 000 000 000 000 000 000 000 230 000 000 057 000 000 115 000 000 000116-118 cm 062 000 062 000 000 000 000 000 000 031 000 185 031 000 000 000 000 062 000 000 000128-130 cm 000 000 061 000 000 000 000 030 000 000 000 091 000 000 000 030 000 061 000 000 000136-138 cm 060 000 060 030 000 030 060 181 000 000 000 091 000 000 000 000 000 000 000 000 000138-140 cm 000 000 000 000 000 000 000 081 000 000 000 244 000 000 000 000 000 000 000 000 000

Table 3Russell Bank 19A

Percent Abundance of Pollen

Depth in core0-1 cm

4-5 cm 8-9 cm

20-21 cm 32-34 cm 44-46 cm 56-58 cm 68-70 cm 80-82 cm 92-94 cm

104-106 cm 116-118 cm 128-130 cm 136-138 cm 138-140 cm

Liqu

idam

bar

Mag

nolia

Myr

ica

Nys

sa

Ost

rya

Car

pinu

s

Pin

us

Pla

nera

Poa

ceae

Que

rcus

Rhi

zoph

ora

Rut

acea

e

Sag

ittar

ia

Sal

ix

Taxo

diac

eae

C

upre

ssac

eae

Tax

acea

e

Typh

a

Ulm

us

Tota

l Pol

len

Cou

nted

000 000 283 000 028 6856 000 028 1076 028 000 028 000 000 000 057 353000 000 086 000 000 6905 000 029 1375 029 000 029 000 000 000 000 349000 000 225 000 000 7395 000 032 932 096 032 032 032 000 096 032 321000 000 1069 000 063 5660 000 031 1101 000 000 000 000 000 031 000 321030 000 846 000 000 6737 000 030 634 000 000 000 030 030 030 000 332107 000 429 027 000 5416 000 107 1046 027 000 000 027 027 054 054 378000 031 376 000 000 6395 000 031 690 094 000 031 031 031 063 031 320028 028 447 000 000 7346 000 000 615 028 000 000 028 000 112 028 358119 000 357 000 000 7976 000 000 595 000 000 000 000 000 000 000 85082 000 408 000 000 8696 000 000 245 027 000 000 000 027 000 000 371029 000 747 000 000 8017 000 029 316 057 000 000 000 029 029 000 350000 000 338 000 000 8923 000 031 123 031 000 000 031 000 031 000 326030 000 396 000 000 8628 000 030 457 000 000 000 030 000 000 000 331030 000 242 000 000 8792 030 000 181 000 000 000 000 000 030 000 332081 000 163 000 000 8862 000 000 569 000 000 000 000 000 000 000 123

0 10 20 30 40 50 60 70 80

10

20

30

40

50

60

70

80

90

100

110

120

130

Depthcm Pinu

sQue

rcus

Casua

rina

Rhizop

hora

Myrica

Cepha

lanthu

s

Cheno

podia

ceae

Amara

nthac

eae

Poace

ae

Cypera

ceae

Asterac

eae

10

20

30

40

50

60

70

80

90

100

110

120

130

0 10 0 0 0 10 0 0 0 0 05 5 5 5 5 5 5 55

(Pine

)(O

ak)

(Aus

tralia

n Pine

)

(Red

Man

grove

)

(Wax

Myrt

le)

(Pig

Wee

d)

(Gras

s Fam

ily)

(Saw

grass

Family

)

(Aste

r Fam

ily)

(Butt

on B

ush)

Figure 5 Percent abundance of selected pollen groups for core Russell Bank 19A (note different scales)

0 50 100 150 200 250 300 350 400

Querc

us

0 50

Casua

rina

0 50 100 150 200 250 300

Myr

ica

0 50 100 150

Cheno

pods

0

Cyper

acea

e

0 50 100

Astera

ceae

10

20

30

40

50

60

70

80

90

100

110

120

130

Depthcm Pinu

s

0 1000 2000 3000

Total

Pollen

Con

cent

ratio

n

10

20

30

40

50

60

70

80

90

100

110

120

130

0 1000 2000 3000 4000

Figure 6 Total concentration of pollen (grainsgram) for core Russell Bank 19A (note different scales)

Dinocysts

Dinocyst recovery in all samples was low Most microscope slides are heavily dominated byorganic debris and the maximum number of specimens observed in any sample was 214Absolute abundance ranges from 779 to 4736 cystsgram These values are one to two orders ofmagnitude below those reported by Wall et al (1977) for samples from the Middle AtlanticBight and western South Africa and are consistent with high sedimentation rates These absoluteabundances in the sediments are far below bloom concentrations in which the number of livingcells per ml of water may exceed 50 million

The dinocyst assemblages in the Russell Bank 19A core consist of less than 10 taxa (Table 4)Various species of the genus Spiniferites Mantell dominate all samples (61 to 79 percent) Due topoor preservation and taxonomic difficulties the individual species of this genus were notdifferentiated S mirabilis (Rossignol) Sarjeant S ramosus (Ehrenberg) Mantell S scabratus(Wall) Sarjeant and other forms are present Operculodinium Wall spp (O israelianum(Rossignol) Wall or Operculodinium species undifferentiated) are present in all samples inamounts of 5 to 19 percent Polysphaeridium zoharyi (Rossignol) Bujak et al is present in allsamples and comprises up to 16 percent of the assemblages Most samples included low numbersof Lingulodinium machaerophorum (Deflandre amp Cookson) Wall Nematosphaeropsis rigidaWrenn and (or) Tectatodinium pellitum Wall Only two samples contained a single specimeneach of the family Congruentidiaceae

Most samples from Russell Bank core 19A are quite similar to one another (Figure 7)Throughout the core the dinocyst Polysphaeridium zoharyi ranges in abundance from 0-16percent which is considerably lower than in the Bob Allen 6A (Wingard et al 1995) and LittleMadeira Bay T24 (Ishman et al 1996) cores With one exception (80-82 cm) increased absoluteabundance of Spiniferites spp is accompanied by increased absolute abundance of P zoharyi(Figure 8) This relationship suggests that absolute abundances in this core are a function ofsediment supply rather than cyst production The sample at 80-82 cm is anomalous the highabsolute abundance of cysts is attributable to Spiniferites spp and fewer than 30 total cysts werefound on each slide This sample may represent a case of an increase in Spiniferites cystproduction and an increase in the amount of organic debris in proportion to sediment supply Thelowest samples (132-134 cm and 136-138 cm) show both low absolute abundances of all cysttypes and low percentages of P zoharyi

Floral Patterns

Changes occur in the pollen and dinocyst assemblages in core 19A but the significance ofthese changes is unclear Three zones are distinguishable for the pollen but the differencesamong them are very subtle and any interpretation of patterns of vegetational change would bepremature However it is apparent that the vegetation changed in response to someenvironmental factor at those times correlation with on-shore cores would be necessary toestablish the nature of the changes Dinocyst abundance fluctuates in the core with two peaks at118-104 cm and 82-80 cm but the assemblages are relatively stable throughout the core

Table 4 Dinocyst data from Russell Bank 19A

Pol

ysph

aerid

ium

zoh

aryi

Spi

nife

rites

spp

Ope

rcul

odin

ium

spp

Nem

atos

phae

rops

is ri

gida

Ling

ulod

iniu

m m

acha

erop

horu

m

Tect

atod

iniu

m p

ellit

um

Tube

rcul

odin

ium

van

cam

poae

Con

grue

ntid

iace

ae

Oth

er

TOTA

L D

INO

CY

STS

CO

UN

TED

Depth (cm)

Wt (g) Cystsg

Slides examined

0-1 74 779 2 129 742 97 00 32 00 00 00 00 3120-21 115 1363 1 123 630 74 49 49 62 00 12 00 8144-46 363 921 1 24 750 95 36 48 12 00 00 36 8468-70 358 1454 1 114 705 95 10 38 29 00 10 00 10580-82 337 3732 2 19 811 132 00 38 00 00 00 00 5392-94 385 2049 1 84 720 119 49 28 00 00 00 00 143

104-106 331 4736 1 128 636 133 77 10 05 00 00 10 195116-118 350 3451 1 141 676 106 07 63 07 00 00 00 142128-130 390 1854 1 121 612 178 51 28 05 05 00 00 214132-134 321 1288 1 34 754 127 68 17 00 00 00 00 118136-138 371 2028 1 66 747 110 55 11 11 00 00 00 91

Species

Percent abundance

Comparison of these data to additional terrestrial and marine cores may lead to a betterunderstanding of the patterns seen here

210PB AGE MODEL FOR THE RUSSELL BANKS SITE

The activity of 210Pb (dpmgram) is shown for 19B and 19C in Figures 9 and 10 Thesedimentation rate for the Russell Bank site is based on the results from 19C because both 210Pband Ra analyses have been completed for that core the rate equals 122 cmyear +- 005The 210Pb curves for cores 19B and 19C are almost identical therefore we make the assumptionthat the rate of sediment accumulation is the same in the two cores No 210Pb analyses have beendone for core 19A to date

SUMMARY

The fauna and flora present in the Russell Bank cores 19A and 19B record an approximately120-year history of fluctuating environmental changes The benthic foraminifera documentperiods of fluctuating salinity with a gradual increase in salinity upcore The molluscan data areconsistent with the foraminiferal data showing increasing salinity upcore but without the degreeof fluctuation indicated by the benthic foraminifera The benthic fauna show significant changesin the assemblages at 70-66 cm and 24-18 cm which correspond to approximately 1937-1940and 1975-1980 A similar shift occurred at 118 cm (approximately 1898) which is not as clearlyseen in the molluscan faunal data These periods represent shifts from low salinity (12-15 ppt) tohigher average salinity (30 ppt) In addition the benthic foraminiferal assemblages shift fromperiods of higher average salinity to periods of lower salinity at 140 cm 90 cm and 42 cmwhich correspond to approximately 1880 1921 and 1960 respectively

The molluscan fauna indicate changes occurring in the substrate at the Russell Banks siteSediment and grass (probably Thalassia) apparently were equally available for habitation from142-110 cm or approximately 1878-1904 Although grass was still available bare-sedimentdominated the area from 106-88 cm or approximately 1908-1922 From 88-22 cm orapproximately 1922-1976 grass was the dominant substrate and from approximately 1939 (68cm) to the present the presence of bare-sediment bottoms was negligible at the siteSignificantly from 22 cm or approximately 1976 to the present the molluscan fauna isdominated by species that can live equally well on algae or seagrass

The pollen present in core 19A show three periods of subtle shifts in the onshore vegetation inresponse to some environmental factor These changes occur at 80 cm and at 32 cm orapproximately 1929 and 1968 If we assume that core 19A and 19B have similar sedimentationrates then the shifts in the onshore vegetation indicated by the pollen seen in 19A occurapproximately 7-8 years prior to changes in Florida Bay as indicated by the benthic fauna in19B However until we see this pattern repeated in the same core or until a 210Pb analysis is

0 20 40 60 80 100

0-1

20-21

44-46

68-70

80-82

92-94

104-106

116-118

128-130132-134136-138

Operculodinium spp

Nematosphaeropsis rigida

Lingulodinium machaerophorum

Spiniferites spp

Polysphaeridium zoharyi

All others

Percent Cystsgram 0 100 200 300 400 500

Figure 7 Percent and absolute abundances of dinocysts for core 19A

Dep

th (

cm)

0 100 200 300 4000

20

40

60

80

100

120

140

Spiniferites

Cystsgram

Dep

th (

cm)

Polysphaeridium zoharyi

Figure 8 Absolute abundances of Polysphaeridium zoharyi and Spiniferites spp in core 19 A

000 200 400 600

Activity (dpmg)

Dep

th (c

m)

0

40

80

120

160

Figure 9 Pb210 activity in dpmg for core 19B

Activity (dpmg)

Dep

th (c

m)

000 100 200 300 400 500 600

0-2

6-8

12-14

18-20

24-26

30-32

36-38

42-44

48-50

54-56

60-62

66-68

72-74

78-80

84-86

90-92

96-98

102-104

108-110

114-116

120-122

126-128

132-134

138-140

144-146

150-152

156-158

Figure 10 210Pb activity in dpmg for core 19C

completed for core 19A we can not be certain of its significance because our assumption ofsimilar sedimentation rates for cores 19A and 19B may not be correct

Two peaks in dinocyst abundance (cystsgram) occur in the samples examined 118-104 cm(approximately 1898-1909) and 82-80 cm (approximately 1927-1929) These occur during aperiod of near normal marine (30 ppt) and stable salinity as indicated by the benthicforaminifera These periods may represent increased dinocyst production and decreased sedimentsupply but the composition of the dinocyst assemblages remains relatively stable throughout thecore

The pattern of increased salinity upcore documented here for Russell Banks 19B is consistentwith patterns seen in core T24 from the mouth of Taylor Creek in Little Madeira Bay (Ishman etal 1996) and in core 6A from Bob Allen mudbank (Wingard et al 1995) The correspondencebetween changes in salinity and onshore changes in vegetation is also consistent with resultsfrom the previous cores These patterns will continue to be investigated at additional sites inFlorida Bay and the terrestrial Everglades in order to establish the sequence and timing of eventsthroughout the ecosystem and to determine linkages between the marine and terrestrial systems

REFERENCES CITED

Benninghoff WS 1962 Calculation of pollen and spore density in sediments by addition of exotic pollen in known quantities Pollen et Spores v 4 p 332-333

Brewster-Wingard GL Ishman SE Edwards LE and Willard DA 1996 Preliminary report on the distribution of modern fauna and flora at selected sites in north-central and north-eastern Florida Bay US Geological Survey Open-File Report 96-732 34 p

Davis JC 1973 Statistics and Data Analysis in Geology New York John Wiley amp Sons 550 p

Ishman SE Brewster-Wingard GL Willard DA Cronin TM Edwards LE and Holmes CW 1996 Preliminary paleontologic report on core T-24 Little Madeira Bay Florida US Geological Survey Open-File Report 96-543 47 p

Maker LJ Jr 1981 Statistics for microfossil concentration measurements employing samples spiked with marker grains Review of Paleobotany and Palynology v 32 p153-191

Robbins JA Holmes CW Halley RB Bothner Michael Shinn EA Graney Joseph Keller Gerald tenBrinck Marilyn Rudnick David in press Time constraints characterizing predeposition integration of 137Ce and Pb fluxes to sediments in Florida Bay Geochemica et Cosmochemica

Stockmarr Jens 1971 Tablets with spores used in abolute pollen analysis Pollen et Spores v 8 p 615-621

Wall David Dale Barrie Lohmann GP and Smith WK 1977 The environmental and climatic distribution of dinoflagellate cysts in modern marine sediments from regions in the North and South Atlantic Oceans and Adjacent seas Marine Micropaleontology v 2 p 121-200

Wingard GL Ishman SE Cronin TM Edwards LE Willard DA and Halley RB 1995 Preliminary analysis of down-core biotic assemblages Bob Allen Keys Everglades National Park Florida Bay US Geological Survey Open-File Report 95-628 35 p

  • Title Page
  • Table of Contents
  • Abstract
  • Acknowledgements
  • Methods
  • Discussion of Fauna
  • Discussion of Flora
  • Age Model
  • Summary
  • References
Page 12: Preliminary Paleontologic Report on Cores 19A and 19B, from ...

0-2

4-6

12-14

16-18

20-22

36-38

56-58

116-118

100-102

128-130

96-98

88-90

92-94

112-114

104-106

124-126

136-138

140-142

108-110

132-134

84-86

76-78

120-122

80-82

72-74

68-70

48-50

64-66

24-26

32-34

40-42

60-62

52-54

44-46

28-30

8-10

00 01 02 03 04 05 080706

Figure 2 Q-mode cluster diagram of molluscan assemblages from core 19B Distancesare expressed as Pearsons Correlation coefficient values calculated on the molluscanpercent abundance data (see Table 2) and plotted using average linkage methodShaded areas represent clusters formed by samples from the upper portion of the core(0-22 cm) and the lower portion of the core (68-142 cm)

Sam

ple

(iden

tifie

d by

dep

th in

cm

)

2) The cluster containing samples from the interval from 22-0 cm has high Pearsons Correlationcoefficient values for within-group similarity and the largest between-group distances (seeFigure 2) This upper portion of the core is dominated by Brachiodontes sp which comprisesgreater than 50 of the molluscan assemblage in each sample from this section Pinctadaradiata and Cerithium spp are present in significant amounts (5) in some samples from 22-0cm

Benthic Faunal Patterns

Comparison of the benthic fauna present in core 19B with our modern data set enables us tointerpret the salinity history for the Russell Banks site The foraminiferal and molluscan recordsfrom core 19B show distinct oscillations in salinity with a gradual increase in salinity toward thetop of the core (Figure 3) In addition a positive correlation (ρ =052) exists between increasingSimpson diversity indices and decreasing salinity for the benthic foraminfera

The two dominant foraminiferal assemblages Ammonia-Elphidium and miliolid are verysimilar to the Ammonia-Elphidium and Archaias-miliolid assemblages described from modernFlorida Bay sediments (Brewster-Wingard et al 1996) The distribution of modern benthicforaminifers in Florida Bay shows a strong association between the occurrence of Aparkinsoniana and E galvestonense mexicanum and typica with salinities less than 25 ppt(Brewster-Wingard et al 1996) Conversely miliolids dominate where salinities are near normalmarine values (30 ppt) The intervals dominated by the miliolid assemblage (140 cm 118-90 cm70-42 cm and 18-0 cm) therefore indicate more stable and relatively higher average salinity (32-35 ppt) These segments are interrupted by three periods of A-E assemblage dominance (140-118cm 90-70 cm and 42-18 cm) indicating unstable and relatively low average salinity (lt32 ppt)

Molluscs are not as sensitive to variations in salinity as benthic foraminifers consequently themolluscan data do not show the degree of fluctuation seen in the foraminiferal data (Figure 3)The general trend of increasing percent abundance of euhaline and euhaline-polyhaline molluscsupcore does follow the general trend of the foraminiferal plot showing a gradual increase insalinity upcore No molluscan faunas restricted to terrestrial fresh water marsh or upperestuarine environments are present in core 19B indicating this area has been relatively open bayover the last century and the salinity has probably not dropped below 12-15 ppt

Both the benthic foraminiferal assemblages and the molluscan assemblages show significantchanges between 70-66 cm and between 24-18 cm These zones correspond to shifts from A-Edominated assemblages to miliolid dominated assemblages but the molluscs do not seem torespond significantly to the decreases in salinity that mark the shift from miliolid assemblagesback to A-E assemblages Almost all of the molluscs present in this core can be classified aspolyhaline and are tolerant of a wide range of salinities (from approximately 12 or 15 ppt to 30-35 ppt) which could explain the patterns seen for the molluscs If however the salinity haddropped below ~15ppt during the periods of A-E dominance then the molluscs would mostlikely have shown a response The areas of A-E dominance in the core represent salinities of 15-25 ppt with the lower number delineated by the absence of species of molluscs found in lowsalinity waters of Florida Bay and the upper number constrained by the presence of low salinitybenthic foraminifera The miliolid dominated zones represent salinities of 30 ppt or higher

Figure 3 Plot of percent abundance of benthic foraminifers molluscs and the two datasets combined that indicate increasing salinity for core 19B The benthic foraminifersindicate salinity gt 30 ppt The mollusc species have wider salinity tolerances thespecies illustrated on this plot are classified as euhaline or euhalinepolyhaline andrepresent salinities of 20-25 ppt or greater The positions of the benthic foraminiferalassemblages (Milliolid-gray Ammonia-Elphidium-white) discussed in the text are shownon the right of the plot

ForaminifersMolluscsCombined

900080007000600050004000300020001000000

0-2

8-10

16-18

24-26

32-34

40-42

48-50

56-58

64-66

72-74

80-82

88-90

96-98

104-106

112-114

120-122

128-130

136-138

140-142

abundance

Dep

th in

Cen

timet

ers

Miliolid Assemblage

Miliolid Assemblageat 140-142 cm

Miliolid Assemblage

Miliolid Assemblage

Ammonia- ElphidiumAssemblage

Ammonia- ElphidiumAssemblage

Ammonia- ElphidiumAssemblage

1981

1962

1939

1922

1898

1878

Hard Surface

Coarse Sediment or Sponges

Coarse Sediment

Coarse or Fine Sediment

Fine Sediment

Grass Beds or Sediment

Grass Beds or Coarse Sediment

Grass and Algae Beds

Grass Beds

Pecent AbundanceD

epth

in C

ore

(cm

)

0 10 20 30 40 50 60 70 80 90 1000-2

8-10

16-18

24-26

32-34

40-42

48-50

56-58

64-66

72-74

80-82

88-90

96-98

104-106

112-114

120-122

128-130

136-138

Figure 4 Area diagram of percent abundance of molluscs indicative of specific substrate types for core 19B Data plotted at the 116 cm and 28 cm depths represent averages of the overlying and underlying samples these two samples did not contain enough individual specimens to be statistically valid

The suite of molluscs present in core 19B is more indicative of changes in substrate thanchanges in salinity Figure 4 illustrates the substrate patterns within the core based on thepercent abundance of molluscs known to prefer those substrate types The lowest portion of thecore from 142-110 cm has significant numbers of both sediment dwellers and grass dwellerspresent with dominance of either group fluctuating From 106-88 cm sediment dwellersdominate although grass dwellers are still present in significant numbers The segment from 88-22 cm is dominated by grass dwellers above 68 cm the presence of species indicative of asediment substrate is negligible The uppermost portion of the core from 22 cm to the top isdominated by species that could live on either algae or grass

The shifts in abundance of molluscan substrate indicators at 88 cm 68 cm and 22 cmcorrespond to changes seen in the benthic foraminiferal salinity indicators but at this point thesignificance of this relationship is not understood However since the benthic foraminifers usedfor salinity indicators are not sensitive to changes in substrate we believe the changingforaminiferal patterns reflect changing salinity

ANALYSIS AND DISCUSSION OF THE FLORA IN CORE 19A

Pollen

The percent abundance data on pollen is presented in Table 3 Three pollen zones aredistinguishable based on both percent abundance and absolute pollen concentration (pollengrainsgram dry sediment) The bottom zone (140-80 cm) is characterized by the highestpercentages of Pinus (pine) pollen (80-90) and the lowest percentages of Quercus (oak)(lt6) and pollen of the ChenopodiaceaeAmaranthaceae (pigweed family) and Asteraceae(aster family) (Figure 5) No pollen of the Cyperaceae (sawgrass family) is present in this zoneTotal pollen concentration in this zone and the middle zone ranges from about 500-1200grainsgram and the concentration of Quercus pollen is lower than the other zones with lt50grainsgram (Figure 6)

The middle zone (80-32 cm) is characterized by lower percentages of Pinus pollen (54-73)higher percentages of Quercus (6-10) and higher concentrations of Quercus pollen (50-100grainsgram) In both this and the upper zone pollen of the ChenopodiaceaeAmaranthaceae andAsteraceae are more abundant comprising 3 and 2 of the assemblages respectively Pollenof the Cyperaceae is present in low percentages in this and the upper zone

The upper zone has the highest pollen concentrations of the core with most samples rangingfrom 1200-4600 grainsgram Several taxa contribute to these higher values including PinusQuercus Myrica (wax myrtle) ChenopodiaceaeAmaranthaceae and Asteraceae Cephalanthus(buttonbush) is present in low abundances (lt1) in this zone and Liquidambar (sweet gum) isabsent from this zone

Table 3Russell Bank 19A

Percent Abundance of Pollen

Depth in core Aln

us

Api

acea

e

Ast

erac

eae

Avi

cenn

ia

Bet

ula

Bum

elia

Bur

sera

sim

arub

a

Car

ya

Cas

uarin

a

Cel

tis

Cep

hala

nthu

s

Che

nopo

diac

eae

A

mar

anth

acea

e

Con

ocar

pus

Cyp

erac

eae

Dec

odon

Eric

acea

e

Eup

horb

iace

ae

Faba

ceae

Frax

inus

Ilex

Jugl

ans

0-1 cm 000 000 255 000 000 000 000 000 482 000 028 425 000 000 000 000 000 142 000 000 000 4-5 cm 057 000 201 000 000 000 000 029 115 000 029 287 029 115 000 000 029 057 000 029 029 8-9 cm 032 000 322 000 000 000 000 000 129 000 032 096 000 064 000 000 000 032 000 000 000

20-21 cm 000 000 409 031 000 000 000 000 314 000 063 597 000 000 000 000 000 220 000 000 00032-34 cm 030 000 332 000 030 030 000 000 211 000 000 332 030 030 000 000 000 121 000 030 03044-46 cm 080 000 777 000 000 000 000 027 214 000 000 429 000 080 000 000 027 107 000 054 00056-58 cm 031 000 439 000 000 000 000 031 157 000 000 690 000 063 000 063 000 094 031 000 00068-70 cm 168 000 251 000 028 000 028 084 056 000 000 307 000 056 000 000 000 084 000 000 00080-82 cm 000 000 238 000 000 000 000 000 000 000 000 476 000 000 000 000 000 000 000 000 00092-94 cm 054 000 054 000 000 027 000 082 027 000 000 054 000 000 000 000 000 082 027 000 000

104-106 cm 000 029 115 000 000 000 000 000 000 000 000 230 000 000 057 000 000 115 000 000 000116-118 cm 062 000 062 000 000 000 000 000 000 031 000 185 031 000 000 000 000 062 000 000 000128-130 cm 000 000 061 000 000 000 000 030 000 000 000 091 000 000 000 030 000 061 000 000 000136-138 cm 060 000 060 030 000 030 060 181 000 000 000 091 000 000 000 000 000 000 000 000 000138-140 cm 000 000 000 000 000 000 000 081 000 000 000 244 000 000 000 000 000 000 000 000 000

Table 3Russell Bank 19A

Percent Abundance of Pollen

Depth in core0-1 cm

4-5 cm 8-9 cm

20-21 cm 32-34 cm 44-46 cm 56-58 cm 68-70 cm 80-82 cm 92-94 cm

104-106 cm 116-118 cm 128-130 cm 136-138 cm 138-140 cm

Liqu

idam

bar

Mag

nolia

Myr

ica

Nys

sa

Ost

rya

Car

pinu

s

Pin

us

Pla

nera

Poa

ceae

Que

rcus

Rhi

zoph

ora

Rut

acea

e

Sag

ittar

ia

Sal

ix

Taxo

diac

eae

C

upre

ssac

eae

Tax

acea

e

Typh

a

Ulm

us

Tota

l Pol

len

Cou

nted

000 000 283 000 028 6856 000 028 1076 028 000 028 000 000 000 057 353000 000 086 000 000 6905 000 029 1375 029 000 029 000 000 000 000 349000 000 225 000 000 7395 000 032 932 096 032 032 032 000 096 032 321000 000 1069 000 063 5660 000 031 1101 000 000 000 000 000 031 000 321030 000 846 000 000 6737 000 030 634 000 000 000 030 030 030 000 332107 000 429 027 000 5416 000 107 1046 027 000 000 027 027 054 054 378000 031 376 000 000 6395 000 031 690 094 000 031 031 031 063 031 320028 028 447 000 000 7346 000 000 615 028 000 000 028 000 112 028 358119 000 357 000 000 7976 000 000 595 000 000 000 000 000 000 000 85082 000 408 000 000 8696 000 000 245 027 000 000 000 027 000 000 371029 000 747 000 000 8017 000 029 316 057 000 000 000 029 029 000 350000 000 338 000 000 8923 000 031 123 031 000 000 031 000 031 000 326030 000 396 000 000 8628 000 030 457 000 000 000 030 000 000 000 331030 000 242 000 000 8792 030 000 181 000 000 000 000 000 030 000 332081 000 163 000 000 8862 000 000 569 000 000 000 000 000 000 000 123

0 10 20 30 40 50 60 70 80

10

20

30

40

50

60

70

80

90

100

110

120

130

Depthcm Pinu

sQue

rcus

Casua

rina

Rhizop

hora

Myrica

Cepha

lanthu

s

Cheno

podia

ceae

Amara

nthac

eae

Poace

ae

Cypera

ceae

Asterac

eae

10

20

30

40

50

60

70

80

90

100

110

120

130

0 10 0 0 0 10 0 0 0 0 05 5 5 5 5 5 5 55

(Pine

)(O

ak)

(Aus

tralia

n Pine

)

(Red

Man

grove

)

(Wax

Myrt

le)

(Pig

Wee

d)

(Gras

s Fam

ily)

(Saw

grass

Family

)

(Aste

r Fam

ily)

(Butt

on B

ush)

Figure 5 Percent abundance of selected pollen groups for core Russell Bank 19A (note different scales)

