+ All Categories
Home > Documents > Process control for intensifying ... -...

Process control for intensifying ... -...

Date post: 12-Sep-2018
Category:
Upload: trinhdang
View: 222 times
Download: 0 times
Share this document with a friend
25
BiogasForum Seminar, Nov 29, 2005 DTU Jing Liu Jing Liu Dept. of Biotechnology, Center for Chemistry and Chemical Engine Dept. of Biotechnology, Center for Chemistry and Chemical Engine ering, Lund University, Sweden ering, Lund University, Sweden BiogasForum Öresund seminar ”Process control in biogas reactors”, Copenhagen, Nov. 29, 2005 Process control for intensifying biogas production Process control for intensifying biogas production in anaerobic fermentation in anaerobic fermentation
Transcript

BiogasForum Seminar, Nov 29, 2005 DTU

Jing LiuJing LiuDept. of Biotechnology, Center for Chemistry and Chemical EngineDept. of Biotechnology, Center for Chemistry and Chemical Engineering, Lund University, Swedenering, Lund University, Sweden

BiogasForum Öresund seminar ”Process control in biogas reactors”, Copenhagen, Nov. 29, 2005

Process control for intensifying biogas production Process control for intensifying biogas production

in anaerobic fermentationin anaerobic fermentation

BiogasForum Seminar, Nov 29, 2005 DTU

Main degradation pathways of AD

Organic polymers

Soluble organic monomers

Acetate H2 CO2

Fermentation intermediates

CH4 CO2

Modified from McCarty, 1982; Gujer and Zehnder, 1983)

Hydrolysis

Acidogenesis

Acetogenesis and dehydrogenation

Methanogenesis

ICA2005, May 31, 2005 Busan

BiogasForum Seminar, Nov 29, 2005 DTU

Biogas production in nature

Biogas production occurs spontaneously in nature

Marshes

Rubbish dumps

Cow’s digestive tract

Insect guts

Biogas

BiogasForum Seminar, Nov 29, 2005 DTU

Biogas production in engineered devices

Industrial AD bioreactor Landfill

Energy crops

Wastewater

Solid waste

Biogas

Treated wastewater

Compost

1 m3 of Biogas (70% CH4 + 30% CO2)= 0.66 liter diesel fuel= 0.75 liter petrol = 0.25 m3 propane= 0.20 m3 butane= 0.85 kg coal

BiogasForum Seminar, Nov 29, 2005 DTU

Closed-tank reactor w ith heating and

m ixing

Waste stabilization using AD

China began using biogas for heat, light

and cooking

Rapid and w orldw ide developm ent of

sim ple AD

Energy crisis (1973, 1979) m ade biogas

as an energy source

Millions of sm all digesters w ere constructed in

China, India.

Non-erergy benefits of AD w ere

recognized - sludge and odor reduction,

Fram -based & centralized

digesters w ere develped in Europe

Decom position of organic toxic and

hazardous com pound

Pioneer w ork of ICA for high rate AD

1920 1973 1985 1996

Biogas w as occasional used for

heat

Pioneer w ork by Busw ell in

m icrobiology

Sanitation concerns

Fueling street lam ps in UK Lim ited research in

AD

Sm all-scale energy and sanitation system s w ere

prom oted in Asia

Energy + w aste handling + pathogen

reduction

Municipal solid w aste handling

ICA+D in AD

AD + FC

Being a part of

integrated recovery

system for sustainable

devel.

History of AD as a process for practical use

BiogasForum Seminar, Nov 29, 2005 DTU

Characteristic of AD

Low energy yield from acetogenic step

Methane production

Low cellular yield

A multi-step process

Sustainable development

Pathogen control

Sludge reduction

Nutrients recycle

Waste handling

Renewable energy

Advantages

Risk of system overload

Sensitive to environmental changes

Unstable process

Large reactor volume

Long retention time

Disadvantages

ICA2005, May 31, 2005 Busan

BiogasForum Seminar, Nov 29, 2005 DTU

Problem-solving strategies

Risk of system overload

Sensitive to environmental changes

Unstable process

Large reactor volume

Long retention time

Disadvantages

Microbiologicalstudy

Suitable reactorconfiguration

Optimization of feedstock

UASB, anaerobic filter (packed-bed reactor), suspended bed reactor, baffled reactor, rotating disk,etc. Intensify the process by maintaining a high density of microorganisms.

