+ All Categories
Home > Documents > Propylene production by heat integrated dehydrogenation of ...

Propylene production by heat integrated dehydrogenation of ...

Date post: 01-Feb-2022
Category:
Upload: others
View: 6 times
Download: 0 times
Share this document with a friend
85
CPD NR 3300 Conceptual Process Design Process Systems Engineering DelftChemTech - Faculty of Applied Sciences Delft University of Technology Appendices 1 Subject Propylene production by heat integrated dehydrogenation of propane with hydrogen oxidation (Hipphox) 2 Authors (Study nr.) Telephone M.S. de Graaff M.J. van de Graaf M.E.J. Pepels T.W. Smoor B.G. Visschedijk 9275430 9275080 9647199 9780217 9890649 015-2617388 015-2621562 015-2126799 015-2128848 06-48106208 Assignment issued : October 6 th 2004 Report issued : January 12 th 2004 Appraisal : January 30 th 2004
Transcript

CPD NR 3300 Conceptual Process Design

Process Systems Engineering

DelftChemTech - Faculty of Applied Sciences Delft University of Technology

Appendices

1 Subject

Propylene production by heat integrated dehydrogenation of propane with hydrogen oxidation (Hipphox)

2 Authors (Study nr.) Telephone

M.S. de Graaff M.J. van de Graaf M.E.J. Pepels T.W. Smoor B.G. Visschedijk

9275430 9275080 9647199 9780217 9890649

015-2617388 015-2621562 015-2126799 015-2128848 06-48106208

Assignment issued : October 6th 2004 Report issued : January 12th 2004

Appraisal : January 30th 2004

Appendices Appendix 1.1 UOP Oleflex process .............................................................................. 1 Appendix 2.1 Process options criteria .......................................................................... 4 Appendix 3.1 Final Block scheme of the Hipphox process ............................................. 7 Appendix 3.2 Overview pure components.................................................................... 8 Appendix 4.1 Thermodynamic figures [43,47] ........................................................... 10 Appendix 4.2 Calculation of equilibrium constants...................................................... 12 Appendix 4.3 T,x,y-Diagrams.................................................................................... 17 Appendix 4.4 Equilibrium composition calculations ..................................................... 20 Appendix 4.5 Matlab simulation model ...................................................................... 25 Appendix 5.1 Process Stream Summary (PSS) ........................................................... 35 Appendix 5.2 Heat exchanger design ........................................................................ 42 Appendix 5.3 Process Flow Sheet.............................................................................. 44 Appendix 5.4 Utility summary ................................................................................... 45 Appendix 5.5 Preliminary Block scheme of the Hipphox process.................................. 46 Appendix 7.1 Heat & Mass balance for streams total .................................................. 47 Appendix 8.1 Aspen simulation ................................................................................. 50 Appendix 8.2 Calculation of reactor dimensions ......................................................... 51 Appendix 8.3 Heat transfer calculation ...................................................................... 53 Appendix 8.4 Calculation of column pressure drop ..................................................... 55 Appendix 8.5 Equipment data sheets ........................................................................ 57 Appendix 10.1 Properties of components for F&EI ..................................................... 78 Appendix 10.2 F&EI Index of Monolith reactor........................................................... 79 Appendix 10.3 F&EI index of the riser regenerator..................................................... 80 Appendix 10.4 F&EI index of the depropanizer .......................................................... 81 Appendix 10.5 F&EI index of the de-ethanizer ........................................................... 82 Appendix 10.6 F&EI index of the P/P-splitter ............................................................. 83 Appendix 10.7 Loss control credit factors .................................................................. 84 Appendix 10.8 Hazard and Operability study.............................................................. 85 Appendix 11.1 Economic Calculations........................................................................ 89 Appendix 13.1 The selection of PIQUAR criteria and weighing factors ......................... 98

1

Appendix 1.1 UOP Oleflex process

The Oleflex process converts propane and butanes to their olefins. For this project the Oleflex process for the production of propylene is used as a reference process. This document describes the main aspects of the Oleflex process. The Oleflex process uses radial-flow moving-bed reactors in series with interstage heaters. The regeneration is done in CCR-unit (Continuous catalyst regeneration). A simple block scheme of the whole complex is shown below.

Figure A.1 Block scheme of the Oleflex process The Oleflex unit looks as follows (figure A.2) [49]

Propylene

Depro-panizer

Oleflex Selective Hydrogen Purification

De-etha-nizer P/P-

split-ter

H2 Net off gas(H2)

C2-

C4+

Propane feed

2

Figure A.2 Schematic representation of the Oleflex unit In this picture it can be seen that the Oleflex unit recycles hydrogen to dilute the feed stream. The ratio hydrogen : hydrocarbons is about 1-10, usually 3 [10]. The CCR unit is a continuously reaction system for the regeneration of the Pt catalyst. The main functions are to burn off the coke and redistribute the Platinum. A stream with low oxygen concentration is needed to burn off the coke. The Pt catalyst cannot resist high oxygen concentration, as it will form a lot of PtO2, which is not desirable. Chlorine is needed to transform the oxides of Pt and Sn into chlorides. Then hydrogen is needed to reduce the chlorides. For the CCR unit a nitrogen stream is needed to lift the Pt catalyst. This nitrogen stream will vary from 25-70 Nm3/hr [8]. The Oleflex process has several advantages over other dehydrogenation processes:

- High yields (25 mol% of propane is converted with a selectivity of 90 mol%) - Moderate capital costs - Low operating requirements - Totally continuous mode - Uniform catalyst activity at all times - No effluent composition oscillations - No reactor shutdown needed for regeneration - Reaction section and regeneration section are separated, so optimal conditions

for each section possible

3

The costs of the Oleflex process are found in literature [8 (table 2)]. These numbers are shown in the following table. Table A.1 Production costs for 250 kta of Propylene

Item $/ton propylene % of total Feedstock 158 71 Utilities 50 22 Catalysts and chemicals 12 5 Fixed expenses Depreciation & amortization

76 34

By products (credits) -72 (32) Total 224 100

As can be seen from this table, the economics of the Oleflex process are largely dependent on the price difference between propane and propylene. These prices however are from 1990. These numbers are based on the production of 250 kta of propylene. In the following table the flowrates and the prices of the components are shown [8]. Table A.2 Weight balance of the Oleflex process and the prices [8].

Stream Flow rate [kta] Price [$/ton] Feed: Propane (99.5 wt%)

295

130

Products: Propylene (99.5 wt%) 250 380 Hydrogen (90 mol%) 20.3 650 Fuel components 25.3 2.6 $/GJ

Even though these prices are from 1990, the Hipphox process will be compared with these numbers for the production costs. Unfortunately there was too little information available to simulate the Oleflex process.

4

Appendix 2.1 Process options criteria

1. Energy integration regeneration with oxygen As during the regeneration of the SOC a lot of energy is released, it is very important that the heat integration is optimal. In option 2 and 3 DH and SHC are carried out in one reaction section. As in option 2 the regeneration is done in the same reactor, the heat can be delivered directly to DH. In option 3 the regeneration is done separately, but continuously and the heated catalyst and SOC flow will deliver the energy for DH. In option 1 and 4 the regeneration heat is less integrated with DH.

2. Conversion per reactor volume As in option 2 and 3 the DH and SHC take place in one reaction section, the conversion per reactor volume is higher, but there will be only a small difference, therefore the scores are 1 and 0.

3. Amount of equipment needed For option 2 and 3 less heat exchangers and reactors are required as the reaction and regeneration take place in one section.

4. Regeneration conditions optimal In option 2 the DH and SHC and regeneration are carried out in one section, it is very likely however that different conditions are optimal for the regeneration of the two. It is also very well possible that when the two are regenerated simultaneously, one of the two is regenerated before the other. In either way it will cost process time, therefore option 2 scores –2. In option 3 there is a possibility of regenerating the Pt catalyst and SOC in different units, therefore option 3 scores 0.

