+ All Categories
Home > Documents > Principal functions of matrix Sturm-Liouville operators ...

Principal functions of matrix Sturm-Liouville operators ...

Date post: 17-Oct-2021
Category:
Upload: others
View: 8 times
Download: 0 times
Share this document with a friend
12
Transcript
Page 1: Principal functions of matrix Sturm-Liouville operators ...

Miskolc Mathematical Notes HU e-ISSN 1787-2413Vol. 15 (2014), No 2, pp. 525-535 DOI: 10.18514/MMN.2014.1173

Principal functions of matrix Sturm-Liouville

operators with boundary conditions dependent

on the spectral parameter

Deniz Katar, Murat Olgun, and Cafer Coskun

Page 2: Principal functions of matrix Sturm-Liouville operators ...

Miskolc Mathematical Notes HU e-ISSN 1787-2413Vol. 15 (2014), No. 2, pp. 525–535

PRINCIPAL FUNCTIONS OF MATRIX STURM–LIOUVILLEOPERATORS WITH BOUNDARY CONDITIONS DEPENDENT ON

THE SPECTRAL PARAMETER

DENIZ KATAR, MURAT OLGUN, AND CAFER COSKUN

Received 18 March, 2014

Abstract. Let L denote operator generated in L2.RC;E/ by the differential expression

l.y/D�y00CQ.x/y; x 2 RC WD Œ0;1/;

and the boundary condition .A0CA1�/Y 0 .0;�/�.B0CB1�/Y.0;�/D 0, whereQ is a matrix-valued function and A0; A1; B0; B1 are non-singular matrices, with A0B1�A1B0 ¤ 0: In thispaper, we investigate the principal functions corresponding to the eigenvalues and the spectralsingularities of L:

2010 Mathematics Subject Classification: 34B24; 34L05; 47A10

Keywords: eigenvalues, spectral singularities, spectral analysis, Sturm–Liouville operator, non-selfadjoint matrix operator, principal functions

1. INTRODUCTION

Let us consider the boundary value problem .BVP/

�u00Cq .x/uD �2u ; x 2 RC ; (1.1)

u.0/D 0 ; (1.2)

in L2 .RC/ ; where q is a complex-valued function. The spectral theory of the BVP(1.1)–(1.2) with continuous and point spectrum was investigated by Naimark [20]. Heshowed the existence of the spectral singularities in the continuous spectrum of theBVP .1:1/–.1:2/ : Note that the eigenfunctions and the associated functions (prin-cipal functions) corresponding to the spectral singularities are not the elements ofL2 .RC/. Also, the spectral singularities belong to the continuous spectrum and arethe poles of the resolvent’s kernel, but are not the eigenvalues of the BVP .1:1/–.1:2/.The spectral singularities in the spectral expansion of the BVP .1:1/–.1:2/ in termsof the principal functions have been investigated in [19]. The spectral analysis ofthe quadratic pencil of Schrodinger, Dirac and Klein-Gordon operators with spec-tral singularities were studied in [2–18]. The spectral analysis of the non-selfadjoint

c 2014 Miskolc University Press

Page 3: Principal functions of matrix Sturm-Liouville operators ...

526 DENIZ KATAR, MURAT OLGUN, AND CAFER COSKUN

operator, generated in L2 .RC/ by .1:1/ and the boundary condition

y0 .0/

y .0/Dˇ1�Cˇ0

˛1�C˛0;

where ˛i ; ˇi 2 C, i D 0; 1 with ˛0ˇ1 � ˛1ˇ0 ¤ 0 were investigated in detail byBairamov et al. [9]. The all above mentioned papers related with the differentialand difference equations are scalar coefficients. Spectral analysis of the self-adjointdifferential and difference equations with matrix coefficients are studied in [3,10–13].

Let E be an n-dimensional .n <1/ Euclidian space with the norm k:k and letus introduce the Hilbert space L2 .RC;E/ consisting of vector-valued functions withthe values in E. We will consider the BVP

�y00CQ.x/y D �2y ; x 2 RC ; (1.3)

y .0/D 0; (1.4)in L2 .RC;E/ where Q is a non-selfadjoint matrix-valued function .i. e., Q¤Q�/.It is clear that, the BVP .1:3/–.1:4/ is nonselfadjoint. In [14, 21] discrete spectrumof the non-selfadjoint matrix Sturm–Liouville operator and properties of the prin-cipal functions corresponding to the eigenvalues and the spectral singularities wereinvestigated.