0 50 100 150 200 250 300 350 400

Querc

us

0 50

Casua

rina

0 50 100 150 200 250 300

Myr

ica

0 50 100 150

Cheno

pods

0

Cyper

acea

e

0 50 100

Astera

ceae

10

20

30

40

50

60

70

80

90

100

110

120

130

Depthcm Pinu

s

0 1000 2000 3000

Total

Pollen

Con

cent

ratio

n

10

20

30

40

50

60

70

80

90

100

110

120

130

0 1000 2000 3000 4000

Figure 6 Total concentration of pollen (grainsgram) for core Russell Bank 19A (note different scales)

Dinocysts

Dinocyst recovery in all samples was low Most microscope slides are heavily dominated byorganic debris and the maximum number of specimens observed in any sample was 214Absolute abundance ranges from 779 to 4736 cystsgram These values are one to two orders ofmagnitude below those reported by Wall et al (1977) for samples from the Middle AtlanticBight and western South Africa and are consistent with high sedimentation rates These absoluteabundances in the sediments are far below bloom concentrations in which the number of livingcells per ml of water may exceed 50 million

The dinocyst assemblages in the Russell Bank 19A core consist of less than 10 taxa (Table 4)Various species of the genus Spiniferites Mantell dominate all samples (61 to 79 percent) Due topoor preservation and taxonomic difficulties the individual species of this genus were notdifferentiated S mirabilis (Rossignol) Sarjeant S ramosus (Ehrenberg) Mantell S scabratus(Wall) Sarjeant and other forms are present Operculodinium Wall spp (O israelianum(Rossignol) Wall or Operculodinium species undifferentiated) are present in all samples inamounts of 5 to 19 percent Polysphaeridium zoharyi (Rossignol) Bujak et al is present in allsamples and comprises up to 16 percent of the assemblages Most samples included low numbersof Lingulodinium machaerophorum (Deflandre amp Cookson) Wall Nematosphaeropsis rigidaWrenn and (or) Tectatodinium pellitum Wall Only two samples contained a single specimeneach of the family Congruentidiaceae

Most samples from Russell Bank core 19A are quite similar to one another (Figure 7)Throughout the core the dinocyst Polysphaeridium zoharyi ranges in abundance from 0-16percent which is considerably lower than in the Bob Allen 6A (Wingard et al 1995) and LittleMadeira Bay T24 (Ishman et al 1996) cores With one exception (80-82 cm) increased absoluteabundance of Spiniferites spp is accompanied by increased absolute abundance of P zoharyi(Figure 8) This relationship suggests that absolute abundances in this core are a function ofsediment supply rather than cyst production The sample at 80-82 cm is anomalous the highabsolute abundance of cysts is attributable to Spiniferites spp and fewer than 30 total cysts werefound on each slide This sample may represent a case of an increase in Spiniferites cystproduction and an increase in the amount of organic debris in proportion to sediment supply Thelowest samples (132-134 cm and 136-138 cm) show both low absolute abundances of all cysttypes and low percentages of P zoharyi

Floral Patterns

Changes occur in the pollen and dinocyst assemblages in core 19A but the significance ofthese changes is unclear Three zones are distinguishable for the pollen but the differencesamong them are very subtle and any interpretation of patterns of vegetational change would bepremature However it is apparent that the vegetation changed in response to someenvironmental factor at those times correlation with on-shore cores would be necessary toestablish the nature of the changes Dinocyst abundance fluctuates in the core with two peaks at118-104 cm and 82-80 cm but the assemblages are relatively stable throughout the core

Table 4 Dinocyst data from Russell Bank 19A

Pol

ysph

aerid

ium

zoh

aryi

Spi

nife

rites

spp

Ope

rcul

odin

ium

spp

Nem

atos

phae

rops

is ri

gida

Ling

ulod

iniu

m m

acha

erop

horu

m

Tect

atod

iniu

m p

ellit

um

Tube

rcul

odin

ium

van

cam

poae

Con

grue

ntid

iace

ae

Oth

er

TOTA

L D

INO

CY

STS

CO

UN

TED

Depth (cm)

Wt (g) Cystsg

Slides examined

0-1 74 779 2 129 742 97 00 32 00 00 00 00 3120-21 115 1363 1 123 630 74 49 49 62 00 12 00 8144-46 363 921 1 24 750 95 36 48 12 00 00 36 8468-70 358 1454 1 114 705 95 10 38 29 00 10 00 10580-82 337 3732 2 19 811 132 00 38 00 00 00 00 5392-94 385 2049 1 84 720 119 49 28 00 00 00 00 143

104-106 331 4736 1 128 636 133 77 10 05 00 00 10 195116-118 350 3451 1 141 676 106 07 63 07 00 00 00 142128-130 390 1854 1 121 612 178 51 28 05 05 00 00 214132-134 321 1288 1 34 754 127 68 17 00 00 00 00 118136-138 371 2028 1 66 747 110 55 11 11 00 00 00 91

Species

Percent abundance

Comparison of these data to additional terrestrial and marine cores may lead to a betterunderstanding of the patterns seen here

210PB AGE MODEL FOR THE RUSSELL BANKS SITE

The activity of 210Pb (dpmgram) is shown for 19B and 19C in Figures 9 and 10 Thesedimentation rate for the Russell Bank site is based on the results from 19C because both 210Pband Ra analyses have been completed for that core the rate equals 122 cmyear +- 005The 210Pb curves for cores 19B and 19C are almost identical therefore we make the assumptionthat the rate of sediment accumulation is the same in the two cores No 210Pb analyses have beendone for core 19A to date

SUMMARY

The fauna and flora present in the Russell Bank cores 19A and 19B record an approximately120-year history of fluctuating environmental changes The benthic foraminifera documentperiods of fluctuating salinity with a gradual increase in salinity upcore The molluscan data areconsistent with the foraminiferal data showing increasing salinity upcore but without the degreeof fluctuation indicated by the benthic foraminifera The benthic fauna show significant changesin the assemblages at 70-66 cm and 24-18 cm which correspond to approximately 1937-1940and 1975-1980 A similar shift occurred at 118 cm (approximately 1898) which is not as clearlyseen in the molluscan faunal data These periods represent shifts from low salinity (12-15 ppt) tohigher average salinity (30 ppt) In addition the benthic foraminiferal assemblages shift fromperiods of higher average salinity to periods of lower salinity at 140 cm 90 cm and 42 cmwhich correspond to approximately 1880 1921 and 1960 respectively

The molluscan fauna indicate changes occurring in the substrate at the Russell Banks siteSediment and grass (probably Thalassia) apparently were equally available for habitation from142-110 cm or approximately 1878-1904 Although grass was still available bare-sedimentdominated the area from 106-88 cm or approximately 1908-1922 From 88-22 cm orapproximately 1922-1976 grass was the dominant substrate and from approximately 1939 (68cm) to the present the presence of bare-sediment bottoms was negligible at the siteSignificantly from 22 cm or approximately 1976 to the present the molluscan fauna isdominated by species that can live equally well on algae or seagrass

The pollen present in core 19A show three periods of subtle shifts in the onshore vegetation inresponse to some environmental factor These changes occur at 80 cm and at 32 cm orapproximately 1929 and 1968 If we assume that core 19A and 19B have similar sedimentationrates then the shifts in the onshore vegetation indicated by the pollen seen in 19A occurapproximately 7-8 years prior to changes in Florida Bay as indicated by the benthic fauna in19B However until we see this pattern repeated in the same core or until a 210Pb analysis is

0 20 40 60 80 100

0-1

20-21

44-46

68-70

80-82

92-94

104-106

116-118

128-130132-134136-138

Operculodinium spp

Nematosphaeropsis rigida

Lingulodinium machaerophorum

Spiniferites spp

Polysphaeridium zoharyi

All others

Percent Cystsgram 0 100 200 300 400 500

Figure 7 Percent and absolute abundances of dinocysts for core 19A

Dep

th (

cm)

0 100 200 300 4000

20

40

60

80

100

120

140

Spiniferites

Cystsgram

Dep

th (

cm)

Polysphaeridium zoharyi

Figure 8 Absolute abundances of Polysphaeridium zoharyi and Spiniferites spp in core 19 A

000 200 400 600

Activity (dpmg)

Dep

th (c

m)

0

40

80

120

160

Figure 9 Pb210 activity in dpmg for core 19B

Activity (dpmg)

Dep

th (c

m)

000 100 200 300 400 500 600

0-2

6-8

12-14

18-20

24-26

30-32

36-38

42-44

48-50

54-56

60-62

66-68

72-74

78-80

84-86

90-92

96-98

102-104

108-110

114-116

120-122

126-128

132-134

138-140

144-146

150-152

156-158

Figure 10 210Pb activity in dpmg for core 19C

completed for core 19A we can not be certain of its significance because our assumption ofsimilar sedimentation rates for cores 19A and 19B may not be correct

Two peaks in dinocyst abundance (cystsgram) occur in the samples examined 118-104 cm(approximately 1898-1909) and 82-80 cm (approximately 1927-1929) These occur during aperiod of near normal marine (30 ppt) and stable salinity as indicated by the benthicforaminifera These periods may represent increased dinocyst production and decreased sedimentsupply but the composition of the dinocyst assemblages remains relatively stable throughout thecore

The pattern of increased salinity upcore documented here for Russell Banks 19B is consistentwith patterns seen in core T24 from the mouth of Taylor Creek in Little Madeira Bay (Ishman etal 1996) and in core 6A from Bob Allen mudbank (Wingard et al 1995) The correspondencebetween changes in salinity and onshore changes in vegetation is also consistent with resultsfrom the previous cores These patterns will continue to be investigated at additional sites inFlorida Bay and the terrestrial Everglades in order to establish the sequence and timing of eventsthroughout the ecosystem and to determine linkages between the marine and terrestrial systems

REFERENCES CITED

Benninghoff WS 1962 Calculation of pollen and spore density in sediments by addition of exotic pollen in known quantities Pollen et Spores v 4 p 332-333

Brewster-Wingard GL Ishman SE Edwards LE and Willard DA 1996 Preliminary report on the distribution of modern fauna and flora at selected sites in north-central and north-eastern Florida Bay US Geological Survey Open-File Report 96-732 34 p

Davis JC 1973 Statistics and Data Analysis in Geology New York John Wiley amp Sons 550 p

Ishman SE Brewster-Wingard GL Willard DA Cronin TM Edwards LE and Holmes CW 1996 Preliminary paleontologic report on core T-24 Little Madeira Bay Florida US Geological Survey Open-File Report 96-543 47 p

Maker LJ Jr 1981 Statistics for microfossil concentration measurements employing samples spiked with marker grains Review of Paleobotany and Palynology v 32 p153-191

Robbins JA Holmes CW Halley RB Bothner Michael Shinn EA Graney Joseph Keller Gerald tenBrinck Marilyn Rudnick David in press Time constraints characterizing predeposition integration of 137Ce and Pb fluxes to sediments in Florida Bay Geochemica et Cosmochemica

Stockmarr Jens 1971 Tablets with spores used in abolute pollen analysis Pollen et Spores v 8 p 615-621

Wall David Dale Barrie Lohmann GP and Smith WK 1977 The environmental and climatic distribution of dinoflagellate cysts in modern marine sediments from regions in the North and South Atlantic Oceans and Adjacent seas Marine Micropaleontology v 2 p 121-200

Wingard GL Ishman SE Cronin TM Edwards LE Willard DA and Halley RB 1995 Preliminary analysis of down-core biotic assemblages Bob Allen Keys Everglades National Park Florida Bay US Geological Survey Open-File Report 95-628 35 p

  • Title Page
  • Table of Contents
  • Abstract
  • Acknowledgements
  • Methods
  • Discussion of Fauna
  • Discussion of Flora
  • Age Model
  • Summary
  • References
Page 13: Preliminary Paleontologic Report on Cores 19A and 19B, from ...

2) The cluster containing samples from the interval from 22-0 cm has high Pearsons Correlationcoefficient values for within-group similarity and the largest between-group distances (seeFigure 2) This upper portion of the core is dominated by Brachiodontes sp which comprisesgreater than 50 of the molluscan assemblage in each sample from this section Pinctadaradiata and Cerithium spp are present in significant amounts (5) in some samples from 22-0cm

Benthic Faunal Patterns

Comparison of the benthic fauna present in core 19B with our modern data set enables us tointerpret the salinity history for the Russell Banks site The foraminiferal and molluscan recordsfrom core 19B show distinct oscillations in salinity with a gradual increase in salinity toward thetop of the core (Figure 3) In addition a positive correlation (ρ =052) exists between increasingSimpson diversity indices and decreasing salinity for the benthic foraminfera

The two dominant foraminiferal assemblages Ammonia-Elphidium and miliolid are verysimilar to the Ammonia-Elphidium and Archaias-miliolid assemblages described from modernFlorida Bay sediments (Brewster-Wingard et al 1996) The distribution of modern benthicforaminifers in Florida Bay shows a strong association between the occurrence of Aparkinsoniana and E galvestonense mexicanum and typica with salinities less than 25 ppt(Brewster-Wingard et al 1996) Conversely miliolids dominate where salinities are near normalmarine values (30 ppt) The intervals dominated by the miliolid assemblage (140 cm 118-90 cm70-42 cm and 18-0 cm) therefore indicate more stable and relatively higher average salinity (32-35 ppt) These segments are interrupted by three periods of A-E assemblage dominance (140-118cm 90-70 cm and 42-18 cm) indicating unstable and relatively low average salinity (lt32 ppt)

Molluscs are not as sensitive to variations in salinity as benthic foraminifers consequently themolluscan data do not show the degree of fluctuation seen in the foraminiferal data (Figure 3)The general trend of increasing percent abundance of euhaline and euhaline-polyhaline molluscsupcore does follow the general trend of the foraminiferal plot showing a gradual increase insalinity upcore No molluscan faunas restricted to terrestrial fresh water marsh or upperestuarine environments are present in core 19B indicating this area has been relatively open bayover the last century and the salinity has probably not dropped below 12-15 ppt

Both the benthic foraminiferal assemblages and the molluscan assemblages show significantchanges between 70-66 cm and between 24-18 cm These zones correspond to shifts from A-Edominated assemblages to miliolid dominated assemblages but the molluscs do not seem torespond significantly to the decreases in salinity that mark the shift from miliolid assemblagesback to A-E assemblages Almost all of the molluscs present in this core can be classified aspolyhaline and are tolerant of a wide range of salinities (from approximately 12 or 15 ppt to 30-35 ppt) which could explain the patterns seen for the molluscs If however the salinity haddropped below ~15ppt during the periods of A-E dominance then the molluscs would mostlikely have shown a response The areas of A-E dominance in the core represent salinities of 15-25 ppt with the lower number delineated by the absence of species of molluscs found in lowsalinity waters of Florida Bay and the upper number constrained by the presence of low salinitybenthic foraminifera The miliolid dominated zones represent salinities of 30 ppt or higher

Figure 3 Plot of percent abundance of benthic foraminifers molluscs and the two datasets combined that indicate increasing salinity for core 19B The benthic foraminifersindicate salinity gt 30 ppt The mollusc species have wider salinity tolerances thespecies illustrated on this plot are classified as euhaline or euhalinepolyhaline andrepresent salinities of 20-25 ppt or greater The positions of the benthic foraminiferalassemblages (Milliolid-gray Ammonia-Elphidium-white) discussed in the text are shownon the right of the plot

ForaminifersMolluscsCombined

900080007000600050004000300020001000000

0-2

8-10

16-18

24-26

32-34

40-42

48-50

56-58

64-66

72-74

80-82

88-90

96-98

104-106

112-114

120-122

128-130

136-138

140-142

abundance

Dep

th in

Cen

timet

ers

Miliolid Assemblage

Miliolid Assemblageat 140-142 cm

Miliolid Assemblage

Miliolid Assemblage

Ammonia- ElphidiumAssemblage

Ammonia- ElphidiumAssemblage

Ammonia- ElphidiumAssemblage

1981

1962

1939

1922

1898

1878

Hard Surface

Coarse Sediment or Sponges

Coarse Sediment

Coarse or Fine Sediment

Fine Sediment

Grass Beds or Sediment

Grass Beds or Coarse Sediment

Grass and Algae Beds

Grass Beds

Pecent AbundanceD

epth

in C

ore

(cm

)

0 10 20 30 40 50 60 70 80 90 1000-2

8-10

16-18

24-26

32-34

40-42

48-50

56-58

64-66

72-74

80-82

88-90

96-98

104-106

112-114

120-122

128-130

136-138

Figure 4 Area diagram of percent abundance of molluscs indicative of specific substrate types for core 19B Data plotted at the 116 cm and 28 cm depths represent averages of the overlying and underlying samples these two samples did not contain enough individual specimens to be statistically valid

The suite of molluscs present in core 19B is more indicative of changes in substrate thanchanges in salinity Figure 4 illustrates the substrate patterns within the core based on thepercent abundance of molluscs known to prefer those substrate types The lowest portion of thecore from 142-110 cm has significant numbers of both sediment dwellers and grass dwellerspresent with dominance of either group fluctuating From 106-88 cm sediment dwellersdominate although grass dwellers are still present in significant numbers The segment from 88-22 cm is dominated by grass dwellers above 68 cm the presence of species indicative of asediment substrate is negligible The uppermost portion of the core from 22 cm to the top isdominated by species that could live on either algae or grass

The shifts in abundance of molluscan substrate indicators at 88 cm 68 cm and 22 cmcorrespond to changes seen in the benthic foraminiferal salinity indicators but at this point thesignificance of this relationship is not understood However since the benthic foraminifers usedfor salinity indicators are not sensitive to changes in substrate we believe the changingforaminiferal patterns reflect changing salinity

ANALYSIS AND DISCUSSION OF THE FLORA IN CORE 19A

Pollen

The percent abundance data on pollen is presented in Table 3 Three pollen zones aredistinguishable based on both percent abundance and absolute pollen concentration (pollengrainsgram dry sediment) The bottom zone (140-80 cm) is characterized by the highestpercentages of Pinus (pine) pollen (80-90) and the lowest percentages of Quercus (oak)(lt6) and pollen of the ChenopodiaceaeAmaranthaceae (pigweed family) and Asteraceae(aster family) (Figure 5) No pollen of the Cyperaceae (sawgrass family) is present in this zoneTotal pollen concentration in this zone and the middle zone ranges from about 500-1200grainsgram and the concentration of Quercus pollen is lower than the other zones with lt50grainsgram (Figure 6)

The middle zone (80-32 cm) is characterized by lower percentages of Pinus pollen (54-73)higher percentages of Quercus (6-10) and higher concentrations of Quercus pollen (50-100grainsgram) In both this and the upper zone pollen of the ChenopodiaceaeAmaranthaceae andAsteraceae are more abundant comprising 3 and 2 of the assemblages respectively Pollenof the Cyperaceae is present in low percentages in this and the upper zone

The upper zone has the highest pollen concentrations of the core with most samples rangingfrom 1200-4600 grainsgram Several taxa contribute to these higher values including PinusQuercus Myrica (wax myrtle) ChenopodiaceaeAmaranthaceae and Asteraceae Cephalanthus(buttonbush) is present in low abundances (lt1) in this zone and Liquidambar (sweet gum) isabsent from this zone

Table 3Russell Bank 19A

Percent Abundance of Pollen

Depth in core Aln

us

Api

acea

e

Ast

erac

eae

Avi

cenn

ia

Bet

ula

Bum

elia

Bur

sera

sim

arub

a

Car

ya

Cas

uarin

a

Cel

tis

Cep

hala

nthu

s

Che

nopo

diac

eae

A

mar

anth

acea

e

Con

ocar

pus

Cyp

erac

eae

Dec

odon

Eric

acea

e

Eup

horb

iace

ae

Faba

ceae

Frax

inus

Ilex

Jugl

ans

0-1 cm 000 000 255 000 000 000 000 000 482 000 028 425 000 000 000 000 000 142 000 000 000 4-5 cm 057 000 201 000 000 000 000 029 115 000 029 287 029 115 000 000 029 057 000 029 029 8-9 cm 032 000 322 000 000 000 000 000 129 000 032 096 000 064 000 000 000 032 000 000 000

20-21 cm 000 000 409 031 000 000 000 000 314 000 063 597 000 000 000 000 000 220 000 000 00032-34 cm 030 000 332 000 030 030 000 000 211 000 000 332 030 030 000 000 000 121 000 030 03044-46 cm 080 000 777 000 000 000 000 027 214 000 000 429 000 080 000 000 027 107 000 054 00056-58 cm 031 000 439 000 000 000 000 031 157 000 000 690 000 063 000 063 000 094 031 000 00068-70 cm 168 000 251 000 028 000 028 084 056 000 000 307 000 056 000 000 000 084 000 000 00080-82 cm 000 000 238 000 000 000 000 000 000 000 000 476 000 000 000 000 000 000 000 000 00092-94 cm 054 000 054 000 000 027 000 082 027 000 000 054 000 000 000 000 000 082 027 000 000

104-106 cm 000 029 115 000 000 000 000 000 000 000 000 230 000 000 057 000 000 115 000 000 000116-118 cm 062 000 062 000 000 000 000 000 000 031 000 185 031 000 000 000 000 062 000 000 000128-130 cm 000 000 061 000 000 000 000 030 000 000 000 091 000 000 000 030 000 061 000 000 000136-138 cm 060 000 060 030 000 030 060 181 000 000 000 091 000 000 000 000 000 000 000 000 000138-140 cm 000 000 000 000 000 000 000 081 000 000 000 244 000 000 000 000 000 000 000 000 000

Table 3Russell Bank 19A

Percent Abundance of Pollen

Depth in core0-1 cm

4-5 cm 8-9 cm

20-21 cm 32-34 cm 44-46 cm 56-58 cm 68-70 cm 80-82 cm 92-94 cm

104-106 cm 116-118 cm 128-130 cm 136-138 cm 138-140 cm

Liqu

idam

bar

Mag

nolia

Myr

ica

Nys

sa

Ost

rya

Car

pinu

s

Pin

us

Pla

nera

Poa

ceae

Que

rcus

Rhi

zoph

ora

Rut

acea

e

Sag

ittar

ia

Sal

ix

Taxo

diac

eae

C

upre

ssac

eae

Tax

acea

e

Typh

a

Ulm

us

Tota

l Pol

len

Cou

nted

000 000 283 000 028 6856 000 028 1076 028 000 028 000 000 000 057 353000 000 086 000 000 6905 000 029 1375 029 000 029 000 000 000 000 349000 000 225 000 000 7395 000 032 932 096 032 032 032 000 096 032 321000 000 1069 000 063 5660 000 031 1101 000 000 000 000 000 031 000 321030 000 846 000 000 6737 000 030 634 000 000 000 030 030 030 000 332107 000 429 027 000 5416 000 107 1046 027 000 000 027 027 054 054 378000 031 376 000 000 6395 000 031 690 094 000 031 031 031 063 031 320028 028 447 000 000 7346 000 000 615 028 000 000 028 000 112 028 358119 000 357 000 000 7976 000 000 595 000 000 000 000 000 000 000 85082 000 408 000 000 8696 000 000 245 027 000 000 000 027 000 000 371029 000 747 000 000 8017 000 029 316 057 000 000 000 029 029 000 350000 000 338 000 000 8923 000 031 123 031 000 000 031 000 031 000 326030 000 396 000 000 8628 000 030 457 000 000 000 030 000 000 000 331030 000 242 000 000 8792 030 000 181 000 000 000 000 000 030 000 332081 000 163 000 000 8862 000 000 569 000 000 000 000 000 000 000 123

0 10 20 30 40 50 60 70 80

10

20

30

40

50

60

70

80

90

100

110

120

130

Depthcm Pinu

sQue

rcus

Casua

rina

Rhizop

hora

Myrica

Cepha

lanthu

s

Cheno

podia

ceae

Amara

nthac

eae

Poace

ae

Cypera

ceae

Asterac

eae

10

20

30

40

50

60

70

80

90

100

110

120

130

0 10 0 0 0 10 0 0 0 0 05 5 5 5 5 5 5 55

(Pine

)(O

ak)

(Aus

tralia

n Pine

)

(Red

Man

grove

)

(Wax

Myrt

le)

(Pig

Wee

d)

(Gras

s Fam

ily)

(Saw

grass

Family

)

(Aste

r Fam

ily)

(Butt

on B

ush)

Figure 5 Percent abundance of selected pollen groups for core Russell Bank 19A (note different scales)

0 50 100 150 200 250 300 350 400

Querc

us

0 50

Casua

rina

0 50 100 150 200 250 300

Myr

ica

0 50 100 150

Cheno

pods

0

Cyper

acea

e

0 50 100

Astera

ceae

10

20

30

40

50

60

70

80

90

100

110

120

130

Depthcm Pinu

s

0 1000 2000 3000

Total

Pollen

Con

cent

ratio

n

10

20

30

40

50

60

70

80

90

100

110

120

130

0 1000 2000 3000 4000

Figure 6 Total concentration of pollen (grainsgram) for core Russell Bank 19A (note different scales)

Dinocysts

Dinocyst recovery in all samples was low Most microscope slides are heavily dominated byorganic debris and the maximum number of specimens observed in any sample was 214Absolute abundance ranges from 779 to 4736 cystsgram These values are one to two orders ofmagnitude below those reported by Wall et al (1977) for samples from the Middle AtlanticBight and western South Africa and are consistent with high sedimentation rates These absoluteabundances in the sediments are far below bloom concentrations in which the number of livingcells per ml of water may exceed 50 million

The dinocyst assemblages in the Russell Bank 19A core consist of less than 10 taxa (Table 4)Various species of the genus Spiniferites Mantell dominate all samples (61 to 79 percent) Due topoor preservation and taxonomic difficulties the individual species of this genus were notdifferentiated S mirabilis (Rossignol) Sarjeant S ramosus (Ehrenberg) Mantell S scabratus(Wall) Sarjeant and other forms are present Operculodinium Wall spp (O israelianum(Rossignol) Wall or Operculodinium species undifferentiated) are present in all samples inamounts of 5 to 19 percent Polysphaeridium zoharyi (Rossignol) Bujak et al is present in allsamples and comprises up to 16 percent of the assemblages Most samples included low numbersof Lingulodinium machaerophorum (Deflandre amp Cookson) Wall Nematosphaeropsis rigidaWrenn and (or) Tectatodinium pellitum Wall Only two samples contained a single specimeneach of the family Congruentidiaceae

Most samples from Russell Bank core 19A are quite similar to one another (Figure 7)Throughout the core the dinocyst Polysphaeridium zoharyi ranges in abundance from 0-16percent which is considerably lower than in the Bob Allen 6A (Wingard et al 1995) and LittleMadeira Bay T24 (Ishman et al 1996) cores With one exception (80-82 cm) increased absoluteabundance of Spiniferites spp is accompanied by increased absolute abundance of P zoharyi(Figure 8) This relationship suggests that absolute abundances in this core are a function ofsediment supply rather than cyst production The sample at 80-82 cm is anomalous the highabsolute abundance of cysts is attributable to Spiniferites spp and fewer than 30 total cysts werefound on each slide This sample may represent a case of an increase in Spiniferites cystproduction and an increase in the amount of organic debris in proportion to sediment supply Thelowest samples (132-134 cm and 136-138 cm) show both low absolute abundances of all cysttypes and low percentages of P zoharyi

Floral Patterns

Changes occur in the pollen and dinocyst assemblages in core 19A but the significance ofthese changes is unclear Three zones are distinguishable for the pollen but the differencesamong them are very subtle and any interpretation of patterns of vegetational change would bepremature However it is apparent that the vegetation changed in response to someenvironmental factor at those times correlation with on-shore cores would be necessary toestablish the nature of the changes Dinocyst abundance fluctuates in the core with two peaks at118-104 cm and 82-80 cm but the assemblages are relatively stable throughout the core

Table 4 Dinocyst data from Russell Bank 19A

Pol

ysph

aerid

ium

zoh

aryi

Spi

nife

rites

spp

Ope

rcul

odin

ium

spp

Nem

atos

phae

rops

is ri

gida

Ling

ulod

iniu

m m

acha

erop

horu

m

Tect

atod

iniu

m p

ellit

um

Tube

rcul

odin

ium

van

cam

poae

Con

grue

ntid

iace

ae

Oth

er

TOTA

L D

INO

CY

STS

CO

UN

TED

Depth (cm)