5. Dead time When regeneration is done continuously (option 3 and 4) there is no dead time caused by changing valves as in option 1 and 2.

6. Amount of N2 needed Since the regeneration of the second process takes place in one reactor, it has to be purged with nitrogen in order to prevent the combustion of hydrocarbons. In the other processes this is also the case, but to a lesser extent, since in option 1 only the SHC section needs to be purged, in option 3 the solids stream needs to be purged and in option 4 only the SOC stream.

7. Intrinsically safe It is clear that this is an important factor in our design, since we are working with hydrogen and oxygen. In option 3 and 4 there’s no contact possible between hydrogen and oxygen.

8. Proven technology (KRO factor) Option 2 en 3 have SHC and DH in 1 reaction section, this has not been commercialized yet.

9. Integration with existing plants

5

Various operation-blocks for DH already exist in industry today. Result of this is that more is known about it and it has already been proven to be a reliable technology. It should be possible with option 1 and 4 to integrate this design in an existing dehydrogenation plant, the SHC unit could be built next the already existing DH unit, for example an Oleflex plant. Option 2 and 3 have DH and SHC in one unit, this cannot be integrated in existing DH plants.

10. Coke formation on the SOC Due to the integrated DH and SHC there will also be coke-formation on the SOC, option 2 and 3 score –1.

11. CO formation by regeneration, which reduces SOC In the regeneration of the Pt catalyst, the coke is burnt off, and CO is formed. Due to the simultaneous regeneration of the Pt catalyst and the SOC in option 2, the CO formed will reduce the SOC.

12. Comply with (future) environmental legislation At this point all options are considered to comply with environmental legislation in the same manner, no conclusions can be drawn.

13. Safety for operators in plant and surrounding Not much can be concluded on the safety-aspect, it is clear that this is an important factor in our design, since we are working with hydrogen and oxygen. For now all process are considered equally (un-)safe for operators and surrounding.

14. Controllability of the temperature In process 3 and 4 the process is continuous, the possibility of hot-spots occurring and a bad controllable temperature inside the reaction section is therefore less likely since a continuous process is more easily controlled.

15. Controllability of the mass flows Process 1 and 4 have the advantage that between the reaction steps it is possible to adjust the streams or to take certain components out, the mass flows are easier to control than when DH and SHC are integrated.

16. Optimal conditions for DH and SHC possible In option 1 and 4 DH and SHC are carried out in different sections, therefore the conditions per unit can be optimised better. A drawback of the second and third process is that the reactions have to take place in similar conditions. This could influence the performance of one or both reactions negatively.

17. Scale-up easy Separate sections are easier to scale up than integrated sections.

18. Control system / exchangeable streams Because the regeneration of the SOC will happen in the same reactor as the SHC (and DH in option 2), there has to be a switch between the hydrocarbon stream, the nitrogen stream (to purge) and the oxygen stream. In option 3 and 4 this is not the case. So in option 1 and 2 an extra control system to switch streams is necessary.

19. Separation solid – gas necessary between reaction and regeneration section

6

An advantage of regeneration separated from the SHC in time is that the solid catalyst does not have to be separated from the gas in the reactor. Only a switch in streams is necessary. Continuous regeneration requires an extra separation step.

20. Possibility of regenerating DH catalyst and SOC simultaneously The possibility of regenerating the catalyst and SOC simultaneously has the advantage of needing less regeneration-equipment.

21. SOC regeneration efficiency For the regeneration of Pt catalyst a low oxygen partial pressure is required. The regeneration of the SOC requires high oxygen partial pressure; this means that the regeneration efficiency of the SOC will be less in option 2, because the regeneration of the Pt catalyst and the SOC is carried out simultaneously. Option 3 has also the possibility of separating the two solids and carry out the regeneration in two different regeneration sections.

22. Process must be robust Future development is aimed at the incorporation of the dehydrogenation catalyst in the solid oxygen carrier, as in two-way catalysts. Process 2 and 3 are therefore more robust, since both reactions already occur in the same reactor.

23. Equilibrium composition Due to the simultaneous removal of hydrogen by the SHC the equilibrium in the DH is instantly shifted towards propylene in option 2 and 3.

24. Veronica factor Option 2 and 3 have a complete new concept, DH and SHC integrated. A continuous process is more wanted than a batch process because the production has to be continuous.

7

Appendix 3.1 Final Block scheme of the Hipphox process

* The numbers of the flows are based on the first mass balances calculation described in chapter 5. These numbers are therefore not the optimized numbers. The numbers between the brackets are the ton of component per ton of product.

H2O (l) 95 kta (0.38) 30°C, 15 bara

2

3

4

8 Separation section 22°C 16 bara

Reaction section 600 °C 2 bara

Separation section 30 – 75 °C 12 – 25 bara

Regeneration section 600-700 °C 1-2 bara

LPG [v] 280 kta (1.12) 15 °C 17 bara

Propylene-product (v) 250 kta 15°C, 9 bara

C4+ (l)

11 kta (0.04) 15°C, 16 bara

Air (g) 390 kta (1.56) 15 °C, 1 bara

Propane + C2 [v] 461 kta (1.84) 379 °C, 2 bara

exhaust air (g) 305 kta (1.22) 40 °C,1 bara

Total IN: 670 kta (2.68) Total OUT: 670 kta (2.68)

547 kta (2.19) 596 °C 2 bara

1

9

10

11 12

7 Propane (l) 192 kta (0.77) 31°C, 17 bara

6 5 SOC recycle (s) 62668 kta (251)

596 °C

Light ends (v) 9 kta (0.04) 15°C, 24 bara

SOC recycle (s) 62754 kta (251)

676 °C

8

App

endi

x 3.

2 O

verv

iew

pur

e co

mpo

nent

s

PU

RE

CO

MPO

NEN

T PR

OPE

RTI

ES (1

of 2

)

C

ompo

nent

Nam

e

Te

chno

logi

cal D

ata

Des

ign

Syst

emat

ic

Form

ula

Mol

. Ph

ase

Boili

ng

Mel

ting

Cr

itica

l Cr

itica

l W

ater

Fl

ash

Solid

Li

quid

Va

pour

Enth

alpy

G

ibbs

ene

rgy

Entr

opy

Cp

W

eigh

t

Poin

t

Poin

t

Tem

pera

ture

Pr

essu

re

solu

bilit

y Po

int

D

ensi

ty D

ensi

ty D

ensi

ty

of f

orm

atio

n fo

rmat

ion

[1

] [1

] [1

3]

[7

] [1

] [3

] [2

] [3

] [3

][10]

[3

][10]

[3

][10]

[3

][10]

g/m

ol

o C

o C

o C

ba

r g

/ Li

ter

wat

er

o C

g/cm

3 k

g/m

3 k

g/m

3 kJ

/mol

kJ

/mol

J/

mol

*K J

/mol

*K

Carb

onm

onox

ide

Carb

onm

onoo

xide

CO

28

.010

V

-191

.50

-205

.02

-138

.7

34.6

-

-

- 1.

145

-110

.50

-137

.20

197.

7 29

.1

Met

hane

M

etha

ne

CH4

16.0

43

V -1

61.4

8 -1

82.4

7 -8

2.1

45.8

s

-386

.6

- -

0.42

3 -7

4.60

-5

0.50

18

6.3

35.7

Et

hyle

ne

Ethy

lene

C 2

H4

28.0

53

V -1

03.7

7 -1

69.1

5 9.