Let us consider the BVP in L2.RC;E/

�y00CQ.x/y D �2y; x 2 RC; (1.5)

.A0CA1�/y0 .0;�/� .B0CB1�/y.0;�/D 0; (1.6)

where Q is a non-singular matrix-valued function and A0; A1; B0; B1 are non-selfadjoint matrices such A0B1 �A1B0 ¤ 0. In this paper, we aim to investigatethe properties of the principal functions corresponding to the eigenvalues and thespectral singularities of the BVP .1:5/–.1:6/ :

2. JOST SOLUTION OF .1:5/

We will denote the solution of .1:5/ satisfying the condition

limx!1

y.x;�/e�i�x D I; � 2CC WD f� W � 2C; Im�� 0g (2.1)

by E.x;�/: The solution E.x;�/ is called the Jost solution of .1:5/.Under the condition

1Z0

x kQ.x/kdx <1 (2.2)

the Jost solution has a representation

E.x;�/D ei�xI C

1Zx

K.x; t/ei�tdt; (2.3)

Page 4: Principal functions of matrix Sturm-Liouville operators ...

MATRIX STURM–LIOUVILLE OPERATORS 527

for � 2 NCC, where the kernel matrix function K.x; t/ satisfies

K.x; t/D1

2

1ZxC t

2

Q.s/dsC1

2

xC t

2Zx

tCs�xZtCx�s

Q.s/K.s;v/dvds

C1

2

1ZxC t

2

tCs�xZs

Q.s/K.s;v/dvds: (2.4)

Moreover, K.x; t/ is continuously differentiable with respect to its arguments and

kK.x; t/k � c�.xC t

2/; (2.5)

kKx.x; t/k �1

4

Q.xC t2 /

C c�.xC t2 /; (2.6)

kKt .x; t/k �1

4

Q.xC t2 /

C c�.xC t2 /; (2.7)

where �.x/D1Rx

kQ.s/kds and c > 0 is a constant. Therefore, E .x;�/ is analytic

with respect to � in CC WD f� W � 2C; Im� > 0g and continuous on the real axis [1].Let OE˙.x;�/ denote the solutions of (1.5) subject to the conditions

limx!1

OE˙.x;�/e˙i�x D I; limx!1

OE˙x .x;�/e˙i�x

D˙i�I; � 2 NC˙: (2.8)

Then

WhE.x;�/; OE˙.x;�/

iD�2i�I; � 2C˙; (2.9)

W ŒE.x;�/;E.x;��/�D�2i�I; � 2 R; (2.10)

where W Œf1;f2� is the Wronskian of f1 and f2:Let '.x;�/ denote the solution of (1.5) subject to the initial conditions '.0;�/D

A0CA1�; '0.0;�/D B0CB1�: Therefore '.x;�/ is an entire function of �.

Let us define the following functions:

D˙.�/D '.0;�/Ex .0;˙�/�'0.0;�/E.0;˙�/ � 2 NC˙; (2.11)

where NC˙ D f� W � 2C; ˙ Im�� 0g : It is obvious that the functions DC.�/ andD�.�/ are analytic in CC and C�, respectively, and continuous on the real axis. Thefunctions DC and D� are called Jost functions of L:

Page 5: Principal functions of matrix Sturm-Liouville operators ...

528 DENIZ KATAR, MURAT OLGUN, AND CAFER COSKUN

3. EIGENVALUES AND SPECTRAL SINGULARITIES OF L

The resolvent of L defined by

R�.L/f D

1Z0

G.x; t I�/g.t/dt; g 2 L2.RC;E/; (3.1)

where

G.x; t I�/D

�GC.x; t I�/; � 2CCG�.x; t I�/; � 2C�;

(3.2)

and

G˙.x; t I�/D

(�E.x;˙�/D�1

˙.�/'T .t;�/; 0� t � x

�'.x;�/�DTC.˙�/

��1ET .t;˙�/; x � t <1:

(3.3)

We will show the set of eigenvalues and the set of spectral singularities of the operatorL by �d and �ss; respectively.