Wt (g) Cystsg

Slides examined

0-1 74 779 2 129 742 97 00 32 00 00 00 00 3120-21 115 1363 1 123 630 74 49 49 62 00 12 00 8144-46 363 921 1 24 750 95 36 48 12 00 00 36 8468-70 358 1454 1 114 705 95 10 38 29 00 10 00 10580-82 337 3732 2 19 811 132 00 38 00 00 00 00 5392-94 385 2049 1 84 720 119 49 28 00 00 00 00 143

104-106 331 4736 1 128 636 133 77 10 05 00 00 10 195116-118 350 3451 1 141 676 106 07 63 07 00 00 00 142128-130 390 1854 1 121 612 178 51 28 05 05 00 00 214132-134 321 1288 1 34 754 127 68 17 00 00 00 00 118136-138 371 2028 1 66 747 110 55 11 11 00 00 00 91

Species

Percent abundance

Comparison of these data to additional terrestrial and marine cores may lead to a betterunderstanding of the patterns seen here

210PB AGE MODEL FOR THE RUSSELL BANKS SITE

The activity of 210Pb (dpmgram) is shown for 19B and 19C in Figures 9 and 10 Thesedimentation rate for the Russell Bank site is based on the results from 19C because both 210Pband Ra analyses have been completed for that core the rate equals 122 cmyear +- 005The 210Pb curves for cores 19B and 19C are almost identical therefore we make the assumptionthat the rate of sediment accumulation is the same in the two cores No 210Pb analyses have beendone for core 19A to date

SUMMARY

The fauna and flora present in the Russell Bank cores 19A and 19B record an approximately120-year history of fluctuating environmental changes The benthic foraminifera documentperiods of fluctuating salinity with a gradual increase in salinity upcore The molluscan data areconsistent with the foraminiferal data showing increasing salinity upcore but without the degreeof fluctuation indicated by the benthic foraminifera The benthic fauna show significant changesin the assemblages at 70-66 cm and 24-18 cm which correspond to approximately 1937-1940and 1975-1980 A similar shift occurred at 118 cm (approximately 1898) which is not as clearlyseen in the molluscan faunal data These periods represent shifts from low salinity (12-15 ppt) tohigher average salinity (30 ppt) In addition the benthic foraminiferal assemblages shift fromperiods of higher average salinity to periods of lower salinity at 140 cm 90 cm and 42 cmwhich correspond to approximately 1880 1921 and 1960 respectively

The molluscan fauna indicate changes occurring in the substrate at the Russell Banks siteSediment and grass (probably Thalassia) apparently were equally available for habitation from142-110 cm or approximately 1878-1904 Although grass was still available bare-sedimentdominated the area from 106-88 cm or approximately 1908-1922 From 88-22 cm orapproximately 1922-1976 grass was the dominant substrate and from approximately 1939 (68cm) to the present the presence of bare-sediment bottoms was negligible at the siteSignificantly from 22 cm or approximately 1976 to the present the molluscan fauna isdominated by species that can live equally well on algae or seagrass

The pollen present in core 19A show three periods of subtle shifts in the onshore vegetation inresponse to some environmental factor These changes occur at 80 cm and at 32 cm orapproximately 1929 and 1968 If we assume that core 19A and 19B have similar sedimentationrates then the shifts in the onshore vegetation indicated by the pollen seen in 19A occurapproximately 7-8 years prior to changes in Florida Bay as indicated by the benthic fauna in19B However until we see this pattern repeated in the same core or until a 210Pb analysis is

0 20 40 60 80 100

0-1

20-21

44-46

68-70

80-82

92-94

104-106

116-118

128-130132-134136-138

Operculodinium spp

Nematosphaeropsis rigida

Lingulodinium machaerophorum

Spiniferites spp

Polysphaeridium zoharyi

All others

Percent Cystsgram 0 100 200 300 400 500

Figure 7 Percent and absolute abundances of dinocysts for core 19A

Dep

th (

cm)

0 100 200 300 4000

20

40

60

80

100

120

140

Spiniferites

Cystsgram

Dep

th (

cm)

Polysphaeridium zoharyi

Figure 8 Absolute abundances of Polysphaeridium zoharyi and Spiniferites spp in core 19 A

000 200 400 600

Activity (dpmg)

Dep

th (c

m)

0

40

80

120

160

Figure 9 Pb210 activity in dpmg for core 19B

Activity (dpmg)

Dep

th (c

m)

000 100 200 300 400 500 600

0-2

6-8

12-14

18-20

24-26

30-32

36-38

42-44

48-50

54-56

60-62

66-68

72-74

78-80

84-86

90-92

96-98

102-104

108-110

114-116

120-122

126-128

132-134

138-140

144-146

150-152

156-158

Figure 10 210Pb activity in dpmg for core 19C

completed for core 19A we can not be certain of its significance because our assumption ofsimilar sedimentation rates for cores 19A and 19B may not be correct

Two peaks in dinocyst abundance (cystsgram) occur in the samples examined 118-104 cm(approximately 1898-1909) and 82-80 cm (approximately 1927-1929) These occur during aperiod of near normal marine (30 ppt) and stable salinity as indicated by the benthicforaminifera These periods may represent increased dinocyst production and decreased sedimentsupply but the composition of the dinocyst assemblages remains relatively stable throughout thecore

The pattern of increased salinity upcore documented here for Russell Banks 19B is consistentwith patterns seen in core T24 from the mouth of Taylor Creek in Little Madeira Bay (Ishman etal 1996) and in core 6A from Bob Allen mudbank (Wingard et al 1995) The correspondencebetween changes in salinity and onshore changes in vegetation is also consistent with resultsfrom the previous cores These patterns will continue to be investigated at additional sites inFlorida Bay and the terrestrial Everglades in order to establish the sequence and timing of eventsthroughout the ecosystem and to determine linkages between the marine and terrestrial systems

REFERENCES CITED

Benninghoff WS 1962 Calculation of pollen and spore density in sediments by addition of exotic pollen in known quantities Pollen et Spores v 4 p 332-333

Brewster-Wingard GL Ishman SE Edwards LE and Willard DA 1996 Preliminary report on the distribution of modern fauna and flora at selected sites in north-central and north-eastern Florida Bay US Geological Survey Open-File Report 96-732 34 p

Davis JC 1973 Statistics and Data Analysis in Geology New York John Wiley amp Sons 550 p

Ishman SE Brewster-Wingard GL Willard DA Cronin TM Edwards LE and Holmes CW 1996 Preliminary paleontologic report on core T-24 Little Madeira Bay Florida US Geological Survey Open-File Report 96-543 47 p

Maker LJ Jr 1981 Statistics for microfossil concentration measurements employing samples spiked with marker grains Review of Paleobotany and Palynology v 32 p153-191

Robbins JA Holmes CW Halley RB Bothner Michael Shinn EA Graney Joseph Keller Gerald tenBrinck Marilyn Rudnick David in press Time constraints characterizing predeposition integration of 137Ce and Pb fluxes to sediments in Florida Bay Geochemica et Cosmochemica

Stockmarr Jens 1971 Tablets with spores used in abolute pollen analysis Pollen et Spores v 8 p 615-621

Wall David Dale Barrie Lohmann GP and Smith WK 1977 The environmental and climatic distribution of dinoflagellate cysts in modern marine sediments from regions in the North and South Atlantic Oceans and Adjacent seas Marine Micropaleontology v 2 p 121-200

Wingard GL Ishman SE Cronin TM Edwards LE Willard DA and Halley RB 1995 Preliminary analysis of down-core biotic assemblages Bob Allen Keys Everglades National Park Florida Bay US Geological Survey Open-File Report 95-628 35 p

  • Title Page
  • Table of Contents
  • Abstract
  • Acknowledgements
  • Methods
  • Discussion of Fauna
  • Discussion of Flora
  • Age Model
  • Summary
  • References
Page 14: Preliminary Paleontologic Report on Cores 19A and 19B, from ...

Figure 3 Plot of percent abundance of benthic foraminifers molluscs and the two datasets combined that indicate increasing salinity for core 19B The benthic foraminifersindicate salinity gt 30 ppt The mollusc species have wider salinity tolerances thespecies illustrated on this plot are classified as euhaline or euhalinepolyhaline andrepresent salinities of 20-25 ppt or greater The positions of the benthic foraminiferalassemblages (Milliolid-gray Ammonia-Elphidium-white) discussed in the text are shownon the right of the plot

ForaminifersMolluscsCombined

900080007000600050004000300020001000000

0-2

8-10

16-18

24-26

32-34

40-42

48-50

56-58

64-66

72-74

80-82

88-90

96-98

104-106

112-114

120-122

128-130

136-138

140-142

abundance

Dep

th in

Cen

timet

ers

Miliolid Assemblage

Miliolid Assemblageat 140-142 cm

Miliolid Assemblage

Miliolid Assemblage

Ammonia- ElphidiumAssemblage

Ammonia- ElphidiumAssemblage

Ammonia- ElphidiumAssemblage

1981

1962

1939

1922

1898

1878

Hard Surface

Coarse Sediment or Sponges

Coarse Sediment

Coarse or Fine Sediment

Fine Sediment

Grass Beds or Sediment

Grass Beds or Coarse Sediment

Grass and Algae Beds

Grass Beds

Pecent AbundanceD

epth

in C

ore

(cm

)

0 10 20 30 40 50 60 70 80 90 1000-2

8-10

16-18

24-26

32-34

40-42

48-50

56-58

64-66

72-74

80-82

88-90

96-98

104-106

112-114

120-122

128-130

136-138

Figure 4 Area diagram of percent abundance of molluscs indicative of specific substrate types for core 19B Data plotted at the 116 cm and 28 cm depths represent averages of the overlying and underlying samples these two samples did not contain enough individual specimens to be statistically valid

The suite of molluscs present in core 19B is more indicative of changes in substrate thanchanges in salinity Figure 4 illustrates the substrate patterns within the core based on thepercent abundance of molluscs known to prefer those substrate types The lowest portion of thecore from 142-110 cm has significant numbers of both sediment dwellers and grass dwellerspresent with dominance of either group fluctuating From 106-88 cm sediment dwellersdominate although grass dwellers are still present in significant numbers The segment from 88-22 cm is dominated by grass dwellers above 68 cm the presence of species indicative of asediment substrate is negligible The uppermost portion of the core from 22 cm to the top isdominated by species that could live on either algae or grass

The shifts in abundance of molluscan substrate indicators at 88 cm 68 cm and 22 cmcorrespond to changes seen in the benthic foraminiferal salinity indicators but at this point thesignificance of this relationship is not understood However since the benthic foraminifers usedfor salinity indicators are not sensitive to changes in substrate we believe the changingforaminiferal patterns reflect changing salinity

ANALYSIS AND DISCUSSION OF THE FLORA IN CORE 19A

Pollen

The percent abundance data on pollen is presented in Table 3 Three pollen zones aredistinguishable based on both percent abundance and absolute pollen concentration (pollengrainsgram dry sediment) The bottom zone (140-80 cm) is characterized by the highestpercentages of Pinus (pine) pollen (80-90) and the lowest percentages of Quercus (oak)(lt6) and pollen of the ChenopodiaceaeAmaranthaceae (pigweed family) and Asteraceae(aster family) (Figure 5) No pollen of the Cyperaceae (sawgrass family) is present in this zoneTotal pollen concentration in this zone and the middle zone ranges from about 500-1200grainsgram and the concentration of Quercus pollen is lower than the other zones with lt50grainsgram (Figure 6)

The middle zone (80-32 cm) is characterized by lower percentages of Pinus pollen (54-73)higher percentages of Quercus (6-10) and higher concentrations of Quercus pollen (50-100grainsgram) In both this and the upper zone pollen of the ChenopodiaceaeAmaranthaceae andAsteraceae are more abundant comprising 3 and 2 of the assemblages respectively Pollenof the Cyperaceae is present in low percentages in this and the upper zone

The upper zone has the highest pollen concentrations of the core with most samples rangingfrom 1200-4600 grainsgram Several taxa contribute to these higher values including PinusQuercus Myrica (wax myrtle) ChenopodiaceaeAmaranthaceae and Asteraceae Cephalanthus(buttonbush) is present in low abundances (lt1) in this zone and Liquidambar (sweet gum) isabsent from this zone

Table 3Russell Bank 19A

Percent Abundance of Pollen

Depth in core Aln

us

Api

acea

e

Ast

erac

eae

Avi

cenn

ia

Bet

ula

Bum

elia

Bur

sera

sim

arub

a

Car

ya

Cas

uarin

a

Cel

tis

Cep

hala

nthu

s

Che

nopo

diac

eae

A

mar

anth

acea

e

Con

ocar

pus

Cyp

erac

eae

Dec

odon

Eric

acea

e

Eup

horb

iace

ae

Faba

ceae

Frax

inus

Ilex

Jugl

ans

0-1 cm 000 000 255 000 000 000 000 000 482 000 028 425 000 000 000 000 000 142 000 000 000 4-5 cm 057 000 201 000 000 000 000 029 115 000 029 287 029 115 000 000 029 057 000 029 029 8-9 cm 032 000 322 000 000 000 000 000 129 000 032 096 000 064 000 000 000 032 000 000 000

20-21 cm 000 000 409 031 000 000 000 000 314 000 063 597 000 000 000 000 000 220 000 000 00032-34 cm 030 000 332 000 030 030 000 000 211 000 000 332 030 030 000 000 000 121 000 030 03044-46 cm 080 000 777 000 000 000 000 027 214 000 000 429 000 080 000 000 027 107 000 054 00056-58 cm 031 000 439 000 000 000 000 031 157 000 000 690 000 063 000 063 000 094 031 000 00068-70 cm 168 000 251 000 028 000 028 084 056 000 000 307 000 056 000 000 000 084 000 000 00080-82 cm 000 000 238 000 000 000 000 000 000 000 000 476 000 000 000 000 000 000 000 000 00092-94 cm 054 000 054 000 000 027 000 082 027 000 000 054 000 000 000 000 000 082 027 000 000

104-106 cm 000 029 115 000 000 000 000 000 000 000 000 230 000 000 057 000 000 115 000 000 000116-118 cm 062 000 062 000 000 000 000 000 000 031 000 185 031 000 000 000 000 062 000 000 000128-130 cm 000 000 061 000 000 000 000 030 000 000 000 091 000 000 000 030 000 061 000 000 000136-138 cm 060 000 060 030 000 030 060 181 000 000 000 091 000 000 000 000 000 000 000 000 000138-140 cm 000 000 000 000 000 000 000 081 000 000 000 244 000 000 000 000 000 000 000 000 000

Table 3Russell Bank 19A

Percent Abundance of Pollen

Depth in core0-1 cm

4-5 cm 8-9 cm

20-21 cm 32-34 cm 44-46 cm 56-58 cm 68-70 cm 80-82 cm 92-94 cm

104-106 cm 116-118 cm 128-130 cm 136-138 cm 138-140 cm

Liqu

idam

bar

Mag

nolia

Myr

ica

Nys

sa

Ost

rya

Car

pinu

s

Pin

us

Pla

nera

Poa

ceae

Que

rcus

Rhi

zoph

ora

Rut

acea

e

Sag

ittar

ia

Sal

ix

Taxo

diac

eae

C

upre

ssac

eae

Tax

acea

e

Typh

a

Ulm

us

Tota

l Pol

len

Cou

nted

000 000 283 000 028 6856 000 028 1076 028 000 028 000 000 000 057 353000 000 086 000 000 6905 000 029 1375 029 000 029 000 000 000 000 349000 000 225 000 000 7395 000 032 932 096 032 032 032 000 096 032 321000 000 1069 000 063 5660 000 031 1101 000 000 000 000 000 031 000 321030 000 846 000 000 6737 000 030 634 000 000 000 030 030 030 000 332107 000 429 027 000 5416 000 107 1046 027 000 000 027 027 054 054 378000 031 376 000 000 6395 000 031 690 094 000 031 031 031 063 031 320028 028 447 000 000 7346 000 000 615 028 000 000 028 000 112 028 358119 000 357 000 000 7976 000 000 595 000 000 000 000 000 000 000 85082 000 408 000 000 8696 000 000 245 027 000 000 000 027 000 000 371029 000 747 000 000 8017 000 029 316 057 000 000 000 029 029 000 350000 000 338 000 000 8923 000 031 123 031 000 000 031 000 031 000 326030 000 396 000 000 8628 000 030 457 000 000 000 030 000 000 000 331030 000 242 000 000 8792 030 000 181 000 000 000 000 000 030 000 332081 000 163 000 000 8862 000 000 569 000 000 000 000 000 000 000 123

0 10 20 30 40 50 60 70 80

10

20

30

40

50

60

70

80

90

100

110

120

130

Depthcm Pinu

sQue

rcus

Casua

rina

Rhizop

hora

Myrica

Cepha

lanthu

s

Cheno

podia

ceae

Amara

nthac

eae

Poace

ae

Cypera

ceae

Asterac

eae

10

20

30

40

50

60

70

80

90

100

110

120

130

0 10 0 0 0 10 0 0 0 0 05 5 5 5 5 5 5 55

(Pine

)(O

ak)

(Aus

tralia

n Pine

)

(Red

Man

grove

)

(Wax

Myrt

le)

(Pig

Wee

d)

(Gras

s Fam

ily)

(Saw

grass

Family

)

(Aste

r Fam

ily)

(Butt

on B

ush)

Figure 5 Percent abundance of selected pollen groups for core Russell Bank 19A (note different scales)

0 50 100 150 200 250 300 350 400

Querc

us

0 50

Casua

rina

0 50 100 150 200 250 300

Myr

ica

0 50 100 150

Cheno

pods

0

Cyper

acea

e

0 50 100

Astera

ceae

10

20

30

40

50

60

70

80

90

100

110

120

130

Depthcm Pinu

s

0 1000 2000 3000

Total

Pollen

Con

cent

ratio

n

10

20

30

40

50

60

70

80

90

100

110

120

130

0 1000 2000 3000 4000

Figure 6 Total concentration of pollen (grainsgram) for core Russell Bank 19A (note different scales)

Dinocysts

Dinocyst recovery in all samples was low Most microscope slides are heavily dominated byorganic debris and the maximum number of specimens observed in any sample was 214Absolute abundance ranges from 779 to 4736 cystsgram These values are one to two orders ofmagnitude below those reported by Wall et al (1977) for samples from the Middle AtlanticBight and western South Africa and are consistent with high sedimentation rates These absoluteabundances in the sediments are far below bloom concentrations in which the number of livingcells per ml of water may exceed 50 million

The dinocyst assemblages in the Russell Bank 19A core consist of less than 10 taxa (Table 4)Various species of the genus Spiniferites Mantell dominate all samples (61 to 79 percent) Due topoor preservation and taxonomic difficulties the individual species of this genus were notdifferentiated S mirabilis (Rossignol) Sarjeant S ramosus (Ehrenberg) Mantell S scabratus(Wall) Sarjeant and other forms are present Operculodinium Wall spp (O israelianum(Rossignol) Wall or Operculodinium species undifferentiated) are present in all samples inamounts of 5 to 19 percent Polysphaeridium zoharyi (Rossignol) Bujak et al is present in allsamples and comprises up to 16 percent of the assemblages Most samples included low numbersof Lingulodinium machaerophorum (Deflandre amp Cookson) Wall Nematosphaeropsis rigidaWrenn and (or) Tectatodinium pellitum Wall Only two samples contained a single specimeneach of the family Congruentidiaceae

Most samples from Russell Bank core 19A are quite similar to one another (Figure 7)Throughout the core the dinocyst Polysphaeridium zoharyi ranges in abundance from 0-16percent which is considerably lower than in the Bob Allen 6A (Wingard et al 1995) and LittleMadeira Bay T24 (Ishman et al 1996) cores With one exception (80-82 cm) increased absoluteabundance of Spiniferites spp is accompanied by increased absolute abundance of P zoharyi(Figure 8) This relationship suggests that absolute abundances in this core are a function ofsediment supply rather than cyst production The sample at 80-82 cm is anomalous the highabsolute abundance of cysts is attributable to Spiniferites spp and fewer than 30 total cysts werefound on each slide This sample may represent a case of an increase in Spiniferites cystproduction and an increase in the amount of organic debris in proportion to sediment supply Thelowest samples (132-134 cm and 136-138 cm) show both low absolute abundances of all cysttypes and low percentages of P zoharyi

Floral Patterns

Changes occur in the pollen and dinocyst assemblages in core 19A but the significance ofthese changes is unclear Three zones are distinguishable for the pollen but the differencesamong them are very subtle and any interpretation of patterns of vegetational change would bepremature However it is apparent that the vegetation changed in response to someenvironmental factor at those times correlation with on-shore cores would be necessary toestablish the nature of the changes Dinocyst abundance fluctuates in the core with two peaks at118-104 cm and 82-80 cm but the assemblages are relatively stable throughout the core

Table 4 Dinocyst data from Russell Bank 19A

Pol

ysph

aerid

ium

zoh

aryi

Spi

nife

rites

spp

Ope

rcul

odin

ium

spp

Nem

atos

phae

rops

is ri

gida

Ling

ulod

iniu

m m

acha

erop

horu

m

Tect

atod

iniu

m p

ellit

um

Tube

rcul

odin

ium

van

cam

poae

Con

grue

ntid

iace

ae

Oth

er

TOTA

L D

INO

CY

STS

CO

UN

TED

Depth (cm)

Wt (g) Cystsg

Slides examined

0-1 74 779 2 129 742 97 00 32 00 00 00 00 3120-21 115 1363 1 123 630 74 49 49 62 00 12 00 8144-46 363 921 1 24 750 95 36 48 12 00 00 36 8468-70 358 1454 1 114 705 95 10 38 29 00 10 00 10580-82 337 3732 2 19 811 132 00 38 00 00 00 00 5392-94 385 2049 1 84 720 119 49 28 00 00 00 00 143

104-106 331 4736 1 128 636 133 77 10 05 00 00 10 195116-118 350 3451 1 141 676 106 07 63 07 00 00 00 142128-130 390 1854 1 121 612 178 51 28 05 05 00 00 214132-134 321 1288 1 34 754 127 68 17 00 00 00 00 118136-138 371 2028 1 66 747 110 55 11 11 00 00 00 91

Species

Percent abundance

Comparison of these data to additional terrestrial and marine cores may lead to a betterunderstanding of the patterns seen here

210PB AGE MODEL FOR THE RUSSELL BANKS SITE

The activity of 210Pb (dpmgram) is shown for 19B and 19C in Figures 9 and 10 Thesedimentation rate for the Russell Bank site is based on the results from 19C because both 210Pband Ra analyses have been completed for that core the rate equals 122 cmyear +- 005The 210Pb curves for cores 19B and 19C are almost identical therefore we make the assumptionthat the rate of sediment accumulation is the same in the two cores No 210Pb analyses have beendone for core 19A to date

SUMMARY

The fauna and flora present in the Russell Bank cores 19A and 19B record an approximately120-year history of fluctuating environmental changes The benthic foraminifera documentperiods of fluctuating salinity with a gradual increase in salinity upcore The molluscan data areconsistent with the foraminiferal data showing increasing salinity upcore but without the degreeof fluctuation indicated by the benthic foraminifera The benthic fauna show significant changesin the assemblages at 70-66 cm and 24-18 cm which correspond to approximately 1937-1940and 1975-1980 A similar shift occurred at 118 cm (approximately 1898) which is not as clearlyseen in the molluscan faunal data These periods represent shifts from low salinity (12-15 ppt) tohigher average salinity (30 ppt) In addition the benthic foraminiferal assemblages shift fromperiods of higher average salinity to periods of lower salinity at 140 cm 90 cm and 42 cmwhich correspond to approximately 1880 1921 and 1960 respectively

The molluscan fauna indicate changes occurring in the substrate at the Russell Banks siteSediment and grass (probably Thalassia) apparently were equally available for habitation from142-110 cm or approximately 1878-1904 Although grass was still available bare-sedimentdominated the area from 106-88 cm or approximately 1908-1922 From 88-22 cm orapproximately 1922-1976 grass was the dominant substrate and from approximately 1939 (68cm) to the present the presence of bare-sediment bottoms was negligible at the siteSignificantly from 22 cm or approximately 1976 to the present the molluscan fauna isdominated by species that can live equally well on algae or seagrass

The pollen present in core 19A show three periods of subtle shifts in the onshore vegetation inresponse to some environmental factor These changes occur at 80 cm and at 32 cm orapproximately 1929 and 1968 If we assume that core 19A and 19B have similar sedimentationrates then the shifts in the onshore vegetation indicated by the pollen seen in 19A occurapproximately 7-8 years prior to changes in Florida Bay as indicated by the benthic fauna in19B However until we see this pattern repeated in the same core or until a 210Pb analysis is

0 20 40 60 80 100

0-1

20-21

44-46

68-70

80-82

92-94

104-106

116-118

128-130132-134136-138

Operculodinium spp

Nematosphaeropsis rigida

Lingulodinium machaerophorum

Spiniferites spp

Polysphaeridium zoharyi

All others

Percent Cystsgram 0 100 200 300 400 500

Figure 7 Percent and absolute abundances of dinocysts for core 19A

Dep

th (

cm)

0 100 200 300 4000

20

40

60

80

100

120

140

Spiniferites

Cystsgram

Dep

th (

cm)

Polysphaeridium zoharyi

Figure 8 Absolute abundances of Polysphaeridium zoharyi and Spiniferites spp in core 19 A

000 200 400 600

Activity (dpmg)

Dep

th (c

m)

0

40

80

120

160

Figure 9 Pb210 activity in dpmg for core 19B

Activity (dpmg)

Dep

th (c

m)

000 100 200 300 400 500 600

0-2

6-8

12-14

18-20

24-26

30-32

36-38

42-44

48-50

54-56

60-62

66-68

72-74

78-80

84-86

90-92

96-98

102-104

108-110

114-116

120-122

126-128

132-134

138-140

144-146

150-152

156-158

Figure 10 210Pb activity in dpmg for core 19C

completed for core 19A we can not be certain of its significance because our assumption ofsimilar sedimentation rates for cores 19A and 19B may not be correct

Two peaks in dinocyst abundance (cystsgram) occur in the samples examined 118-104 cm(approximately 1898-1909) and 82-80 cm (approximately 1927-1929) These occur during aperiod of near normal marine (30 ppt) and stable salinity as indicated by the benthicforaminifera These periods may represent increased dinocyst production and decreased sedimentsupply but the composition of the dinocyst assemblages remains relatively stable throughout thecore

The pattern of increased salinity upcore documented here for Russell Banks 19B is consistentwith patterns seen in core T24 from the mouth of Taylor Creek in Little Madeira Bay (Ishman etal 1996) and in core 6A from Bob Allen mudbank (Wingard et al 1995) The correspondencebetween changes in salinity and onshore changes in vegetation is also consistent with resultsfrom the previous cores These patterns will continue to be investigated at additional sites inFlorida Bay and the terrestrial Everglades in order to establish the sequence and timing of eventsthroughout the ecosystem and to determine linkages between the marine and terrestrial systems

REFERENCES CITED

Benninghoff WS 1962 Calculation of pollen and spore density in sediments by addition of exotic pollen in known quantities Pollen et Spores v 4 p 332-333

Brewster-Wingard GL Ishman SE Edwards LE and Willard DA 1996 Preliminary report on the distribution of modern fauna and flora at selected sites in north-central and north-eastern Florida Bay US Geological Survey Open-File Report 96-732 34 p

Davis JC 1973 Statistics and Data Analysis in Geology New York John Wiley amp Sons 550 p

Ishman SE Brewster-Wingard GL Willard DA Cronin TM Edwards LE and Holmes CW 1996 Preliminary paleontologic report on core T-24 Little Madeira Bay Florida US Geological Survey Open-File Report 96-543 47 p

Maker LJ Jr 1981 Statistics for microfossil concentration measurements employing samples spiked with marker grains Review of Paleobotany and Palynology v 32 p153-191

Robbins JA Holmes CW Halley RB Bothner Michael Shinn EA Graney Joseph Keller Gerald tenBrinck Marilyn Rudnick David in press Time constraints characterizing predeposition integration of 137Ce and Pb fluxes to sediments in Florida Bay Geochemica et Cosmochemica

Stockmarr Jens 1971 Tablets with spores used in abolute pollen analysis Pollen et Spores v 8 p 615-621

Wall David Dale Barrie Lohmann GP and Smith WK 1977 The environmental and climatic distribution of dinoflagellate cysts in modern marine sediments from regions in the North and South Atlantic Oceans and Adjacent seas Marine Micropaleontology v 2 p 121-200

Wingard GL Ishman SE Cronin TM Edwards LE Willard DA and Halley RB 1995 Preliminary analysis of down-core biotic assemblages Bob Allen Keys Everglades National Park Florida Bay US Geological Survey Open-File Report 95-628 35 p

  • Title Page
  • Table of Contents
  • Abstract
  • Acknowledgements
  • Methods
  • Discussion of Fauna
  • Discussion of Flora
  • Age Model
  • Summary
  • References
Page 15: Preliminary Paleontologic Report on Cores 19A and 19B, from ...