7 50

.5

i

- -

0.56

8 52

.40

68.4

0 21

9.3

42.9

Et

hane

Et

hane

C 2

H6

30.0

69

V -8

8.60

-1

82.7

9 32

.1

48.8

-

-130

.0

- -

0.54

5 -8

4.00

-3

2.00

22

9.2

52.5

Et

hyn

Acet

ylee

n C 2

H2

26.0

00

V -8

4.76

-8

1.50

36

.0

62.0

10

0cc18

[12]

- -

1.17

1 22

7.40

20

9.9

200.

9 44

.0

Carb

ondi

oxid

e Ca

rbon

diox

ide

CO2

44.0

10

V -7

8.40

-5

5.56

31

.1

73.0

s

-

- 1.

799

-393

.50

-394

.40

213.

8 37

.1

Prop

ylen

e Pr

opyl

ene

C 3H

6 42

.081

V

-47.

60

-185

.20

92.3

45

.0

vs

-108

.0

- -

0.50

5 20

.00

62.4

6 [1

4]

Prop

ane

Prop

ane

C 3H

8 44

.090

V

-42.

20

-187

.60

96.8

42

.0

s -1

04.0

-

- 0.

439

-103

.80

-23.

40

270.

3 73

.6

Alle

ne

Prop

adie

ne

C 3H

4 40

.064

V

-34.

40

-136

.20

120.

9 52

.5

sl

-

- 0.

584

190.

50

202.

38 [

14]

prop

yne

met

hyla

cety

leen

C 3

H4

40.0

64

V -2

3.20

-1

02.7

0 12

8.0

52.8

sl

-

- -

0.60

7 18

4.90

-

- -

buta

ne

buta

ne

C 4H

10

58.1

40

V -1

1.70

-1

35.0

0 13

4.0

37.0

i

-60.

0 -

- 2.

010

-125

.70

- -

- is

obut

ylen

e 1-

prop

ene-

2-m

ethy

l C 4

H8

56.1

10

V -6

.90

-140

.40

144.

8 40

.0

i -

- -

0.58

9 -1

6.90

-

- -

1-bu

teen

1-

bute

en

C 4H

8 56

.110

V

-6.2

0 -1

85.3

0 14

6.4

40.2

i

-80.

0 -

- 0.

588

0.10

-

- -

1,3-

buta

diee

n 1,

3-bu

tadi

een

C 4H

6 54

.091

V

-4.4

1 -1

08.9

1 16

1.8

42.6

i

-76.

1 -

- 0.

615

110.

00

- 19

9.0

- is

obut

ane

2-m

ethy

lpro

pane

C 4

H10

58

.140

V

-0.5

0 -1

45.0

0 -

- i

- -

- 2.

046

-134

.20

- -

- H

ydro

gen

Hyd

roge

n H

2 2.

016

V -2

52.8

7 -2

59.3

4 -2

40.0

12

.8

sl

-

- 0.

082

0.00

130.

7 28

.8

Nitr

ogen

N

itrog

en

N2

28.0

13

V -1

95.7

9 -2

10.0

0 -1

47.2

33

.5

sl

-

- 1.

145

0.00

191.

6 29

.1

Oxy

gen

Oxy

gen

O2

31.9

99

V -1

82.9

5 -2

18.7

9 -1

18.9

49

.7

-

- -

1.30

8 0.

00

20

5.2

29.4

W

ater

W

ater

H

2O

18.0

15

L 10

0.00

0.

00

374.

2 21

8.0

-

- 0.

997

- -2

41.8

0 -2

28.6

0 18

8.8

33.6

Ce

rium

Ce

rium

Ce

14

0.11

6 S

3443

.00

798.

00

- -

s, d

il ac

id

6.

77

- -

0 -

72.0

26

.9

Ceriu

mox

ide

Ceriu

m(I

V)ox

ide

CeO

2 17

2.11

5 S

- 24

00.0

0 -

- i,

dil a

cid

7.

65

- -

-108

8.70

-1

024.

6 62

.3

61.6

Ce

rium

oxid

e Ce

rium

(III

)oxi

de

Ce2O

3 32

8.23

0 S

3730

.00

2210

.00

- -

i, s

acid

6.20

-

- -1

796.

20

-170

6.2

150.

6 11

4.6

Plat

inum

Pl

atin

um

Pt

195.

200

S 43

00.0

0 17

55.0

0 -

- i

21

.4

- -

0.00

-

41.6

25

.9

Tung

sten

Tu

ngst

en

W

183.

840

S 55

55.0

0 34

22.0

0 -

- -

19

.30

- -

0.00

-

32.6

24

.3

Alum

ina

Alum

iniu

m o

xide

Al

2O3

SO

C C 0

.9W

0.1O

2 C 0

.9W

0.1O

2 17

6.50

0 S

- >

700

[11]

-

- -

- 6.

689

- -

- -

- -

Not

es:

[1]

A

t 10

1.3

kPa

[2]

D

ensi

ty a

t 25

oC,

unl

ess

spec

ified

oth

erw

ise

[3]

A

t 25

oC

[4

] O

ral i

nges

tion

in (

g) f

or a

mal

e of

70k

g w

eigh

t

[5

] D

ensi

ty a

t -4

7 oC

from

H2O

at

4 oC

[6]

D

ensi

ty a

t -4

5 oC

from

H2O

at

4 oC

[7]

s

= S

olub

le in

wat

er, s

l = S

light

ly s

olub

le, a

cid

= a

cid

solu

tions

, dil

= d

ilute

, I =

inso

lubl

e, v

s =

ver

y so

lubl

e

[8

] D

ensi

ty a

t -8

9 de

gree

s ce

ntig

rade

[9]

Tem

pera

ture

ran

ge -

10 -

-10

4

[10]

gas

[11]

SO

C do

es n

ot m

elt

at r

eact

ion

tem

pera

ture

, cau

sing

no

sint

erin

g an

d de

activ

atio

n

[12]

100

cc

of g

as s

olub

le in

100

g w

ater

at

18 d

egre

es C

elsi

us

Proj

ect

ID N

umbe

r:

CPD

3300

Com

plet

ion

Dat

e:

J

anua

ri20

04

9

[1

3] P

erry

's C

hem

ical

Eng

inee

rs' H

andb

ook,

6th

edi

tion,

Rob

ert

H. P

erry

and

Don

Gre

en, M

cGra

w H

ill

[1

4] Y

aws,

Che

mic

al P

rope

rtie

s H

andb

ook,

199

9

[1

5] S

ax's

Dan

gere

ous

Prop

ertie

s of

Ind

ustr

ial m

ater

ials

, 8th

edi

tion,

RJ

Lew

is S

r, V

NR N

ew Y

ork,

Vol

3

PU

RE

CO

MPO

NEN

T PR

OPE

RTI

ES (2

of 2

)

Com

pone

nt N

ame

H

ealth

&Sa

fety

dat

a

D

esig

n Sy

stem

atic

Au

to-ig

nitio

n Fl

amm

able

L

ower

U

pper

LC

50 [1

5]

MAC

M

AC

LD50

[15

]

Tem

p.

Lim

its

Expl

osio

n Ex

plos

ion

In a

ir/

Valu

e TG

G

Ora

l N

otes

[1

] %

by

vol

Lim

it (L

EL )

Li

mit

(UEL

)

wat

er

15

min

. [4

]

o C

in a

ir %

%

M

g/m

3 M

g/m

3 M

g/m

3 g

Ca

rbon

mon

oxid

e Ca

rbon

mon

ooxi

de

609.

0 12

.5-7

4 12

.5

74.2

18

07 p

pm/4

h 29

17

4 13

34 p

pm

M

etha

ne

Met

hane

65

0.0

5.3-

15

5.3

15.0

n.

a.

n.a.

Ethy

lene

Et

hyle

ne

450.

0 2.

7-36

2.

7 36

.0

95%

33

0 10

29

9

Etha

ne

Etha

ne

472.

0 3.

0-12

.5

3.0

12.5

n.

a.

n.a.

119

mg/

kg

8 Pr

opyn

e Ac

etyl

een

305.