Two-stage or multi-stage design To achieve a separate optimization in different stages

Close study of microbial consortia and anaerobic ecosystem better understanding of complex degradation and gain process knowledge

Properly mixing feedstock from various sources that characterize in enrichment of different nutrients optimization of C/N ratio

Enhancedprocess monitoring

and control

Often being neglected in

full-scale plants

BiogasForum Seminar, Nov 29, 2005 DTU

Full scale operation

SCADA-system and plant operator

Few or no Sensor

Actuators

PLC

Bioreactor

Poor information flow from the process (often only flow rate, temp, etc)Process operation in “black box” mode, relies on operator’s experienceA large safety margin for a reliable operationControl variables are uncoupled from the dynamic state of process

BiogasForum Seminar, Nov 29, 2005 DTUICA2005, May 31, 2005 Busan

Problem-solving strategies

Risk of system overload

Sensitive to environmental changes

Unstable process

Large reactor volume

Long retention time

Disadvantages

Intensify the process by maintaining a high density

of microorganisms

Smaller reactor volume

Short retention time

Enhanced process monitoring and control -

ICA

Ensure reliable and stable operation

Prevent the process from failure

Allow the degradation and biogas production at a higher specific rate

Combine a suitable bioreactor design with enhanced process monitoring and control technologies

Operate bioreactors far below their max. capacity

BiogasForum Seminar, Nov 29, 2005 DTU

Actuators

Plant wide and integrated control

Diagnosis

Sensors and instrumentation

Control and automation

Information system

Modeling and simulation

Decision support system

Detection and early warning

ICA in AD

ICA issues

BiogasForum Seminar, Nov 29, 2005 DTU

Component block diagram of the control system

BioprocessSlave controller∑

pH sensor

+

-

e1

feeding rate

Reference of gas flow rate M aster

controller

O utput∑

Gas flow meter

e2+

-

reference pH

Rule-based system

D value

A cascade control structure and a rule-based system with extremum-seeking feature

Cascade contorl + extremum-seeking

BiogasForum Seminar, Nov 29, 2005 DTU

Rule-based system with extremum-seeking feature

3.4

3.6

3.8

4

4.2

4.4

4.6

4.8

0 1 2 3 4 5 6 7Time (hour)

Gas

flow

rate

(lga

s ·lre

acto

r-1·d

ay-1

)

GasFlow (setp o int )

GasFlow (mo nito red )

to add a small increment in the feed rate over a short period of time, then to closely monitor and analyze the process response

to test the upper limit of the process treatment capacity and maximize the reactor performance

to add a small increment in the feed rate over a short period of time, then to closely monitor and analyze the process response

to test the upper limit of the process treatment capacity and maximize the reactor performance

BiogasForum Seminar, Nov 29, 2005 DTU

Develop a fast reacting control system based on existing simple sensors

Schedule control tasks according to different time scales

Protect process from overload

Reject disturbances

Up-flow anaerobic fixed bed reactor

Feeding tank

DAQ hardware

Gas flow meter & infrared sensor for methane

pH meter

Feeding pumpRecirculation pump

Effluent outlet

Gas outlet

Data

Computer

Gas-liquid separation unit

P P

Anaerobic bioreactor can be operated close to the maximum capacity, still having enough

safety margins for reliable operation

AD reactor can be operated close to its maximum capacity

BiogasForum Seminar, Nov 29, 2005 DTU

15

20

25

30

35

40

45

50

55

60

65

70

75

0 10 20 30 40 50 60 70 80 90 100 110

Gas

com

posit

ion

(%)

6.4

6.5

6.6

6.7

6.8

6.9

7.0

7.1

7.2

7.3

7.4

pH

CH4 ( infra red se nsor)CH4 (GC)

CO2 ( infra red se nsor)CO2 (GC)

pH se t point

pH monit ore d

0

5

10

15

20

25

30

0 10 20 30 40 50 60 70 80 90 100 110

T ime (h)

Org

anic

load

/deg

rade

d(g

CO

D·l re

acto

r-1·d

-1)