Hard Surface

Coarse Sediment or Sponges

Coarse Sediment

Coarse or Fine Sediment

Fine Sediment

Grass Beds or Sediment

Grass Beds or Coarse Sediment

Grass and Algae Beds

Grass Beds

Pecent AbundanceD

epth

in C

ore

(cm

)

0 10 20 30 40 50 60 70 80 90 1000-2

8-10

16-18

24-26

32-34

40-42

48-50

56-58

64-66

72-74

80-82

88-90

96-98

104-106

112-114

120-122

128-130

136-138

Figure 4 Area diagram of percent abundance of molluscs indicative of specific substrate types for core 19B Data plotted at the 116 cm and 28 cm depths represent averages of the overlying and underlying samples these two samples did not contain enough individual specimens to be statistically valid

The suite of molluscs present in core 19B is more indicative of changes in substrate thanchanges in salinity Figure 4 illustrates the substrate patterns within the core based on thepercent abundance of molluscs known to prefer those substrate types The lowest portion of thecore from 142-110 cm has significant numbers of both sediment dwellers and grass dwellerspresent with dominance of either group fluctuating From 106-88 cm sediment dwellersdominate although grass dwellers are still present in significant numbers The segment from 88-22 cm is dominated by grass dwellers above 68 cm the presence of species indicative of asediment substrate is negligible The uppermost portion of the core from 22 cm to the top isdominated by species that could live on either algae or grass

The shifts in abundance of molluscan substrate indicators at 88 cm 68 cm and 22 cmcorrespond to changes seen in the benthic foraminiferal salinity indicators but at this point thesignificance of this relationship is not understood However since the benthic foraminifers usedfor salinity indicators are not sensitive to changes in substrate we believe the changingforaminiferal patterns reflect changing salinity

ANALYSIS AND DISCUSSION OF THE FLORA IN CORE 19A

Pollen

The percent abundance data on pollen is presented in Table 3 Three pollen zones aredistinguishable based on both percent abundance and absolute pollen concentration (pollengrainsgram dry sediment) The bottom zone (140-80 cm) is characterized by the highestpercentages of Pinus (pine) pollen (80-90) and the lowest percentages of Quercus (oak)(lt6) and pollen of the ChenopodiaceaeAmaranthaceae (pigweed family) and Asteraceae(aster family) (Figure 5) No pollen of the Cyperaceae (sawgrass family) is present in this zoneTotal pollen concentration in this zone and the middle zone ranges from about 500-1200grainsgram and the concentration of Quercus pollen is lower than the other zones with lt50grainsgram (Figure 6)

The middle zone (80-32 cm) is characterized by lower percentages of Pinus pollen (54-73)higher percentages of Quercus (6-10) and higher concentrations of Quercus pollen (50-100grainsgram) In both this and the upper zone pollen of the ChenopodiaceaeAmaranthaceae andAsteraceae are more abundant comprising 3 and 2 of the assemblages respectively Pollenof the Cyperaceae is present in low percentages in this and the upper zone

The upper zone has the highest pollen concentrations of the core with most samples rangingfrom 1200-4600 grainsgram Several taxa contribute to these higher values including PinusQuercus Myrica (wax myrtle) ChenopodiaceaeAmaranthaceae and Asteraceae Cephalanthus(buttonbush) is present in low abundances (lt1) in this zone and Liquidambar (sweet gum) isabsent from this zone

Table 3Russell Bank 19A

Percent Abundance of Pollen

Depth in core Aln

us

Api

acea

e

Ast

erac

eae

Avi

cenn

ia

Bet

ula

Bum

elia

Bur

sera

sim

arub

a

Car

ya

Cas

uarin

a

Cel

tis

Cep

hala

nthu

s

Che

nopo

diac

eae

A

mar

anth

acea

e

Con

ocar

pus

Cyp

erac

eae

Dec

odon

Eric

acea

e

Eup

horb

iace

ae

Faba

ceae

Frax

inus

Ilex

Jugl

ans

0-1 cm 000 000 255 000 000 000 000 000 482 000 028 425 000 000 000 000 000 142 000 000 000 4-5 cm 057 000 201 000 000 000 000 029 115 000 029 287 029 115 000 000 029 057 000 029 029 8-9 cm 032 000 322 000 000 000 000 000 129 000 032 096 000 064 000 000 000 032 000 000 000

20-21 cm 000 000 409 031 000 000 000 000 314 000 063 597 000 000 000 000 000 220 000 000 00032-34 cm 030 000 332 000 030 030 000 000 211 000 000 332 030 030 000 000 000 121 000 030 03044-46 cm 080 000 777 000 000 000 000 027 214 000 000 429 000 080 000 000 027 107 000 054 00056-58 cm 031 000 439 000 000 000 000 031 157 000 000 690 000 063 000 063 000 094 031 000 00068-70 cm 168 000 251 000 028 000 028 084 056 000 000 307 000 056 000 000 000 084 000 000 00080-82 cm 000 000 238 000 000 000 000 000 000 000 000 476 000 000 000 000 000 000 000 000 00092-94 cm 054 000 054 000 000 027 000 082 027 000 000 054 000 000 000 000 000 082 027 000 000

104-106 cm 000 029 115 000 000 000 000 000 000 000 000 230 000 000 057 000 000 115 000 000 000116-118 cm 062 000 062 000 000 000 000 000 000 031 000 185 031 000 000 000 000 062 000 000 000128-130 cm 000 000 061 000 000 000 000 030 000 000 000 091 000 000 000 030 000 061 000 000 000136-138 cm 060 000 060 030 000 030 060 181 000 000 000 091 000 000 000 000 000 000 000 000 000138-140 cm 000 000 000 000 000 000 000 081 000 000 000 244 000 000 000 000 000 000 000 000 000

Table 3Russell Bank 19A

Percent Abundance of Pollen

Depth in core0-1 cm

4-5 cm 8-9 cm

20-21 cm 32-34 cm 44-46 cm 56-58 cm 68-70 cm 80-82 cm 92-94 cm

104-106 cm 116-118 cm 128-130 cm 136-138 cm 138-140 cm

Liqu

idam

bar

Mag

nolia

Myr

ica

Nys

sa

Ost

rya

Car

pinu

s

Pin

us

Pla

nera

Poa

ceae

Que

rcus

Rhi

zoph

ora

Rut

acea

e

Sag

ittar

ia

Sal

ix

Taxo

diac

eae

C

upre

ssac

eae

Tax

acea

e

Typh

a

Ulm

us

Tota

l Pol

len

Cou

nted

000 000 283 000 028 6856 000 028 1076 028 000 028 000 000 000 057 353000 000 086 000 000 6905 000 029 1375 029 000 029 000 000 000 000 349000 000 225 000 000 7395 000 032 932 096 032 032 032 000 096 032 321000 000 1069 000 063 5660 000 031 1101 000 000 000 000 000 031 000 321030 000 846 000 000 6737 000 030 634 000 000 000 030 030 030 000 332107 000 429 027 000 5416 000 107 1046 027 000 000 027 027 054 054 378000 031 376 000 000 6395 000 031 690 094 000 031 031 031 063 031 320028 028 447 000 000 7346 000 000 615 028 000 000 028 000 112 028 358119 000 357 000 000 7976 000 000 595 000 000 000 000 000 000 000 85082 000 408 000 000 8696 000 000 245 027 000 000 000 027 000 000 371029 000 747 000 000 8017 000 029 316 057 000 000 000 029 029 000 350000 000 338 000 000 8923 000 031 123 031 000 000 031 000 031 000 326030 000 396 000 000 8628 000 030 457 000 000 000 030 000 000 000 331030 000 242 000 000 8792 030 000 181 000 000 000 000 000 030 000 332081 000 163 000 000 8862 000 000 569 000 000 000 000 000 000 000 123

0 10 20 30 40 50 60 70 80

10

20

30

40

50

60

70

80

90

100

110

120

130

Depthcm Pinu

sQue

rcus

Casua

rina

Rhizop

hora

Myrica

Cepha

lanthu

s

Cheno

podia

ceae

Amara

nthac

eae

Poace

ae

Cypera

ceae

Asterac

eae

10

20

30

40

50

60

70

80

90

100

110

120

130

0 10 0 0 0 10 0 0 0 0 05 5 5 5 5 5 5 55

(Pine

)(O

ak)

(Aus

tralia

n Pine

)

(Red

Man

grove

)

(Wax

Myrt

le)

(Pig

Wee

d)

(Gras

s Fam

ily)

(Saw

grass

Family

)

(Aste

r Fam

ily)

(Butt

on B

ush)

Figure 5 Percent abundance of selected pollen groups for core Russell Bank 19A (note different scales)

0 50 100 150 200 250 300 350 400

Querc

us

0 50

Casua

rina

0 50 100 150 200 250 300

Myr

ica

0 50 100 150

Cheno

pods

0

Cyper

acea

e

0 50 100

Astera

ceae

10

20

30

40

50

60

70

80

90

100

110

120

130

Depthcm Pinu

s

0 1000 2000 3000

Total

Pollen

Con

cent

ratio

n

10

20

30

40

50

60

70

80

90

100

110

120

130

0 1000 2000 3000 4000

Figure 6 Total concentration of pollen (grainsgram) for core Russell Bank 19A (note different scales)

Dinocysts

Dinocyst recovery in all samples was low Most microscope slides are heavily dominated byorganic debris and the maximum number of specimens observed in any sample was 214Absolute abundance ranges from 779 to 4736 cystsgram These values are one to two orders ofmagnitude below those reported by Wall et al (1977) for samples from the Middle AtlanticBight and western South Africa and are consistent with high sedimentation rates These absoluteabundances in the sediments are far below bloom concentrations in which the number of livingcells per ml of water may exceed 50 million

The dinocyst assemblages in the Russell Bank 19A core consist of less than 10 taxa (Table 4)Various species of the genus Spiniferites Mantell dominate all samples (61 to 79 percent) Due topoor preservation and taxonomic difficulties the individual species of this genus were notdifferentiated S mirabilis (Rossignol) Sarjeant S ramosus (Ehrenberg) Mantell S scabratus(Wall) Sarjeant and other forms are present Operculodinium Wall spp (O israelianum(Rossignol) Wall or Operculodinium species undifferentiated) are present in all samples inamounts of 5 to 19 percent Polysphaeridium zoharyi (Rossignol) Bujak et al is present in allsamples and comprises up to 16 percent of the assemblages Most samples included low numbersof Lingulodinium machaerophorum (Deflandre amp Cookson) Wall Nematosphaeropsis rigidaWrenn and (or) Tectatodinium pellitum Wall Only two samples contained a single specimeneach of the family Congruentidiaceae

Most samples from Russell Bank core 19A are quite similar to one another (Figure 7)Throughout the core the dinocyst Polysphaeridium zoharyi ranges in abundance from 0-16percent which is considerably lower than in the Bob Allen 6A (Wingard et al 1995) and LittleMadeira Bay T24 (Ishman et al 1996) cores With one exception (80-82 cm) increased absoluteabundance of Spiniferites spp is accompanied by increased absolute abundance of P zoharyi(Figure 8) This relationship suggests that absolute abundances in this core are a function ofsediment supply rather than cyst production The sample at 80-82 cm is anomalous the highabsolute abundance of cysts is attributable to Spiniferites spp and fewer than 30 total cysts werefound on each slide This sample may represent a case of an increase in Spiniferites cystproduction and an increase in the amount of organic debris in proportion to sediment supply Thelowest samples (132-134 cm and 136-138 cm) show both low absolute abundances of all cysttypes and low percentages of P zoharyi

Floral Patterns

Changes occur in the pollen and dinocyst assemblages in core 19A but the significance ofthese changes is unclear Three zones are distinguishable for the pollen but the differencesamong them are very subtle and any interpretation of patterns of vegetational change would bepremature However it is apparent that the vegetation changed in response to someenvironmental factor at those times correlation with on-shore cores would be necessary toestablish the nature of the changes Dinocyst abundance fluctuates in the core with two peaks at118-104 cm and 82-80 cm but the assemblages are relatively stable throughout the core

Table 4 Dinocyst data from Russell Bank 19A

Pol

ysph

aerid

ium

zoh

aryi

Spi

nife

rites

spp

Ope

rcul

odin

ium

spp

Nem

atos

phae

rops

is ri

gida

Ling

ulod

iniu

m m

acha

erop

horu

m

Tect

atod

iniu

m p

ellit

um

Tube

rcul

odin

ium

van

cam

poae

Con

grue

ntid

iace

ae

Oth

er

TOTA

L D

INO

CY

STS

CO

UN

TED

Depth (cm)

Wt (g) Cystsg

Slides examined

0-1 74 779 2 129 742 97 00 32 00 00 00 00 3120-21 115 1363 1 123 630 74 49 49 62 00 12 00 8144-46 363 921 1 24 750 95 36 48 12 00 00 36 8468-70 358 1454 1 114 705 95 10 38 29 00 10 00 10580-82 337 3732 2 19 811 132 00 38 00 00 00 00 5392-94 385 2049 1 84 720 119 49 28 00 00 00 00 143

104-106 331 4736 1 128 636 133 77 10 05 00 00 10 195116-118 350 3451 1 141 676 106 07 63 07 00 00 00 142128-130 390 1854 1 121 612 178 51 28 05 05 00 00 214132-134 321 1288 1 34 754 127 68 17 00 00 00 00 118136-138 371 2028 1 66 747 110 55 11 11 00 00 00 91

Species

Percent abundance

Comparison of these data to additional terrestrial and marine cores may lead to a betterunderstanding of the patterns seen here

210PB AGE MODEL FOR THE RUSSELL BANKS SITE

The activity of 210Pb (dpmgram) is shown for 19B and 19C in Figures 9 and 10 Thesedimentation rate for the Russell Bank site is based on the results from 19C because both 210Pband Ra analyses have been completed for that core the rate equals 122 cmyear +- 005The 210Pb curves for cores 19B and 19C are almost identical therefore we make the assumptionthat the rate of sediment accumulation is the same in the two cores No 210Pb analyses have beendone for core 19A to date

SUMMARY

The fauna and flora present in the Russell Bank cores 19A and 19B record an approximately120-year history of fluctuating environmental changes The benthic foraminifera documentperiods of fluctuating salinity with a gradual increase in salinity upcore The molluscan data areconsistent with the foraminiferal data showing increasing salinity upcore but without the degreeof fluctuation indicated by the benthic foraminifera The benthic fauna show significant changesin the assemblages at 70-66 cm and 24-18 cm which correspond to approximately 1937-1940and 1975-1980 A similar shift occurred at 118 cm (approximately 1898) which is not as clearlyseen in the molluscan faunal data These periods represent shifts from low salinity (12-15 ppt) tohigher average salinity (30 ppt) In addition the benthic foraminiferal assemblages shift fromperiods of higher average salinity to periods of lower salinity at 140 cm 90 cm and 42 cmwhich correspond to approximately 1880 1921 and 1960 respectively

The molluscan fauna indicate changes occurring in the substrate at the Russell Banks siteSediment and grass (probably Thalassia) apparently were equally available for habitation from142-110 cm or approximately 1878-1904 Although grass was still available bare-sedimentdominated the area from 106-88 cm or approximately 1908-1922 From 88-22 cm orapproximately 1922-1976 grass was the dominant substrate and from approximately 1939 (68cm) to the present the presence of bare-sediment bottoms was negligible at the siteSignificantly from 22 cm or approximately 1976 to the present the molluscan fauna isdominated by species that can live equally well on algae or seagrass

The pollen present in core 19A show three periods of subtle shifts in the onshore vegetation inresponse to some environmental factor These changes occur at 80 cm and at 32 cm orapproximately 1929 and 1968 If we assume that core 19A and 19B have similar sedimentationrates then the shifts in the onshore vegetation indicated by the pollen seen in 19A occurapproximately 7-8 years prior to changes in Florida Bay as indicated by the benthic fauna in19B However until we see this pattern repeated in the same core or until a 210Pb analysis is

0 20 40 60 80 100

0-1

20-21

44-46

68-70

80-82

92-94

104-106

116-118

128-130132-134136-138

Operculodinium spp

Nematosphaeropsis rigida

Lingulodinium machaerophorum

Spiniferites spp

Polysphaeridium zoharyi

All others

Percent Cystsgram 0 100 200 300 400 500

Figure 7 Percent and absolute abundances of dinocysts for core 19A

Dep

th (

cm)

0 100 200 300 4000

20

40

60

80

100

120

140

Spiniferites

Cystsgram

Dep

th (

cm)

Polysphaeridium zoharyi

Figure 8 Absolute abundances of Polysphaeridium zoharyi and Spiniferites spp in core 19 A

000 200 400 600

Activity (dpmg)

Dep

th (c

m)

0

40

80

120

160

Figure 9 Pb210 activity in dpmg for core 19B

Activity (dpmg)

Dep

th (c

m)

000 100 200 300 400 500 600

0-2

6-8

12-14

18-20

24-26

30-32

36-38

42-44

48-50

54-56

60-62

66-68

72-74

78-80

84-86

90-92

96-98

102-104

108-110

114-116

120-122

126-128

132-134

138-140

144-146

150-152

156-158

Figure 10 210Pb activity in dpmg for core 19C

completed for core 19A we can not be certain of its significance because our assumption ofsimilar sedimentation rates for cores 19A and 19B may not be correct

Two peaks in dinocyst abundance (cystsgram) occur in the samples examined 118-104 cm(approximately 1898-1909) and 82-80 cm (approximately 1927-1929) These occur during aperiod of near normal marine (30 ppt) and stable salinity as indicated by the benthicforaminifera These periods may represent increased dinocyst production and decreased sedimentsupply but the composition of the dinocyst assemblages remains relatively stable throughout thecore

The pattern of increased salinity upcore documented here for Russell Banks 19B is consistentwith patterns seen in core T24 from the mouth of Taylor Creek in Little Madeira Bay (Ishman etal 1996) and in core 6A from Bob Allen mudbank (Wingard et al 1995) The correspondencebetween changes in salinity and onshore changes in vegetation is also consistent with resultsfrom the previous cores These patterns will continue to be investigated at additional sites inFlorida Bay and the terrestrial Everglades in order to establish the sequence and timing of eventsthroughout the ecosystem and to determine linkages between the marine and terrestrial systems

REFERENCES CITED

Benninghoff WS 1962 Calculation of pollen and spore density in sediments by addition of exotic pollen in known quantities Pollen et Spores v 4 p 332-333

Brewster-Wingard GL Ishman SE Edwards LE and Willard DA 1996 Preliminary report on the distribution of modern fauna and flora at selected sites in north-central and north-eastern Florida Bay US Geological Survey Open-File Report 96-732 34 p

Davis JC 1973 Statistics and Data Analysis in Geology New York John Wiley amp Sons 550 p

Ishman SE Brewster-Wingard GL Willard DA Cronin TM Edwards LE and Holmes CW 1996 Preliminary paleontologic report on core T-24 Little Madeira Bay Florida US Geological Survey Open-File Report 96-543 47 p

Maker LJ Jr 1981 Statistics for microfossil concentration measurements employing samples spiked with marker grains Review of Paleobotany and Palynology v 32 p153-191

Robbins JA Holmes CW Halley RB Bothner Michael Shinn EA Graney Joseph Keller Gerald tenBrinck Marilyn Rudnick David in press Time constraints characterizing predeposition integration of 137Ce and Pb fluxes to sediments in Florida Bay Geochemica et Cosmochemica

Stockmarr Jens 1971 Tablets with spores used in abolute pollen analysis Pollen et Spores v 8 p 615-621

Wall David Dale Barrie Lohmann GP and Smith WK 1977 The environmental and climatic distribution of dinoflagellate cysts in modern marine sediments from regions in the North and South Atlantic Oceans and Adjacent seas Marine Micropaleontology v 2 p 121-200

Wingard GL Ishman SE Cronin TM Edwards LE Willard DA and Halley RB 1995 Preliminary analysis of down-core biotic assemblages Bob Allen Keys Everglades National Park Florida Bay US Geological Survey Open-File Report 95-628 35 p

  • Title Page
  • Table of Contents
  • Abstract
  • Acknowledgements
  • Methods
  • Discussion of Fauna
  • Discussion of Flora
  • Age Model
  • Summary
  • References
Page 16: Preliminary Paleontologic Report on Cores 19A and 19B, from ...

The suite of molluscs present in core 19B is more indicative of changes in substrate thanchanges in salinity Figure 4 illustrates the substrate patterns within the core based on thepercent abundance of molluscs known to prefer those substrate types The lowest portion of thecore from 142-110 cm has significant numbers of both sediment dwellers and grass dwellerspresent with dominance of either group fluctuating From 106-88 cm sediment dwellersdominate although grass dwellers are still present in significant numbers The segment from 88-22 cm is dominated by grass dwellers above 68 cm the presence of species indicative of asediment substrate is negligible The uppermost portion of the core from 22 cm to the top isdominated by species that could live on either algae or grass

The shifts in abundance of molluscan substrate indicators at 88 cm 68 cm and 22 cmcorrespond to changes seen in the benthic foraminiferal salinity indicators but at this point thesignificance of this relationship is not understood However since the benthic foraminifers usedfor salinity indicators are not sensitive to changes in substrate we believe the changingforaminiferal patterns reflect changing salinity

ANALYSIS AND DISCUSSION OF THE FLORA IN CORE 19A

Pollen

The percent abundance data on pollen is presented in Table 3 Three pollen zones aredistinguishable based on both percent abundance and absolute pollen concentration (pollengrainsgram dry sediment) The bottom zone (140-80 cm) is characterized by the highestpercentages of Pinus (pine) pollen (80-90) and the lowest percentages of Quercus (oak)(lt6) and pollen of the ChenopodiaceaeAmaranthaceae (pigweed family) and Asteraceae(aster family) (Figure 5) No pollen of the Cyperaceae (sawgrass family) is present in this zoneTotal pollen concentration in this zone and the middle zone ranges from about 500-1200grainsgram and the concentration of Quercus pollen is lower than the other zones with lt50grainsgram (Figure 6)

The middle zone (80-32 cm) is characterized by lower percentages of Pinus pollen (54-73)higher percentages of Quercus (6-10) and higher concentrations of Quercus pollen (50-100grainsgram) In both this and the upper zone pollen of the ChenopodiaceaeAmaranthaceae andAsteraceae are more abundant comprising 3 and 2 of the assemblages respectively Pollenof the Cyperaceae is present in low percentages in this and the upper zone

The upper zone has the highest pollen concentrations of the core with most samples rangingfrom 1200-4600 grainsgram Several taxa contribute to these higher values including PinusQuercus Myrica (wax myrtle) ChenopodiaceaeAmaranthaceae and Asteraceae Cephalanthus(buttonbush) is present in low abundances (lt1) in this zone and Liquidambar (sweet gum) isabsent from this zone

Table 3Russell Bank 19A

Percent Abundance of Pollen

Depth in core Aln

us

Api

acea

e

Ast

erac

eae

Avi

cenn

ia

Bet

ula

Bum

elia

Bur

sera

sim

arub

a

Car

ya

Cas

uarin

a

Cel

tis

Cep

hala

nthu

s

Che

nopo

diac

eae

A

mar

anth

acea

e

Con

ocar

pus

Cyp

erac

eae

Dec

odon

Eric

acea

e

Eup

horb

iace

ae

Faba

ceae

Frax

inus

Ilex

Jugl

ans

0-1 cm 000 000 255 000 000 000 000 000 482 000 028 425 000 000 000 000 000 142 000 000 000 4-5 cm 057 000 201 000 000 000 000 029 115 000 029 287 029 115 000 000 029 057 000 029 029 8-9 cm 032 000 322 000 000 000 000 000 129 000 032 096 000 064 000 000 000 032 000 000 000

20-21 cm 000 000 409 031 000 000 000 000 314 000 063 597 000 000 000 000 000 220 000 000 00032-34 cm 030 000 332 000 030 030 000 000 211 000 000 332 030 030 000 000 000 121 000 030 03044-46 cm 080 000 777 000 000 000 000 027 214 000 000 429 000 080 000 000 027 107 000 054 00056-58 cm 031 000 439 000 000 000 000 031 157 000 000 690 000 063 000 063 000 094 031 000 00068-70 cm 168 000 251 000 028 000 028 084 056 000 000 307 000 056 000 000 000 084 000 000 00080-82 cm 000 000 238 000 000 000 000 000 000 000 000 476 000 000 000 000 000 000 000 000 00092-94 cm 054 000 054 000 000 027 000 082 027 000 000 054 000 000 000 000 000 082 027 000 000

104-106 cm 000 029 115 000 000 000 000 000 000 000 000 230 000 000 057 000 000 115 000 000 000116-118 cm 062 000 062 000 000 000 000 000 000 031 000 185 031 000 000 000 000 062 000 000 000128-130 cm 000 000 061 000 000 000 000 030 000 000 000 091 000 000 000 030 000 061 000 000 000136-138 cm 060 000 060 030 000 030 060 181 000 000 000 091 000 000 000 000 000 000 000 000 000138-140 cm 000 000 000 000 000 000 000 081 000 000 000 244 000 000 000 000 000 000 000 000 000

Table 3Russell Bank 19A

Percent Abundance of Pollen

Depth in core0-1 cm

4-5 cm 8-9 cm

20-21 cm 32-34 cm 44-46 cm 56-58 cm 68-70 cm 80-82 cm 92-94 cm

104-106 cm 116-118 cm 128-130 cm 136-138 cm 138-140 cm

Liqu

idam

bar

Mag

nolia

Myr

ica

Nys

sa

Ost

rya

Car

pinu

s

Pin

us

Pla

nera

Poa

ceae

Que

rcus

Rhi

zoph

ora

Rut

acea

e

Sag

ittar

ia

Sal

ix

Taxo

diac

eae

C

upre

ssac

eae

Tax

acea

e

Typh

a

Ulm

us

Tota

l Pol

len

Cou

nted

000 000 283 000 028 6856 000 028 1076 028 000 028 000 000 000 057 353000 000 086 000 000 6905 000 029 1375 029 000 029 000 000 000 000 349000 000 225 000 000 7395 000 032 932 096 032 032 032 000 096 032 321000 000 1069 000 063 5660 000 031 1101 000 000 000 000 000 031 000 321030 000 846 000 000 6737 000 030 634 000 000 000 030 030 030 000 332107 000 429 027 000 5416 000 107 1046 027 000 000 027 027 054 054 378000 031 376 000 000 6395 000 031 690 094 000 031 031 031 063 031 320028 028 447 000 000 7346 000 000 615 028 000 000 028 000 112 028 358119 000 357 000 000 7976 000 000 595 000 000 000 000 000 000 000 85082 000 408 000 000 8696 000 000 245 027 000 000 000 027 000 000 371029 000 747 000 000 8017 000 029 316 057 000 000 000 029 029 000 350000 000 338 000 000 8923 000 031 123 031 000 000 031 000 031 000 326030 000 396 000 000 8628 000 030 457 000 000 000 030 000 000 000 331030 000 242 000 000 8792 030 000 181 000 000 000 000 000 030 000 332081 000 163 000 000 8862 000 000 569 000 000 000 000 000 000 000 123

0 10 20 30 40 50 60 70 80

10

20

30

40

50

60

70

80

90

100

110

120

130

Depthcm Pinu

sQue

rcus

Casua

rina

Rhizop

hora

Myrica

Cepha

lanthu

s

Cheno

podia

ceae

Amara

nthac

eae

Poace

ae

Cypera

ceae

Asterac

eae

10

20

30

40

50

60

70

80

90

100

110

120

130

0 10 0 0 0 10 0 0 0 0 05 5 5 5 5 5 5 55

(Pine

)(O

ak)

(Aus

tralia

n Pine

)

(Red

Man

grove

)

(Wax

Myrt

le)

(Pig

Wee

d)

(Gras

s Fam

ily)

(Saw

grass

Family

)

(Aste

r Fam

ily)

(Butt

on B

ush)

Figure 5 Percent abundance of selected pollen groups for core Russell Bank 19A (note different scales)

0 50 100 150 200 250 300 350 400

Querc

us

0 50

Casua

rina

0 50 100 150 200 250 300

Myr

ica

0 50 100 150

Cheno

pods

0

Cyper

acea

e

0 50 100

Astera

ceae

10

20

30

40

50

60

70

80

90

100

110

120

130

Depthcm Pinu

s

0 1000 2000 3000

Total

Pollen

Con

cent

ratio

n

10

20

30

40

50

60

70

80

90

100

110

120

130

0 1000 2000 3000 4000

Figure 6 Total concentration of pollen (grainsgram) for core Russell Bank 19A (note different scales)

