+ All Categories
Home > Documents > Presentation_Prof. Kim Jo Chun

Presentation_Prof. Kim Jo Chun

Date post: 29-Oct-2014
Category:
Upload: phuongloan
View: 16 times
Download: 4 times
Share this document with a friend
29
Control of odorous compounds using Control of odorous compounds using E-beam Jo Chun Kim Youn Suk Son Jo-Chun Kim, Youn-Suk Son, In-Won Kim Konkuk University
Transcript
Page 1: Presentation_Prof. Kim Jo Chun

Control of odorous compounds usingControl of odorous compounds using E-beam

Jo Chun Kim Youn Suk SonJo-Chun Kim, Youn-Suk Son, In-Won Kim

Konkuk University

Page 2: Presentation_Prof. Kim Jo Chun

BackgroundBackgroundBackgroundBackground

Conventional control techniquesBurnerBurner

q

– Carbon Adsorption

– Absorption

– Thermal Oxidation

FanFan

Heat Heat ExchangerExchanger

RTO (Regenerative Thermal Oxidation)

– Catalytic Oxidation

RCO (Regenerative Catalytic Oxidation)

ReactorReactor

ExhaustExhaust

– Biological Treatment

Novel techniques

– Nonthermal Plasma

– Photocatalyst / UV

– Electron Beam

2

– Hybrid Processes (Electron Beam / Plasma + Catalyst)

Page 3: Presentation_Prof. Kim Jo Chun

EE--beam Techniquebeam TechniqueEE beam Techniquebeam Technique

H.V. Terminal

Electron Gun

ScannerAccelerating

tube

Ti foilElectron beam

ScreenIrradiated material

3

CRT monitor Electron Accelerator

Page 4: Presentation_Prof. Kim Jo Chun

EE--beam Techniquebeam TechniqueEE beam Techniquebeam Technique

El B A lElectron Beam Accelerator

ELV-4 Type

Specification

Items Specification

Energy 1.0 MeV

Accelerator power 40 kWAccelerator power 40 kW

Maximum Beam current 40 mA

Extraction window dimension 980 mm ×75 mm

4

Conveyor velocity 0 ~ 40 m/min

Page 5: Presentation_Prof. Kim Jo Chun

EE--beam Techniquebeam TechniqueEE beam Technique beam Technique Main reaction : Radiational reaction by radicals

Reactive chemical species

Sub reaction : Direct collision of electrons onto target compounds

Radicals to participate in the Radicals to participate in the reactionreaction

·· OH, OH, ·· H, O, N, H, O, N, ·· HOHO22 Radical, Ion, Radical, Ion, OzoneOzone

OO O OO O ++ OO OOElectron beamElectron beam

OO22 →→ O, OO, O22++, O, O22

--, O, O33 , e , e --

NN22 →→ N, NN, N22++, N, N**, e , e --

HH OO HH + OH+ OH

Electron beamElectron beam

5

HH22O O →→ H H ·· + OH + OH ··

H H ·· + O+ O22 →→ HOHO22 ··Target compound + OH Target compound + OH ·· Aerosols + Gaseous compoundsAerosols + Gaseous compounds

Page 6: Presentation_Prof. Kim Jo Chun

Research objectivesResearch objectivesResearch objectivesResearch objectives

To review EB studies on VOCs and Odor compounds

To compare Aliphatic VOCs decomposition with Aromatic

VOCs using EB system

To compare EB with EB-hybrid ( + Catalyst or Scrubber)

tsystem

6

Page 7: Presentation_Prof. Kim Jo Chun

Removal efficiencies of Aromatic Removal efficiencies of Aromatic VOCVOC (B )(B )VOC VOC (Benzene)(Benzene)

0.9

1

160ppmC

0 5

0.6

0.7

0.8

C 0

160ppmC

650ppmC

900ppmC

0.2

0.3

0.4

0.5

C/C

0

0.1

0 10 20 30 40 50 60 70

Ab b d d (kG )

7

Absorbed dose (kGy)

Page 8: Presentation_Prof. Kim Jo Chun

Removal efficiencies of of Aromatic Removal efficiencies of of Aromatic VOCVOC (T l )(T l )VOC VOC (Toluene)(Toluene)

0.8

0.9

1

0.5

0.6

0.7

C/C 0

150ppmC

650ppmC

0.2

0.3

0.4

C

900ppmC

0

0.1

0 10 20 30 40 50 60 70

Absorbed dose (kGy)

8

Absorbed dose (kGy)

Page 9: Presentation_Prof. Kim Jo Chun

Removal efficiencies of Removal efficiencies of Aromatic Aromatic VOCVOC (St )(St )VOC VOC (Styrene)(Styrene)

0.8

1.0

0.4

0.6

C/C

0

0.0

0.2

0 2.5 5 7.5 10

Absorbed Dose (kGy)

