+ All Categories
Home > Documents > Presentacion Deltares

Presentacion Deltares

Date post: 04-Jul-2015
Category:
Upload: alvaromunozmayordomo
View: 537 times
Download: 0 times
Share this document with a friend
Description:
Feasibility study on ground motion monitoring with sun-synchronoussatellite Radar observations.
43
30-Mar-10 1 Observing the Earth from the space. A Satellite Radar Application Álvaro Muñoz Supervisor: Victor Hopman
Transcript
Page 1: Presentacion Deltares

30-Mar-10 1

Observing the Earth from the space.

A Satellite Radar Application

Álvaro MuñozSupervisor: Victor Hopman

Page 2: Presentacion Deltares

30-Mar-10 2

Introduction

• Background

– Land reclamation

– Soft unconsolidated soil

– Expected subsidence

– Need for monitoring

Page 3: Presentacion Deltares

30-Mar-10 3

Introduction

• Monitoring with Remote Sensing

– Sensors apart from objects

– Measurement--> Energy emitted/reflected

Page 4: Presentacion Deltares

30-Mar-10 4

Introduction• Remote Sensing Techniques

• Source of Energy

• Active/Pasive

• Electromagnetic Spectrum

• Optical/Thermal/Microwave

• Platform

• Manned-Unmanned Plane/Helicopter

• Kites

• Satellite

Active+Microwave+Satellite

Page 5: Presentacion Deltares

30-Mar-10 5

Remote Sensing with Satellite RADAR

• Radar Satellite Orbits

– Elliptical

– Near Polar

– Sun-Synchronous

– Height

• 500-1000 km

Page 6: Presentacion Deltares

30-Mar-10 6

• Active Sensor

– Measurement: Backscattering

Remote Sensing with Satellite RADAR

Page 7: Presentacion Deltares

30-Mar-10 7

• Polarization Dependent

– Example

• Horizontal+Vertical polarization

• Acquisition Geometry

– Azimuth (along track)

– Range (cross track)

Remote Sensing with Satellite RADAR

Page 8: Presentacion Deltares

30-Mar-10 8

• Synthetic Aperture Radar (SAR)

Remote Sensing with Satellite RADAR

Page 9: Presentacion Deltares

30-Mar-10 9

• Complex Waveform

– Parameter: Amplitude• Conventional SAR

• Complex Waveform

– Parameter: Phase• Interferometric SAR

(InSAR)

Remote Sensing with Satellite RADAR

Page 10: Presentacion Deltares

30-Mar-10 10

• Interferometric SAR

Remote Sensing with Satellite RADAR

Page 11: Presentacion Deltares

30-Mar-10 11

• Interferometric SAR

– Major limitation

• Temporal decorrelation

Remote Sensing with Satellite RADAR

Page 12: Presentacion Deltares

30-Mar-10 12

• Persistent Scatterer InSAR (PSInSAR)

Remote Sensing with Satellite RADAR

Page 13: Presentacion Deltares

30-Mar-10 13

• Persistent Scatterer InSAR (PSInSAR)

Remote Sensing with Satellite RADAR

Page 14: Presentacion Deltares

30-Mar-10 14

PSInSAR. Past Case Studies

• Deformation near the Wieliczka Salt Mine in Poland

Page 15: Presentacion Deltares

30-Mar-10 15

Salt Mine in Poland

• Subject and Motivations of the Study

Page 16: Presentacion Deltares

30-Mar-10 16

Salt Mine in Poland

• Available Data

• 51 images ERS-1/2 (ESA)

• 1992 to 2000

•Repeat cycle 34 days

• Single orbit direction

Page 17: Presentacion Deltares

30-Mar-10 17

Salt Mine in Poland• Experimental Results

– PS density

• Maximum=480 PS/km2 (center of Wieliczka)

• Minimum=30 PS/km2 (sparse urbanization areas)

• Average=92 PS/km2

– Comparison with subsidence maps � Agreement

• Leveling data 1970-2000

• PSInSAR data 1992-2000

– Field investigation

• Interpretation of Observations

Page 18: Presentacion Deltares

30-Mar-10 18

Salt Mine in Poland

• Experimental Results

Page 19: Presentacion Deltares

30-Mar-10 19

Salt Mine in Poland

• Conclusions

– Slow subsidence detected by PSInSAR

– Proof of utility of SAR archive

– Agreement leveling data

– More PS density --> Urban areas

– PS on landslide area

• Variability

• Horizontal displacement � limitation of PSInSAR

– Field inspection

• Confirmation of PSInSAR observations

• Hope for risk assessment

Page 20: Presentacion Deltares

30-Mar-10 20

PSInSAR. Recent Case Studies

• PSInSAR Analysis of damages during construction of parking near Koepoortbrug (Delft)

• Filter optimization for PSInSAR analysis

– Houtribdijk

• Monitoring Spoorzone Delft with PSInSAR

Page 21: Presentacion Deltares

30-Mar-10 21

• Subject and Motivations of the Study

Koepoortbrug

Page 22: Presentacion Deltares

30-Mar-10 22

• Available Data

Koepoortbrug

• Envisat (ESA)