Let us suppose thatH˙.�/D detD˙.�/: (3.4)

From (2.3) and (3.1)–(3.4), we get

�d D f� W � 2CC; HC.�/D 0g[f� W � 2C�; H�.�/D 0g

�ss D˚� W � 2 R�; HC.�/D 0

[˚� W � 2 R�; H�.�/D 0

; (3.5)

where R� D Rnf0g :We see from that, the functions

KC.�/DODC.�/

2i�E.x;�/�

DC.�/

2i�OEC.x;�/; � 2CC; (3.6)

K�.�/DOD�.�/

2i�E.x;��/�

D�.�/

2i�OE�.x;�/; � 2C�; (3.7)

K.�/DDC.�/

2i�E.x;��/�

D�.�/

2i�E.x;�/; � 2 R�; (3.8)

are the solutions of the boundary problem (1.5)–(1.6), where

OD˙.�/D .A0CA1�/ OE˙x .0;�/� .B0CB1�/

OE˙.0;�/: (3.9)

Now let us assume that

Q 2 AC.RC/ ; limx!1

Q.x/D 0 ; supx2Œ0;1/

he"px Q0.x/ i<1; " > 0: (3.10)

Theorem 1. Under the condition (3.10), the operator L has a finite number ofeigenvalues and spectral singularities, and each of them is of finite multiplicity.

Page 6: Principal functions of matrix Sturm-Liouville operators ...

MATRIX STURM–LIOUVILLE OPERATORS 529

4. PRINCIPAL FUNCTIONS OF L

Under the condition (3.10), let �1; :::;�j and �jC1; :::;�k denote the zeros HC

in CC and H� in C� (which are the eigenvalues of L) with multiplicities m1;:::;mjandmjC1;:::;mk; respectively. It is obvious that from the definition of the Wronskian�

dn

d�nW�KC.x;�/;E.x;�/

���D�p

D

�dn

d�nDC.�/

��D�p

D 0 (4.1)

for nD 0;1; :::;mp�1; p D 1;2; :::;j; and�dn

d�nW ŒK�.x;�/;E.x;��/�

��D�p

D

�dn

d�nD�.�/

��D�p

D 0 (4.2)

for nD 0;1; :::;mp�1; p D j C1; :::;k:

Theorem 2. The following formulae:�@n

@�nKC.x;�/

��D�p

D

nXmD0

Fm.�p/

�@m

@�mE.x;�/

��D�p

; (4.3)

nD 0;1; :::;mp�1; p D 1;2; :::;j; where

Fm.�p/D

n

m

!�@n�m

@�n�mODC.�/

��D�p

; (4.4)

�@n

@�nK�.x;�/

��D�p

D

nXmD0

Nm.�p/

�@m

@�mE.x;��/

��D�p

; (4.5)

nD 0;1; :::;mp�1; p D j C1; :::;k; where

Nm.�p/D

n

m

!�@n�m

@�n�mOD�.�/

��D�p

(4.6)

hold.

Proof. We will prove only (4.3) using the method of induction, because the caseof (4.5) is similar. Let be nD 0: Since KC.x;�/ and E.x;�/ are linearly dependentfrom (4.1), we get

KC.x;�p/D f0.�p/E.x;�p/; (4.7)

where f0.�p/¤ 0: Let us assume that 1� n0 �mp�2; (4.7) holds; that is,�@n0

@�n0KC.x;�/

��D�p

D

n0XmD0

Fm.�p/

�@m

@�mE.x;�/

��D�p

: (4.8)

Page 7: Principal functions of matrix Sturm-Liouville operators ...

530 DENIZ KATAR, MURAT OLGUN, AND CAFER COSKUN

We will prove that (4.3) holds for n0C 1: If Y.x;�/ is a solution of (1.5), then@n

@�nY.x;�/ satisfiesh�d2

dx2CQ.x/��2

i@n

@�nY.x;�/D 2�n @n�1

@�n�1Y.x;�/Cn.n�1/ @

n�2

@�n�2Y.x;�/:

(4.9)Writing (4.9) for KC.x;�/ and E.x;�/, and using (4.8), we find�

�d2

dx2CQ.x/��2

�gn0C1.x;�p/D 0; (4.10)

where

gn0C1.x;�p/Dn@n0C1

@�n0C1KC.x;�/

o�D�p

n0C1XmD0

Fm.�p/n@m

@�mE.x;�/

o�D�p

:

(4.11)From (4.1), we have

W�gn0C1.x;�p/;E.x;�p/

�D

�dn0C1

d�n0C1W�KC.x;�/;E.x;�/

���D�p

D 0:

(4.12)Hence there exists a constant f

n0C1.�p/ such that

gn0C1

.x;�p/D fn0C1

.�p/E.x;�p/: (4.13)

This shows that (4.3) holds for nD n0C1: �

Using (4.3) and (4.5), define the functions

Un;p.x/D

�@n

@�nKC.x;�/

��D�p

D

nXmD0

Fm.�p/

�@m

@�mE.x;�/

��D�p

; (4.14)

nD 0;1; :::;mp�1; p D 1;2; :::;j and

Un;p.x/D

�@n

@�nK�.x;�/

��D�p

D

nXmD0

Nm.�p/

�@m

@�mE.x;��/

��D�p

; (4.15)

nD 0;1; :::;mp�1; p D j C1; :::;k:

Then for �D �p; p D 1;2; :::;j;j C1; :::;k;

l.U0;p/D 0;

l.U1;p/C1

@

@�l.U0;p/D 0; (4.16)

l.Un;p/C1

@

@�l.Un�1;p/C

1

@2

@�2l.Un�2;p/D 0;

Page 8: Principal functions of matrix Sturm-Liouville operators ...

MATRIX STURM–LIOUVILLE OPERATORS 531

nD 2;3; :::;mp�1;

hold, where l.u/ D �u00CQ.x/u� �2u and @m

@�ml.u/ denote the differential ex-

pressions whose coefficients are the m-th derivatives with respect to � of the corres-ponding coefficients of the differential expression l.u/: (4.16) shows that U0;p is theeigenfunction corresponding to the eigenvalue � D �pI U1;p;U2;p; :::Ump�1;p arethe associated functions of U0;p [16, 17].U0;p;U1;p; :::Ump�1;p; p D 1;2; :::;j;j C 1; :::;k are called the principal func-

tions corresponding to the eigenvalue �D �p; p D 1;2; :::;j;j C1; :::;k of L:

Theorem 3.

Un;p 2 L2.RC;E/; nD 0;1; :::mp�1; p D 1;2; :::;j;j C1; :::;k: (4.17)

Proof. Let be 0� n�mp�1 and 1� p � j: Using (2.5) and (3.10), we obtain that

kK.x; t/k � ce�

qxCt2 : (4.18)

From (2.3), we get �@n

@�nE.x;�/

��D�p

� xne�x Im�p C c

1Zx

tne�

qxCt2 e�t Im�pdt; (4.19)

where c > 0 is a constant. Since Im�p > 0 for the eigenvalues �p; p D 1;2; :::;j; ofL; implies that�

@n

@�nE.x;�/

��D�p

2 L2.RC;E/; nD 0;1; :::mp�1; p D 1;2; :::;j: (4.20)

So we get Un;p 2 L2.RC;E/ from (4.14) and (4.20) Similarly we prove the resultsfor 0� n�mp�1; j C1� p � k: This completes the proof. �

Let �1; :::;�v and �vC1; :::;�l be the zeros ofDC andD� in R� with multiplicit-ies n1; :::;nv and nvC1; :::;nl; respectively. We can show�

@n

@�nK.x;�/

��D�p

D

nXmD0

Cm.�p/

�@m

@�mE.x;�/

��D�p

; (4.21)

nD 0;1; :::;np�1; p D 1;2; :::;v; where

Cm.�p/D�

n

m

!�@n�m

@�n�mD�.�/

��D�p

; (4.22)

�@n

@�nK.x;�/

��D�p

D

nXmD0

Rm.�p/

�@m

@�mE.x;��/

��D�p

;

Page 9: Principal functions of matrix Sturm-Liouville operators ...

532 DENIZ KATAR, MURAT OLGUN, AND CAFER COSKUN

nD 0;1; :::;np�1; p D vC1; :::; l;

where

Rm.�p/D

n

m

!�@n�m

@�n�mDC.�/

��D�p

: (4.23)

Now define the generalized eigenfunctions and generalized associated functionscorresponding to the spectral singularities of L by the following :

Vn;p.x/D

�@n

@�nK.x;�/

��D�p

D

nXmD0

Cm.�p/

�@m

@�mE.x;�/

��D�p

; (4.24)

nD 0;1; :::;np�1; p D 1;2; :::;v;

Vn;p.x/D

�@n

@�nK.x;�/

��D�p

D

nXmD0

Rm.�p/

�@m

@�mE.x;��/

��D�p

; (4.25)

nD 0;1; :::;np�1; p D vC1; :::; l:

Then Vn;p; nD 0;1; :::;np�1; pD 1;2; :::;v;vC1; :::; l; also satisfy the equationsanalogous to (4.16).V0;p;V1;p; :::;Vnp�1;p; pD 1;2; :::;v;vC1; :::; l are called the principal functions

corresponding to the spectral singularities �D �p;p D 1;2; :::;v;vC1; :::; l of L:

Theorem 4.

