+ All Categories
Home > Documents > Proportional controller design

Proportional controller design

Date post: 04-Feb-2016
Category:
Upload: havard
View: 34 times
Download: 0 times
Share this document with a friend
Description:
Proportional controller design. Obtain open loop Bode plot Convert design specs into Bode plot req. Select K P based on requirements: For improving ess: K P = K p,v,a,des / K p,v,a,act For fixing Mp: select w gcd to be the freq at which PM is sufficient, and K P = 1/|G(j w gcd )| - PowerPoint PPT Presentation
Popular Tags:
37
Proportional controller design • Obtain open loop Bode plot • Convert design specs into Bode plot req. Select K P based on requirements: For improving ess: K P = K p,v,a,des / K p,v,a,act For fixing Mp: select gcd to be the freq at which PM is sufficient, and K P = 1/|G(j gcd )| – For fixing speed: from td, tr, tp, or ts requirement, find out n , let gcd = n and choose K P as above
Transcript
Page 1: Proportional controller design

Proportional controller design

• Obtain open loop Bode plot• Convert design specs into Bode plot req.

• Select KP based on requirements:

– For improving ess: KP = Kp,v,a,des / Kp,v,a,act

– For fixing Mp: select gcd to be the freq at which PM is sufficient, and KP = 1/|G(jgcd)|

– For fixing speed: from td, tr, tp, or ts requirement, find out n, let gcd = n and choose KP as above

Page 2: Proportional controller design

Bode Diagram

Frequency (rad/sec)

Ph

ase

(deg

)M

agn

itu

de

(dB

)

-10

0

10

20

30

40

50Gm = Inf, Pm = 17.964 deg (at 6.1685 rad/sec)

10-1

100

101

-180

-135

-90

G(s)=40/s(s+2)

Mp=10%

Page 3: Proportional controller design

0 1 2 3 4 5 60

0.2

0.4

0.6

0.8

1

1.2

1.4

1.6

1.8

Time (sec)

Am

plit

ud

e

Unit Step Response

ts=3.65 tp=0.508

Mp=60.4%

ess tolerance band: +-2%

td=0.159

tr=0.19

yss=1

ess=0

Page 4: Proportional controller design

clear all;n=[0 0 40]; d=[1 2 0];figure(1); clf; margin(n,d);%proportional control design:figure(1); hold on; grid; V=axis;Mp = 10/100;zeta = sqrt((log(Mp))^2/(pi^2+(log(Mp))^2));PMd = zeta * 100 + 3;semilogx(V(1:2), [PMd-180 PMd-180],':r');%get desired w_gcx=ginput(1); w_gcd = x(1);KP = 1/abs(polyval(n,j*w_gcd)/polyval(d,j*w_gcd));figure(2); margin(KP*n,d);figure(3); stepchar(KP*n, d+KP*n);

Page 5: Proportional controller design

Bode Diagram

Frequency (rad/sec)

Ph

ase

(deg

)M

agn

itu

de

(dB

)

-40

-20

0

20

40Gm = Inf, Pm = 63.31 deg (at 1.0055 rad/sec)

10-1

100

101

-180

-135

-90

Page 6: Proportional controller design

1 2 3 4 5 60

0.2

0.4

0.6

0.8

1

1.2

Time (sec)

Am

plit

ud

e

Unit Step Response

ts=3.98 tp=2.82

Mp=6.03%ess tolerance band: +-2%

td=0.883

tr=1.33

yss=1

ess=0

Page 7: Proportional controller design

n=[1]; d=[1/5/50 1/5+1/50 1 0];figure(1); clf; margin(n,d);%proportional control design:figure(1); hold on; grid; V=axis;Mp = 10/100;zeta = sqrt((log(Mp))^2/(pi^2+(log(Mp))^2));PMd = zeta * 100 + 3;semilogx(V(1:2), [PMd-180 PMd-180],':r');%get desired w_gcx=ginput(1); w_gcd = x(1);Kp = 1/abs(polyval(n,j*w_gcd)/polyval(d,j*w_gcd));Kv = Kp*n(1)/d(3); ess=0.01; Kvd=1/ess;z = w_gcd/5; p = z/(Kvd/Kv);ngc = conv(n, Kp*[1 z]); dgc = conv(d, [1 p]);figure(1); hold on; margin(ngc,dgc);[ncl,dcl]=feedback(ngc,dgc,1,1);figure(2); step(ncl,dcl); grid;figure(3); margin(ncl*1.414,dcl); grid;