0 2.

5-82

2.

5 82

.0

n.a.

17

00

Ca

rbon

diox

ide

Carb

ondi

oxid

e -

- -

- n.

a.

9000

7

Prop

ylen

e Pr

opyl

ene

455.

0 2.

0-11

.1

2.0

11.1

n.

a.

900

n.

a.

[2],

[5],

[7]

Prop

ane

Prop

ane

450.

0 2.

1-9.

5 2.

1 9.

5 n.

a.

1800

n.a.

[2

],[6

],[7

] Al

lene

Pr

opad

iene

2.1-

12.5

2.

1 12

.5

n.a.

n.

a.

n.

a.

7 pr

opyn

e m

ethy

lace

tyle

en

- -

1.7

- n.

a.

1650

buta

ne

buta

ne

462.

2 1.

9-8.

5 1.

9 8.

5 65

8 g/

cm3 /

4h

-

isob

utyl

ene

1-pr

open

e-2-

met

hyl

465.

0 1.

8-9.

6 1.

8 9.

6 62

0 g/

cm3 /

4h

-

1-bu

teen

1-

bute

en

383.

9 1.

6-9.

3 1.

6 9.

3 -

-

1,3-

buta

diee

n 1,

3-bu

tadi

een

420.

0 2.

0-11

.5

2.0

11.5

28

5 g/

m3 /

4h

-

5480

mg/

kg

is

obut

ane

2-m

ethy

lpro

pane

40

5.0

1.9-

8.5

1.9

8.5

n.a.

24

00

H

ydro

gen

Hyd

roge

n

4.0-

74.0

4.

0 74

.0

n.a.

n.

a.

7 N

itrog

en

Nitr

ogen

-

- -

-

n.a.

7

Oxy

gen

Oxy

gen

- -

- -

-

W

ater

W

ater

-

- -

-

-

Ceriu

m

Ceriu

m

- -

- -

- -

7 Ce

rium

oxid

e Ce

rium

(IV)

oxid

e -

- -

- -

-

5 gm

/kg

7 Ce

rium

oxid

e Ce

rium

(III

)oxi

de

- -

- -

- -

7 Pl

atin

um

Plat

inum

-

-

Tung

sten

Tu

ngst

en

- -

SOC

C0.9

W0.

1 -

-

-

-

10

Appendix 4.1 Thermodynamic figures [43,47]

11

12

Appendix 4.2 Calculation of equilibrium constants

The reactions of interest for the Hipphox process are: DH reaction:

3 8 3 6 2( ) ( ) ( )C H g C H g H g→ +← (A.1)

SHC reaction:

0.9 0.1 2 0.9 0.1 0.2 25 ( ) ( ) 5 ( ) ( )y yCe W O s H g Ce W O s H O g−→+ +← (A.2)

The SHC reaction can also be written as: .. '

22 0.5 ( ) 2x xo Ce o CeO Ce O g V Ce→+ + +← (A.3)

2 2 20.5 ( ) ( ) ( )O g H g H O g→+ ← (A.4)

The initial conditions for which the calculations are executed are a pressure of 2 bara and a temperature of 873 K (600°C). These conditions are chosen for a good comparison with the Oleflex process. For these conditions it can be assumed that the vapour phase behaves as an ideal gas. The heat capacity is then equal to:

2 3 4,

igP i i i i i iC A B T C T D T E T= + + + + (A.5)

Where CP,iig is the heat capacity for an ideal gas for species i, applicable in a temperature range

from 250-1500 K, T the temperature and Ai, Bi, Ci, Di and Ei are properties of each species found in literature [11]. For the solids present the following equation is used:

2,

igP i i i iC A B T C T −= + + (A.6)

The enthalpy-change is:

P

igP

P

VdH C dT C T dp C dTT

∂ = + − = ∂ (A.7)

The entropy-change is:

P

igP

P

dT V dT dpdS C dp C RT T T p

∂ = − = − ∂ (A.8)

The change in Gibbs free energy is: G H T S∆ = ∆ − ∆ (4.9)

At the reference conditions, a temperature of 298 K and a pressure of 1 bara, this gives the following table.

13

Table A.1 Properties of components at reference conditions (T=298K, p=1bara) Component Cp [J/(moleK)] ∆fH0 [kJ/mole] ∆fS0 [kJ/mole] ∆fG0 [kJ/mole] C3H6 64.97 20.0 -0.143 62.46 C3H8 74.63 -103.80 -0.270 -23.40 H2O 33.64 -241.80 -0.044 -228.60 H2 28.76 0 0 0 O2 29.38 0 0 0

The enthalpy and entropy of reaction 4.3 are independent of temperature for values of x>1.75 in Ce0.9W0.1Ox. The values of the enthalpy of formation (∆fH), the specific heat (Cp) and the Gibbs free energy of formation (∆fG) of Ce0.9W0.1Ox are unknown. However, the enthalpy of reaction 4.3 is known. The thermodynamic calculations for the SHC reaction are therefore based on reaction 4.3 and 4.4. The values of the enthalpy of formation (∆fH), the specific heat (Cp) and the Gibbs free energy of formation (∆fG) were based on literature [11,12 and 13]. The value of the entropy (∆fS) was calculated using equation (A.9). For the reactions, ∆r Cp0, ∆rH0, ∆rG0 and ∆rS0 can be calculated as follows:

0r i iCp Cpν∆ = ∑ (A.10)

0 0ir i fH Hν∆ = ∆∑ (A.11)

0 0ir iG Gν∆ = ∆∑ (A.12)

0 0ir iS Sν∆ = ∆∑ (A.13)

For reaction 4.3 only enthalpy and entropy of reaction for CeOx and Ce0.9Gd0.1Ox are known as a function of composition and amount of doping. With these chosen values, the influence on the equilibrium composition is calculated. The results are checked with relation (A.9). The equilibrium constant is obtained with the following equation:

0ln( ) rRT K G= −∆ (A.14)

In the following table the quantities of the reactions are given for the reference conditions. Table A.2 Properties of the reactions at reference conditions (T=298K, p=1bara)

Reaction ∆rCp298

[J/(moleK)] ∆rH298

[kJ/mole] ∆rS298

[kJ/mole] ∆rG298

[kJ/mole] Kj

4.1 19.11 123.8 0.127 85.9 8.90E-16 4.3 - 355 0.200 295.4 1.66E-58 4.4 -9.82 -241.8 4.43E-2 -228.6 1.18E+40

The calculations of these quantities at T=873 K and p=2 bar, are as follows:

525 298ig

f f PH H C dT∆ = ∆ + ∫ (A.15)

14

The Cp that is used here is an average of the Cp at the two temperatures (298 and 873), calculated using equations (A.5) and (A.6). According to equation (A.8), ∆fS873 is calculated as:

0873 0 0ln lnf f

T pS S Cp RT p

∆ = ∆ + − (4.16)

∆fG873 can now be calculated using equation A.9. The following table shows the quantities at a temperature of 873 K and a pressure of 2 bara. Table A.3 Properties of components at T=873K, p=2bara

Component Cp

[kJ/(moleK] <Cp>

[kJ/(moleK)] ∆fH873

[kJ/mole] ∆fS873

[J/mole] ∆fG873

[kJ/mole] C3H6 136.00 100.49 77.78 -40.24 112.91 C3H8 163.95 119.29 -35.21 -147.34 93.42 H2O 39.66 36.65 -220.73 -10.67 -211.42 H2 29.76 29.26 16.83 25.69 -5.60 O2 33.68 31.53 18.13 28.13 -6.43

For the reactions, ∆rCp, ∆rH, ∆rG and ∆rS can be calculated the same way as before, using A.6 to A.9. The results are again checked with relation A.5. The equilibrium constant is calculated with equation A.10. In the following table the quantities of the reactions are given for a temperature of 873 K and a pressure of 2 bara. Table A.4 Properties of the reactions at T=873K and P= 2 bara.