Vn;p … L2.RC;E/; nD 0;1; :::np�1; p D 1;2; :::;v;vC1; :::; l:

Proof. For 0� n� np�1 and 1� p � v using (2.3), we obtain �@n

@�nE.x;�/

��D�p

� .ix/n ei�pxI C

1Zx

.i t/nK.x; t/ei�ptdt

since Im�p D 0; p D 1;2; :::;v; we find that

1Z0

.ix/n ei�pxI 2dx D 1Z0

x2n D1:

So we obtain Vn;p …L2.RC;E/; nD 0;1; :::np�1; p D 1;2; :::;v: Using the similarway, we may also prove the results for 0� n� np�1; vC1� p � l: �

Now define the Hilbert spaces of vector-valued functions with values in E by

Hn WD

8<:f W1Z0

.1Cjxj/2n kf .x/k2dx <1

9=; ; nD 1;2; :::; (4.26)

Page 10: Principal functions of matrix Sturm-Liouville operators ...

MATRIX STURM–LIOUVILLE OPERATORS 533

H�n WD

8<:g W1Z0

.1Cjxj/�2n kg.x/k2dx <1

9=; ; nD 1;2; :::; (4.27)

with the norms

kf k2n WD

1Z0

.1Cjxj/2n kf .x/k2dx;

and

kgk2�n WD

1Z0

.1Cjxj/�2n kg.x/k2dx;

respectively. Then

HnC1 ¤Hn ¤ L2.RC;E/¤H�n ¤H�.nC1/; nD 1;2; :::; (4.28)

and H�n is isomorphic to the dual of Hn:

Theorem 5.Vn;p 2H�.nC1/; nD 0;1; :::np�1; p D 1;2; :::;v;vC1; :::; l:

Proof. For 0� n� np�1 and 1� p � v using (2.3) and (4.24), we get1Z0

.1Cjxj/�2.nC1/ Vn;p 2dx

�M

1Z0

.1Cjxj/�2.nC1/

8<: fE.x;�/g

�D�p

2C :::C �@n

@�nE.x;�/

��D�p

29>=>;

where M > 0 is a constant. Using (2.3), we have1Z0

.1Cjxj/�2.nC1/ .ix/n ei�pxI 2dx <1;

and1Z0

.1Cjxj/�2.nC1/

1Zx

.i t/nK.x; t/ei�ptdt

2

dx <1:

Consequently Vn;p 2H�.nC1/ for 0� n� np�1 and 1� p � v: Similarly, we obtainVn;p 2H�.nC1/ for 0� n� np�1 and vC1� p � l . �

Let us choosen0 Dmaxfn1;n2; :::;nv;nvC1; :::;nlg :

By (4.28), we get the following

Page 11: Principal functions of matrix Sturm-Liouville operators ...

534 DENIZ KATAR, MURAT OLGUN, AND CAFER COSKUN

Theorem 6.Vn;p 2H�n0 ; nD 0;1; :::np�1;p D 1;2; :::;v;vC1; :::; l:

REFERENCES

[1] Z. S. Agranovich and V. A. Marchenko, The Inverse Problem of Scattering Theory, 2nd ed., ser.Series is books. London: Gordon and Breach, 1963.

[2] Y. Aygar and E. Bairamov, “Jost solution and the spectral properties of the matrix-valued differ-ence operators,” Appl. Math. and Comput., vol. 218, no. 3, pp. 9676–9681, 2012.

[3] E. Bairamov, Y. Aygar, and T. Koprubasi, “Spectrum of the eigenparameter dependent discretesturm-liouville equations,” Czechoslovak Math. J., vol. 49, pp. 689–700, 1999.

[4] E. Bairamov, O. Cakar, and A. O. Celebi, “Quadratic pencil of schrondinger operators with spec-tral singularities: discrete spectrum and principal functions,” J. Math. Anal. Appl., vol. 216, pp.303–320, 1997.

