+ All Categories
Home > Documents > Problem Formulation (LP Section1)

Problem Formulation (LP Section1)

Date post: 28-Nov-2015
Category:
Upload: swastik-mohapatra
View: 112 times
Download: 3 times
Share this document with a friend
Description:
.
34
Dr. C. Lightner Fayetteville State University 1 Chapter 2 An Introduction to Linear Programming Linear Programming Problem Chapter 4 Problem Formulation Examples and Applications Introduction to Linear Programming nd Problem Formulation (LP Section 1)
Transcript
Page 1: Problem Formulation (LP Section1)

Dr. C. Lightner Fayetteville State University

1

Chapter 2An Introduction to Linear ProgrammingLinear Programming Problem

Chapter 4 Problem Formulation Examples and Applications

Introduction to Linear Programming and Problem Formulation (LP Section 1)

Page 2: Problem Formulation (LP Section1)

Dr. C. Lightner Fayetteville State University

2

Linear Programming (LP) Problem

The maximization or minimization of some quantity is the objective in all linear programming problems.

All LP problems have constraints that limit the degree to which the objective can be pursued.

A feasible solution satisfies all the problem's constraints.

An optimal solution is a feasible solution that results in the largest possible objective value when maximizing (or the smallest possible objective value when minimizing).

Page 3: Problem Formulation (LP Section1)

Dr. C. Lightner Fayetteville State University

3

Linear Programming (LP) Problem

If both the objective and the constraints can be written as linear functions, the problem is referred to as a linear programming problem.

Linear functions are functions in which each variable appears in a separate term raised to the first power and is multiplied by a constant (which could be 0).

Linear constraints are linear functions that are restricted to be "less than or equal to", "equal to", or "greater than or equal to" a constant.

The objective value that you are attempting to minimize or maximize is referred to as the objective function.

Page 4: Problem Formulation (LP Section1)

Dr. C. Lightner Fayetteville State University

4

Examples of Linear Functions

Assume that x, y, and z are decision variables. Identify the valid linear functions below.

a. 5xyb. x/y + 2zc. 4x + 3y + (2/3)zd. 5x2 + 6y2

e. 2 + xf. (x + y) / z

Page 5: Problem Formulation (LP Section1)

Dr. C. Lightner Fayetteville State University

5

Linear Function Example Answer

C and E are the only valid linear functions. These are the only functions with no more than one variable in a single term. Furthermore, the exponents on the variables are 0 or 1 (Recall that anything with a 0 exponent is 1. Thus 2*z0 equals 2*1=1, therefore the 2 in a single term satisfies the linear function requirements).

Page 6: Problem Formulation (LP Section1)

Dr. C. Lightner Fayetteville State University

6

Problem Formulation

Problem formulation or modeling is the process of translating a verbal statement of a problem into a mathematical statement.

Page 7: Problem Formulation (LP Section1)

Dr. C. Lightner Fayetteville State University

7

Guidelines for Model Formulation

1. Understand the problem thoroughly.2. Describe the objective in words.3. Describe each constraint in words.4. Define the decision variables.5. Write the objective in terms of the decision variables.6. Write the constraints in terms of the decision variables.

Page 8: Problem Formulation (LP Section1)

Dr. C. Lightner Fayetteville State University

8

PAR, Inc Example

Par, Inc manufactures golf equipment and supplies. The company wants to produce standard and deluxe golf bags. Par profits $10 for each Standard bag produced and sold, and $9 for each Deluxe bag produced and sold. Par’s distributor has agreed to purchase all golf bags that are produced by Par for the next three months. Par has the following operations for the production of bags

1. Cutting and dyeing the material 2. Sewing 3. Finishing (Inserting umbrella holder, club separators, etc.) 4. Inspection and packaging

© 2

003

Tho

mso

n/S

outh

-Wes

tern

Page 9: Problem Formulation (LP Section1)

Dr. C. Lightner Fayetteville State University

9

Table of Production Requirements and Resources

Department Standard Production Time (hours)

Deluxe Production Time (hours)

Hours Available

Cutting and Dyeing 7/10 1 630

Sewing 1/2 5/6 600

Finishing 1 2/3 708

Inspection and Packaging

1/10 1/4 135

© 2

003

Tho

mso

n/S

outh

-Wes

tern

Page 10: Problem Formulation (LP Section1)

Dr. C. Lightner Fayetteville State University

10

Formulating Par, Inc Example

OBJECTIVE: To maximize profitsCONSTRAINTS:

# of hours dedicated to cutting and dyeing must be less than or equal to the number of available hours.

# of hours dedicated to sewing must be less than or equal to the number of available hours.

# of hours dedicated to finishing must be less than or equal to the number of available hours.

# of hours dedicated to inspecting and packaging must be less than or equal to the number of available hours.

All decision variables must be nonnegative. Don’t forget this one

Page 11: Problem Formulation (LP Section1)

Dr. C. Lightner Fayetteville State University

11

Par Inc Problem Formulation (continued)

DECISION VARIABLES:x1 - # of Standard bags to produce

x2- # of Deluxe bags to produce

In general, xj is the generic variable name for all decision variables. The variable, xj represents the jth decision variable.

Page 12: Problem Formulation (LP Section1)

Dr. C. Lightner Fayetteville State University

12

Par Inc Problem Formulation (continued)

Using these decision variables our objective is to maximize profits. If we produce x1 Standard bags and x2 Deluxe bags our profits would be

10 x1 + 9 x2. Thus our objective function can be stated as

Maximize 10 x1 + 9 x2

Page 13: Problem Formulation (LP Section1)

Dr. C. Lightner Fayetteville State University

13

Par Inc Problem Formulation (continued)

If we produce x1 Standard bags and x2 Deluxe bags, then we would utilize 7/10 x1 + 1 x2 hours of Cutting and Dyeing. We only have 630 hours available, thus we must ensure that

7/10 x1+ 1 x2 ≤ 630.We would use 1/2 x1+ 5/6 x2 hours of Sewing. We must ensure that 1/2 x1+ 5/6 x2 ≤ 600.We would use 1 x1+ 2/3 x2 hours of Finishing. We must ensure that 1 x1+ 2/3 x2 ≤ 708.We would use 1/10 x1+ 1/4 x2 hours of Inspection and Packing. We must ensure that 1/10 x1+ 1/4 x2 ≤ 135.We must make sure that a nonnegative number of bags are produced. Thus x1 ≥ 0 and x2 ≥ 0.

Page 14: Problem Formulation (LP Section1)

Dr. C. Lightner Fayetteville State University

14

Par Inc LP model

Collectively our objective function and constraints can be written as the following linear programming model:

Maximize 10 x1 + 9 x2

Subject to:7/10 x1 + 1 x2 ≤ 630 1/2 x1 + 5/6 x2 ≤ 600 1 x1 + 2/3 x2 ≤ 7081/10 x1+ 1/4 x2 ≤ 135 x1 ≥ 0

x2 ≥ 0

Page 15: Problem Formulation (LP Section1)

Dr. C. Lightner Fayetteville State University

15

Floataway Tours Example

Floataway Tours has $420,000 that may be used to purchase new rental boats for hire during the summer. The boats can be purchased from two different manufacturers. Floataway Tours would like to purchase at least 50 boats and would like to purchase the same number from Sleekboat as from Racer to maintain goodwill. At the same time, Floataway Tours wishes to have a total seating capacity of at least 200.

Pertinent data concerning the boats are summarized on the next slide. Formulate this problem as a linear program to maximize the daily expected profit.

© 2

003

Tho

mso

n/S

outh

-Wes

tern

Page 16: Problem Formulation (LP Section1)

Dr. C. Lightner Fayetteville State University

16

Floataway Tours Example

Data Maximum Expected

Boat Builder Cost Seating Daily Profit

Speedhawk Sleekboat $6000 3 $ 70Silverbird Sleekboat $7000 5 $ 80Catman Racer $5000 2 $ 50Classy Racer $9000 6 $110

© 2

003

Tho

mso

n/S

outh

-Wes

tern

Page 17: Problem Formulation (LP Section1)

Dr. C. Lightner Fayetteville State University

17

Floataway Tours Example (continued)

Define the decision variables x1 = number of Speedhawks ordered

x2 = number of Silverbirds ordered

x3 = number of Catmans ordered

x4 = number of Classys ordered

Define the objective function Maximize total expected daily profit or

Max 70x1 + 80x2 + 50x3 + 110x4

Page 18: Problem Formulation (LP Section1)

Dr. C. Lightner Fayetteville State University

18

Floataway Tours Example (continued)

Define the constraints(1) Spend no more than $420,000:

6000x1 + 7000x2 + 5000x3 + 9000x4 < 420,000

(2) Purchase at least 50 boats: x1 + x2 + x3 + x4 > 50

(3) Number of boats from Sleekboat equals number of boats from Racer:

x1 + x2 = x3 + x4 or x1 + x2 - x3 - x4 = 0

Constraints should always be written with all variables on one side and just a constant on the other.