Page 8: Proportional controller design

-100

-50

0

Mag

nit

ud

e (d

B)

10-1

100

101

102

103

-270

-225

-180

-135

-90

Ph

ase

(deg

)

Bode DiagramGm = 34.8 dB (at 15.8 rad/sec) , Pm = 77.8 deg (at 0.981 rad/sec)

Frequency (rad/sec)

Page 9: Proportional controller design

-100

-50

0

50M

agn

itu

de

(dB

)

100

101

102

103

-270

-225

-180

-135

-90

Ph

ase

(deg

)

Bode DiagramGm = 13.9 dB (at 36.8 rad/sec) , Pm = 53 deg (at 13.3 rad/sec)

Frequency (rad/sec)

Page 10: Proportional controller design

-200

-100

0

100

200M

agn

itu

de

(dB

)

10-4

10-2

100

102

-270

-180

-90

Ph

ase

(deg

)

Bode DiagramGm = 26 dB (at 15 rad/sec) , Pm = 51.7 deg (at 2.31 rad/sec)

Frequency (rad/sec)

Page 11: Proportional controller design

0 2 4 6 8 10 120

0.2

0.4

0.6

0.8

1

1.2

1.4Step Response

Time (sec)

Am

plit

ud

e

Page 12: Proportional controller design
Page 13: Proportional controller design
Page 14: Proportional controller design
Page 15: Proportional controller design

20

30

40

50

60

70

Mag

nit

ud

e (d

B)

10-2

10-1

100

101

102

0

45

90

Ph

ase

(deg

)

Bode Diagram

Frequency (rad/sec)

20*log(KP)

KP/KD

Place gcd here

Page 16: Proportional controller design
Page 17: Proportional controller design

PD Control• C(s)=KP + KDs = KP(1+TDs)

• For fixing wgcd and PMd

– Compute wgcd from tr, td, etc

– Compute PMd from Mp

– Compute = PMd – PM@wgcd

– Compute TD = tan()/wgcd

– KP = 1/sqrt(1+Td2wgcd

2)/abs(G(jwgcd))

– KD=KPTD

Page 18: Proportional controller design

C(s) G(s)

ssssG

23 3.002.0

1)(

Example

Want: maximum overshoot <= 10% rise time <= 0.3 sec

Page 19: Proportional controller design

Bode Diagram

Frequency (rad/sec)

Ph

ase

(deg

)M

agn

itu

de

(dB

)

-100

-80

-60

-40

-20

0

20Gm = 23.522 dB (at 7.0711 rad/sec), Pm = 73.367 deg (at 0.9768 rad/sec)

10-1

100

101

102

-270

-225

-180

-135

-90

Page 20: Proportional controller design

0.5 1 1.5 2 2.5 3 3.5 4 4.5 50

0.2

0.4

0.6

0.8

1

1.2

Time (sec)

Am

plit

ud

e

Unit Step Response

ts=2.68 tp=3

Mp=-1.06%

ess tolerance band: +-2%

td=0.841

tr=1.52

yss=1

ess=0

Page 21: Proportional controller design

n=[0 0 1]; d=[0.02 0.3 1 0];

figure(1); clf; margin(n,d);

Mp = 10/100;

zeta = sqrt((log(Mp))^2/(pi^2+(log(Mp))^2));

PMd = zeta * 100 + 3;

tr = 0.3; w_n=1.8/tr; w_gcd = w_n;

PM = angle(polyval(n,j*w_gcd)/polyval(d,j*w_gcd));

phi = PMd*pi/180-PM; Td = tan(phi)/w_gcd;

KP = 1/abs(polyval(n,j*w_gcd)/polyval(d,j*w_gcd));

KP = KP/sqrt(1+Td^2*w_gcd^2); KD=KP*Td;

ngc = conv(n, [KD KP]);

figure(2); margin(ngc,d);

figure(3); stepchar(ngc, d+ngc);

Could be a little less

Page 22: Proportional controller design

Bode Diagram

Frequency (rad/sec)

Ph

ase

(deg

)M

agn

itu

de

(dB

)