Dinocysts

Dinocyst recovery in all samples was low Most microscope slides are heavily dominated byorganic debris and the maximum number of specimens observed in any sample was 214Absolute abundance ranges from 779 to 4736 cystsgram These values are one to two orders ofmagnitude below those reported by Wall et al (1977) for samples from the Middle AtlanticBight and western South Africa and are consistent with high sedimentation rates These absoluteabundances in the sediments are far below bloom concentrations in which the number of livingcells per ml of water may exceed 50 million

The dinocyst assemblages in the Russell Bank 19A core consist of less than 10 taxa (Table 4)Various species of the genus Spiniferites Mantell dominate all samples (61 to 79 percent) Due topoor preservation and taxonomic difficulties the individual species of this genus were notdifferentiated S mirabilis (Rossignol) Sarjeant S ramosus (Ehrenberg) Mantell S scabratus(Wall) Sarjeant and other forms are present Operculodinium Wall spp (O israelianum(Rossignol) Wall or Operculodinium species undifferentiated) are present in all samples inamounts of 5 to 19 percent Polysphaeridium zoharyi (Rossignol) Bujak et al is present in allsamples and comprises up to 16 percent of the assemblages Most samples included low numbersof Lingulodinium machaerophorum (Deflandre amp Cookson) Wall Nematosphaeropsis rigidaWrenn and (or) Tectatodinium pellitum Wall Only two samples contained a single specimeneach of the family Congruentidiaceae

Most samples from Russell Bank core 19A are quite similar to one another (Figure 7)Throughout the core the dinocyst Polysphaeridium zoharyi ranges in abundance from 0-16percent which is considerably lower than in the Bob Allen 6A (Wingard et al 1995) and LittleMadeira Bay T24 (Ishman et al 1996) cores With one exception (80-82 cm) increased absoluteabundance of Spiniferites spp is accompanied by increased absolute abundance of P zoharyi(Figure 8) This relationship suggests that absolute abundances in this core are a function ofsediment supply rather than cyst production The sample at 80-82 cm is anomalous the highabsolute abundance of cysts is attributable to Spiniferites spp and fewer than 30 total cysts werefound on each slide This sample may represent a case of an increase in Spiniferites cystproduction and an increase in the amount of organic debris in proportion to sediment supply Thelowest samples (132-134 cm and 136-138 cm) show both low absolute abundances of all cysttypes and low percentages of P zoharyi

Floral Patterns

Changes occur in the pollen and dinocyst assemblages in core 19A but the significance ofthese changes is unclear Three zones are distinguishable for the pollen but the differencesamong them are very subtle and any interpretation of patterns of vegetational change would bepremature However it is apparent that the vegetation changed in response to someenvironmental factor at those times correlation with on-shore cores would be necessary toestablish the nature of the changes Dinocyst abundance fluctuates in the core with two peaks at118-104 cm and 82-80 cm but the assemblages are relatively stable throughout the core

Table 4 Dinocyst data from Russell Bank 19A

Pol

ysph

aerid

ium

zoh

aryi

Spi

nife

rites

spp

Ope

rcul

odin

ium

spp

Nem

atos

phae

rops

is ri

gida

Ling

ulod

iniu

m m

acha

erop

horu

m

Tect

atod

iniu

m p

ellit

um

Tube

rcul

odin

ium

van

cam

poae

Con

grue

ntid

iace

ae

Oth

er

TOTA

L D

INO

CY

STS

CO

UN

TED

Depth (cm)

Wt (g) Cystsg

Slides examined

0-1 74 779 2 129 742 97 00 32 00 00 00 00 3120-21 115 1363 1 123 630 74 49 49 62 00 12 00 8144-46 363 921 1 24 750 95 36 48 12 00 00 36 8468-70 358 1454 1 114 705 95 10 38 29 00 10 00 10580-82 337 3732 2 19 811 132 00 38 00 00 00 00 5392-94 385 2049 1 84 720 119 49 28 00 00 00 00 143

104-106 331 4736 1 128 636 133 77 10 05 00 00 10 195116-118 350 3451 1 141 676 106 07 63 07 00 00 00 142128-130 390 1854 1 121 612 178 51 28 05 05 00 00 214132-134 321 1288 1 34 754 127 68 17 00 00 00 00 118136-138 371 2028 1 66 747 110 55 11 11 00 00 00 91

Species

Percent abundance

Comparison of these data to additional terrestrial and marine cores may lead to a betterunderstanding of the patterns seen here

210PB AGE MODEL FOR THE RUSSELL BANKS SITE

The activity of 210Pb (dpmgram) is shown for 19B and 19C in Figures 9 and 10 Thesedimentation rate for the Russell Bank site is based on the results from 19C because both 210Pband Ra analyses have been completed for that core the rate equals 122 cmyear +- 005The 210Pb curves for cores 19B and 19C are almost identical therefore we make the assumptionthat the rate of sediment accumulation is the same in the two cores No 210Pb analyses have beendone for core 19A to date

SUMMARY

The fauna and flora present in the Russell Bank cores 19A and 19B record an approximately120-year history of fluctuating environmental changes The benthic foraminifera documentperiods of fluctuating salinity with a gradual increase in salinity upcore The molluscan data areconsistent with the foraminiferal data showing increasing salinity upcore but without the degreeof fluctuation indicated by the benthic foraminifera The benthic fauna show significant changesin the assemblages at 70-66 cm and 24-18 cm which correspond to approximately 1937-1940and 1975-1980 A similar shift occurred at 118 cm (approximately 1898) which is not as clearlyseen in the molluscan faunal data These periods represent shifts from low salinity (12-15 ppt) tohigher average salinity (30 ppt) In addition the benthic foraminiferal assemblages shift fromperiods of higher average salinity to periods of lower salinity at 140 cm 90 cm and 42 cmwhich correspond to approximately 1880 1921 and 1960 respectively

The molluscan fauna indicate changes occurring in the substrate at the Russell Banks siteSediment and grass (probably Thalassia) apparently were equally available for habitation from142-110 cm or approximately 1878-1904 Although grass was still available bare-sedimentdominated the area from 106-88 cm or approximately 1908-1922 From 88-22 cm orapproximately 1922-1976 grass was the dominant substrate and from approximately 1939 (68cm) to the present the presence of bare-sediment bottoms was negligible at the siteSignificantly from 22 cm or approximately 1976 to the present the molluscan fauna isdominated by species that can live equally well on algae or seagrass

The pollen present in core 19A show three periods of subtle shifts in the onshore vegetation inresponse to some environmental factor These changes occur at 80 cm and at 32 cm orapproximately 1929 and 1968 If we assume that core 19A and 19B have similar sedimentationrates then the shifts in the onshore vegetation indicated by the pollen seen in 19A occurapproximately 7-8 years prior to changes in Florida Bay as indicated by the benthic fauna in19B However until we see this pattern repeated in the same core or until a 210Pb analysis is

0 20 40 60 80 100

0-1

20-21

44-46

68-70

80-82

92-94

104-106

116-118

128-130132-134136-138

Operculodinium spp

Nematosphaeropsis rigida

Lingulodinium machaerophorum

Spiniferites spp

Polysphaeridium zoharyi

All others

Percent Cystsgram 0 100 200 300 400 500

Figure 7 Percent and absolute abundances of dinocysts for core 19A

Dep

th (

cm)

0 100 200 300 4000

20

40

60

80

100

120

140

Spiniferites

Cystsgram

Dep

th (

cm)

Polysphaeridium zoharyi

Figure 8 Absolute abundances of Polysphaeridium zoharyi and Spiniferites spp in core 19 A

000 200 400 600

Activity (dpmg)

Dep

th (c

m)

0

40

80

120

160

Figure 9 Pb210 activity in dpmg for core 19B

Activity (dpmg)

Dep

th (c

m)

000 100 200 300 400 500 600

0-2

6-8

12-14

18-20

24-26

30-32

36-38

42-44

48-50

54-56

60-62

66-68

72-74

78-80

84-86

90-92

96-98

102-104

108-110

114-116

120-122

126-128

132-134

138-140

144-146

150-152

156-158

Figure 10 210Pb activity in dpmg for core 19C

completed for core 19A we can not be certain of its significance because our assumption ofsimilar sedimentation rates for cores 19A and 19B may not be correct

Two peaks in dinocyst abundance (cystsgram) occur in the samples examined 118-104 cm(approximately 1898-1909) and 82-80 cm (approximately 1927-1929) These occur during aperiod of near normal marine (30 ppt) and stable salinity as indicated by the benthicforaminifera These periods may represent increased dinocyst production and decreased sedimentsupply but the composition of the dinocyst assemblages remains relatively stable throughout thecore

The pattern of increased salinity upcore documented here for Russell Banks 19B is consistentwith patterns seen in core T24 from the mouth of Taylor Creek in Little Madeira Bay (Ishman etal 1996) and in core 6A from Bob Allen mudbank (Wingard et al 1995) The correspondencebetween changes in salinity and onshore changes in vegetation is also consistent with resultsfrom the previous cores These patterns will continue to be investigated at additional sites inFlorida Bay and the terrestrial Everglades in order to establish the sequence and timing of eventsthroughout the ecosystem and to determine linkages between the marine and terrestrial systems

REFERENCES CITED

Benninghoff WS 1962 Calculation of pollen and spore density in sediments by addition of exotic pollen in known quantities Pollen et Spores v 4 p 332-333

Brewster-Wingard GL Ishman SE Edwards LE and Willard DA 1996 Preliminary report on the distribution of modern fauna and flora at selected sites in north-central and north-eastern Florida Bay US Geological Survey Open-File Report 96-732 34 p

Davis JC 1973 Statistics and Data Analysis in Geology New York John Wiley amp Sons 550 p

Ishman SE Brewster-Wingard GL Willard DA Cronin TM Edwards LE and Holmes CW 1996 Preliminary paleontologic report on core T-24 Little Madeira Bay Florida US Geological Survey Open-File Report 96-543 47 p

Maker LJ Jr 1981 Statistics for microfossil concentration measurements employing samples spiked with marker grains Review of Paleobotany and Palynology v 32 p153-191

Robbins JA Holmes CW Halley RB Bothner Michael Shinn EA Graney Joseph Keller Gerald tenBrinck Marilyn Rudnick David in press Time constraints characterizing predeposition integration of 137Ce and Pb fluxes to sediments in Florida Bay Geochemica et Cosmochemica

Stockmarr Jens 1971 Tablets with spores used in abolute pollen analysis Pollen et Spores v 8 p 615-621

Wall David Dale Barrie Lohmann GP and Smith WK 1977 The environmental and climatic distribution of dinoflagellate cysts in modern marine sediments from regions in the North and South Atlantic Oceans and Adjacent seas Marine Micropaleontology v 2 p 121-200

Wingard GL Ishman SE Cronin TM Edwards LE Willard DA and Halley RB 1995 Preliminary analysis of down-core biotic assemblages Bob Allen Keys Everglades National Park Florida Bay US Geological Survey Open-File Report 95-628 35 p

  • Title Page
  • Table of Contents
  • Abstract
  • Acknowledgements
  • Methods
  • Discussion of Fauna
  • Discussion of Flora
  • Age Model
  • Summary
  • References
Page 17: Preliminary Paleontologic Report on Cores 19A and 19B, from ...

Table 3Russell Bank 19A

Percent Abundance of Pollen

Depth in core Aln

us

Api

acea

e

Ast

erac

eae

Avi

cenn

ia

Bet

ula

Bum

elia

Bur

sera

sim

arub

a

Car

ya

Cas

uarin

a

Cel

tis

Cep

hala

nthu

s

Che

nopo

diac

eae

A

mar

anth

acea

e

Con

ocar

pus

Cyp

erac

eae

Dec

odon

Eric

acea

e

Eup

horb

iace

ae

Faba

ceae

Frax

inus

Ilex

Jugl

ans

0-1 cm 000 000 255 000 000 000 000 000 482 000 028 425 000 000 000 000 000 142 000 000 000 4-5 cm 057 000 201 000 000 000 000 029 115 000 029 287 029 115 000 000 029 057 000 029 029 8-9 cm 032 000 322 000 000 000 000 000 129 000 032 096 000 064 000 000 000 032 000 000 000

20-21 cm 000 000 409 031 000 000 000 000 314 000 063 597 000 000 000 000 000 220 000 000 00032-34 cm 030 000 332 000 030 030 000 000 211 000 000 332 030 030 000 000 000 121 000 030 03044-46 cm 080 000 777 000 000 000 000 027 214 000 000 429 000 080 000 000 027 107 000 054 00056-58 cm 031 000 439 000 000 000 000 031 157 000 000 690 000 063 000 063 000 094 031 000 00068-70 cm 168 000 251 000 028 000 028 084 056 000 000 307 000 056 000 000 000 084 000 000 00080-82 cm 000 000 238 000 000 000 000 000 000 000 000 476 000 000 000 000 000 000 000 000 00092-94 cm 054 000 054 000 000 027 000 082 027 000 000 054 000 000 000 000 000 082 027 000 000

104-106 cm 000 029 115 000 000 000 000 000 000 000 000 230 000 000 057 000 000 115 000 000 000116-118 cm 062 000 062 000 000 000 000 000 000 031 000 185 031 000 000 000 000 062 000 000 000128-130 cm 000 000 061 000 000 000 000 030 000 000 000 091 000 000 000 030 000 061 000 000 000136-138 cm 060 000 060 030 000 030 060 181 000 000 000 091 000 000 000 000 000 000 000 000 000138-140 cm 000 000 000 000 000 000 000 081 000 000 000 244 000 000 000 000 000 000 000 000 000

Table 3Russell Bank 19A

Percent Abundance of Pollen

Depth in core0-1 cm

4-5 cm 8-9 cm

20-21 cm 32-34 cm 44-46 cm 56-58 cm 68-70 cm 80-82 cm 92-94 cm

104-106 cm 116-118 cm 128-130 cm 136-138 cm 138-140 cm

Liqu

idam

bar

Mag

nolia

Myr

ica

Nys

sa

Ost

rya

Car

pinu

s

Pin

us

Pla

nera

Poa

ceae

Que

rcus

Rhi

zoph

ora

Rut

acea

e

Sag

ittar

ia

Sal

ix

Taxo

diac

eae

C

upre

ssac

eae

Tax

acea

e

Typh

a

Ulm

us

Tota

l Pol

len

Cou

nted

000 000 283 000 028 6856 000 028 1076 028 000 028 000 000 000 057 353000 000 086 000 000 6905 000 029 1375 029 000 029 000 000 000 000 349000 000 225 000 000 7395 000 032 932 096 032 032 032 000 096 032 321000 000 1069 000 063 5660 000 031 1101 000 000 000 000 000 031 000 321030 000 846 000 000 6737 000 030 634 000 000 000 030 030 030 000 332107 000 429 027 000 5416 000 107 1046 027 000 000 027 027 054 054 378000 031 376 000 000 6395 000 031 690 094 000 031 031 031 063 031 320028 028 447 000 000 7346 000 000 615 028 000 000 028 000 112 028 358119 000 357 000 000 7976 000 000 595 000 000 000 000 000 000 000 85082 000 408 000 000 8696 000 000 245 027 000 000 000 027 000 000 371029 000 747 000 000 8017 000 029 316 057 000 000 000 029 029 000 350000 000 338 000 000 8923 000 031 123 031 000 000 031 000 031 000 326030 000 396 000 000 8628 000 030 457 000 000 000 030 000 000 000 331030 000 242 000 000 8792 030 000 181 000 000 000 000 000 030 000 332081 000 163 000 000 8862 000 000 569 000 000 000 000 000 000 000 123

0 10 20 30 40 50 60 70 80

10

20

30

40

50

60

70

80

90

100

110

120

130

Depthcm Pinu

sQue

rcus

Casua

rina

Rhizop

hora

Myrica

Cepha

lanthu

s

Cheno

podia

ceae

Amara

nthac

eae

Poace

ae

Cypera

ceae

Asterac

eae

10

20

30

40

50

60

70

80

90

100

110

120

130

0 10 0 0 0 10 0 0 0 0 05 5 5 5 5 5 5 55

(Pine

)(O

ak)

(Aus

tralia

n Pine

)

(Red

Man

grove

)

(Wax

Myrt

le)

(Pig

Wee

d)

(Gras

s Fam

ily)

(Saw

grass

Family

)

(Aste

r Fam

ily)

(Butt

on B

ush)

Figure 5 Percent abundance of selected pollen groups for core Russell Bank 19A (note different scales)

0 50 100 150 200 250 300 350 400

Querc

us

0 50

Casua

rina

0 50 100 150 200 250 300

Myr

ica

0 50 100 150

Cheno

pods

0

Cyper

acea

e

0 50 100

Astera

ceae

10

20

30

40

50

60

70

80

90

100

110

120

130

Depthcm Pinu

s

0 1000 2000 3000

Total

Pollen

Con

cent

ratio

n

10

20

30

40

50

60

70

80

90

100

110

120

130

0 1000 2000 3000 4000

Figure 6 Total concentration of pollen (grainsgram) for core Russell Bank 19A (note different scales)

Dinocysts

Dinocyst recovery in all samples was low Most microscope slides are heavily dominated byorganic debris and the maximum number of specimens observed in any sample was 214Absolute abundance ranges from 779 to 4736 cystsgram These values are one to two orders ofmagnitude below those reported by Wall et al (1977) for samples from the Middle AtlanticBight and western South Africa and are consistent with high sedimentation rates These absoluteabundances in the sediments are far below bloom concentrations in which the number of livingcells per ml of water may exceed 50 million

The dinocyst assemblages in the Russell Bank 19A core consist of less than 10 taxa (Table 4)Various species of the genus Spiniferites Mantell dominate all samples (61 to 79 percent) Due topoor preservation and taxonomic difficulties the individual species of this genus were notdifferentiated S mirabilis (Rossignol) Sarjeant S ramosus (Ehrenberg) Mantell S scabratus(Wall) Sarjeant and other forms are present Operculodinium Wall spp (O israelianum(Rossignol) Wall or Operculodinium species undifferentiated) are present in all samples inamounts of 5 to 19 percent Polysphaeridium zoharyi (Rossignol) Bujak et al is present in allsamples and comprises up to 16 percent of the assemblages Most samples included low numbersof Lingulodinium machaerophorum (Deflandre amp Cookson) Wall Nematosphaeropsis rigidaWrenn and (or) Tectatodinium pellitum Wall Only two samples contained a single specimeneach of the family Congruentidiaceae

Most samples from Russell Bank core 19A are quite similar to one another (Figure 7)Throughout the core the dinocyst Polysphaeridium zoharyi ranges in abundance from 0-16percent which is considerably lower than in the Bob Allen 6A (Wingard et al 1995) and LittleMadeira Bay T24 (Ishman et al 1996) cores With one exception (80-82 cm) increased absoluteabundance of Spiniferites spp is accompanied by increased absolute abundance of P zoharyi(Figure 8) This relationship suggests that absolute abundances in this core are a function ofsediment supply rather than cyst production The sample at 80-82 cm is anomalous the highabsolute abundance of cysts is attributable to Spiniferites spp and fewer than 30 total cysts werefound on each slide This sample may represent a case of an increase in Spiniferites cystproduction and an increase in the amount of organic debris in proportion to sediment supply Thelowest samples (132-134 cm and 136-138 cm) show both low absolute abundances of all cysttypes and low percentages of P zoharyi

Floral Patterns

Changes occur in the pollen and dinocyst assemblages in core 19A but the significance ofthese changes is unclear Three zones are distinguishable for the pollen but the differencesamong them are very subtle and any interpretation of patterns of vegetational change would bepremature However it is apparent that the vegetation changed in response to someenvironmental factor at those times correlation with on-shore cores would be necessary toestablish the nature of the changes Dinocyst abundance fluctuates in the core with two peaks at118-104 cm and 82-80 cm but the assemblages are relatively stable throughout the core

Table 4 Dinocyst data from Russell Bank 19A

Pol

ysph

aerid

ium

zoh

aryi

Spi

nife

rites

spp

Ope

rcul

odin

ium

spp

Nem

atos

phae

rops

is ri

gida

Ling

ulod

iniu

m m

acha

erop

horu

m

Tect

atod

iniu

m p

ellit

um

Tube

rcul

odin

ium

van

cam

poae

Con

grue

ntid

iace

ae

Oth

er

TOTA

L D

INO

CY

STS

CO

UN

TED

Depth (cm)

Wt (g) Cystsg

Slides examined

0-1 74 779 2 129 742 97 00 32 00 00 00 00 3120-21 115 1363 1 123 630 74 49 49 62 00 12 00 8144-46 363 921 1 24 750 95 36 48 12 00 00 36 8468-70 358 1454 1 114 705 95 10 38 29 00 10 00 10580-82 337 3732 2 19 811 132 00 38 00 00 00 00 5392-94 385 2049 1 84 720 119 49 28 00 00 00 00 143

104-106 331 4736 1 128 636 133 77 10 05 00 00 10 195116-118 350 3451 1 141 676 106 07 63 07 00 00 00 142128-130 390 1854 1 121 612 178 51 28 05 05 00 00 214132-134 321 1288 1 34 754 127 68 17 00 00 00 00 118136-138 371 2028 1 66 747 110 55 11 11 00 00 00 91

Species

Percent abundance

Comparison of these data to additional terrestrial and marine cores may lead to a betterunderstanding of the patterns seen here

210PB AGE MODEL FOR THE RUSSELL BANKS SITE

The activity of 210Pb (dpmgram) is shown for 19B and 19C in Figures 9 and 10 Thesedimentation rate for the Russell Bank site is based on the results from 19C because both 210Pband Ra analyses have been completed for that core the rate equals 122 cmyear +- 005The 210Pb curves for cores 19B and 19C are almost identical therefore we make the assumptionthat the rate of sediment accumulation is the same in the two cores No 210Pb analyses have beendone for core 19A to date

SUMMARY

The fauna and flora present in the Russell Bank cores 19A and 19B record an approximately120-year history of fluctuating environmental changes The benthic foraminifera documentperiods of fluctuating salinity with a gradual increase in salinity upcore The molluscan data areconsistent with the foraminiferal data showing increasing salinity upcore but without the degreeof fluctuation indicated by the benthic foraminifera The benthic fauna show significant changesin the assemblages at 70-66 cm and 24-18 cm which correspond to approximately 1937-1940and 1975-1980 A similar shift occurred at 118 cm (approximately 1898) which is not as clearlyseen in the molluscan faunal data These periods represent shifts from low salinity (12-15 ppt) tohigher average salinity (30 ppt) In addition the benthic foraminiferal assemblages shift fromperiods of higher average salinity to periods of lower salinity at 140 cm 90 cm and 42 cmwhich correspond to approximately 1880 1921 and 1960 respectively

The molluscan fauna indicate changes occurring in the substrate at the Russell Banks siteSediment and grass (probably Thalassia) apparently were equally available for habitation from142-110 cm or approximately 1878-1904 Although grass was still available bare-sedimentdominated the area from 106-88 cm or approximately 1908-1922 From 88-22 cm orapproximately 1922-1976 grass was the dominant substrate and from approximately 1939 (68cm) to the present the presence of bare-sediment bottoms was negligible at the siteSignificantly from 22 cm or approximately 1976 to the present the molluscan fauna isdominated by species that can live equally well on algae or seagrass

The pollen present in core 19A show three periods of subtle shifts in the onshore vegetation inresponse to some environmental factor These changes occur at 80 cm and at 32 cm orapproximately 1929 and 1968 If we assume that core 19A and 19B have similar sedimentationrates then the shifts in the onshore vegetation indicated by the pollen seen in 19A occurapproximately 7-8 years prior to changes in Florida Bay as indicated by the benthic fauna in19B However until we see this pattern repeated in the same core or until a 210Pb analysis is

0 20 40 60 80 100

0-1

20-21

44-46

68-70

80-82

92-94

104-106

116-118

128-130132-134136-138

Operculodinium spp

Nematosphaeropsis rigida

Lingulodinium machaerophorum

Spiniferites spp

Polysphaeridium zoharyi

All others

Percent Cystsgram 0 100 200 300 400 500

Figure 7 Percent and absolute abundances of dinocysts for core 19A

Dep

th (

cm)

0 100 200 300 4000

20

40

60

80

100

120

140

Spiniferites

Cystsgram

Dep

th (

cm)

Polysphaeridium zoharyi

Figure 8 Absolute abundances of Polysphaeridium zoharyi and Spiniferites spp in core 19 A

000 200 400 600

Activity (dpmg)

Dep

th (c

m)

0

40

80

120

160

Figure 9 Pb210 activity in dpmg for core 19B

Activity (dpmg)

Dep

th (c

m)

000 100 200 300 400 500 600

0-2

6-8

12-14

18-20

24-26

30-32

36-38

42-44

48-50

54-56

60-62

66-68

72-74

78-80

84-86

90-92

96-98

102-104

108-110

114-116

120-122

126-128

132-134

138-140

144-146

150-152

156-158

Figure 10 210Pb activity in dpmg for core 19C

completed for core 19A we can not be certain of its significance because our assumption ofsimilar sedimentation rates for cores 19A and 19B may not be correct

Two peaks in dinocyst abundance (cystsgram) occur in the samples examined 118-104 cm(approximately 1898-1909) and 82-80 cm (approximately 1927-1929) These occur during aperiod of near normal marine (30 ppt) and stable salinity as indicated by the benthicforaminifera These periods may represent increased dinocyst production and decreased sedimentsupply but the composition of the dinocyst assemblages remains relatively stable throughout thecore

The pattern of increased salinity upcore documented here for Russell Banks 19B is consistentwith patterns seen in core T24 from the mouth of Taylor Creek in Little Madeira Bay (Ishman etal 1996) and in core 6A from Bob Allen mudbank (Wingard et al 1995) The correspondencebetween changes in salinity and onshore changes in vegetation is also consistent with resultsfrom the previous cores These patterns will continue to be investigated at additional sites inFlorida Bay and the terrestrial Everglades in order to establish the sequence and timing of eventsthroughout the ecosystem and to determine linkages between the marine and terrestrial systems

REFERENCES CITED

Benninghoff WS 1962 Calculation of pollen and spore density in sediments by addition of exotic pollen in known quantities Pollen et Spores v 4 p 332-333

Brewster-Wingard GL Ishman SE Edwards LE and Willard DA 1996 Preliminary report on the distribution of modern fauna and flora at selected sites in north-central and north-eastern Florida Bay US Geological Survey Open-File Report 96-732 34 p

Davis JC 1973 Statistics and Data Analysis in Geology New York John Wiley amp Sons 550 p

Ishman SE Brewster-Wingard GL Willard DA Cronin TM Edwards LE and Holmes CW 1996 Preliminary paleontologic report on core T-24 Little Madeira Bay Florida US Geological Survey Open-File Report 96-543 47 p

Maker LJ Jr 1981 Statistics for microfossil concentration measurements employing samples spiked with marker grains Review of Paleobotany and Palynology v 32 p153-191

Robbins JA Holmes CW Halley RB Bothner Michael Shinn EA Graney Joseph Keller Gerald tenBrinck Marilyn Rudnick David in press Time constraints characterizing predeposition integration of 137Ce and Pb fluxes to sediments in Florida Bay Geochemica et Cosmochemica

Stockmarr Jens 1971 Tablets with spores used in abolute pollen analysis Pollen et Spores v 8 p 615-621

Wall David Dale Barrie Lohmann GP and Smith WK 1977 The environmental and climatic distribution of dinoflagellate cysts in modern marine sediments from regions in the North and South Atlantic Oceans and Adjacent seas Marine Micropaleontology v 2 p 121-200

Wingard GL Ishman SE Cronin TM Edwards LE Willard DA and Halley RB 1995 Preliminary analysis of down-core biotic assemblages Bob Allen Keys Everglades National Park Florida Bay US Geological Survey Open-File Report 95-628 35 p

  • Title Page
  • Table of Contents
  • Abstract
  • Acknowledgements
  • Methods
  • Discussion of Fauna
  • Discussion of Flora
  • Age Model
  • Summary
  • References
Page 18: Preliminary Paleontologic Report on Cores 19A and 19B, from ...