Reaction ∆rCp873

[J/(moleK)] ∆rH873

[kJ/mole] ∆rS873

[J/mole] ∆rG873

[kJ/mole] Kj

4.1 1.81 129.81 132.79 13.89 1.48E-01 4.3 - 355.00 200 180.4 1.61E-11 4.4 -6.94 -246.62 -59.06 -195.06 4.69E+11

Several reactions occurring in our system have also been implemented in a STOICH-reactor in Aspen (except for the SOC reaction). The values of ∆rH873 that were found in Aspen have been compared with the values obtained in the calculations done above. The maximum absolute deviation was found to be 2.2%, and therefore the validity of the calculations can be presumed. Side reactions DH Two reactions of all thermal cracking reactions are reversible and for these two reactions the equilibrium constant is calculated.

3 6 2 2 4( ) ( ) ( )C H g C H g CH g+ (4.12)

2 6 2 4 2( ) ( ) ( )C H g C H g H g+ (4.14)

15

In same way as above the properties of the components and reactions at reference condition and reaction conditions are shown in the next tables. Table A.5 Properties of components at reference conditions (T=298K, p=1bara)

Component Cp

[J/(moleK)] ∆fH0

[kJ/mole] ∆fS0

[kJ/mole] ∆fG0

[kJ/mole] C3H6 64.97 20.0 -0.1425 62.46

C2H2 55.82 227.40 0.0587 209.90

H2 28.76 0 0 0

CH4 35.05 -74.60 -0.0809 -50.5

C2H4 44.26 52.40 -0.0537 68.4

C2H6 52.93 -84.00 -0.1745 -32

Table A.6 Properties of the reactions at reference conditions (T=298K, p=1bara)

reactie ∆RCp [kJ/(mole K)]

∆RH298 [kJ/mole]

∆RS298

[kJ/(mole K)] ∆RG 298

[kJ/mole] K 4.12 2.59E-02 1.33E+02 0.1203 9.69E+01 1.02E-17 4.14 2.01E-02 1.36E+02 0.1208 1.00E+02 2.52E-18

Table A.7 Properties of components at T=873K, p=2bara

Component Cp [J/mole K]

∆fH873 [kJ/mole]

<Cp> [kJ/mole K]

S [kJ/mole K]

∆fG873 [kJ/mole]

C3H6 136.00 77.78 0.10 -0.04 112.91

C3H8 163.95 -35.21 0.12 -0.15 93.42

C2H2 65.15 262.18 0.06 0.12 159.19

H2 29.76 16.83 0.03 0.03 -5.60

CH4 66.35 -45.45 0.05 -0.03 -17.39

C2H4 88.48 90.56 0.07 0.01 80.19

C2H6 113.70 -36.09 0.08 -0.09 43.09

Table A.8 Properties of DH side reactions at T=873K and P= 2 bara.

Reaction ∆rCp873

[J/(moleK)] ∆rH873

[kJ/mole] ∆rS873

[J/mole] ∆rG873

[kJ/mole] Kj

4.12 -4.50 138.95 126.1 28.98 1.87E-02 4.14 -4.54 143.48 128.3 31.49 1.30E-02

Side reactions SHC For the side reactions of the SOC the enthalpy change of the following reactions are calculated.

3 8 2 2( ) 3.5 ( ) 3 ( ) 4 ( )C H g O g CO g H O g→+ +← (4.16)

3 6 2 2( ) 3 ( ) 3 ( ) 3 ( )C H g O g CO g H O g→+ +← (4.17)

The properties of the components are shown in the next table.

16

Table A.9 Properties of components at reference conditions (T=298K, p=1bara)

Component Cp

[J/(moleK)] ∆fH0

[kJ/mole] ∆fS0

[kJ/mole] ∆fG0

[kJ/mole] C3H6 64.97 20.0 -0.1425 62.46

C3H8 74.63 -103.80 -0.2698 -23.40

H2 28.76 0 0.0000 0

O2 29.38 0.00 0.0000 0

CO 26.55 -110.50 0.0896 -137.2 Table A.10 Properties of components at T=873K, p=2bara

Substance Cp [kJ/mole K]

∆fH873 [kJ/mole]

<Cp> [kJ/mole K]

S [kJ/mole K]

∆fG873 [kJ/mole]

C3H6 1.36E-01 77.78 1.00E-01 -0.0345 107.88

C3H8 1.64E-01 -35.21 1.19E-01 -0.1416 88.39

H2 2.98E-02 16.83 2.93E-02 0.0315 -10.63

O2 3.37E-02 18.13 3.15E-02 0.0339 -11.46

CO 3.18E-02 -93.73 2.92E-02 0.1209 -199.31

Table A.11 Properties of SHC side reactions at T=873K and P= 2 bara

reaction ∆rCp873 (kJ/(moleK))

∆rH873 (kJ/mole)

∆rH873 (kJ/mole SOC)

4.3 0 355.00 71

4.16 -0.03 -1192.36 36.94

4.17 -0.02 -1075.55 35.17

17

Appendix 4.3 T,x,y-Diagrams

T,x,y-diagrams:

1. Propane-1-Butene (C101 separation) 2. Propane-Butane (C101 separation) 3. Ethane – Propylene (C104 separation) 4. Ethane – Propane (C104 separation) 5. Propane – Propylene (C105 separation)

All T,x,y diagrams have been constructed with the SRK thermodynamic model. The used pressure is equal to the column pressure used in flowsheeting.

T-xy for PROPANE/1-BUTENE

Liquid/Vapor Molefrac PROPANE

Tem

pera

ture

K

0 0.05 0.1 0.15 0.2 0.25 0.3 0.35 0.4 0.45 0.5 0.55 0.6 0.65 0.7 0.75 0.8 0.85 0.9 0.95 1

325

330

335

340

345

350

355

360

365

370

T-x 16.7 barT-y 16.7 bar

18

T-xy for PROPANE/ISOBUTANE

Liquid/Vapor Molefrac PROPANE

Tem

pera

ture

K

0 0.05 0.1 0.15 0.2 0.25 0.3 0.35 0.4 0.45 0.5 0.55 0.6 0.65 0.7 0.75 0.8 0.85 0.9 0.95 1

325

330

335

340

345

350

355

360

365

T-x 16.7 barT-y 16.7 bar

T-xy for ETHANE/PROPYLENE

Liquid/Vapor Molefrac ETHAN-01

Tem

pera

ture

K

0 0.05 0.1 0.15 0.2 0.25 0.3 0.35 0.4 0.45 0.5 0.55 0.6 0.65 0.7 0.75 0.8 0.85 0.9 0.95 1

275

280

285

290

295

300

305

310

315

320

325

330

T-x 24.0 barT-y 24.0 bar

19

T-xy for PROPANE/ETHANE

Liquid/Vapor Molefrac PROPANE

Tem

pera

ture

K

0 0.05 0.1 0.15 0.2 0.25 0.3 0.35 0.4 0.45 0.5 0.55 0.6 0.65 0.7 0.75 0.8 0.85 0.9 0.95 1

280

290

300

310

320

330

340

350

T-x 25.0 barT-y 25.0 bar

T-xy for PROPANE/PROPY-01

Liquid/Vapor Molefrac PROPANE

Tem

pera

ture

K

0 0.05 0.1 0.15 0.2 0.25 0.3 0.35 0.4 0.45 0.5 0.55 0.6 0.65 0.7 0.75 0.8 0.85 0.9 0.95 1

293

294

295

296

297

298

299

300

T-x 10.0 barT-y 10.0 bar

20

Appendix 4.4 Equilibrium composition calculations

In order to obtain expressions for the yi the following formula is used:

0 ,

0

i i j jj

ij j

j

ny

n

ν ε

ν ε

+=

+

∑∑

(A.1)

where: ni0 = the quantity of component i at the beginning, n0 = the overall quantity, νi,j = the stoichiometric coefficient of component i in reaction j νj = the overall stoichiometric coefficient. εj = the extent of reaction j in mole/hr. Table A.1 Stoichiometric coefficients

i = C3H8 C3H6 H2 O2 H2O j νj

4.1 -1 1 1 0 0 1 4.3 0 0 0 0.5 0 0.5 4.4 0 0 -1 -0.5 1 -0.5

DH&SHC: This gives the following expressions for the yi for the simultaneous DH&SHC:

3 80

3 80

1

1 0.5 0.5C H A

C HA B c

ny

n

ε

ε ε ε

−=

+ + − (A.2)

3 60

3 60

1

1 0.5 0.5C H A

C HA B c

ny

n

ε

ε ε ε

+=

+ + − (A.3)

20

20

1 1

1 0.5 0.5H A C

HA B c

ny

nε ε

ε ε ε+ −

=+ + −

(A.4)

20

20

0.5 0.5

1 0.5 0.5H A C

OA B c

ny

nε ε

ε ε ε+ −

=+ + −

(A.5)

2 0

20

1

1 0.5 0.5H O C

H OA B c

ny

n

ε

ε ε ε

+=

+ + − (A.6)

To calculate the equilibrium composition at the initial conditions of T=873K and p=2bara the following equations are used [14]:

0 0ln( )ij r iRT K G Gν= −∆ = −∑ (A.7)

( ) ij i

i

K â ν= ∏ (A.8)

21

The activity âi equals: ^

0i

ifâp

= (A.9)

The fugacity ^

if equals: ^ ^

i i if y pφ= (A.10)

Since the pressure is initially 2 bara and the temperature 873 K, the gases may be viewed as

ideal gases, therefore the fugacity coefficient ^

iφ equals 1. This results in:

3 6 2 3 6 23 6 2

3 8 3 83 8

0 0 0

0

C H H C H HC H H

DHC H C H

C H

p p py y y yâ â p p pKpâ yyp

= = = (A.11)

In the second reaction solids are present, for which the following holds:

,i s i iâ x γ= (A.12)

As for a solid xi =1 and therefore γi = 1 the equation for the equilibrium constant for freeing oxygen from the lattice become:

' '2'

2

2

0.50.52

0.5 0.500.5

4.3 2 0

( )( )

( )

O O Ce CeO Ce

X X X X X XO O OCe Ce Ce

OV V Ce CeOV CeO

Ce O Ce Ce O O

px x yâ â â p pK yâ â x x p

γ γ

γ γ

⋅⋅ ⋅⋅⋅⋅

= = =

(A.13)

22 2

2 2

2 22 2

0

4.4 0.5 0.5 0.50.5 0.5

0 0 0

H OH O

H H

H O

H OO O

py yâ pKâ â p p py y y y

p p p

= = =

(A.14)

Combining K4.3 and K4.4 gives 2

2

H O

H

SHC

yK

y=

By using the calculated values of Kj, the equilibrium composition can be written as a function of the extent of reaction. By solving these reactions simultaneously in Maple the equilibrium composition is calculated. In table A.2 the results for different entropy and enthalpy of reaction 4.3 are listed. To compare the different chosen values the conversion for DH and SHC is calculated.

3 8 3 8

3 8 3 8

,0

,0 ,0

C H C H ADH

C H C H

n nn n

εξ−

= = (A.15)

2 2

2

,

,

H formed H ASHC

H formed C

n nn

εξε

−= = (A.16)

22

The temperature and pressure dependence of this equilibrium can be reviewed by repeating the procedure described for different temperatures and pressures. A selection of the results can be found in the following table. First enthalpy of formation was varied while entropy remains constant, second entropy was varied. Two extreme values were chosen to have a feeling of the influence of the value on the equilibrium composition. The chosen values are based on the figures in appendix 4.1. [47,43]. Table A.2 Equilibrium conversions at T=873 K and p=2 bara for different enthalpy and entropy values of

reaction 4.3

∆H [kJ/mole]

∆S [kJ/(mole K)] K4.1 [-] K4.3 [-] K4.4 [-] DHξ SHCξ

360 0.20 1.48E-01 8.06E-12 4.69E+11 0.511 0.791 380 0.20 1.48E-01 5.13E-13 4.69E+11 0.290 0.194 420 0.20 1.48E-01 2.07E-15 4.69E+11 0.263 0.001 440 0.20 1.48E-01 1.32E-16 4.69E+11 0.262 0.000

385 0.16 1.48E-01 2.09E-15 4.69E+11 0.263 0.001 385 0.18 1.48E-01 2.32E-14 4.69E+11 0.264 0.011 385 0.24 1.48E-01 3.16E-11 4.69E+11 0.735 0.937 385 0.26 1.48E-01 3.51E-10 4.69E+11 0.961 0.994

440 0.16 1.48E-01 1.07E-18 4.69E+11 0.262 0.000 360 0.26 1.48E-01 1.10E-08 4.69E+11 0.999 1.000

It is clear that the chosen value has a very large influence on the conversion. In Wang [47] it is concluded that doping of CeO2 lowers the enthalpy of the reaction. The influence of tungsten on the enthalpy is unknown. From Panlener [43] and Wang [47] it can be concluded that the doping has a positive influence on the enthalpy and the entropy. In earlier experiments a substantial conversion was measured. Also in literature with other solid oxygen carriers higher conversions are measured, in the order of 50-70%. Therefore the DH conversion for the Hipphox process is set to 62% with enthalpy values for reaction ∆H =355 kJ/mole and ∆S =0.200 kJ/(mole K). In table A.3 the results of calculation at different temperature are listed. The overall reaction is an endothermic reaction and is thus favoured by a high temperature. To prevent coke formation in the reaction section steam can be used as diluent. The influence of the steam on the equilibrium is calculated with propane:steam as 1:4, found in literature [17] The influence on the equilibrium in not negligible. Therefore, steam cannot be used as a diluent. In these equilibrium calculations thermal cracking is not taken into account. This is treated in chapter 4, reaction kinetics. Table A.3 Equilibrium conversions at different temperatures with ∆HB = 355 kJ/mole and ∆SB =0.20

kJ/(mole K).

p [bara] T [K] K4.1 [-] K4.3 [-] K4.4 [-] DHξ SHCξ

23

2 700 1.965E-03 9.035E-17 1.977E+15 0.03 0.15 2 800 3.000E-02 1.851E-13 1.024E+13 0.20 0.65 2 873 1.476E-01 1.606E-11 4.691E+11 0.62 0.88 2 900 2.492E-01 6.965E-11 1.701E+11 0.78 0.92

The influence of the pressure is calculated. Higher pressure results in lower values for the equilibrium constants of reaction 4.1 and 4.3 due to formation of molecules. Therefore the pressure has to be as low as possible. Because of high pumping duties at lower pressure than 2 bara the pressure is set to 2 bara. From these results it can be seen that in order to obtain an acceptable conversion of propane the temperature has to be at least 873 K. DH+SHC+DH The equilibrium calculations for a reactor system with DH+SHC+SH are done in similar way as treated in paragraph 4.1.1. The temperature is set to 873 K, the pressure is 2 bara. The equilibrium equation for DH is the same as for the combined reaction.