Page 19: Problem Formulation (LP Section1)

Dr. C. Lightner Fayetteville State University

19

Floataway Tours Example (continued)

Define the constraints (continued)(4) Capacity at least 200:

3x1 + 5x2 + 2x3 + 6x4 > 200

Nonnegativity of variables: x1 > 0

x2 > 0

x3 > 0

x4 > 0

Page 20: Problem Formulation (LP Section1)

Dr. C. Lightner Fayetteville State University

20

Floataway Tours LP Formulation

Max 70x1 + 80x2 + 50x3 + 110x4

s.t. 6000x1 + 7000x2 + 5000x3 + 9000x4 < 420,000 x1 + x2 + x3 + x4 > 50 x1 + x2 - x3 - x4 = 0 3x1 + 5x2 + 2x3 + 6x4 > 200

x1 > 0 x2 > 0

x3 > 0 x4 > 0

Page 21: Problem Formulation (LP Section1)

Dr. C. Lightner Fayetteville State University

21

U.S. Navy Example

The Navy produces up to 8,800 pounds of material in Albany, Georgia which it ships to three installations: San Diego, Norfolk, and Pensacola. They require at least 3,700, 2,500, and 2,500 pounds, respectively. In order to maintain outsourcing contracts, they must ship at least 2000 pounds via each mode of transportation (truck, railroad, and airplane).

The shipping costs per pound for truck, railroad, and airplane transit are shown on the next slide. Formulate and solve a linear program to determine the shipping arrangements (mode, destination, and quantity) that will minimize the total shipping cost.

© 2

003

Tho

mso

n/S

outh

-Wes

tern

Page 22: Problem Formulation (LP Section1)

Dr. C. Lightner Fayetteville State University

22

U.S. Navy Example

Data Destination

Mode San Diego Norfolk Pensacola

Truck $12 $ 6 $ 5 Railroad 20 11 9 Airplane 30 26 28

© 2

003

Tho

mso

n/S

outh

-Wes

tern

Page 23: Problem Formulation (LP Section1)

Dr. C. Lightner Fayetteville State University

23

U.S. Navy Example

Define the Decision Variables

We want to determine the pounds of material, x ij , to be shipped by mode i to destination j. The following table summarizes the decision variables:

San Diego Norfolk Pensacola

Truck x11 x12 x13

Railroad x21 x22 x23

Airplane x31 x32 x33

© 2

003

Tho

mso

n/S

outh

-Wes

tern

Page 24: Problem Formulation (LP Section1)

Dr. C. Lightner Fayetteville State University

24

U.S. Navy Example (Continued)

Define the Objective Function

Minimize the total shipping cost.

Min: (shipping cost per pound for each mode per destination pairing) x (number of pounds shipped by mode per destination pairing).

Min 12x11 + 6x12 + 5x13 + 20x21 + 11x22 + 9x23

+ 30x31 + 26x32 + 28x33

Page 25: Problem Formulation (LP Section1)

Dr. C. Lightner Fayetteville State University

25

U.S. Navy Example (Continued)

Define the Constraints

Destination material requirements: x11 + x21 + x31 ≥ 3700 (San Diego requirement) x12 + x22 + x32 ≥ 2500 (Norfolk requirement) x13 + x23 + x33 ≥ 2500 (Pensacola requirement)Maintain outsourcing contracts: x11 + x12 + x13 ≥ 2000 (Truck) x21 + x22 + x23 ≥ 2000 (Railroad) x31 + x32 + x33 ≥ 2000 (Airplane)

Do not exceed 8800 pounds availablex31 + x32 + x33+x11 + x12 + x13 + x21 + x22 + x23≤8800

Page 26: Problem Formulation (LP Section1)

Dr. C. Lightner Fayetteville State University

26

U.S. Navy Example (Continued)

Nonnegativity of variables: x11 > 0

x12 > 0

x13 > 0

x21 > 0

x22 > 0

x23 > 0

x31 > 0

x32 > 0

x33 > 0

Page 27: Problem Formulation (LP Section1)