0

10

20

30

40

50

60

70

80

90

100

COD

rem

oval

rate

(%)

Organic degraded

Organic load

COD remova l ra t e

0.20

0.25

0.30

0.35

0.40

0.45

0.50

0.55

0.60

0.65

0.70

0 10 20 30 40 50 60 70 80 90 100 110

T ime (h)

Gas

yie

ld (l

gas·g

CO

D rem

oved

-1)

Ga s yie ld

CH4 yie ld

0

1

2

3

4

5

6

7

8

9

10

11

12

0 10 20 30 40 50 60 70 80 90 100 110

Gas

flow

rate

(lga

s·lre

acto

r-1·d

-1)

0

2

4

6

8

10

12

14

16

18

20

22

24

Org

anic

deg

rade

d (g

CO

D·l rea

ctor

-1·d

-1)

Ga s f low se t point

Orga nic de gra de d

Gas f low monit ored

Only 4 days were needed to increase the OLR from 0 to 27 g COD·lreactor-1·d-1.

Startup operation with control

BiogasForum Seminar, Nov 29, 2005 DTU

5

6

7

8

9

10

11

142 143 144 145 146 147 148 149 150 151 152

Gas

flow

(lga

s·lre

acto

r-1·d

-1)

0

5

10

15

20

25

30

OLR

(g C

OD

·l reac

tor-1

·d-1

)

Ga s f low i d

Gas f low se t point

OLR

8

9

10

11

12

13

14

159 160 161 162 163 164 165

Gas

flow

(lga

s·lre

acto

r-1·d

-1)

15

20

25

30

35

40

45

OLR

(g C

OD

·l reac

tor-1

·d-1

)

OLR Gas f low monit ore d

Gas f low se t point

30

35

40

45

50

55

60

65

70

142 143 144 145 146 147 148 149 150 151 152

T ime (h)

Gas

com

psiti

on (%

)

6 .5

6.6

6.7

6.8

6.9

7.0

7.1

7.2

pH

CH4 ( infra re d se nsor)

pH monit ored CO2 ( infra red sensor)

pH se t point

32

37

42

47

52

57

62

67

159 160 161 162 163 164 165

T ime (h)

Gas

com

posit

ion

(%)

6 .5

6.6

6.7

6.8

6.9

7.0

7.1

7.2

pH

CH4 ( infra red sensor)

pH se t pointCO2 ( infra re d se nsor)

pH monit ored

6

7

8

9

10

11

12

13

14

15

16

159 160 161 162 163

Influ

ent C

OD

(g·l-1

)

2.6

2.7

2.8

2.9

3.0

3.1

3.2

3.3

3.4

3.5

3.6

Influ

ent f

low

rate

(l·d

-1)Inf luent COD

Influent f low

2

3

4

5

6

7

8

9

10

11

12

145.5 146.0 146.5 147.0 147.5 148.0

Influ

ent C

OD

(g·l-1

)

2.6

2.7

2.8

2.9

3.0

3.1

3.2

3.3

3.4

3.5

3.6

Influ

ent f

low

rate

(l·d

-1)

Inf luent COD Influent f low ra t e

Short term under- & overload

BiogasForum Seminar, Nov 29, 2005 DTU

30

35

40

45

50

55

60

65

70

190 191 192 193 194 195 196 197 198 199

T ime (h)

Gas

com

posit

ion

(%)

6 .70

6.75

6.80

6.85

6.90

6.95

7.00

pH

CH4 (infra re sensor)

pH se t pointCO2 (infra re se nsor)

pH monit ore d

9

10

11

12

13

190 191 192 193 194 195 196 197 198 199

Gas

flow

rate

(lga

s·lre

acto

r-1·d

-1)

15

19

23

27

31

35

OLR

(g C

OD

·l reac

tor-1

·d-1

)

Ga s f low se t point

OLR Ga s f low monit ore d

5

6

7

8

9

190 191 192 193 194 195 196 197 198 199

Influ

ent C

OD

(g·l-1

)