-60

-40

-20

0

20Gm = Inf, Pm = 62.116 deg (at 6 rad/sec)

100

101

102

-180

-135

-90

Page 23: Proportional controller design

0.2 0.4 0.6 0.8 1 1.2 1.40

0.2

0.4

0.6

0.8

1

1.2

Time (sec)

Am

plit

ud

e

Unit Step Response

ts=0.655 tp=0.461

Mp=6.67%ess tolerance band: +-2%

td=0.154

tr=0.225

yss=1

ess=0

Less than spec

Page 24: Proportional controller design

Variation

• Restricted to using KP = 1

• Meet Mp requirement

• Find gc and PM

• Find PMd

• Let = PMd – PM + (a few degrees)

• Compute TD = tan()/wgcd

• KP = 1; KD=KPTD

Page 25: Proportional controller design

Bode Diagram

Frequency (rad/sec)

Ph

ase

(deg

)M

agn

itu

de

(dB

)

-80

-60

-40

-20

0

20Gm = 9.5424 dB (at 7.0711 rad/sec), Pm = 32.613 deg (at 3.7468 rad/sec)

100

101

102

-270

-225

-180

-135

-90

Page 26: Proportional controller design

0.5 1 1.5 2 2.5 3 3.5 4 4.5

0.2

0.4

0.6

0.8

1

1.2

1.4

Time (sec)

Am

plit

ud

e

Unit Step Response

ts=3.17 tp=0.814

Mp=38.9%

ess tolerance band: +-2%

td=0.317

tr=0.317

yss=1

ess=0

Page 27: Proportional controller design

n=[0 0 5]; d=[0.02 0.3 1 0];

figure(1); clf; margin(n,d);

Mp = 10/100;

zeta = sqrt((log(Mp))^2/(pi^2+(log(Mp))^2));

PMd = zeta * 100 + 10;

[GM,PM,wgc,wpc]=margin(n,d);

phi = (PMd-PM)*pi/180; Td = tan(phi)/wgc;

KP=1; KD=KP*Td;

ngc = conv(n, [KD KP]);

figure(2); margin(ngc,d);

figure(3); stepchar(ngc, d+ngc);

Page 28: Proportional controller design

Bode Diagram

Frequency (rad/sec)

Ph

ase

(deg

)M

agn

itu

de

(dB

)

-60

-40

-20

0

20Gm = Inf, Pm = 52.605 deg (at 3.9488 rad/sec)

100

101

102

-180

-150

-120

-90

Page 29: Proportional controller design

0.5 1 1.5 2 2.50

0.2

0.4

0.6

0.8

1

1.2

Time (sec)

Am

plit

ud

e

Unit Step Response

ts=1.56 tp=0.728

Mp=15.6%ess tolerance band: +-2%

td=0.236

tr=0.321

yss=1

ess=0

Page 30: Proportional controller design

n=[0 0 5]; d=[0.02 0.3 1 0];

figure(1); clf; margin(n,d);

Mp = 10/100;

zeta = sqrt((log(Mp))^2/(pi^2+(log(Mp))^2));

PMd = zeta * 100 + 18;

[GM,PM,wgc,wpc]=margin(n,d);

phi = (PMd-PM)*pi/180; Td = tan(phi)/wgc;

Kp=1; Kd=Kp*Td;

ngc = conv(n, [Kd Kp]);

figure(2); margin(ngc,d);

figure(3); stepchar(ngc, d+ngc);

Page 31: Proportional controller design

Bode Diagram

Frequency (rad/sec)

Ph

ase

(deg

)M

agn

itu

de

(dB

)

-60

-40

-20

0

20Gm = Inf, Pm = 57.956 deg (at 4.1131 rad/sec)

100

101

102

-180

-135

-90

Page 32: Proportional controller design

0 0.5 1 1.5 20

0.2

0.4

0.6

0.8

1

1.2

1.4

Time (sec)

Am

plit

ud

e

Unit Step Response

ts=1.07 tp=0.695

Mp=10.7%ess tolerance band: +-2%

td=0.22

tr=0.305

yss=1

ess=0

Page 33: Proportional controller design
Page 34: Proportional controller design
Page 35: Proportional controller design
Page 36: Proportional controller design
Page 37: Proportional controller design

Recommended