Dr. C. Lightner Fayetteville State University

27

U.S. Navy LP Formulation

Min 12x11 + 6x12 + 5x13 + 20x21 + 11x22 + 9x23

+ 30x31 + 26x32 + 28x33

s.t. x11 + x21 + x31 ≥ 3700 x12 + x22 + x32 ≥ 2500 x13 + x23 + x33 ≥ 2500

x11 + x12 + x13 ≥ 2000 x21 + x22 + x23 ≥ 2000

x31 + x32 + x33 ≥ 2000

x31 + x32 + x33+x11 + x12 + x13 + x21 + x22 + x23≤8800

x11 > 0, x12 > 0, x13 > 0, x21 > 0, x22 > 0, x23 > 0, x31 > 0, x32 > 0, x33 > 0

Page 28: Problem Formulation (LP Section1)

Dr. C. Lightner Fayetteville State University

28

Police Scheduling Problem

The Clark County Sheriff’s department schedules police officers for 8-hour shifts. The beginning times for the shifts are 8:00AM, noon, 4:00PM, 8:00PM, midnight and 4AM. An officer beginning a shift at of these times works for the next 8 hours. During normal and weekday operations, the number of officers needed varies depending on the time of the day. The department staffing guidelines require the following minimum number of officers on duty.

Time of Day Minimum officers on Duty8:00AM – Noon 5Noon – 4:00PM 64:00PM – 8:00PM 108:00PM – Midnight 7Midnight – 4:00AM 44:00AM – 8:00AM 6

The Department wants to minimize the total number of officers needed to meet all shift requirements.

And

erso

n, S

wee

ney,

and

Will

iam

s

Page 29: Problem Formulation (LP Section1)

Dr. C. Lightner Fayetteville State University

29

Police Scheduling Problem

Develop a linear program for this problem that will determine the number of officers that should be scheduled to begin the 8-hour shifts at each of the six times (8:00AM, noon, 4:00PM, 8:00PM, midnight and 4AM) in order to minimize the total number of officers required. (Hint: Let x1= the number of officers beginning work at 8AM, x2 = the number of officers beginning work at noon and so on.)

Page 30: Problem Formulation (LP Section1)

Dr. C. Lightner Fayetteville State University

30

Police Scheduling Problem (Continued)

Define Variables

x1= # of officers that begin work at 8AM & work shifts (8AM - Noon) & (Noon to 4PM)

x2= # of officers that begin work at Noon & work shifts (Noon - 4PM) & (4PM - 8PM)

x3= # of officers that begin work at 4PM & work shifts (4PM – 8PM) & (8PM to Midnight)

x4= # of officers that begin work at 8PM & work shifts (8PM - Midnight) & (Midnight – 4AM)

x5= # of officers that begin work at Midnight & work shifts (Midnight – 4AM) & (4AM to 8AM)

x6= # of officers that begin work at 4AM & work shifts (4AM – 8AM) & (8AM - Noon)

Page 31: Problem Formulation (LP Section1)

Dr. C. Lightner Fayetteville State University

31

Police Scheduling Problem (Continued)

Define the Objective FunctionMinimize the total number of officers needed to meet all shift requirements.

Or

Min x1 + x2 + x3 + x4 + x5 + x6

Page 32: Problem Formulation (LP Section1)

Dr. C. Lightner Fayetteville State University

32

Police Scheduling Problem (Continued)

Define the ConstraintsEach shift must have at least the minimum number of officers

x6+x1 ≥ 5

x1+x2 ≥ 6

x2+x3 ≥ 10

x3+x4 ≥ 7

x4+x5 ≥ 4

x5+x6 ≥ 6

Nonnegativity constraints x1 ≥ 0, x2 ≥ 0, x3 ≥ 0, x4 ≥ 0, x5 ≥ 0, x6 ≥ 0

Page 33: Problem Formulation (LP Section1)

Dr. C. Lightner Fayetteville State University

33

Police Scheduling LP Formulation

Min x1 + x2 + x3 + x4 + x5 + x6

s.t.x6+x1 ≥ 5

x1+x2 ≥ 6

x2+x3 ≥ 10

x3+x4 ≥ 7

x4+x5 ≥ 4

x5+x6 ≥ 6

x1 ≥ 0, x2 ≥ 0, x3 ≥ 0, x4 ≥ 0, x5 ≥ 0, x6 ≥ 0

Page 34: Problem Formulation (LP Section1)

Dr. C. Lightner Fayetteville State University

34

THE END

See your textbook for more examples and detailed explanations

of all topics discussed in these notes.


Recommended