0

1

2

3

4

5

6

7

Influ

ent f

low

rate

(l·d

-1)Inf luent f low ra t e

Inf lue nt COD

Long term underload

BiogasForum Seminar, Nov 29, 2005 DTU

0

1

2

3

4

5

6

220 221 222 223 224 225 226 227 228 229 230 231

Gas

flow

rate

(lga

s·lre

acto

r-1·d

-1)

0

2

4

6

8

10

12

14

OLR

(g C

OD

·l reac

tor-1

·d-1

)

OLR

Ga s f low monit ore d

Ga s f low se t point

0

2

4

6

8

10

12

14

16

262 264 266 268 270 272 274 276 278

Gas

flow

rate

(lga

s·lre

acto

r-1·d

-1)

0

5

10

15

20

25

30

35

40

OLR

(g C

OD

·l reac

tor-1

·d-1

)

Ga s f low se t point

Gas f low monit ore d

OLR

Inje c t ion of conc e rned fe e ding

30

35

40

45

50

55

60

65

70

220 221 222 223 224 225 226 227 228 229 230 231

T ime (h)

Gas

com

posit

ion

(%)

6.80

6.85

6.90

6.95

7.00

7.05

7.10

7.15

7.20

pH

CH4 ( infra red se nsor)

pH se t point

pH monit ore d

CO2 (infra re d se nsor)

30

35

40

45

50

55

60

65

70

262 264 266 268 270 272 274 276 278T ime (h)

Gas

com

posit

ion

(%)

6.7

6.8

6.9

7.0

7.1

7.2

7.3

7.4

pH

CH4 ( infra re d se nsor)

pH monit ore dCO2 (infra red se nsor)

pH se t point

0

5

10

15

20

25

30

35

40

220 221 222 223 224 225 226 227 228 229 230 231

Influ

ent C

OD

(g·l-1

)

0.0

0.2

0.4

0.6

0.8

1.0

1.2

Influ

ent f

low

rate

(l·d

-1)

Inf luent COD

Inf lue nt f low ra t e

0

5

10

15

20

25

30

35

40

262 264 266 268 270 272 274 276 278

Influ

ent C

OD

(g·l-1

)

0

0.2

0.4

0.6

0.8

1

1.2

1.4

1.6

Influ

ent f

low

rate

(l·d

-1)

Inf lue nt COD

Influent f low ra t e

Long term overload & shock load

BiogasForum Seminar, Nov 29, 2005 DTU

1

2

3

4

5

6

296 300 304 308 312 316 320 324 328 332 336

Gas

flow

rate

(lga

s·lre

acto

r-1·d

-1)

0

4

8

12

16

20

OLR

(g C

OD

·l reac

tor-1

·d-1

)

Ga s f low se t point

Ga s f low monit ored

OLR

25

30

35

40

45

50

55

60

65

70

75

296 300 304 308 312 316 320 324 328 332 336

Time (h)

Gas

com

posit

ion

(%)

6 .60

6.65

6.70

6.75

6.80

6.85

6.90

6.95

7.00

7.05

7.10

pH

CH4 ( infra red se nsor)

CO2 (infra red se nsor)pH monit ored

pH se t point

0

5

10

15

20

25

30

35

40

296 301 306 311 316 321 326 331 336

Tem

pera

ture

(o C

)

0.0

0.5

1.0

1.5

2.0

2.5

3.0

3.5

Influ

ent f

low

rate

(l·d

-1)

Inf lue nt f low ra t e

Tempe ra t ure

Temperature variation

BiogasForum Seminar, Nov 29, 2005 DTU

0

1

2

3

4

5

6

7

8

9

10

11

12

0 10 20 30 40 50 60 70 80 90 100 110

Time (hour)

Gas

flow

rate

(lga

s· lre

acto

r-1· d

ay-1

)

0

2

4

6

8

10

12

14

16

18

20

22

24

Org

anic

deg

rade

d (g

CO

D· l r

eact

or-1

· day

-1)

Process control – stability problem at high load

BiogasForum Seminar, Nov 29, 2005 DTU

Selection of parameter for variable gain

-0 .0 8

-0 .0 6

-0 .0 4

-0 .0 2

0 .0 0

0 .0 2

0 .0 4

0 .0 6

0 .0 8

0 .10

0 .12

0 .14

0 10 2 0 3 0 4 0 50 6 0 70 8 0 9 0 10 0 110

Time (h)

delta

pH

Variation of ΔpH during a start-up operation.