• 2003 to 2006

•Every 35 days

• Single orbit direction

Page 23: Presentacion Deltares

30-Mar-10 23

• Experimental Results

Koepoortbrug

• Background: Amplitude SAR

• Overlaid: PS area of interest

Page 24: Presentacion Deltares

30-Mar-10 24

• Conclusions

– Historic data → normal behavior

– Envisat data not suitable. Reasons:

– Very sudden deformations

– Undersampling (35 day repetition rate)

– Possible change of orientation

• Temporal decorrelation

– Repair works

• Solution

– Another data set�

• Higher repetition rate

• Shorter wavelength (improve detectability)

Koepoortbrug

Page 25: Presentacion Deltares

30-Mar-10 25

PSInSAR. Recent Case Studies

• PSInSAR analysis of damages during construction of parking near Koepoortbrug (Delft)

• Filter optimization for PSInSAR analysis

– Houtribdijk

• Monitoring Spoorzone Delft with PSInSAR

Page 26: Presentacion Deltares

30-Mar-10 26

Houtribdijk

• Subject and Motivations of the Study

Page 27: Presentacion Deltares

30-Mar-10 27

• Available Data

Houtribdijk

• Envisat (ESA)

• 2003 to 2007

•Every 35 days

• Single orbit direction

Page 28: Presentacion Deltares

30-Mar-10 28

Houtribdijk

• Experimental Results

Page 29: Presentacion Deltares

30-Mar-10 29

Houtribdijk

• Conclusions

– Denoise filtering smooths time series

– Optimization: Triangular filter. Length 10-12 months

– Similar Performance: Gaussian filter > 12 months

Page 30: Presentacion Deltares

30-Mar-10 30

PSInSAR. Recent Case Studies

• PSInSAR analysis of damages during construction of parking near Koepoortbrug (Delft)

• Filter optimization for PSInSAR analysis

– Houtribdijk

• Monitoring Spoorzone Delft

Page 31: Presentacion Deltares

30-Mar-10 31

• Subject and Motivations of the Study

Spoorzone Delft

Page 32: Presentacion Deltares

30-Mar-10 32

• Available Data

Spoorzone Delft

38--- 40.5° 22.5--- 25.5°38--- 40.5° 22.5--- 25.5°38--- 40.5°38--- 40.5° 22.5--- 25.5°

Page 33: Presentacion Deltares

30-Mar-10 33

• Experimental Results

Spoorzone Delft

Page 34: Presentacion Deltares

30-Mar-10 34

Spoorzone Delft

• Experimental Results

IKEA parking:

• Soil subsidence

Page 35: Presentacion Deltares

30-Mar-10 35

• Experimental Results

– Correction of Geolocation (Reference: AHN&AHN2)

• Vertical offset (estimated height)

Spoorzone Delft

Page 36: Presentacion Deltares

30-Mar-10 36

• Experimental Results

– Correction of Geolocation (Reference: AHN&AHN2)

• Horizontal offset (estimated azimuth and range)

Spoorzone Delft

Page 37: Presentacion Deltares

30-Mar-10 37

• Experimental Results

– Correction of Geolocation (Reference: AHN&AHN2)

• Cross Sections

Spoorzone Delft

Page 38: Presentacion Deltares

30-Mar-10 38

• Experimental Results

– Combination of Ascending/Descending Orbits

Spoorzone Delft

Page 39: Presentacion Deltares

30-Mar-10 39

• Experimental Results

– Combination of Ascending/Descending Orbits

Spoorzone Delft

ASCENDING ORBIT

DESCENDING ORBIT

Page 40: Presentacion Deltares

30-Mar-10 40

• Experimental Results

– Thermal Expansion

Spoorzone Delft

Power of the technique:

• Detect thermal expansion in high buildings

Correlation:

• PSInSAR�thermal theory

Page 41: Presentacion Deltares

30-Mar-10 41

Spoorzone Delft

• Experimental Results

– Thermal Expansion

Vermeer Toren:

• 7,3mm vertical deformation

• (Thermal expansion)

Page 42: Presentacion Deltares

30-Mar-10 42

• Experimental Results

– Detectable Deformation

Spoorzone Delft

Side tilt1 mm

Subsidence1.09 mm

Front tilt7.7 mm

Side tilt1 mm

Subsidence1.09 mm

Front tilt7.7 mm

Side tilt1 mm

Subsidence1.09 mm

Front tilt7.7 mm

Side tilt1 mm

Subsidence1.09 mm

Front tilt7.7 mm

Side tilt1 mm

Subsidence1.09 mm

Front tilt7.7 mm

Page 43: Presentacion Deltares

30-Mar-10 43

Conclusions

• Power – Historic archive (past/future)

– Large coverage

– Cost

– Processing improvements

• Interpretation of observations not straightforward

• PS → physical entities?

PSInSAR can provide mm accuracy in detection of deformation

Monitoring Structures → Damage prevention


Recommended