3 6 2

3 8

0

==C H H

DHC H

py ypK

y (A.17)

2

2

= H O

H

SHC

yK

y (A.18)

The expressions for the yi for DH + SHC + DH in series are:

3 80

3 80

C H AC H

A

ny

n

ε

ε

−=

+ (A.19)

3 60

3 60

C H AC H

A

ny

n

ε

ε

+=

+ (A.20)

20

2 ,0

1

1H A

H DHA

ny

ε+

=+

(A.21)

2

2 ,0,

1naDHH SHC

H SHCnaDH

ny

nε−

= (A.22)

2 0

20,

H O SHCH O

naDH

ny

n

ε+= (A.23)

First the equilibrium for DH is calculated. The conversion of DH is 26%. This is used as input for the SHC. This gives a conversion of 88%. This is again used for DH and results in a final

24

conversion of 48%. This is remarkable lower than in combined DH&SHC and more reactor units are required. Therefore it is chosen to do combined DH&SHC.

25

Appendix 4.5 Matlab simulation model

% Temparature dependent variables: % ------------------------------------------------------------------------------------------------------------------ % Thermodynamical data (temperature dependent) i=3; % i detemines temperature: % % i T Optimal conditions: time yield selectivity % % 1 773 % 2 823 % 3 873 % 4 923 % 5 973 % eq_constants=[773 1.54E-2 1.69E-3 1.07E-3; 823 5.11E-2 6.05E-3 4.03E-3; 873 0.148 1.870E-2 1.30E-2; 923 3.80E-1 5.11E-2 3.71E-2; 973 8.87E-1 1.27E-1 9.48E-2]; T=eq_constants(i,1); % Reactor temperature K_eq_soc=7.53; % Thermodynamic equilibrium constant of SOC hydrogen combustion. k_soc=1.67E-1; % Rate constant for selective hydrogen combustion rection [mol*sec-1*kg soc-1] % Propane <-> Propylene + Hydrogen equilibrium constant: K_eq2=eq_constants(i,2); % Thermodynamic equilibrium constant of cracking reaction 2 at T and P % Propylene <-> Ethyn + Methane K_eq6=eq_constants(i,3); % Thermodynamic equilibrium constant of cracking reaction 6 at T and P % Ethane <-> Ethylene + Hydrogen K_eq8=eq_constants(i,4); % Thermodynamic equilibrium constant of cracking reaction 8 at T and P % ------------------------------------------------------------------------------------------------------------------ %Reactor Specifications: V=0; % Volume of reactor [m3] P=2; % Reactor inlet Pressure [bara] P0=1; % Reference pressure [bara] T0=298; % Reference temperature [K] R=8.314; % Universal gas constant [J/mol/K] R_cal=1.987E-3; % Universal gas constant [kcal/mol/K] rho_cat=2700; % Density of dehydrogenation catalyst [kg/m3] rho_soc=6689; % Density of SOC [kg/m3] % Molar masses: M_soc=175.7232E-3; % Molar mass of fresh SOC [kg/mol] M_sc=172.5234E-3; % Molar mass of spent SOC [kg/mol] M_propane=44.09E-3; % Molar mass of propane [kg/mol] M_ethane=30.069E-3; % Molar mass of ethane [kg/mol] M_hydrogen=2.016E-3; % Molar mass of hydrogen [kg/mol] M_propylene=42.074E-3; % Molar mass of propylene [kg/mol] M_water=18.015E-3; % Molar mass of water [kg/mol] M_methane=16.043E-3; % Molar mass of methane [kg/mol] M_ethene=28.053E-3; % Molar mass of ethylene [kg/mol] M_coke=72.06E-3; % Assumed molar mass of coke [kg/mol] M_ethyn=26E-3; % Molar mass of ethyn [kg/mol] M_butene=56.110E-3; % Molar mass of butene kg/mol] M_butadiene=54.091E-3; % Molar mass of butadiene [kg/mol] M_co=28.01E-3; % Molar mass of carbonmonoxide [kg/mol] M_co2=44.01E-3; % Molar mass of carbondioxide [kg/mol]

26

M_cat=101.961E3; % Molar mass of DH catalyst [kg/mol] (derived from Al2O3) % Enthalpy change of reactions: dH_dh=129.81E3; % Enthalpy change for dehydrogenation reaction [J/mol propane] dH_soc=108.38E3; % Enthalpy change for hydrogen combustion by SOC [J/mol hydrogen] dH_soc_ox=36E3; % Enthalpy change for HC's combustions by SOC [J/mol HC] dH_crack_1=80.32E3; % Enthalpy change for cracking reaction 1 [J/mol Propane] dH_crack_6=139E3; % Enthalpy change for cracking reaction 6 [J/mol Propylene] dH_crack_8=143E3; % Enthalpy change for cracking reaction 8 [J/mol Ethane] % Inlet stream: moles and fractions % Gaseous components in feed f_propane_0=355.5579; % Propane feed to reactor [mol/s] f_propane=355.5579; % Propane feed to reactor [mol/s] f_ethane=7.06945; % Ethane feed to reactor [mol/s] f_hydrogen=0; % Hydrogen feed to reactor [mol/s] f_propylene=30.3444; % Propylene feed to reactor [mol/s] f_propylene_0=30.3444; % Propylene feed to reactor [mol/s] f_water=0; % Water feed to reactor [mol/s] f_methane=0; % Methane feed to reactor [mol/s] f_ethene=0; % Ethene molar flow into reactor f_coke=0; % Coke molar flow into reactor f_ethyn=0; % Ethyn molar flow into reactor f_butene=0; % Butene molar flow into reactor f_butadiene=0; % Butadiene molar flow into reactor f_co=0; % Carbonmonoxide molar flow into reactor f_co2=0; % Carbondioxide molar flow into reactor % Solid components f_soc=10000; % SOC feed to reactor [mol/s] f_sc=0; % Spent SOC feed to reactor [mol/s] f_cat=0; % DH catalyst feed to reactor [mol/s] f_gas=f_propane+f_ethane+f_hydrogen+f_water+f_co2+f_co; % Total gaseous reactor feed [mol/s] f_gas_0=f_propane+f_ethane+f_hydrogen+f_water+f_co2+f_co; % Total gaseous reactor feed [mol/s] f_solid=f_soc+f_sc+f_cat+f_coke; % Total solid reactor feed [mol/s] % Mass compositions m_vapor_0=f_propane*M_propane+f_ethane*M_ethane+f_hydrogen*M_hydrogen+f_propylene*M_propylene+f_water*M_water+f_methane*M_methane+f_ethene*M_ethene+f_ethyn*M_ethyn+f_butene*M_butene+f_butadiene*M_butadiene+f_co*M_co+f_co2+M_co2; % Total vapor mass flow [kg/s] m_solid_0=f_soc*M_soc+f_sc*M_sc+f_coke*M_coke+f_cat*M_cat; % Total solid mass flow [kg/s] % Kinetic data k01=4.692E10; % Turnover frequency thermal cracking reaction 1 [sec-1] k02=5.888E10; % Turnover frequency thermal cracking reaction 2 [sec-1] k03=2.539E13; % Turnover frequency thermal cracking reaction 3 [sec-1*mol-1] k04=1.514E11; % Turnover frequency thermal cracking reaction 4 [sec-1] k05=1.423E9; % Turnover frequency thermal cracking reaction 5 [sec-1] k06=3.794E11; % Turnover frequency thermal cracking reaction 6 [sec-1] k07=5.553E14; % Turnover frequency thermal cracking reaction 7 [sec-1*mol-1] k08=4.652E13; % Turnover frequency thermal cracking reaction 8 [sec-1] k09=1.026E12; % Turnover frequency thermal cracking reaction 9 [sec-1*mol-1] Ea01=50.60; % Activation energy for thermal cracking reaction 1 [kcal] Ea02=51.29; % Activation energy for thermal cracking reaction 2 [kcal] Ea03=59.06; % Activation energy for thermal cracking reaction 3 [kcal] Ea04=55.80; % Activation energy for thermal cracking reaction 4 [kcal] Ea05=45.50; % Activation energy for thermal cracking reaction 5 [kcal] Ea06=59.39; % Activation energy for thermal cracking reaction 6 [kcal]