-0 .0 8

-0 .0 6

-0 .0 4

-0 .0 2

0 .0 0

0 .0 2

0 .0 4

0 .0 6

0 .0 8

0 .10

0 .12

0 .14

14 0 16 0 180 2 0 0 2 20 24 0 2 6 0 2 8 0 3 00 32 0 3 4 0

Time (h)

delta

pH

Variation of ΔpH for short-term underload, short-term overload, long-term underload, long-term overload, long-term overload + shock load, sudden changes of reactor temperature.

-0 .0 8

-0 .0 6

-0 .0 4

-0 .0 2

0 .0 0

0 .0 2

0 .0 4

0 .0 6

0 .0 8

0 .10

0 .12

0 .14

40 0 42 0 4 4 0 4 6 0 4 8 0 50 0 52 0 54 0 56 0 58 0 6 00 6 2 0 6 4 0

Time (hr)

delta

pH

Variation of ΔpH during a steady-state operation.

-0 .0 8

-0 .0 6

-0 .0 4

-0 .0 2

0 .0 0

0 .0 2

0 .0 4

0 .0 6

0 .0 8

0 .10

0 .12

0 .14

0 10 2 0 3 0 4 0 50 6 0 70 8 0 9 0 10 0 110

Time (h)

delta

pH

-0 .0 8

-0 .0 6

-0 .0 4

-0 .0 2

0 .0 0

0 .0 2

0 .0 4

0 .0 6

0 .0 8

0 .10

0 .12

0 .14

14 0 160 18 0 2 0 0 2 2 0 2 4 0 2 60 28 0 3 00 32 0 3 4 0

T ime (h)

delta

pH

-0 .0 8

-0 .0 6

-0 .0 4

-0 .0 2

0 .0 0

0 .0 2

0 .0 4

0 .0 6

0 .0 8

0 .10

0 .12

0 .14

4 00 4 20 44 0 4 60 4 80 50 0 52 0 540 56 0 58 0 6 00 62 0 6 40

T ime (hr)

delta

pH

± 0.015 ± 0.015

± 0.015 ____ΔpH = pHsetpoint – pHreactor

BiogasForum Seminar, Nov 29, 2005 DTU

Rule-based model for variable gain control – estimate the process gain via observation of the ΔpH (pHsetpoint - pHreactor)

BioprocessSlave controller∑

pH sensor

+

-

e1

feeding rate

Reference of gas flow rate Master

controller

Output∑

Gas flow meter

e2+

-

reference pH

Rule-based system

D value

State dependent variable gain control system

BiogasForum Seminar, Nov 29, 2005 DTU

S2

S6S3

S4

S5S7

S11

29

14

7

3

6

12

5

8

13

4

1011

171820

22

19

2116

S8

23

24 25

State machine representation of the rule-based model for variable gaincontrol in the inner feedback loop. Each circle represents an individual state.The arrow with fine line indicates the direction of state shift.

Rule-based model for variable gain control

BiogasForum Seminar, Nov 29, 2005 DTU

Pathways of state shifting

BiogasForum Seminar, Nov 29, 2005 DTU

0

2

4

6

8

10

12

14

0 50 10 0 150 2 0 0 2 50 3 0 0 3 50 4 0 0 4 50 50 0 550

Gas

flow

rate

(lga

s·lre

acto

r-1·d

-1)

0

10

2 0

3 0

4 0

50

6 0

OLR

(g C

OD

·l reac

tor-1

·d-1

)

Gas flo w setp o int

Gas flo w mo nito red

Org anic lo ad ing rate

6 .7

6 .8

6 .9

7.0

7.1

7.2

7.3

0 50 10 0 150 2 0 0 2 50 3 0 0 3 50 4 0 0 4 50 50 0 550

pH

-0 .10

-0 .0 5

0 .0 0

0 .0 5

0 .10

0 .15

0 .2 0

0 .2 5

0 .3 0

pH

p H setp o int

Δp H

p H reacto r

0 .0

0 .1

0 .2

0 .3

0 .4

0 50 10 0 150 2 0 0 2 50 3 0 0 3 50 4 0 0 4 50 50 0 550

T ime (h)