0 100 200

9

50ppmv 100ppmv 200ppmv

Page 10: Presentation_Prof. Kim Jo Chun

Removal efficiencies ofRemoval efficiencies of AmmoniaAmmoniaRemoval efficiencies of Removal efficiencies of AmmoniaAmmonia

0.8

0.9

1

50ppm

0.5

0.6

0.7

C/C 0

80ppm

150ppm

0 2

0.3

0.4

C

0

0.1

0.2

0 2 4 6 8 10 12 14 16 18 20

10

0 2 4 6 8 10 12 14 16 18 20

Absorbed dose (kGy)

Page 11: Presentation_Prof. Kim Jo Chun

Removal efficiencies of Removal efficiencies of TMATMARemoval efficiencies of Removal efficiencies of TMATMA

0.8

1.0

0 4

0.6

C/C

o

0.2

0.4

0.0

0 2.5 5 7.5 10

Absorbed Dose (kGy)

50 ppmv 100 ppmv 200 ppmv

Page 12: Presentation_Prof. Kim Jo Chun

Removal efficiencies of Removal efficiencies of Odorous Odorous Sulfur CompoundsSulfur CompoundsRemoval efficiencies of Removal efficiencies of Odorous Odorous Sulfur CompoundsSulfur CompoundsSulfur CompoundsSulfur CompoundsSulfur CompoundsSulfur Compounds

H2S (Air) MM (Air)

DMS (Air) DMDS (Air)

Page 13: Presentation_Prof. Kim Jo Chun

Comparison of removal efficiencies Comparison of removal efficiencies f th d df th d dfor other odorous compoundsfor other odorous compounds

70

80

90

100

(%)

Initial concentration : 50ppm

30

40

50

60

Rem

oval

eff

icie

ncy

TMA StyreneAmmonia H2SMM DMS

70

80

90

100

(%)

0

10

20

0 2 4 6 8 10

R

Absorbed dose (kGy)

MM DMSDMDS Butylacetateo-Xylene EthylbenzeneToluene

30

40

50

60

Rem

oval

eff

icie

ncy

Source: 김기준, 2007; 김기형, 2008; 김필헌, 2010; 손영식, 2009, This study

0

10

20

TMA Styrene Ammonia H2S MM DMS DMDS

R

Odorous compounds

Page 14: Presentation_Prof. Kim Jo Chun

Removal efficiencies of Aliphatic Removal efficiencies of Aliphatic h d bh d b (M th )(M th )hydrocarbon hydrocarbon (Methane)(Methane)

0.8

0.9

1

0.5

0.6

0.7

C/C 0

270ppmC

0.2

0.3

0.4270ppmC

800ppmC

10,000ppmC

0

0.1

0 10 20 30 40 50 60

14

Absorbed dose (kGy)

Page 15: Presentation_Prof. Kim Jo Chun

EBEB--hybrid Techniquehybrid TechniqueEBEB hybrid Technique hybrid Technique

VOC Decomposition by EB

Acceleration of Electron N2, O2, H2O, etc.

e-

OH , N , H , HO2 , O

p y

Irradiation of Electron

VOC Removal by R di l R ti

, , , 2 ,radicals

VOC

CO2 , O3 , By-products

Radical Reaction

e-

Oxidation by Catalyst

C t l t Activation of Catalyst & Oxidation of

by-Products

e

radical

Surface Activation Surface Reforming

CatalystO3

15

Surface Reforming

Oxidation of by-products & VOC

Page 16: Presentation_Prof. Kim Jo Chun

EBEB--hybrid Techniquehybrid TechniqueEBEB hybrid Technique hybrid Technique

Active Oxygen Species Active Oxygen Species

Decreaed Activation Energy Decreaed Activation Energy

Increasing Activation Sites Increasing Activation Sites

Ozone

E-BeamC lRadicals

El

IrradiationCatalyst

Oxidation of odor compounds on Catalyst Oxidation of odor compounds on Catalyst SurfaceSurface

Electrons

16

SurfaceSurfaceActivation of CatalystActivation of Catalyst

Prolongation of DurabilityProlongation of Durability

Page 17: Presentation_Prof. Kim Jo Chun

EBEB--hybrid Techniquehybrid Technique450℃

EBEB hybrid Technique hybrid Technique atu

reT

em

pera

Higher M.W. VOCLower M.W. VOCHCHO

C10H22

EBeam-Catalyst Coupling System Extensive M.W. VOC

Catalytic Oxidation E-Beam Irradiation

1 2 3 4 5 6 7 8 9 10

Acetaldehyde Acetylene Acrolein Acrylonitrile Benzene 1,3-Butadiene Butane1-Butene,2-Butene

Chloroform Cyclohexane

11 12 13 14 15 16 17 18 19 20

Isopropyl Methyl Ethyl 1 1 1-

17

Diethylamine Dimethylamine Ethylene n-HexaneIsopropyl Alcohol

MethanolMethyl Ethyl

KetonePropylene Propylene Oxide

1,1,1Trichloroethane

21 22 23 24 25 26 27

Trichloroethylene Acetic Acid Ethylbenzene Nitrobenzene Toluene Xylene Styrene

Page 18: Presentation_Prof. Kim Jo Chun

Effect of the coupling (Effect of the coupling (EB+CatEB+Cat ))Effect of the coupling (Effect of the coupling (EB+CatEB+Cat.).)