[5] E. Bairamov, O. Cakar, and A. M. Krall, “An eigenfunction expansion for a quadratic pencil of ascrodinger operator with spectral singularities,” J. Differential Equations, vol. 151, pp. 268–289,1999.

[6] E. Bairamov, O. Cakar, and A. M. Krall, “Spectrum and spectral singularities of a quadratic pencilof a schrodinger operator with a general boundary condition,” J. Differential Equations, vol. 151no.2, pp. 252–267, 1999.

[7] E. Bairamov and A. O. Celebi, “Spectral properties of the klein-gordon s-wave equation withcomplex potential,” Indian J. Pure Appl. Math., vol. 28, pp. 813–824, 1997.

[8] E. Bairamov and A. O. Celebi, “Spectrum and spectral expansion for the non-selfadjoint discretedirac operators,” Quart. J. Math. Oxford Ser., vol. (2) no. 200, pp. 371–384, 1999.

[9] E. Bairamov and S. Seyyidoglu, “Non-selfadjoint singular sturm-liouville problems with boundaryconditions dependent on the eigenparameter,” Abstr. Appl. Anal.,, vol. 2010, pp. 1–10, 2010.

[10] E. Bairamov and G. B. Tunca, “Discrete spectrum and principal functions of non-selfadjoint differ-ential operators,” Journal of Computational and Applied Mathematics, vol. 235, pp. 4519–4523,2011.

[11] R. Carlson, “An inverse problem for the matrix schrodinger equation,” J. Math. Anal. Appl., vol.267, pp. 564–575, 2002.

[12] S. Clark and F. Gesztesy, “Weyl-titchmarsh m-function asymptotics, local uniqueness results, traceformulas and borg-type theorems for dirac operators,” Trans Amer. Math. Soc., vol. 354, pp. 3475–3534, 2002.

[13] S. Clark, F. Gesztesy, and W. Renger, “Trace formulas and borg-type theorems for matrix-valuedjacobi and dirac finite difference operators,” J. Differential Equations, vol. 219, pp. 144–182,2005.

[14] C. Coskun and M. Olgun, “Principal functions of non-selfadjoint matrix sturm-liouville equa-tions,” Journal of Computational and Applied Mathematics, vol. 235 no. 16, pp. 4834–4838, 2011.

[15] F. Gesztesy, A. Kiselev, and K. A. Makarov, “Uniqueness results for matrix-valued schrodinger,jacobi and dirac-type operators,” Math. Nachr., vol. 239, pp. 103–145, 2002.

[16] M. V. Keldysh, “On the completeness of the eigenfunctions of some classes of non-selfadjointlinear operators,” Soviet Mathematics-Doklady, vol. 77 no. 4, pp. 11–14, 1951.

[17] M. V. Keldysh, “On the completeness of the eigenfunctions of some classes of non-selfadjointlinear operators,” Russian Mathematical Surveys, vol. 26 no. 4, pp. 15–41, 1971.

[18] A. M. Krall, E. Bairamov, and O. Cakar, “Spectral analysis of a non-selfadjoint discreteschrodinger operators with spectral singularities,” Math. Nachr., vol. 231, pp. 89–104, 2001.

[19] V. E. Lyance, “A differential operator with spectral singularities, i, ii,,” AMS Translations, vol. 60,pp. 185–225, 227–283, 1967.

Page 12: Principal functions of matrix Sturm-Liouville operators ...

MATRIX STURM–LIOUVILLE OPERATORS 535

[20] M. A. Naimark, “Investigation of the spectrum and the expansion in eigenfunctions of a non-selfadjoint operators of second order on a semi-axis,” AMS Translations, vol. 16, pp. 103–193,1960.

[21] M. Olgun and C. Coskun, “Non-selfadjoint matrix sturm-liouville operators with spectral singu-larities,” Applied Mathematics and Computations, vol. 216 no.8, pp. 2271–2275, 2010.

Authors’ addresses

Deniz KatarAnkara University, Faculty of Sciences, Department of Mathematics, Ankara, TurkeyE-mail address: [email protected]

Murat OlgunAnkara University, Faculty of Sciences, Department of Mathematics, Ankara, TurkeyE-mail address: [email protected]

Cafer CoskunAnkara University, Faculty of Sciences, Department of Mathematics, Ankara, TurkeyE-mail address: [email protected]


Recommended