Cont

rol g

ain

(Pk)

-0 .1

0 .0

0 .1

0 .2

0 .3

0 .4

0 .5

pH

co ntro l g ain

Δp H

0

2

4

6

8

10

12

14

0 2 0 4 0 6 0 80 10 0 12 0 140 16 0 18 0

Gas

flow

rate

(lga

s·lre

acto

r-1·d

-1)

0

10

2 0

3 0

4 0

50

6 0

OLR

(g C

OD

·l reac

tor-1

·d-1

)Gas flo w setp o int

Gas flow mo nito red

Org anic lo ad ing rate

6 .8

6 .9

7

7.1

7.2

7.3

7.4

0 2 0 4 0 6 0 8 0 10 0 12 0 14 0 160 18 0

pH

-0 .10

-0 .05

0 .00

0 .05

0 .10

0 .15

0 .20

0 .25

0 .30

pH

p H setp o int

Δp H

p H reacto r

0

0 .1

0 .2

0 .3

0 .4

0 2 0 4 0 6 0 80 10 0 12 0 14 0 16 0 18 0T ime (h)

Cont

rol g

ain

(Pk)

-0 .1

0

0 .1

0 .2

0 .3

0 .4

0 .5

pH

Δp H

Co ntro l g ain

0

2

4

6

8

10

12

14

0 50 10 0 150 2 0 0 2 50 3 0 0 3 50 4 0 0 4 50 50 0 550

Gas

flow

rate

(lga

s·lre

acto

r-1·d

-1)

0

10

2 0

3 0

4 0

50

6 0

OLR

(g C

OD

·l reac

tor-1

·d-1

)

Gas flo w setp o int

Gas flo w mo nito red

Org anic lo ad ing rate

6 .7

6 .8

6 .9

7.0

7.1

7.2

7.3

0 50 10 0 150 2 0 0 2 50 3 0 0 3 50 4 0 0 4 50 50 0 550

pH

-0 .10

-0 .0 5

0 .0 0

0 .0 5

0 .10

0 .15

0 .2 0

0 .2 5

0 .3 0

pH

p H setp o int

Δp H

p H reacto r

0 .0

0 .1

0 .2

0 .3

0 .4

0 50 10 0 150 2 0 0 2 50 3 0 0 3 50 4 0 0 4 50 50 0 550

T ime (h)

Cont

rol g

ain

(Pk)

-0 .1

0 .0

0 .1

0 .2

0 .3

0 .4

0 .5

pH

co ntro l g ain

Δp H

0

2

4

6

8

10

12

14

0 2 0 4 0 6 0 80 10 0 12 0 140 16 0 18 0

Gas

flow

rate

(lga

s·lre

acto

r-1·d

-1)

0

10

2 0

3 0

4 0

50

6 0

OLR

(g C

OD

·l reac

tor-1

·d-1

)Gas flo w setp o int

Gas flow mo nito red

Org anic lo ad ing rate

6 .8

6 .9

7

7.1

7.2

7.3

7.4

0 2 0 4 0 6 0 8 0 10 0 12 0 14 0 160 18 0

pH

-0 .10

-0 .05

0 .00

0 .05

0 .10

0 .15

0 .20

0 .25

0 .30

pH

p H setp o int

Δp H

p H reacto r

0

0 .1

0 .2

0 .3

0 .4

0 2 0 4 0 6 0 80 10 0 12 0 14 0 16 0 18 0T ime (h)

Cont

rol g

ain

(Pk)

-0 .1

0

0 .1

0 .2

0 .3

0 .4

0 .5

pH

Δp H

Co ntro l g ain

St a

te d

e pen

dent

var

iabl

e ga

in c

ontro

l

BiogasForum Seminar, Nov 29, 2005 DTU

Steer the process for a fast start-up according to the state dynamic

Considerable improvement of the process stability at high-rate operation

Improved performance is achieved by varying the proportional gain of inner feedback loop according to the process dynamic

Controller and control structure are still quite simple allow to be easily implemented

Further improvement of operational stability is possible by scheduling the pushing authority of extremum-seeking control.

Conclusions


Recommended