CH3 CH2

CH3

TolueneToluene EthylbenzeneEthylbenzene

Page 19: Presentation_Prof. Kim Jo Chun

Toluene removal by coupling system Toluene removal by coupling system ith i Pt Pd dith i Pt Pd d MM l dil diwith various Pt, Pd, and with various Pt, Pd, and MnMn loadingloading

Toluene, 1500ppmC, 15L/min

Page 20: Presentation_Prof. Kim Jo Chun

Effects of support material in a Effects of support material in a li t ithli t ith PtPt (0 1 t %)(0 1 t %)coupling system with coupling system with PtPt (0.1 wt.%)(0.1 wt.%)

Toluene, 1500ppmC, 15L/min

Page 21: Presentation_Prof. Kim Jo Chun

Effects of support material in a Effects of support material in a li t ith Pd (0 1 t %)li t ith Pd (0 1 t %)coupling system with Pd (0.1 wt.%)coupling system with Pd (0.1 wt.%)

Toluene, 1500ppmC, 15L/min

Page 22: Presentation_Prof. Kim Jo Chun

Water vapor effects Water vapor effects on on toluene toluene l i li tl i li tremoval in coupling systemremoval in coupling system

5kGy 8.7kGy

Pt(0.1wt.%)/ Zeolite, Toluene, 1500ppmC, 15L/min

Page 23: Presentation_Prof. Kim Jo Chun

Toluene removal by pilotToluene removal by pilot--coupling coupling ttsystemsystem

Pt(0.1wt.%)/ Zeolite, Toluene, 1500ppmC, 130m3/hr

Page 24: Presentation_Prof. Kim Jo Chun

oo--Xylene removal by pilotXylene removal by pilot--coupling coupling ttsystemsystem

Pt(0.1wt.%)/ Zeolite, o-Xylene, 1500ppmC, 130m3/hr

Page 25: Presentation_Prof. Kim Jo Chun

PilotPilot--scale EBscale EB--hybrid (Scrubber) systemhybrid (Scrubber) systemPilotPilot--scale EBscale EB--hybrid (Scrubber) systemhybrid (Scrubber) systemy ( ) yy ( ) yy ( ) yy ( ) y

Stage 2Stage 2

CFS system(Cross flow scrubber)CFS system(Cross flow scrubber)ReactorReactor

Ozone advanced Ozone advanced treatment reactortreatment reactor

Gas flowGas flow

Sampling portSampling port

Stage 2Stage 2

Stage 3Stage 3Stage 4Stage 4

Odor generation Odor generation reactor (sludge)reactor (sludge)

Flow control systemFlow control system

Sampling portSampling port

Stage 1Stage 1

Aeration tankAeration tank

gg

Page 26: Presentation_Prof. Kim Jo Chun

Sulfur compound Sulfur compound removal efficiencies removal efficiencies using anusing an EBEB hybrid (Scrubber) systemhybrid (Scrubber) systemSulfur compound Sulfur compound removal efficiencies removal efficiencies using anusing an EBEB hybrid (Scrubber) systemhybrid (Scrubber) systemusing an using an EBEB--hybrid (Scrubber) systemhybrid (Scrubber) systemusing an using an EBEB--hybrid (Scrubber) systemhybrid (Scrubber) system

H2S MM

DMS DMDS

Page 27: Presentation_Prof. Kim Jo Chun

Control of by-products using EBEB--hybrid hybrid (Scrubber)(Scrubber) system

Control of by-products using EBEB--hybrid hybrid (Scrubber)(Scrubber) system(Scrubber) (Scrubber) system(Scrubber) (Scrubber) system

Removal efficiencies of by productVariation of aerosol concentrations Removal efficiencies of by-product using CF scrubber

Page 28: Presentation_Prof. Kim Jo Chun

ConclusionsConclusions

In general, Aromatic VOCs are easier to decompose than

Aliphatic VOCs.

EB-hybrid system is more applicable to industrial field than

EB-only.

D f d i bl b d tDecrease of undesirable by-products

(NO2, aerosol, CO, etc.) with EB-hybrid system has been

found.

28More studies are needed.

Page 29: Presentation_Prof. Kim Jo Chun

29


Recommended