Table 3Russell Bank 19A

Percent Abundance of Pollen

Depth in core0-1 cm

4-5 cm 8-9 cm

20-21 cm 32-34 cm 44-46 cm 56-58 cm 68-70 cm 80-82 cm 92-94 cm

104-106 cm 116-118 cm 128-130 cm 136-138 cm 138-140 cm

Liqu

idam

bar

Mag

nolia

Myr

ica

Nys

sa

Ost

rya

Car

pinu

s

Pin

us

Pla

nera

Poa

ceae

Que

rcus

Rhi

zoph

ora

Rut

acea

e

Sag

ittar

ia

Sal

ix

Taxo

diac

eae

C

upre

ssac

eae

Tax

acea

e

Typh

a

Ulm

us

Tota

l Pol

len

Cou

nted

000 000 283 000 028 6856 000 028 1076 028 000 028 000 000 000 057 353000 000 086 000 000 6905 000 029 1375 029 000 029 000 000 000 000 349000 000 225 000 000 7395 000 032 932 096 032 032 032 000 096 032 321000 000 1069 000 063 5660 000 031 1101 000 000 000 000 000 031 000 321030 000 846 000 000 6737 000 030 634 000 000 000 030 030 030 000 332107 000 429 027 000 5416 000 107 1046 027 000 000 027 027 054 054 378000 031 376 000 000 6395 000 031 690 094 000 031 031 031 063 031 320028 028 447 000 000 7346 000 000 615 028 000 000 028 000 112 028 358119 000 357 000 000 7976 000 000 595 000 000 000 000 000 000 000 85082 000 408 000 000 8696 000 000 245 027 000 000 000 027 000 000 371029 000 747 000 000 8017 000 029 316 057 000 000 000 029 029 000 350000 000 338 000 000 8923 000 031 123 031 000 000 031 000 031 000 326030 000 396 000 000 8628 000 030 457 000 000 000 030 000 000 000 331030 000 242 000 000 8792 030 000 181 000 000 000 000 000 030 000 332081 000 163 000 000 8862 000 000 569 000 000 000 000 000 000 000 123

0 10 20 30 40 50 60 70 80

10

20

30

40

50

60

70

80

90

100

110

120

130

Depthcm Pinu

sQue

rcus

Casua

rina

Rhizop

hora

Myrica

Cepha

lanthu

s

Cheno

podia

ceae

Amara

nthac

eae

Poace

ae

Cypera

ceae

Asterac

eae

10

20

30

40

50

60

70

80

90

100

110

120

130

0 10 0 0 0 10 0 0 0 0 05 5 5 5 5 5 5 55

(Pine

)(O

ak)

(Aus

tralia

n Pine

)

(Red

Man

grove

)

(Wax

Myrt

le)

(Pig

Wee

d)

(Gras

s Fam

ily)

(Saw

grass

Family

)

(Aste

r Fam

ily)

(Butt

on B

ush)

Figure 5 Percent abundance of selected pollen groups for core Russell Bank 19A (note different scales)

0 50 100 150 200 250 300 350 400

Querc

us

0 50

Casua

rina

0 50 100 150 200 250 300

Myr

ica

0 50 100 150

Cheno

pods

0

Cyper

acea

e

0 50 100

Astera

ceae

10

20

30

40

50

60

70

80

90

100

110

120

130

Depthcm Pinu

s

0 1000 2000 3000

Total

Pollen

Con

cent

ratio

n

10

20

30

40

50

60

70

80

90

100

110

120

130

0 1000 2000 3000 4000

Figure 6 Total concentration of pollen (grainsgram) for core Russell Bank 19A (note different scales)

Dinocysts

Dinocyst recovery in all samples was low Most microscope slides are heavily dominated byorganic debris and the maximum number of specimens observed in any sample was 214Absolute abundance ranges from 779 to 4736 cystsgram These values are one to two orders ofmagnitude below those reported by Wall et al (1977) for samples from the Middle AtlanticBight and western South Africa and are consistent with high sedimentation rates These absoluteabundances in the sediments are far below bloom concentrations in which the number of livingcells per ml of water may exceed 50 million

The dinocyst assemblages in the Russell Bank 19A core consist of less than 10 taxa (Table 4)Various species of the genus Spiniferites Mantell dominate all samples (61 to 79 percent) Due topoor preservation and taxonomic difficulties the individual species of this genus were notdifferentiated S mirabilis (Rossignol) Sarjeant S ramosus (Ehrenberg) Mantell S scabratus(Wall) Sarjeant and other forms are present Operculodinium Wall spp (O israelianum(Rossignol) Wall or Operculodinium species undifferentiated) are present in all samples inamounts of 5 to 19 percent Polysphaeridium zoharyi (Rossignol) Bujak et al is present in allsamples and comprises up to 16 percent of the assemblages Most samples included low numbersof Lingulodinium machaerophorum (Deflandre amp Cookson) Wall Nematosphaeropsis rigidaWrenn and (or) Tectatodinium pellitum Wall Only two samples contained a single specimeneach of the family Congruentidiaceae

Most samples from Russell Bank core 19A are quite similar to one another (Figure 7)Throughout the core the dinocyst Polysphaeridium zoharyi ranges in abundance from 0-16percent which is considerably lower than in the Bob Allen 6A (Wingard et al 1995) and LittleMadeira Bay T24 (Ishman et al 1996) cores With one exception (80-82 cm) increased absoluteabundance of Spiniferites spp is accompanied by increased absolute abundance of P zoharyi(Figure 8) This relationship suggests that absolute abundances in this core are a function ofsediment supply rather than cyst production The sample at 80-82 cm is anomalous the highabsolute abundance of cysts is attributable to Spiniferites spp and fewer than 30 total cysts werefound on each slide This sample may represent a case of an increase in Spiniferites cystproduction and an increase in the amount of organic debris in proportion to sediment supply Thelowest samples (132-134 cm and 136-138 cm) show both low absolute abundances of all cysttypes and low percentages of P zoharyi

Floral Patterns

Changes occur in the pollen and dinocyst assemblages in core 19A but the significance ofthese changes is unclear Three zones are distinguishable for the pollen but the differencesamong them are very subtle and any interpretation of patterns of vegetational change would bepremature However it is apparent that the vegetation changed in response to someenvironmental factor at those times correlation with on-shore cores would be necessary toestablish the nature of the changes Dinocyst abundance fluctuates in the core with two peaks at118-104 cm and 82-80 cm but the assemblages are relatively stable throughout the core

Table 4 Dinocyst data from Russell Bank 19A

Pol

ysph

aerid

ium

zoh

aryi

Spi

nife

rites

spp

Ope

rcul

odin

ium

spp

Nem

atos

phae

rops

is ri

gida

Ling

ulod

iniu

m m

acha

erop

horu

m

Tect

atod

iniu

m p

ellit

um

Tube

rcul

odin

ium

van

cam

poae

Con

grue

ntid

iace

ae

Oth

er

TOTA

L D

INO

CY

STS

CO

UN

TED

Depth (cm)

Wt (g) Cystsg

Slides examined

0-1 74 779 2 129 742 97 00 32 00 00 00 00 3120-21 115 1363 1 123 630 74 49 49 62 00 12 00 8144-46 363 921 1 24 750 95 36 48 12 00 00 36 8468-70 358 1454 1 114 705 95 10 38 29 00 10 00 10580-82 337 3732 2 19 811 132 00 38 00 00 00 00 5392-94 385 2049 1 84 720 119 49 28 00 00 00 00 143

104-106 331 4736 1 128 636 133 77 10 05 00 00 10 195116-118 350 3451 1 141 676 106 07 63 07 00 00 00 142128-130 390 1854 1 121 612 178 51 28 05 05 00 00 214132-134 321 1288 1 34 754 127 68 17 00 00 00 00 118136-138 371 2028 1 66 747 110 55 11 11 00 00 00 91

Species

Percent abundance

Comparison of these data to additional terrestrial and marine cores may lead to a betterunderstanding of the patterns seen here

210PB AGE MODEL FOR THE RUSSELL BANKS SITE

The activity of 210Pb (dpmgram) is shown for 19B and 19C in Figures 9 and 10 Thesedimentation rate for the Russell Bank site is based on the results from 19C because both 210Pband Ra analyses have been completed for that core the rate equals 122 cmyear +- 005The 210Pb curves for cores 19B and 19C are almost identical therefore we make the assumptionthat the rate of sediment accumulation is the same in the two cores No 210Pb analyses have beendone for core 19A to date

SUMMARY

The fauna and flora present in the Russell Bank cores 19A and 19B record an approximately120-year history of fluctuating environmental changes The benthic foraminifera documentperiods of fluctuating salinity with a gradual increase in salinity upcore The molluscan data areconsistent with the foraminiferal data showing increasing salinity upcore but without the degreeof fluctuation indicated by the benthic foraminifera The benthic fauna show significant changesin the assemblages at 70-66 cm and 24-18 cm which correspond to approximately 1937-1940and 1975-1980 A similar shift occurred at 118 cm (approximately 1898) which is not as clearlyseen in the molluscan faunal data These periods represent shifts from low salinity (12-15 ppt) tohigher average salinity (30 ppt) In addition the benthic foraminiferal assemblages shift fromperiods of higher average salinity to periods of lower salinity at 140 cm 90 cm and 42 cmwhich correspond to approximately 1880 1921 and 1960 respectively

The molluscan fauna indicate changes occurring in the substrate at the Russell Banks siteSediment and grass (probably Thalassia) apparently were equally available for habitation from142-110 cm or approximately 1878-1904 Although grass was still available bare-sedimentdominated the area from 106-88 cm or approximately 1908-1922 From 88-22 cm orapproximately 1922-1976 grass was the dominant substrate and from approximately 1939 (68cm) to the present the presence of bare-sediment bottoms was negligible at the siteSignificantly from 22 cm or approximately 1976 to the present the molluscan fauna isdominated by species that can live equally well on algae or seagrass

The pollen present in core 19A show three periods of subtle shifts in the onshore vegetation inresponse to some environmental factor These changes occur at 80 cm and at 32 cm orapproximately 1929 and 1968 If we assume that core 19A and 19B have similar sedimentationrates then the shifts in the onshore vegetation indicated by the pollen seen in 19A occurapproximately 7-8 years prior to changes in Florida Bay as indicated by the benthic fauna in19B However until we see this pattern repeated in the same core or until a 210Pb analysis is

0 20 40 60 80 100

0-1

20-21

44-46

68-70

80-82

92-94

104-106

116-118

128-130132-134136-138

Operculodinium spp

Nematosphaeropsis rigida

Lingulodinium machaerophorum

Spiniferites spp

Polysphaeridium zoharyi

All others

Percent Cystsgram 0 100 200 300 400 500

Figure 7 Percent and absolute abundances of dinocysts for core 19A

Dep

th (

cm)

0 100 200 300 4000

20

40

60

80

100

120

140

Spiniferites

Cystsgram

Dep

th (

cm)

Polysphaeridium zoharyi

Figure 8 Absolute abundances of Polysphaeridium zoharyi and Spiniferites spp in core 19 A

000 200 400 600

Activity (dpmg)

Dep

th (c

m)

0

40

80

120

160

Figure 9 Pb210 activity in dpmg for core 19B

Activity (dpmg)

Dep

th (c

m)

000 100 200 300 400 500 600

0-2

6-8

12-14

18-20

24-26

30-32

36-38

42-44

48-50

54-56

60-62

66-68

72-74

78-80

84-86

90-92

96-98

102-104

108-110

114-116

120-122

126-128

132-134

138-140

144-146

150-152

156-158

Figure 10 210Pb activity in dpmg for core 19C

completed for core 19A we can not be certain of its significance because our assumption ofsimilar sedimentation rates for cores 19A and 19B may not be correct

Two peaks in dinocyst abundance (cystsgram) occur in the samples examined 118-104 cm(approximately 1898-1909) and 82-80 cm (approximately 1927-1929) These occur during aperiod of near normal marine (30 ppt) and stable salinity as indicated by the benthicforaminifera These periods may represent increased dinocyst production and decreased sedimentsupply but the composition of the dinocyst assemblages remains relatively stable throughout thecore

The pattern of increased salinity upcore documented here for Russell Banks 19B is consistentwith patterns seen in core T24 from the mouth of Taylor Creek in Little Madeira Bay (Ishman etal 1996) and in core 6A from Bob Allen mudbank (Wingard et al 1995) The correspondencebetween changes in salinity and onshore changes in vegetation is also consistent with resultsfrom the previous cores These patterns will continue to be investigated at additional sites inFlorida Bay and the terrestrial Everglades in order to establish the sequence and timing of eventsthroughout the ecosystem and to determine linkages between the marine and terrestrial systems

REFERENCES CITED

Benninghoff WS 1962 Calculation of pollen and spore density in sediments by addition of exotic pollen in known quantities Pollen et Spores v 4 p 332-333

Brewster-Wingard GL Ishman SE Edwards LE and Willard DA 1996 Preliminary report on the distribution of modern fauna and flora at selected sites in north-central and north-eastern Florida Bay US Geological Survey Open-File Report 96-732 34 p

Davis JC 1973 Statistics and Data Analysis in Geology New York John Wiley amp Sons 550 p

Ishman SE Brewster-Wingard GL Willard DA Cronin TM Edwards LE and Holmes CW 1996 Preliminary paleontologic report on core T-24 Little Madeira Bay Florida US Geological Survey Open-File Report 96-543 47 p

Maker LJ Jr 1981 Statistics for microfossil concentration measurements employing samples spiked with marker grains Review of Paleobotany and Palynology v 32 p153-191

Robbins JA Holmes CW Halley RB Bothner Michael Shinn EA Graney Joseph Keller Gerald tenBrinck Marilyn Rudnick David in press Time constraints characterizing predeposition integration of 137Ce and Pb fluxes to sediments in Florida Bay Geochemica et Cosmochemica

Stockmarr Jens 1971 Tablets with spores used in abolute pollen analysis Pollen et Spores v 8 p 615-621

Wall David Dale Barrie Lohmann GP and Smith WK 1977 The environmental and climatic distribution of dinoflagellate cysts in modern marine sediments from regions in the North and South Atlantic Oceans and Adjacent seas Marine Micropaleontology v 2 p 121-200

Wingard GL Ishman SE Cronin TM Edwards LE Willard DA and Halley RB 1995 Preliminary analysis of down-core biotic assemblages Bob Allen Keys Everglades National Park Florida Bay US Geological Survey Open-File Report 95-628 35 p

  • Title Page
  • Table of Contents
  • Abstract
  • Acknowledgements
  • Methods
  • Discussion of Fauna
  • Discussion of Flora
  • Age Model
  • Summary
  • References
Page 19: Preliminary Paleontologic Report on Cores 19A and 19B, from ...

0 10 20 30 40 50 60 70 80

10

20

30

40

50

60

70

80

90

100

110

120

130

Depthcm Pinu

sQue

rcus

Casua

rina

Rhizop

hora

Myrica

Cepha

lanthu

s

Cheno

podia

ceae

Amara

nthac

eae

Poace

ae

Cypera

ceae

Asterac

eae

10

20

30

40

50

60

70

80

90

100

110

120

130

0 10 0 0 0 10 0 0 0 0 05 5 5 5 5 5 5 55

(Pine

)(O

ak)

(Aus

tralia

n Pine

)

(Red

Man

grove

)

(Wax

Myrt

le)

(Pig

Wee

d)

(Gras

s Fam

ily)

(Saw

grass

Family

)

(Aste

r Fam

ily)

(Butt

on B

ush)

Figure 5 Percent abundance of selected pollen groups for core Russell Bank 19A (note different scales)

0 50 100 150 200 250 300 350 400

Querc

us

0 50

Casua

rina

0 50 100 150 200 250 300

Myr

ica

0 50 100 150

Cheno

pods

0

Cyper

acea

e

0 50 100

Astera

ceae

10

20

30

40

50

60

70

80

90

100

110

120

130

Depthcm Pinu

s

0 1000 2000 3000

Total

Pollen

Con

cent

ratio

n

10

20

30

40

50

60

70

80

90

100

110

120

130

0 1000 2000 3000 4000

Figure 6 Total concentration of pollen (grainsgram) for core Russell Bank 19A (note different scales)

Dinocysts

Dinocyst recovery in all samples was low Most microscope slides are heavily dominated byorganic debris and the maximum number of specimens observed in any sample was 214Absolute abundance ranges from 779 to 4736 cystsgram These values are one to two orders ofmagnitude below those reported by Wall et al (1977) for samples from the Middle AtlanticBight and western South Africa and are consistent with high sedimentation rates These absoluteabundances in the sediments are far below bloom concentrations in which the number of livingcells per ml of water may exceed 50 million

The dinocyst assemblages in the Russell Bank 19A core consist of less than 10 taxa (Table 4)Various species of the genus Spiniferites Mantell dominate all samples (61 to 79 percent) Due topoor preservation and taxonomic difficulties the individual species of this genus were notdifferentiated S mirabilis (Rossignol) Sarjeant S ramosus (Ehrenberg) Mantell S scabratus(Wall) Sarjeant and other forms are present Operculodinium Wall spp (O israelianum(Rossignol) Wall or Operculodinium species undifferentiated) are present in all samples inamounts of 5 to 19 percent Polysphaeridium zoharyi (Rossignol) Bujak et al is present in allsamples and comprises up to 16 percent of the assemblages Most samples included low numbersof Lingulodinium machaerophorum (Deflandre amp Cookson) Wall Nematosphaeropsis rigidaWrenn and (or) Tectatodinium pellitum Wall Only two samples contained a single specimeneach of the family Congruentidiaceae

Most samples from Russell Bank core 19A are quite similar to one another (Figure 7)Throughout the core the dinocyst Polysphaeridium zoharyi ranges in abundance from 0-16percent which is considerably lower than in the Bob Allen 6A (Wingard et al 1995) and LittleMadeira Bay T24 (Ishman et al 1996) cores With one exception (80-82 cm) increased absoluteabundance of Spiniferites spp is accompanied by increased absolute abundance of P zoharyi(Figure 8) This relationship suggests that absolute abundances in this core are a function ofsediment supply rather than cyst production The sample at 80-82 cm is anomalous the highabsolute abundance of cysts is attributable to Spiniferites spp and fewer than 30 total cysts werefound on each slide This sample may represent a case of an increase in Spiniferites cystproduction and an increase in the amount of organic debris in proportion to sediment supply Thelowest samples (132-134 cm and 136-138 cm) show both low absolute abundances of all cysttypes and low percentages of P zoharyi

Floral Patterns

Changes occur in the pollen and dinocyst assemblages in core 19A but the significance ofthese changes is unclear Three zones are distinguishable for the pollen but the differencesamong them are very subtle and any interpretation of patterns of vegetational change would bepremature However it is apparent that the vegetation changed in response to someenvironmental factor at those times correlation with on-shore cores would be necessary toestablish the nature of the changes Dinocyst abundance fluctuates in the core with two peaks at118-104 cm and 82-80 cm but the assemblages are relatively stable throughout the core

Table 4 Dinocyst data from Russell Bank 19A

Pol

ysph

aerid

ium

zoh

aryi

Spi

nife

rites

spp

Ope

rcul

odin

ium

spp

Nem

atos

phae

rops

is ri

gida

Ling

ulod

iniu

m m

acha

erop

horu

m

Tect

atod

iniu

m p

ellit

um

Tube

rcul

odin

ium

van

cam

poae

Con

grue

ntid

iace

ae

Oth

er

TOTA

L D

INO

CY

STS

CO

UN

TED

Depth (cm)

Wt (g) Cystsg

Slides examined

0-1 74 779 2 129 742 97 00 32 00 00 00 00 3120-21 115 1363 1 123 630 74 49 49 62 00 12 00 8144-46 363 921 1 24 750 95 36 48 12 00 00 36 8468-70 358 1454 1 114 705 95 10 38 29 00 10 00 10580-82 337 3732 2 19 811 132 00 38 00 00 00 00 5392-94 385 2049 1 84 720 119 49 28 00 00 00 00 143

104-106 331 4736 1 128 636 133 77 10 05 00 00 10 195116-118 350 3451 1 141 676 106 07 63 07 00 00 00 142128-130 390 1854 1 121 612 178 51 28 05 05 00 00 214132-134 321 1288 1 34 754 127 68 17 00 00 00 00 118136-138 371 2028 1 66 747 110 55 11 11 00 00 00 91

Species

Percent abundance

Comparison of these data to additional terrestrial and marine cores may lead to a betterunderstanding of the patterns seen here

210PB AGE MODEL FOR THE RUSSELL BANKS SITE

The activity of 210Pb (dpmgram) is shown for 19B and 19C in Figures 9 and 10 Thesedimentation rate for the Russell Bank site is based on the results from 19C because both 210Pband Ra analyses have been completed for that core the rate equals 122 cmyear +- 005The 210Pb curves for cores 19B and 19C are almost identical therefore we make the assumptionthat the rate of sediment accumulation is the same in the two cores No 210Pb analyses have beendone for core 19A to date

SUMMARY

The fauna and flora present in the Russell Bank cores 19A and 19B record an approximately120-year history of fluctuating environmental changes The benthic foraminifera documentperiods of fluctuating salinity with a gradual increase in salinity upcore The molluscan data areconsistent with the foraminiferal data showing increasing salinity upcore but without the degreeof fluctuation indicated by the benthic foraminifera The benthic fauna show significant changesin the assemblages at 70-66 cm and 24-18 cm which correspond to approximately 1937-1940and 1975-1980 A similar shift occurred at 118 cm (approximately 1898) which is not as clearlyseen in the molluscan faunal data These periods represent shifts from low salinity (12-15 ppt) tohigher average salinity (30 ppt) In addition the benthic foraminiferal assemblages shift fromperiods of higher average salinity to periods of lower salinity at 140 cm 90 cm and 42 cmwhich correspond to approximately 1880 1921 and 1960 respectively

The molluscan fauna indicate changes occurring in the substrate at the Russell Banks siteSediment and grass (probably Thalassia) apparently were equally available for habitation from142-110 cm or approximately 1878-1904 Although grass was still available bare-sedimentdominated the area from 106-88 cm or approximately 1908-1922 From 88-22 cm orapproximately 1922-1976 grass was the dominant substrate and from approximately 1939 (68cm) to the present the presence of bare-sediment bottoms was negligible at the siteSignificantly from 22 cm or approximately 1976 to the present the molluscan fauna isdominated by species that can live equally well on algae or seagrass

The pollen present in core 19A show three periods of subtle shifts in the onshore vegetation inresponse to some environmental factor These changes occur at 80 cm and at 32 cm orapproximately 1929 and 1968 If we assume that core 19A and 19B have similar sedimentationrates then the shifts in the onshore vegetation indicated by the pollen seen in 19A occurapproximately 7-8 years prior to changes in Florida Bay as indicated by the benthic fauna in19B However until we see this pattern repeated in the same core or until a 210Pb analysis is

0 20 40 60 80 100

0-1

20-21

44-46

68-70

80-82

92-94

104-106

116-118

128-130132-134136-138

Operculodinium spp

Nematosphaeropsis rigida

Lingulodinium machaerophorum

Spiniferites spp

Polysphaeridium zoharyi

All others

Percent Cystsgram 0 100 200 300 400 500

Figure 7 Percent and absolute abundances of dinocysts for core 19A

Dep

th (

cm)

0 100 200 300 4000

20

40

60

80

100

120

140

Spiniferites

Cystsgram

Dep

th (

cm)

Polysphaeridium zoharyi

Figure 8 Absolute abundances of Polysphaeridium zoharyi and Spiniferites spp in core 19 A

000 200 400 600

Activity (dpmg)

Dep

th (c

m)

0

40

80

120

160

Figure 9 Pb210 activity in dpmg for core 19B

Activity (dpmg)

Dep

th (c

m)

000 100 200 300 400 500 600

0-2

6-8

12-14

18-20

24-26

30-32

36-38

42-44

48-50

54-56

60-62

66-68

72-74

78-80

84-86

90-92

96-98

102-104

108-110

114-116

120-122

126-128

132-134

138-140

144-146

150-152

156-158

Figure 10 210Pb activity in dpmg for core 19C

completed for core 19A we can not be certain of its significance because our assumption ofsimilar sedimentation rates for cores 19A and 19B may not be correct

Two peaks in dinocyst abundance (cystsgram) occur in the samples examined 118-104 cm(approximately 1898-1909) and 82-80 cm (approximately 1927-1929) These occur during aperiod of near normal marine (30 ppt) and stable salinity as indicated by the benthicforaminifera These periods may represent increased dinocyst production and decreased sedimentsupply but the composition of the dinocyst assemblages remains relatively stable throughout thecore

The pattern of increased salinity upcore documented here for Russell Banks 19B is consistentwith patterns seen in core T24 from the mouth of Taylor Creek in Little Madeira Bay (Ishman etal 1996) and in core 6A from Bob Allen mudbank (Wingard et al 1995) The correspondencebetween changes in salinity and onshore changes in vegetation is also consistent with resultsfrom the previous cores These patterns will continue to be investigated at additional sites inFlorida Bay and the terrestrial Everglades in order to establish the sequence and timing of eventsthroughout the ecosystem and to determine linkages between the marine and terrestrial systems

REFERENCES CITED

Benninghoff WS 1962 Calculation of pollen and spore density in sediments by addition of exotic pollen in known quantities Pollen et Spores v 4 p 332-333

Brewster-Wingard GL Ishman SE Edwards LE and Willard DA 1996 Preliminary report on the distribution of modern fauna and flora at selected sites in north-central and north-eastern Florida Bay US Geological Survey Open-File Report 96-732 34 p

Davis JC 1973 Statistics and Data Analysis in Geology New York John Wiley amp Sons 550 p

Ishman SE Brewster-Wingard GL Willard DA Cronin TM Edwards LE and Holmes CW 1996 Preliminary paleontologic report on core T-24 Little Madeira Bay Florida US Geological Survey Open-File Report 96-543 47 p

Maker LJ Jr 1981 Statistics for microfossil concentration measurements employing samples spiked with marker grains Review of Paleobotany and Palynology v 32 p153-191

Robbins JA Holmes CW Halley RB Bothner Michael Shinn EA Graney Joseph Keller Gerald tenBrinck Marilyn Rudnick David in press Time constraints characterizing predeposition integration of 137Ce and Pb fluxes to sediments in Florida Bay Geochemica et Cosmochemica

Stockmarr Jens 1971 Tablets with spores used in abolute pollen analysis Pollen et Spores v 8 p 615-621

Wall David Dale Barrie Lohmann GP and Smith WK 1977 The environmental and climatic distribution of dinoflagellate cysts in modern marine sediments from regions in the North and South Atlantic Oceans and Adjacent seas Marine Micropaleontology v 2 p 121-200

Wingard GL Ishman SE Cronin TM Edwards LE Willard DA and Halley RB 1995 Preliminary analysis of down-core biotic assemblages Bob Allen Keys Everglades National Park Florida Bay US Geological Survey Open-File Report 95-628 35 p

  • Title Page
  • Table of Contents
  • Abstract
  • Acknowledgements
  • Methods
  • Discussion of Fauna
  • Discussion of Flora
  • Age Model
  • Summary
  • References
Page 20: Preliminary Paleontologic Report on Cores 19A and 19B, from ...

0 50 100 150 200 250 300 350 400

Querc

us

0 50

Casua

rina

0 50 100 150 200 250 300

Myr

ica

0 50 100 150

Cheno

pods

0

Cyper

acea

e

0 50 100

Astera

ceae

10

20

30

40

50

60

70

80

90

100

110

120

130

Depthcm Pinu

s

0 1000 2000 3000

Total

Pollen

Con

cent

ratio

n

10

20

30

40

50

60

70

80

90

100

110

120

130

0 1000 2000 3000 4000

Figure 6 Total concentration of pollen (grainsgram) for core Russell Bank 19A (note different scales)

Dinocysts

Dinocyst recovery in all samples was low Most microscope slides are heavily dominated byorganic debris and the maximum number of specimens observed in any sample was 214Absolute abundance ranges from 779 to 4736 cystsgram These values are one to two orders ofmagnitude below those reported by Wall et al (1977) for samples from the Middle AtlanticBight and western South Africa and are consistent with high sedimentation rates These absoluteabundances in the sediments are far below bloom concentrations in which the number of livingcells per ml of water may exceed 50 million

The dinocyst assemblages in the Russell Bank 19A core consist of less than 10 taxa (Table 4)Various species of the genus Spiniferites Mantell dominate all samples (61 to 79 percent) Due topoor preservation and taxonomic difficulties the individual species of this genus were notdifferentiated S mirabilis (Rossignol) Sarjeant S ramosus (Ehrenberg) Mantell S scabratus(Wall) Sarjeant and other forms are present Operculodinium Wall spp (O israelianum(Rossignol) Wall or Operculodinium species undifferentiated) are present in all samples inamounts of 5 to 19 percent Polysphaeridium zoharyi (Rossignol) Bujak et al is present in allsamples and comprises up to 16 percent of the assemblages Most samples included low numbersof Lingulodinium machaerophorum (Deflandre amp Cookson) Wall Nematosphaeropsis rigidaWrenn and (or) Tectatodinium pellitum Wall Only two samples contained a single specimeneach of the family Congruentidiaceae

Most samples from Russell Bank core 19A are quite similar to one another (Figure 7)Throughout the core the dinocyst Polysphaeridium zoharyi ranges in abundance from 0-16percent which is considerably lower than in the Bob Allen 6A (Wingard et al 1995) and LittleMadeira Bay T24 (Ishman et al 1996) cores With one exception (80-82 cm) increased absoluteabundance of Spiniferites spp is accompanied by increased absolute abundance of P zoharyi(Figure 8) This relationship suggests that absolute abundances in this core are a function ofsediment supply rather than cyst production The sample at 80-82 cm is anomalous the highabsolute abundance of cysts is attributable to Spiniferites spp and fewer than 30 total cysts werefound on each slide This sample may represent a case of an increase in Spiniferites cystproduction and an increase in the amount of organic debris in proportion to sediment supply Thelowest samples (132-134 cm and 136-138 cm) show both low absolute abundances of all cysttypes and low percentages of P zoharyi

Floral Patterns

Changes occur in the pollen and dinocyst assemblages in core 19A but the significance ofthese changes is unclear Three zones are distinguishable for the pollen but the differencesamong them are very subtle and any interpretation of patterns of vegetational change would bepremature However it is apparent that the vegetation changed in response to someenvironmental factor at those times correlation with on-shore cores would be necessary toestablish the nature of the changes Dinocyst abundance fluctuates in the core with two peaks at118-104 cm and 82-80 cm but the assemblages are relatively stable throughout the core

Table 4 Dinocyst data from Russell Bank 19A

Pol

ysph

aerid

ium

zoh

aryi

Spi

nife

rites

spp

Ope

rcul

odin

ium

spp

Nem

atos

phae

rops

is ri

gida

Ling

ulod

iniu

m m

acha

erop

horu

m

Tect

atod

iniu

m p

ellit

um

Tube

rcul

odin

ium

van

cam

poae

Con

grue

ntid

iace

ae

Oth

er

TOTA

L D

INO

CY

STS

CO

UN

TED

Depth (cm)

Wt (g) Cystsg

Slides examined

0-1 74 779 2 129 742 97 00 32 00 00 00 00 3120-21 115 1363 1 123 630 74 49 49 62 00 12 00 8144-46 363 921 1 24 750 95 36 48 12 00 00 36 8468-70 358 1454 1 114 705 95 10 38 29 00 10 00 10580-82 337 3732 2 19 811 132 00 38 00 00 00 00 5392-94 385 2049 1 84 720 119 49 28 00 00 00 00 143

104-106 331 4736 1 128 636 133 77 10 05 00 00 10 195116-118 350 3451 1 141 676 106 07 63 07 00 00 00 142128-130 390 1854 1 121 612 178 51 28 05 05 00 00 214132-134 321 1288 1 34 754 127 68 17 00 00 00 00 118136-138 371 2028 1 66 747 110 55 11 11 00 00 00 91

Species

Percent abundance

Comparison of these data to additional terrestrial and marine cores may lead to a betterunderstanding of the patterns seen here

210PB AGE MODEL FOR THE RUSSELL BANKS SITE

The activity of 210Pb (dpmgram) is shown for 19B and 19C in Figures 9 and 10 Thesedimentation rate for the Russell Bank site is based on the results from 19C because both 210Pband Ra analyses have been completed for that core the rate equals 122 cmyear +- 005The 210Pb curves for cores 19B and 19C are almost identical therefore we make the assumptionthat the rate of sediment accumulation is the same in the two cores No 210Pb analyses have beendone for core 19A to date

SUMMARY

The fauna and flora present in the Russell Bank cores 19A and 19B record an approximately120-year history of fluctuating environmental changes The benthic foraminifera documentperiods of fluctuating salinity with a gradual increase in salinity upcore The molluscan data areconsistent with the foraminiferal data showing increasing salinity upcore but without the degreeof fluctuation indicated by the benthic foraminifera The benthic fauna show significant changesin the assemblages at 70-66 cm and 24-18 cm which correspond to approximately 1937-1940and 1975-1980 A similar shift occurred at 118 cm (approximately 1898) which is not as clearlyseen in the molluscan faunal data These periods represent shifts from low salinity (12-15 ppt) tohigher average salinity (30 ppt) In addition the benthic foraminiferal assemblages shift fromperiods of higher average salinity to periods of lower salinity at 140 cm 90 cm and 42 cmwhich correspond to approximately 1880 1921 and 1960 respectively

The molluscan fauna indicate changes occurring in the substrate at the Russell Banks siteSediment and grass (probably Thalassia) apparently were equally available for habitation from142-110 cm or approximately 1878-1904 Although grass was still available bare-sedimentdominated the area from 106-88 cm or approximately 1908-1922 From 88-22 cm orapproximately 1922-1976 grass was the dominant substrate and from approximately 1939 (68cm) to the present the presence of bare-sediment bottoms was negligible at the siteSignificantly from 22 cm or approximately 1976 to the present the molluscan fauna isdominated by species that can live equally well on algae or seagrass

The pollen present in core 19A show three periods of subtle shifts in the onshore vegetation inresponse to some environmental factor These changes occur at 80 cm and at 32 cm orapproximately 1929 and 1968 If we assume that core 19A and 19B have similar sedimentationrates then the shifts in the onshore vegetation indicated by the pollen seen in 19A occurapproximately 7-8 years prior to changes in Florida Bay as indicated by the benthic fauna in19B However until we see this pattern repeated in the same core or until a 210Pb analysis is

0 20 40 60 80 100

0-1

20-21

44-46

68-70

80-82

92-94

104-106

116-118

128-130132-134136-138

Operculodinium spp

Nematosphaeropsis rigida

Lingulodinium machaerophorum

Spiniferites spp

Polysphaeridium zoharyi

All others

Percent Cystsgram 0 100 200 300 400 500

Figure 7 Percent and absolute abundances of dinocysts for core 19A

Dep

th (

cm)

0 100 200 300 4000

20

40

60

80

100

120

140

Spiniferites

Cystsgram

Dep

th (

cm)

Polysphaeridium zoharyi

Figure 8 Absolute abundances of Polysphaeridium zoharyi and Spiniferites spp in core 19 A

000 200 400 600

Activity (dpmg)

Dep

th (c

m)

0

40

80

120

160

Figure 9 Pb210 activity in dpmg for core 19B

Activity (dpmg)

Dep

th (c

m)

000 100 200 300 400 500 600

0-2

6-8

12-14

18-20

24-26

30-32

36-38

42-44

48-50

54-56

60-62

66-68

72-74

78-80

84-86

90-92

96-98

102-104

108-110

114-116

120-122

126-128

132-134

138-140

144-146

150-152

156-158

Figure 10 210Pb activity in dpmg for core 19C

completed for core 19A we can not be certain of its significance because our assumption ofsimilar sedimentation rates for cores 19A and 19B may not be correct

Two peaks in dinocyst abundance (cystsgram) occur in the samples examined 118-104 cm(approximately 1898-1909) and 82-80 cm (approximately 1927-1929) These occur during aperiod of near normal marine (30 ppt) and stable salinity as indicated by the benthicforaminifera These periods may represent increased dinocyst production and decreased sedimentsupply but the composition of the dinocyst assemblages remains relatively stable throughout thecore

The pattern of increased salinity upcore documented here for Russell Banks 19B is consistentwith patterns seen in core T24 from the mouth of Taylor Creek in Little Madeira Bay (Ishman etal 1996) and in core 6A from Bob Allen mudbank (Wingard et al 1995) The correspondencebetween changes in salinity and onshore changes in vegetation is also consistent with resultsfrom the previous cores These patterns will continue to be investigated at additional sites inFlorida Bay and the terrestrial Everglades in order to establish the sequence and timing of eventsthroughout the ecosystem and to determine linkages between the marine and terrestrial systems

REFERENCES CITED

Benninghoff WS 1962 Calculation of pollen and spore density in sediments by addition of exotic pollen in known quantities Pollen et Spores v 4 p 332-333

Brewster-Wingard GL Ishman SE Edwards LE and Willard DA 1996 Preliminary report on the distribution of modern fauna and flora at selected sites in north-central and north-eastern Florida Bay US Geological Survey Open-File Report 96-732 34 p

Davis JC 1973 Statistics and Data Analysis in Geology New York John Wiley amp Sons 550 p

Ishman SE Brewster-Wingard GL Willard DA Cronin TM Edwards LE and Holmes CW 1996 Preliminary paleontologic report on core T-24 Little Madeira Bay Florida US Geological Survey Open-File Report 96-543 47 p

Maker LJ Jr 1981 Statistics for microfossil concentration measurements employing samples spiked with marker grains Review of Paleobotany and Palynology v 32 p153-191

Robbins JA Holmes CW Halley RB Bothner Michael Shinn EA Graney Joseph Keller Gerald tenBrinck Marilyn Rudnick David in press Time constraints characterizing predeposition integration of 137Ce and Pb fluxes to sediments in Florida Bay Geochemica et Cosmochemica

Stockmarr Jens 1971 Tablets with spores used in abolute pollen analysis Pollen et Spores v 8 p 615-621

Wall David Dale Barrie Lohmann GP and Smith WK 1977 The environmental and climatic distribution of dinoflagellate cysts in modern marine sediments from regions in the North and South Atlantic Oceans and Adjacent seas Marine Micropaleontology v 2 p 121-200

Wingard GL Ishman SE Cronin TM Edwards LE Willard DA and Halley RB 1995 Preliminary analysis of down-core biotic assemblages Bob Allen Keys Everglades National Park Florida Bay US Geological Survey Open-File Report 95-628 35 p

  • Title Page
  • Table of Contents
  • Abstract
  • Acknowledgements
  • Methods
  • Discussion of Fauna
  • Discussion of Flora
  • Age Model
  • Summary
  • References
Page 21: Preliminary Paleontologic Report on Cores 19A and 19B, from ...

Dinocysts

Dinocyst recovery in all samples was low Most microscope slides are heavily dominated byorganic debris and the maximum number of specimens observed in any sample was 214Absolute abundance ranges from 779 to 4736 cystsgram These values are one to two orders ofmagnitude below those reported by Wall et al (1977) for samples from the Middle AtlanticBight and western South Africa and are consistent with high sedimentation rates These absoluteabundances in the sediments are far below bloom concentrations in which the number of livingcells per ml of water may exceed 50 million

The dinocyst assemblages in the Russell Bank 19A core consist of less than 10 taxa (Table 4)Various species of the genus Spiniferites Mantell dominate all samples (61 to 79 percent) Due topoor preservation and taxonomic difficulties the individual species of this genus were notdifferentiated S mirabilis (Rossignol) Sarjeant S ramosus (Ehrenberg) Mantell S scabratus(Wall) Sarjeant and other forms are present Operculodinium Wall spp (O israelianum(Rossignol) Wall or Operculodinium species undifferentiated) are present in all samples inamounts of 5 to 19 percent Polysphaeridium zoharyi (Rossignol) Bujak et al is present in allsamples and comprises up to 16 percent of the assemblages Most samples included low numbersof Lingulodinium machaerophorum (Deflandre amp Cookson) Wall Nematosphaeropsis rigidaWrenn and (or) Tectatodinium pellitum Wall Only two samples contained a single specimeneach of the family Congruentidiaceae

Most samples from Russell Bank core 19A are quite similar to one another (Figure 7)Throughout the core the dinocyst Polysphaeridium zoharyi ranges in abundance from 0-16percent which is considerably lower than in the Bob Allen 6A (Wingard et al 1995) and LittleMadeira Bay T24 (Ishman et al 1996) cores With one exception (80-82 cm) increased absoluteabundance of Spiniferites spp is accompanied by increased absolute abundance of P zoharyi(Figure 8) This relationship suggests that absolute abundances in this core are a function ofsediment supply rather than cyst production The sample at 80-82 cm is anomalous the highabsolute abundance of cysts is attributable to Spiniferites spp and fewer than 30 total cysts werefound on each slide This sample may represent a case of an increase in Spiniferites cystproduction and an increase in the amount of organic debris in proportion to sediment supply Thelowest samples (132-134 cm and 136-138 cm) show both low absolute abundances of all cysttypes and low percentages of P zoharyi

Floral Patterns

Changes occur in the pollen and dinocyst assemblages in core 19A but the significance ofthese changes is unclear Three zones are distinguishable for the pollen but the differencesamong them are very subtle and any interpretation of patterns of vegetational change would bepremature However it is apparent that the vegetation changed in response to someenvironmental factor at those times correlation with on-shore cores would be necessary toestablish the nature of the changes Dinocyst abundance fluctuates in the core with two peaks at118-104 cm and 82-80 cm but the assemblages are relatively stable throughout the core

Table 4 Dinocyst data from Russell Bank 19A

Pol

ysph

aerid

ium

zoh

aryi

Spi

nife

rites

spp

Ope

rcul

odin

ium

spp

Nem

atos

phae

rops

is ri

gida

Ling

ulod

iniu

m m

acha

erop

horu

m

Tect

atod

iniu

m p

ellit

um

Tube

rcul

odin

ium

van

cam

poae

Con

grue

ntid

iace

ae

Oth

er

TOTA

L D

INO

CY

STS

CO

UN

TED

Depth (cm)

Wt (g) Cystsg

Slides examined

0-1 74 779 2 129 742 97 00 32 00 00 00 00 3120-21 115 1363 1 123 630 74 49 49 62 00 12 00 8144-46 363 921 1 24 750 95 36 48 12 00 00 36 8468-70 358 1454 1 114 705 95 10 38 29 00 10 00 10580-82 337 3732 2 19 811 132 00 38 00 00 00 00 5392-94 385 2049 1 84 720 119 49 28 00 00 00 00 143

104-106 331 4736 1 128 636 133 77 10 05 00 00 10 195116-118 350 3451 1 141 676 106 07 63 07 00 00 00 142128-130 390 1854 1 121 612 178 51 28 05 05 00 00 214132-134 321 1288 1 34 754 127 68 17 00 00 00 00 118136-138 371 2028 1 66 747 110 55 11 11 00 00 00 91

Species

Percent abundance

Comparison of these data to additional terrestrial and marine cores may lead to a betterunderstanding of the patterns seen here

210PB AGE MODEL FOR THE RUSSELL BANKS SITE

The activity of 210Pb (dpmgram) is shown for 19B and 19C in Figures 9 and 10 Thesedimentation rate for the Russell Bank site is based on the results from 19C because both 210Pband Ra analyses have been completed for that core the rate equals 122 cmyear +- 005The 210Pb curves for cores 19B and 19C are almost identical therefore we make the assumptionthat the rate of sediment accumulation is the same in the two cores No 210Pb analyses have beendone for core 19A to date

SUMMARY

The fauna and flora present in the Russell Bank cores 19A and 19B record an approximately120-year history of fluctuating environmental changes The benthic foraminifera documentperiods of fluctuating salinity with a gradual increase in salinity upcore The molluscan data areconsistent with the foraminiferal data showing increasing salinity upcore but without the degreeof fluctuation indicated by the benthic foraminifera The benthic fauna show significant changesin the assemblages at 70-66 cm and 24-18 cm which correspond to approximately 1937-1940and 1975-1980 A similar shift occurred at 118 cm (approximately 1898) which is not as clearlyseen in the molluscan faunal data These periods represent shifts from low salinity (12-15 ppt) tohigher average salinity (30 ppt) In addition the benthic foraminiferal assemblages shift fromperiods of higher average salinity to periods of lower salinity at 140 cm 90 cm and 42 cmwhich correspond to approximately 1880 1921 and 1960 respectively

The molluscan fauna indicate changes occurring in the substrate at the Russell Banks siteSediment and grass (probably Thalassia) apparently were equally available for habitation from142-110 cm or approximately 1878-1904 Although grass was still available bare-sedimentdominated the area from 106-88 cm or approximately 1908-1922 From 88-22 cm orapproximately 1922-1976 grass was the dominant substrate and from approximately 1939 (68cm) to the present the presence of bare-sediment bottoms was negligible at the siteSignificantly from 22 cm or approximately 1976 to the present the molluscan fauna isdominated by species that can live equally well on algae or seagrass

The pollen present in core 19A show three periods of subtle shifts in the onshore vegetation inresponse to some environmental factor These changes occur at 80 cm and at 32 cm orapproximately 1929 and 1968 If we assume that core 19A and 19B have similar sedimentationrates then the shifts in the onshore vegetation indicated by the pollen seen in 19A occurapproximately 7-8 years prior to changes in Florida Bay as indicated by the benthic fauna in19B However until we see this pattern repeated in the same core or until a 210Pb analysis is

0 20 40 60 80 100

0-1

20-21

44-46

68-70

80-82

92-94

104-106

116-118

128-130132-134136-138

Operculodinium spp

Nematosphaeropsis rigida

Lingulodinium machaerophorum

Spiniferites spp

Polysphaeridium zoharyi

All others

Percent Cystsgram 0 100 200 300 400 500

Figure 7 Percent and absolute abundances of dinocysts for core 19A

Dep

th (

cm)

0 100 200 300 4000

20

40

60

80

100

120

140

Spiniferites

Cystsgram

Dep

th (

cm)

Polysphaeridium zoharyi

Figure 8 Absolute abundances of Polysphaeridium zoharyi and Spiniferites spp in core 19 A

000 200 400 600

Activity (dpmg)

Dep

th (c

m)

0

40

80

120

160

Figure 9 Pb210 activity in dpmg for core 19B

Activity (dpmg)

Dep

th (c

m)

000 100 200 300 400 500 600

0-2

6-8

12-14

18-20

24-26

30-32

36-38

42-44

48-50

54-56

60-62

66-68

72-74

78-80

84-86

90-92

96-98

102-104

108-110

114-116

120-122

126-128

132-134

138-140

144-146

150-152

156-158

Figure 10 210Pb activity in dpmg for core 19C

completed for core 19A we can not be certain of its significance because our assumption ofsimilar sedimentation rates for cores 19A and 19B may not be correct

Two peaks in dinocyst abundance (cystsgram) occur in the samples examined 118-104 cm(approximately 1898-1909) and 82-80 cm (approximately 1927-1929) These occur during aperiod of near normal marine (30 ppt) and stable salinity as indicated by the benthicforaminifera These periods may represent increased dinocyst production and decreased sedimentsupply but the composition of the dinocyst assemblages remains relatively stable throughout thecore

The pattern of increased salinity upcore documented here for Russell Banks 19B is consistentwith patterns seen in core T24 from the mouth of Taylor Creek in Little Madeira Bay (Ishman etal 1996) and in core 6A from Bob Allen mudbank (Wingard et al 1995) The correspondencebetween changes in salinity and onshore changes in vegetation is also consistent with resultsfrom the previous cores These patterns will continue to be investigated at additional sites inFlorida Bay and the terrestrial Everglades in order to establish the sequence and timing of eventsthroughout the ecosystem and to determine linkages between the marine and terrestrial systems

REFERENCES CITED

Benninghoff WS 1962 Calculation of pollen and spore density in sediments by addition of exotic pollen in known quantities Pollen et Spores v 4 p 332-333

Brewster-Wingard GL Ishman SE Edwards LE and Willard DA 1996 Preliminary report on the distribution of modern fauna and flora at selected sites in north-central and north-eastern Florida Bay US Geological Survey Open-File Report 96-732 34 p

Davis JC 1973 Statistics and Data Analysis in Geology New York John Wiley amp Sons 550 p

Ishman SE Brewster-Wingard GL Willard DA Cronin TM Edwards LE and Holmes CW 1996 Preliminary paleontologic report on core T-24 Little Madeira Bay Florida US Geological Survey Open-File Report 96-543 47 p

Maker LJ Jr 1981 Statistics for microfossil concentration measurements employing samples spiked with marker grains Review of Paleobotany and Palynology v 32 p153-191

Robbins JA Holmes CW Halley RB Bothner Michael Shinn EA Graney Joseph Keller Gerald tenBrinck Marilyn Rudnick David in press Time constraints characterizing predeposition integration of 137Ce and Pb fluxes to sediments in Florida Bay Geochemica et Cosmochemica

Stockmarr Jens 1971 Tablets with spores used in abolute pollen analysis Pollen et Spores v 8 p 615-621

Wall David Dale Barrie Lohmann GP and Smith WK 1977 The environmental and climatic distribution of dinoflagellate cysts in modern marine sediments from regions in the North and South Atlantic Oceans and Adjacent seas Marine Micropaleontology v 2 p 121-200

Wingard GL Ishman SE Cronin TM Edwards LE Willard DA and Halley RB 1995 Preliminary analysis of down-core biotic assemblages Bob Allen Keys Everglades National Park Florida Bay US Geological Survey Open-File Report 95-628 35 p

  • Title Page
  • Table of Contents
  • Abstract
  • Acknowledgements
  • Methods
  • Discussion of Fauna
  • Discussion of Flora
  • Age Model
  • Summary
  • References
Page 22: Preliminary Paleontologic Report on Cores 19A and 19B, from ...

Table 4 Dinocyst data from Russell Bank 19A

Pol

ysph

aerid

ium

zoh

aryi

Spi

nife

rites

spp

Ope

rcul

odin

ium

spp

Nem

atos

phae

rops

is ri

gida

Ling

ulod

iniu

m m

acha

erop

horu

m

Tect

atod

iniu

m p

ellit

um

Tube

rcul

odin

ium

van

cam

poae

Con

grue

ntid

iace

ae

Oth

er

TOTA

L D

INO

CY

STS

CO

UN

TED

Depth (cm)

Wt (g) Cystsg

Slides examined

0-1 74 779 2 129 742 97 00 32 00 00 00 00 3120-21 115 1363 1 123 630 74 49 49 62 00 12 00 8144-46 363 921 1 24 750 95 36 48 12 00 00 36 8468-70 358 1454 1 114 705 95 10 38 29 00 10 00 10580-82 337 3732 2 19 811 132 00 38 00 00 00 00 5392-94 385 2049 1 84 720 119 49 28 00 00 00 00 143

104-106 331 4736 1 128 636 133 77 10 05 00 00 10 195116-118 350 3451 1 141 676 106 07 63 07 00 00 00 142128-130 390 1854 1 121 612 178 51 28 05 05 00 00 214132-134 321 1288 1 34 754 127 68 17 00 00 00 00 118136-138 371 2028 1 66 747 110 55 11 11 00 00 00 91

Species

Percent abundance

Comparison of these data to additional terrestrial and marine cores may lead to a betterunderstanding of the patterns seen here

210PB AGE MODEL FOR THE RUSSELL BANKS SITE

The activity of 210Pb (dpmgram) is shown for 19B and 19C in Figures 9 and 10 Thesedimentation rate for the Russell Bank site is based on the results from 19C because both 210Pband Ra analyses have been completed for that core the rate equals 122 cmyear +- 005The 210Pb curves for cores 19B and 19C are almost identical therefore we make the assumptionthat the rate of sediment accumulation is the same in the two cores No 210Pb analyses have beendone for core 19A to date

SUMMARY

The fauna and flora present in the Russell Bank cores 19A and 19B record an approximately120-year history of fluctuating environmental changes The benthic foraminifera documentperiods of fluctuating salinity with a gradual increase in salinity upcore The molluscan data areconsistent with the foraminiferal data showing increasing salinity upcore but without the degreeof fluctuation indicated by the benthic foraminifera The benthic fauna show significant changesin the assemblages at 70-66 cm and 24-18 cm which correspond to approximately 1937-1940and 1975-1980 A similar shift occurred at 118 cm (approximately 1898) which is not as clearlyseen in the molluscan faunal data These periods represent shifts from low salinity (12-15 ppt) tohigher average salinity (30 ppt) In addition the benthic foraminiferal assemblages shift fromperiods of higher average salinity to periods of lower salinity at 140 cm 90 cm and 42 cmwhich correspond to approximately 1880 1921 and 1960 respectively

The molluscan fauna indicate changes occurring in the substrate at the Russell Banks siteSediment and grass (probably Thalassia) apparently were equally available for habitation from142-110 cm or approximately 1878-1904 Although grass was still available bare-sedimentdominated the area from 106-88 cm or approximately 1908-1922 From 88-22 cm orapproximately 1922-1976 grass was the dominant substrate and from approximately 1939 (68cm) to the present the presence of bare-sediment bottoms was negligible at the siteSignificantly from 22 cm or approximately 1976 to the present the molluscan fauna isdominated by species that can live equally well on algae or seagrass

The pollen present in core 19A show three periods of subtle shifts in the onshore vegetation inresponse to some environmental factor These changes occur at 80 cm and at 32 cm orapproximately 1929 and 1968 If we assume that core 19A and 19B have similar sedimentationrates then the shifts in the onshore vegetation indicated by the pollen seen in 19A occurapproximately 7-8 years prior to changes in Florida Bay as indicated by the benthic fauna in19B However until we see this pattern repeated in the same core or until a 210Pb analysis is

0 20 40 60 80 100

0-1

20-21

44-46

68-70

80-82

92-94

104-106

116-118

128-130132-134136-138

Operculodinium spp

Nematosphaeropsis rigida

Lingulodinium machaerophorum

Spiniferites spp

Polysphaeridium zoharyi

All others

Percent Cystsgram 0 100 200 300 400 500

Figure 7 Percent and absolute abundances of dinocysts for core 19A

Dep

th (

cm)

0 100 200 300 4000

20

40

60

80

100

120

140

Spiniferites

Cystsgram

Dep

th (

cm)

Polysphaeridium zoharyi

Figure 8 Absolute abundances of Polysphaeridium zoharyi and Spiniferites spp in core 19 A

000 200 400 600

Activity (dpmg)

Dep

th (c

m)

0

40

80

120

160

Figure 9 Pb210 activity in dpmg for core 19B

Activity (dpmg)

Dep

th (c

m)

000 100 200 300 400 500 600

0-2

6-8

12-14

18-20

24-26

30-32

36-38

42-44

48-50

54-56

60-62

66-68

72-74

78-80

84-86

90-92

96-98

102-104

108-110

114-116

120-122

126-128

132-134

138-140

144-146

150-152

156-158

Figure 10 210Pb activity in dpmg for core 19C

completed for core 19A we can not be certain of its significance because our assumption ofsimilar sedimentation rates for cores 19A and 19B may not be correct

Two peaks in dinocyst abundance (cystsgram) occur in the samples examined 118-104 cm(approximately 1898-1909) and 82-80 cm (approximately 1927-1929) These occur during aperiod of near normal marine (30 ppt) and stable salinity as indicated by the benthicforaminifera These periods may represent increased dinocyst production and decreased sedimentsupply but the composition of the dinocyst assemblages remains relatively stable throughout thecore

The pattern of increased salinity upcore documented here for Russell Banks 19B is consistentwith patterns seen in core T24 from the mouth of Taylor Creek in Little Madeira Bay (Ishman etal 1996) and in core 6A from Bob Allen mudbank (Wingard et al 1995) The correspondencebetween changes in salinity and onshore changes in vegetation is also consistent with resultsfrom the previous cores These patterns will continue to be investigated at additional sites inFlorida Bay and the terrestrial Everglades in order to establish the sequence and timing of eventsthroughout the ecosystem and to determine linkages between the marine and terrestrial systems

REFERENCES CITED

Benninghoff WS 1962 Calculation of pollen and spore density in sediments by addition of exotic pollen in known quantities Pollen et Spores v 4 p 332-333

Brewster-Wingard GL Ishman SE Edwards LE and Willard DA 1996 Preliminary report on the distribution of modern fauna and flora at selected sites in north-central and north-eastern Florida Bay US Geological Survey Open-File Report 96-732 34 p

Davis JC 1973 Statistics and Data Analysis in Geology New York John Wiley amp Sons 550 p

Ishman SE Brewster-Wingard GL Willard DA Cronin TM Edwards LE and Holmes CW 1996 Preliminary paleontologic report on core T-24 Little Madeira Bay Florida US Geological Survey Open-File Report 96-543 47 p

Maker LJ Jr 1981 Statistics for microfossil concentration measurements employing samples spiked with marker grains Review of Paleobotany and Palynology v 32 p153-191

Robbins JA Holmes CW Halley RB Bothner Michael Shinn EA Graney Joseph Keller Gerald tenBrinck Marilyn Rudnick David in press Time constraints characterizing predeposition integration of 137Ce and Pb fluxes to sediments in Florida Bay Geochemica et Cosmochemica

Stockmarr Jens 1971 Tablets with spores used in abolute pollen analysis Pollen et Spores v 8 p 615-621

Wall David Dale Barrie Lohmann GP and Smith WK 1977 The environmental and climatic distribution of dinoflagellate cysts in modern marine sediments from regions in the North and South Atlantic Oceans and Adjacent seas Marine Micropaleontology v 2 p 121-200

Wingard GL Ishman SE Cronin TM Edwards LE Willard DA and Halley RB 1995 Preliminary analysis of down-core biotic assemblages Bob Allen Keys Everglades National Park Florida Bay US Geological Survey Open-File Report 95-628 35 p

  • Title Page
  • Table of Contents
  • Abstract
  • Acknowledgements
  • Methods
  • Discussion of Fauna
  • Discussion of Flora
  • Age Model
  • Summary
  • References
Page 23: Preliminary Paleontologic Report on Cores 19A and 19B, from ...

Comparison of these data to additional terrestrial and marine cores may lead to a betterunderstanding of the patterns seen here

210PB AGE MODEL FOR THE RUSSELL BANKS SITE

The activity of 210Pb (dpmgram) is shown for 19B and 19C in Figures 9 and 10 Thesedimentation rate for the Russell Bank site is based on the results from 19C because both 210Pband Ra analyses have been completed for that core the rate equals 122 cmyear +- 005The 210Pb curves for cores 19B and 19C are almost identical therefore we make the assumptionthat the rate of sediment accumulation is the same in the two cores No 210Pb analyses have beendone for core 19A to date

SUMMARY

The fauna and flora present in the Russell Bank cores 19A and 19B record an approximately120-year history of fluctuating environmental changes The benthic foraminifera documentperiods of fluctuating salinity with a gradual increase in salinity upcore The molluscan data areconsistent with the foraminiferal data showing increasing salinity upcore but without the degreeof fluctuation indicated by the benthic foraminifera The benthic fauna show significant changesin the assemblages at 70-66 cm and 24-18 cm which correspond to approximately 1937-1940and 1975-1980 A similar shift occurred at 118 cm (approximately 1898) which is not as clearlyseen in the molluscan faunal data These periods represent shifts from low salinity (12-15 ppt) tohigher average salinity (30 ppt) In addition the benthic foraminiferal assemblages shift fromperiods of higher average salinity to periods of lower salinity at 140 cm 90 cm and 42 cmwhich correspond to approximately 1880 1921 and 1960 respectively

The molluscan fauna indicate changes occurring in the substrate at the Russell Banks siteSediment and grass (probably Thalassia) apparently were equally available for habitation from142-110 cm or approximately 1878-1904 Although grass was still available bare-sedimentdominated the area from 106-88 cm or approximately 1908-1922 From 88-22 cm orapproximately 1922-1976 grass was the dominant substrate and from approximately 1939 (68cm) to the present the presence of bare-sediment bottoms was negligible at the siteSignificantly from 22 cm or approximately 1976 to the present the molluscan fauna isdominated by species that can live equally well on algae or seagrass

The pollen present in core 19A show three periods of subtle shifts in the onshore vegetation inresponse to some environmental factor These changes occur at 80 cm and at 32 cm orapproximately 1929 and 1968 If we assume that core 19A and 19B have similar sedimentationrates then the shifts in the onshore vegetation indicated by the pollen seen in 19A occurapproximately 7-8 years prior to changes in Florida Bay as indicated by the benthic fauna in19B However until we see this pattern repeated in the same core or until a 210Pb analysis is

0 20 40 60 80 100

0-1

20-21

44-46

68-70

80-82

92-94

104-106

116-118

128-130132-134136-138

Operculodinium spp

Nematosphaeropsis rigida

Lingulodinium machaerophorum

Spiniferites spp

Polysphaeridium zoharyi

All others

Percent Cystsgram 0 100 200 300 400 500

Figure 7 Percent and absolute abundances of dinocysts for core 19A

Dep

th (

cm)

0 100 200 300 4000

20

40

60

80

100

120

140

Spiniferites

Cystsgram

Dep

th (

cm)

Polysphaeridium zoharyi

Figure 8 Absolute abundances of Polysphaeridium zoharyi and Spiniferites spp in core 19 A

000 200 400 600

Activity (dpmg)

Dep

th (c

m)

0

40

80

120

160

Figure 9 Pb210 activity in dpmg for core 19B

Activity (dpmg)

Dep

th (c

m)

000 100 200 300 400 500 600

0-2

6-8

12-14

18-20

24-26

30-32

36-38

42-44

48-50

54-56

60-62

66-68

72-74

78-80

84-86

90-92

96-98

102-104

108-110

114-116

120-122

126-128

132-134

138-140

144-146

150-152

156-158

Figure 10 210Pb activity in dpmg for core 19C

completed for core 19A we can not be certain of its significance because our assumption ofsimilar sedimentation rates for cores 19A and 19B may not be correct

Two peaks in dinocyst abundance (cystsgram) occur in the samples examined 118-104 cm(approximately 1898-1909) and 82-80 cm (approximately 1927-1929) These occur during aperiod of near normal marine (30 ppt) and stable salinity as indicated by the benthicforaminifera These periods may represent increased dinocyst production and decreased sedimentsupply but the composition of the dinocyst assemblages remains relatively stable throughout thecore

The pattern of increased salinity upcore documented here for Russell Banks 19B is consistentwith patterns seen in core T24 from the mouth of Taylor Creek in Little Madeira Bay (Ishman etal 1996) and in core 6A from Bob Allen mudbank (Wingard et al 1995) The correspondencebetween changes in salinity and onshore changes in vegetation is also consistent with resultsfrom the previous cores These patterns will continue to be investigated at additional sites inFlorida Bay and the terrestrial Everglades in order to establish the sequence and timing of eventsthroughout the ecosystem and to determine linkages between the marine and terrestrial systems

REFERENCES CITED

Benninghoff WS 1962 Calculation of pollen and spore density in sediments by addition of exotic pollen in known quantities Pollen et Spores v 4 p 332-333

Brewster-Wingard GL Ishman SE Edwards LE and Willard DA 1996 Preliminary report on the distribution of modern fauna and flora at selected sites in north-central and north-eastern Florida Bay US Geological Survey Open-File Report 96-732 34 p

Davis JC 1973 Statistics and Data Analysis in Geology New York John Wiley amp Sons 550 p

Ishman SE Brewster-Wingard GL Willard DA Cronin TM Edwards LE and Holmes CW 1996 Preliminary paleontologic report on core T-24 Little Madeira Bay Florida US Geological Survey Open-File Report 96-543 47 p

Maker LJ Jr 1981 Statistics for microfossil concentration measurements employing samples spiked with marker grains Review of Paleobotany and Palynology v 32 p153-191

Robbins JA Holmes CW Halley RB Bothner Michael Shinn EA Graney Joseph Keller Gerald tenBrinck Marilyn Rudnick David in press Time constraints characterizing predeposition integration of 137Ce and Pb fluxes to sediments in Florida Bay Geochemica et Cosmochemica

Stockmarr Jens 1971 Tablets with spores used in abolute pollen analysis Pollen et Spores v 8 p 615-621

Wall David Dale Barrie Lohmann GP and Smith WK 1977 The environmental and climatic distribution of dinoflagellate cysts in modern marine sediments from regions in the North and South Atlantic Oceans and Adjacent seas Marine Micropaleontology v 2 p 121-200

Wingard GL Ishman SE Cronin TM Edwards LE Willard DA and Halley RB 1995 Preliminary analysis of down-core biotic assemblages Bob Allen Keys Everglades National Park Florida Bay US Geological Survey Open-File Report 95-628 35 p

  • Title Page
  • Table of Contents
  • Abstract
  • Acknowledgements
  • Methods
  • Discussion of Fauna
  • Discussion of Flora
  • Age Model
  • Summary
  • References
Page 24: Preliminary Paleontologic Report on Cores 19A and 19B, from ...

0 20 40 60 80 100

0-1

20-21

44-46

68-70

80-82

92-94

104-106

116-118

128-130132-134136-138

Operculodinium spp

Nematosphaeropsis rigida

Lingulodinium machaerophorum

Spiniferites spp

Polysphaeridium zoharyi

All others

Percent Cystsgram 0 100 200 300 400 500

Figure 7 Percent and absolute abundances of dinocysts for core 19A

Dep

th (

cm)

0 100 200 300 4000

20

40

60

80

100

120

140

Spiniferites

Cystsgram

Dep

th (

cm)

Polysphaeridium zoharyi

Figure 8 Absolute abundances of Polysphaeridium zoharyi and Spiniferites spp in core 19 A

000 200 400 600

Activity (dpmg)

Dep

th (c

m)

0

40

80

120

160

Figure 9 Pb210 activity in dpmg for core 19B

Activity (dpmg)

Dep

th (c

m)

000 100 200 300 400 500 600

0-2

6-8

12-14

18-20

24-26

30-32

36-38

42-44

48-50

54-56

60-62

66-68

72-74

78-80

84-86

90-92

96-98

102-104

108-110

114-116

120-122

126-128

132-134

138-140

144-146

150-152

156-158

Figure 10 210Pb activity in dpmg for core 19C

completed for core 19A we can not be certain of its significance because our assumption ofsimilar sedimentation rates for cores 19A and 19B may not be correct

Two peaks in dinocyst abundance (cystsgram) occur in the samples examined 118-104 cm(approximately 1898-1909) and 82-80 cm (approximately 1927-1929) These occur during aperiod of near normal marine (30 ppt) and stable salinity as indicated by the benthicforaminifera These periods may represent increased dinocyst production and decreased sedimentsupply but the composition of the dinocyst assemblages remains relatively stable throughout thecore

The pattern of increased salinity upcore documented here for Russell Banks 19B is consistentwith patterns seen in core T24 from the mouth of Taylor Creek in Little Madeira Bay (Ishman etal 1996) and in core 6A from Bob Allen mudbank (Wingard et al 1995) The correspondencebetween changes in salinity and onshore changes in vegetation is also consistent with resultsfrom the previous cores These patterns will continue to be investigated at additional sites inFlorida Bay and the terrestrial Everglades in order to establish the sequence and timing of eventsthroughout the ecosystem and to determine linkages between the marine and terrestrial systems

REFERENCES CITED

Benninghoff WS 1962 Calculation of pollen and spore density in sediments by addition of exotic pollen in known quantities Pollen et Spores v 4 p 332-333

Brewster-Wingard GL Ishman SE Edwards LE and Willard DA 1996 Preliminary report on the distribution of modern fauna and flora at selected sites in north-central and north-eastern Florida Bay US Geological Survey Open-File Report 96-732 34 p

Davis JC 1973 Statistics and Data Analysis in Geology New York John Wiley amp Sons 550 p

Ishman SE Brewster-Wingard GL Willard DA Cronin TM Edwards LE and Holmes CW 1996 Preliminary paleontologic report on core T-24 Little Madeira Bay Florida US Geological Survey Open-File Report 96-543 47 p

Maker LJ Jr 1981 Statistics for microfossil concentration measurements employing samples spiked with marker grains Review of Paleobotany and Palynology v 32 p153-191

Robbins JA Holmes CW Halley RB Bothner Michael Shinn EA Graney Joseph Keller Gerald tenBrinck Marilyn Rudnick David in press Time constraints characterizing predeposition integration of 137Ce and Pb fluxes to sediments in Florida Bay Geochemica et Cosmochemica

Stockmarr Jens 1971 Tablets with spores used in abolute pollen analysis Pollen et Spores v 8 p 615-621

Wall David Dale Barrie Lohmann GP and Smith WK 1977 The environmental and climatic distribution of dinoflagellate cysts in modern marine sediments from regions in the North and South Atlantic Oceans and Adjacent seas Marine Micropaleontology v 2 p 121-200

Wingard GL Ishman SE Cronin TM Edwards LE Willard DA and Halley RB 1995 Preliminary analysis of down-core biotic assemblages Bob Allen Keys Everglades National Park Florida Bay US Geological Survey Open-File Report 95-628 35 p

  • Title Page
  • Table of Contents
  • Abstract
  • Acknowledgements
  • Methods
  • Discussion of Fauna
  • Discussion of Flora
  • Age Model
  • Summary
  • References
Page 25: Preliminary Paleontologic Report on Cores 19A and 19B, from ...

0 100 200 300 4000

20

40

60

80

100

120

140

Spiniferites

Cystsgram

Dep

th (

cm)

Polysphaeridium zoharyi

Figure 8 Absolute abundances of Polysphaeridium zoharyi and Spiniferites spp in core 19 A

000 200 400 600

Activity (dpmg)

Dep

th (c

m)

0

40

80

120

160

Figure 9 Pb210 activity in dpmg for core 19B

Activity (dpmg)

Dep

th (c

m)

000 100 200 300 400 500 600

0-2

6-8

12-14

18-20

24-26

30-32

36-38

42-44

48-50

54-56

60-62

66-68

72-74

78-80

84-86

90-92

96-98

102-104

108-110

114-116

120-122

126-128

132-134

138-140

144-146

150-152

156-158

Figure 10 210Pb activity in dpmg for core 19C

completed for core 19A we can not be certain of its significance because our assumption ofsimilar sedimentation rates for cores 19A and 19B may not be correct

Two peaks in dinocyst abundance (cystsgram) occur in the samples examined 118-104 cm(approximately 1898-1909) and 82-80 cm (approximately 1927-1929) These occur during aperiod of near normal marine (30 ppt) and stable salinity as indicated by the benthicforaminifera These periods may represent increased dinocyst production and decreased sedimentsupply but the composition of the dinocyst assemblages remains relatively stable throughout thecore

The pattern of increased salinity upcore documented here for Russell Banks 19B is consistentwith patterns seen in core T24 from the mouth of Taylor Creek in Little Madeira Bay (Ishman etal 1996) and in core 6A from Bob Allen mudbank (Wingard et al 1995) The correspondencebetween changes in salinity and onshore changes in vegetation is also consistent with resultsfrom the previous cores These patterns will continue to be investigated at additional sites inFlorida Bay and the terrestrial Everglades in order to establish the sequence and timing of eventsthroughout the ecosystem and to determine linkages between the marine and terrestrial systems

REFERENCES CITED

Benninghoff WS 1962 Calculation of pollen and spore density in sediments by addition of exotic pollen in known quantities Pollen et Spores v 4 p 332-333

Brewster-Wingard GL Ishman SE Edwards LE and Willard DA 1996 Preliminary report on the distribution of modern fauna and flora at selected sites in north-central and north-eastern Florida Bay US Geological Survey Open-File Report 96-732 34 p

Davis JC 1973 Statistics and Data Analysis in Geology New York John Wiley amp Sons 550 p

Ishman SE Brewster-Wingard GL Willard DA Cronin TM Edwards LE and Holmes CW 1996 Preliminary paleontologic report on core T-24 Little Madeira Bay Florida US Geological Survey Open-File Report 96-543 47 p

Maker LJ Jr 1981 Statistics for microfossil concentration measurements employing samples spiked with marker grains Review of Paleobotany and Palynology v 32 p153-191

Robbins JA Holmes CW Halley RB Bothner Michael Shinn EA Graney Joseph Keller Gerald tenBrinck Marilyn Rudnick David in press Time constraints characterizing predeposition integration of 137Ce and Pb fluxes to sediments in Florida Bay Geochemica et Cosmochemica

Stockmarr Jens 1971 Tablets with spores used in abolute pollen analysis Pollen et Spores v 8 p 615-621

Wall David Dale Barrie Lohmann GP and Smith WK 1977 The environmental and climatic distribution of dinoflagellate cysts in modern marine sediments from regions in the North and South Atlantic Oceans and Adjacent seas Marine Micropaleontology v 2 p 121-200

Wingard GL Ishman SE Cronin TM Edwards LE Willard DA and Halley RB 1995 Preliminary analysis of down-core biotic assemblages Bob Allen Keys Everglades National Park Florida Bay US Geological Survey Open-File Report 95-628 35 p

  • Title Page
  • Table of Contents
  • Abstract
  • Acknowledgements
  • Methods
  • Discussion of Fauna
  • Discussion of Flora
  • Age Model
  • Summary
  • References
Page 26: Preliminary Paleontologic Report on Cores 19A and 19B, from ...

000 200 400 600

Activity (dpmg)

Dep

th (c

m)

0

40

80

120

160

Figure 9 Pb210 activity in dpmg for core 19B

Activity (dpmg)

Dep

th (c

m)

000 100 200 300 400 500 600

0-2

6-8

12-14

18-20

24-26

30-32

36-38

42-44

48-50

54-56

60-62

66-68

72-74

78-80

84-86

90-92

96-98

102-104

108-110

114-116

120-122

126-128

132-134

138-140

144-146

150-152

156-158

Figure 10 210Pb activity in dpmg for core 19C

completed for core 19A we can not be certain of its significance because our assumption ofsimilar sedimentation rates for cores 19A and 19B may not be correct

Two peaks in dinocyst abundance (cystsgram) occur in the samples examined 118-104 cm(approximately 1898-1909) and 82-80 cm (approximately 1927-1929) These occur during aperiod of near normal marine (30 ppt) and stable salinity as indicated by the benthicforaminifera These periods may represent increased dinocyst production and decreased sedimentsupply but the composition of the dinocyst assemblages remains relatively stable throughout thecore

The pattern of increased salinity upcore documented here for Russell Banks 19B is consistentwith patterns seen in core T24 from the mouth of Taylor Creek in Little Madeira Bay (Ishman etal 1996) and in core 6A from Bob Allen mudbank (Wingard et al 1995) The correspondencebetween changes in salinity and onshore changes in vegetation is also consistent with resultsfrom the previous cores These patterns will continue to be investigated at additional sites inFlorida Bay and the terrestrial Everglades in order to establish the sequence and timing of eventsthroughout the ecosystem and to determine linkages between the marine and terrestrial systems

REFERENCES CITED

Benninghoff WS 1962 Calculation of pollen and spore density in sediments by addition of exotic pollen in known quantities Pollen et Spores v 4 p 332-333

Brewster-Wingard GL Ishman SE Edwards LE and Willard DA 1996 Preliminary report on the distribution of modern fauna and flora at selected sites in north-central and north-eastern Florida Bay US Geological Survey Open-File Report 96-732 34 p

Davis JC 1973 Statistics and Data Analysis in Geology New York John Wiley amp Sons 550 p

Ishman SE Brewster-Wingard GL Willard DA Cronin TM Edwards LE and Holmes CW 1996 Preliminary paleontologic report on core T-24 Little Madeira Bay Florida US Geological Survey Open-File Report 96-543 47 p

Maker LJ Jr 1981 Statistics for microfossil concentration measurements employing samples spiked with marker grains Review of Paleobotany and Palynology v 32 p153-191

Robbins JA Holmes CW Halley RB Bothner Michael Shinn EA Graney Joseph Keller Gerald tenBrinck Marilyn Rudnick David in press Time constraints characterizing predeposition integration of 137Ce and Pb fluxes to sediments in Florida Bay Geochemica et Cosmochemica

Stockmarr Jens 1971 Tablets with spores used in abolute pollen analysis Pollen et Spores v 8 p 615-621

Wall David Dale Barrie Lohmann GP and Smith WK 1977 The environmental and climatic distribution of dinoflagellate cysts in modern marine sediments from regions in the North and South Atlantic Oceans and Adjacent seas Marine Micropaleontology v 2 p 121-200

Wingard GL Ishman SE Cronin TM Edwards LE Willard DA and Halley RB 1995 Preliminary analysis of down-core biotic assemblages Bob Allen Keys Everglades National Park Florida Bay US Geological Survey Open-File Report 95-628 35 p

  • Title Page
  • Table of Contents
  • Abstract
  • Acknowledgements
  • Methods
  • Discussion of Fauna
  • Discussion of Flora
  • Age Model
  • Summary
  • References
Page 27: Preliminary Paleontologic Report on Cores 19A and 19B, from ...

Activity (dpmg)

Dep

th (c

m)

000 100 200 300 400 500 600

0-2

6-8

12-14

18-20

24-26

30-32

36-38

42-44

48-50

54-56

60-62

66-68

72-74

78-80

84-86

90-92

96-98

102-104

108-110

114-116

120-122

126-128

132-134

138-140

144-146

150-152

156-158

Figure 10 210Pb activity in dpmg for core 19C

completed for core 19A we can not be certain of its significance because our assumption ofsimilar sedimentation rates for cores 19A and 19B may not be correct

Two peaks in dinocyst abundance (cystsgram) occur in the samples examined 118-104 cm(approximately 1898-1909) and 82-80 cm (approximately 1927-1929) These occur during aperiod of near normal marine (30 ppt) and stable salinity as indicated by the benthicforaminifera These periods may represent increased dinocyst production and decreased sedimentsupply but the composition of the dinocyst assemblages remains relatively stable throughout thecore

The pattern of increased salinity upcore documented here for Russell Banks 19B is consistentwith patterns seen in core T24 from the mouth of Taylor Creek in Little Madeira Bay (Ishman etal 1996) and in core 6A from Bob Allen mudbank (Wingard et al 1995) The correspondencebetween changes in salinity and onshore changes in vegetation is also consistent with resultsfrom the previous cores These patterns will continue to be investigated at additional sites inFlorida Bay and the terrestrial Everglades in order to establish the sequence and timing of eventsthroughout the ecosystem and to determine linkages between the marine and terrestrial systems

REFERENCES CITED

Benninghoff WS 1962 Calculation of pollen and spore density in sediments by addition of exotic pollen in known quantities Pollen et Spores v 4 p 332-333

Brewster-Wingard GL Ishman SE Edwards LE and Willard DA 1996 Preliminary report on the distribution of modern fauna and flora at selected sites in north-central and north-eastern Florida Bay US Geological Survey Open-File Report 96-732 34 p

Davis JC 1973 Statistics and Data Analysis in Geology New York John Wiley amp Sons 550 p

Ishman SE Brewster-Wingard GL Willard DA Cronin TM Edwards LE and Holmes CW 1996 Preliminary paleontologic report on core T-24 Little Madeira Bay Florida US Geological Survey Open-File Report 96-543 47 p

Maker LJ Jr 1981 Statistics for microfossil concentration measurements employing samples spiked with marker grains Review of Paleobotany and Palynology v 32 p153-191

Robbins JA Holmes CW Halley RB Bothner Michael Shinn EA Graney Joseph Keller Gerald tenBrinck Marilyn Rudnick David in press Time constraints characterizing predeposition integration of 137Ce and Pb fluxes to sediments in Florida Bay Geochemica et Cosmochemica

Stockmarr Jens 1971 Tablets with spores used in abolute pollen analysis Pollen et Spores v 8 p 615-621

Wall David Dale Barrie Lohmann GP and Smith WK 1977 The environmental and climatic distribution of dinoflagellate cysts in modern marine sediments from regions in the North and South Atlantic Oceans and Adjacent seas Marine Micropaleontology v 2 p 121-200

Wingard GL Ishman SE Cronin TM Edwards LE Willard DA and Halley RB 1995 Preliminary analysis of down-core biotic assemblages Bob Allen Keys Everglades National Park Florida Bay US Geological Survey Open-File Report 95-628 35 p

  • Title Page
  • Table of Contents
  • Abstract
  • Acknowledgements
  • Methods
  • Discussion of Fauna
  • Discussion of Flora
  • Age Model
  • Summary
  • References
Page 28: Preliminary Paleontologic Report on Cores 19A and 19B, from ...

completed for core 19A we can not be certain of its significance because our assumption ofsimilar sedimentation rates for cores 19A and 19B may not be correct

Two peaks in dinocyst abundance (cystsgram) occur in the samples examined 118-104 cm(approximately 1898-1909) and 82-80 cm (approximately 1927-1929) These occur during aperiod of near normal marine (30 ppt) and stable salinity as indicated by the benthicforaminifera These periods may represent increased dinocyst production and decreased sedimentsupply but the composition of the dinocyst assemblages remains relatively stable throughout thecore

The pattern of increased salinity upcore documented here for Russell Banks 19B is consistentwith patterns seen in core T24 from the mouth of Taylor Creek in Little Madeira Bay (Ishman etal 1996) and in core 6A from Bob Allen mudbank (Wingard et al 1995) The correspondencebetween changes in salinity and onshore changes in vegetation is also consistent with resultsfrom the previous cores These patterns will continue to be investigated at additional sites inFlorida Bay and the terrestrial Everglades in order to establish the sequence and timing of eventsthroughout the ecosystem and to determine linkages between the marine and terrestrial systems

REFERENCES CITED

Benninghoff WS 1962 Calculation of pollen and spore density in sediments by addition of exotic pollen in known quantities Pollen et Spores v 4 p 332-333

Brewster-Wingard GL Ishman SE Edwards LE and Willard DA 1996 Preliminary report on the distribution of modern fauna and flora at selected sites in north-central and north-eastern Florida Bay US Geological Survey Open-File Report 96-732 34 p

Davis JC 1973 Statistics and Data Analysis in Geology New York John Wiley amp Sons 550 p

Ishman SE Brewster-Wingard GL Willard DA Cronin TM Edwards LE and Holmes CW 1996 Preliminary paleontologic report on core T-24 Little Madeira Bay Florida US Geological Survey Open-File Report 96-543 47 p

Maker LJ Jr 1981 Statistics for microfossil concentration measurements employing samples spiked with marker grains Review of Paleobotany and Palynology v 32 p153-191

Robbins JA Holmes CW Halley RB Bothner Michael Shinn EA Graney Joseph Keller Gerald tenBrinck Marilyn Rudnick David in press Time constraints characterizing predeposition integration of 137Ce and Pb fluxes to sediments in Florida Bay Geochemica et Cosmochemica

Stockmarr Jens 1971 Tablets with spores used in abolute pollen analysis Pollen et Spores v 8 p 615-621

Wall David Dale Barrie Lohmann GP and Smith WK 1977 The environmental and climatic distribution of dinoflagellate cysts in modern marine sediments from regions in the North and South Atlantic Oceans and Adjacent seas Marine Micropaleontology v 2 p 121-200

Wingard GL Ishman SE Cronin TM Edwards LE Willard DA and Halley RB 1995 Preliminary analysis of down-core biotic assemblages Bob Allen Keys Everglades National Park Florida Bay US Geological Survey Open-File Report 95-628 35 p

  • Title Page
  • Table of Contents
  • Abstract
  • Acknowledgements
  • Methods
  • Discussion of Fauna
  • Discussion of Flora
  • Age Model
  • Summary
  • References
Page 29: Preliminary Paleontologic Report on Cores 19A and 19B, from ...

REFERENCES CITED

Benninghoff WS 1962 Calculation of pollen and spore density in sediments by addition of exotic pollen in known quantities Pollen et Spores v 4 p 332-333

Brewster-Wingard GL Ishman SE Edwards LE and Willard DA 1996 Preliminary report on the distribution of modern fauna and flora at selected sites in north-central and north-eastern Florida Bay US Geological Survey Open-File Report 96-732 34 p

Davis JC 1973 Statistics and Data Analysis in Geology New York John Wiley amp Sons 550 p

Ishman SE Brewster-Wingard GL Willard DA Cronin TM Edwards LE and Holmes CW 1996 Preliminary paleontologic report on core T-24 Little Madeira Bay Florida US Geological Survey Open-File Report 96-543 47 p

Maker LJ Jr 1981 Statistics for microfossil concentration measurements employing samples spiked with marker grains Review of Paleobotany and Palynology v 32 p153-191

Robbins JA Holmes CW Halley RB Bothner Michael Shinn EA Graney Joseph Keller Gerald tenBrinck Marilyn Rudnick David in press Time constraints characterizing predeposition integration of 137Ce and Pb fluxes to sediments in Florida Bay Geochemica et Cosmochemica

Stockmarr Jens 1971 Tablets with spores used in abolute pollen analysis Pollen et Spores v 8 p 615-621

Wall David Dale Barrie Lohmann GP and Smith WK 1977 The environmental and climatic distribution of dinoflagellate cysts in modern marine sediments from regions in the North and South Atlantic Oceans and Adjacent seas Marine Micropaleontology v 2 p 121-200

Wingard GL Ishman SE Cronin TM Edwards LE Willard DA and Halley RB 1995 Preliminary analysis of down-core biotic assemblages Bob Allen Keys Everglades National Park Florida Bay US Geological Survey Open-File Report 95-628 35 p

  • Title Page
  • Table of Contents
  • Abstract
  • Acknowledgements
  • Methods
  • Discussion of Fauna
  • Discussion of Flora
  • Age Model
  • Summary
  • References

Recommended