27

Ea07=60.01; % Activation energy for thermal cracking reaction 7 [kcal] Ea08=65.20; % Activation energy for thermal cracking reaction 8 [kcal] Ea09=41.26; % Activation energy for thermal cracking reaction 9 [kcal] % Catalitic dehydrogenation k_app=11E-7; % Apparent rate constant of dehydrogenation catalyst [mol*kg cat-1*sec-1] cat_load=90; % DH catalyst load [kg/m3 monolith] % Calculation parameters dv=0.5; % Step size for calculations [delta V] V0=0.01; % Calculation start volume [m3] V_final=50; % Final calculation volume [m3] results=[]; % Vapor component results array results2=[]; % Second results array temperature=[]; % temperature array solid=[]; % Solid component results array rates=[]; % Reaction rates array conversion=[0 0 0 0]; % Conversion of propane mass=[]; % Check mass balances start_yield=0; % Temperature calculations T_feed=651; % Temperature of the hydrocarbon feed [K] T_soc=955; % Temperature of the fresh SOC feed [K] %T_feed=873; % Temperature of the hydrocarbon feed [K] %T_soc=800; % Temperature of the fresh SOC feed [K] Cp_soc=61.6; % Heat capacity of SOC (Ceriumoxide) [J/mole/K] Cp_propane=28.770+1.160E-1*T+1.96E-4*(T^2)-2.33E-7*(T^3)+6.87E-11*(T^4);% Heat capacity of propane [J/mole/K] Cp_ethane=(1.131+1.923E-2*T-0.000005561*(T^2))*R;% Heat capacity of ethane [J/mole/K] Cp_hydrogen=25.3990+2.018E-02*T-3.85E-05*(T^2)+3.19E-08*(T^3)-8.76E-12*(T^4);% Heat capacity of hydrogen [J/mole/K] Cp_propylene=31.298+7.245E-2*T+1.95E-4*(T^2)-2.16E-7*(T^3)+6.30E-11*(T^4);% Heat capacity of propylene [J/mole/K] Cp_water=(3.47+1.45E-3*T+12100/(T^2))*R; % Heat capacity of water [J/mole/K] Cp_methane=(1.7020+9.081E-03*T-0.000002164*(T^2))*R; % Heat capacity of methane [J/mole/K] Cp_butene=(1.9670+3.1630E-02*T+-9.8730E-06*(T^2))*R; % Heat capacity of butene [J/mole/K] a=((f_soc+f_sc)*Cp_soc*1.24)/(f_propane*Cp_propane+f_ethane*Cp_ethane+f_hydrogen*Cp_hydrogen+f_propylene*Cp_propylene+f_water*Cp_water+f_methane*Cp_methane); T=(T_feed+T_soc*a)/(1+a); % Reactor temperature [K] frac_conv_dh=0; % Initial fractional conversion of dehydrogenation reaction frac_conv_soc=0; % Initial fractional conversion of SOC reaction frac_conv_socox=0; % Initial fractional conversion of SOC side reactions % ------------------------------------------------------------------------------------------------------------------ for V=V0:dv:V_final k1=k01*exp(-Ea01/(R_cal*T)); % Rate constant for thermal cracking reaction 1 [sec-1] k2=k02*exp(-Ea02/(R_cal*T)); % Rate constant for thermal cracking reaction 2 [sec-1] k3=k03*exp(-Ea03/(R_cal*T)); % Rate constant for thermal cracking reaction 3 [sec-1*mol-1] k4=k04*exp(-Ea04/(R_cal*T)); % Rate constant for thermal cracking reaction 4 [sec-1] k5=k05*exp(-Ea05/(R_cal*T)); % Rate constant for thermal cracking reaction 5 [sec-1] k6=k06*exp(-Ea06/(R_cal*T)); % Rate constant for thermal cracking reaction 6 [sec-1] k7=k07*exp(-Ea07/(R_cal*T)); % Rate constant for thermal cracking reaction 7 [sec-1*mol-1] k8=k08*exp(-Ea08/(R_cal*T)); % Rate constant for thermal cracking reaction 8 [sec-1] k9=k09*exp(-Ea09/(R_cal*T)); % Rate constant for thermal cracking reaction 9 [sec-1*mol-1]

28

% Thermal cracking reactions r1=k1*((f_propane/f_gas)*P/(R_cal*T)); % Thermal cracking reaction 1 [mol*m3-1*sec-1] r2=0; % Thermal cracking reaction 2 [mol*m3-1*sec-1] r3=k3*(((f_propane*f_ethene)/(f_gas^2))*((P/(R_cal*T))^2));% Thermal cracking reaction 3 [mol*m3-1*sec-1] r4=k4*((f_propylene/f_gas)*(P/(R_cal*T))); % Thermal cracking reaction 4 [mol*m3-1*sec-1] r5=0; %k5*((f_propylene/f_gas)*(P/(R_cal*T))); % Thermal cracking reaction 5 (Coke formation) [mol*m3-1*sec-1] r6=k6*((f_propylene/f_gas)*P/(R_cal*T)-((f_ethyn*f_methane)/(f_gas^2))*(1/K_eq6)*((P/(R_cal*T))^2)); % Thermal cracking reaction 6 [mol*m3-1*sec-1] r7=k7*(((f_propylene*f_ethane)/(f_gas^2))*((P/(R_cal*T))^2)); % Thermal cracking reaction 7 [mol*m3-1*sec-1] r8=k8*((f_ethane/f_gas)*P/(R_cal*T)-((f_ethene*f_hydrogen)/(f_gas^2))*(1/K_eq8)*((P/(R_cal*T))^2)); % Thermal cracking reaction 8 [mol*m3-1*sec-1] r9=k9*((f_ethene*f_ethyn)/(f_gas^2))*((P/(R_cal*T))^2); % Thermal cracking reaction 9 [mol*m3-1*sec-1] % Dehydrogenation reaction K_dh=(P0/P)*(1.76E12)*exp(-15521/T); r_dh=cat_load*k_app*P*1E5*((f_propane/f_gas)-(((f_propylene/f_gas)*(f_hydrogen/f_gas)*P*1E5)/(K_dh))); % Solid oxygen carrier reaction if f_soc>0 % SOC reaction only occurs if SOC is present. r_soc=0.97*(f_soc*M_soc)*k_soc*((f_hydrogen/f_gas)-(f_water/f_gas)/K_eq_soc);% SOC hydrogen combustion reaction (97% selective) else % If SOC is not present, no reaction takes place. r_soc=0; % SOC hydrogen combustion reaction if no SOC is present end r_soc_oxidizing=(3/97)*r_soc; % SOC hydrocarbon combustion reaction (3% selective) if r_soc<0 r_soc=0; r_soc_oxidizing=0; end % Euler's method for stochiometric reactions: x(V+dV) = x(V) + step * dx/dV % Gaseous components: f_propane=f_propane+dv*(-r1-r2-r3-r_dh-0.5*(1/7)*r_soc_oxidizing); % moles of propane f_ethane=f_ethane+dv*(+r3-r7-r8); % moles of ethane f_hydrogen=f_hydrogen+dv*(+r2+r8+r_dh-r_soc); % moles of hydrogen f_propylene=f_propylene+dv*(+r2+r3-2*r4-2*r5-r6-r7+r_dh-(0.5*(1/6)*r_soc_oxidizing));% moles of propylene f_water=f_water+dv*(r_soc+(0.5*(4/7)*r_soc_oxidizing)+(0.5*(3/6)*r_soc_oxidizing));% moles of water f_methane=f_methane+dv*(+r1+3*r5+r6+r7); % moles of methane f_ethene=f_ethene+dv*(+r1-r3+3*r4+r8-r9); % moles of ethylene f_ethyn=f_ethyn+dv*(+r6-r9); % moles of ethyn f_butene=f_butene+dv*(+r7); % moles of butene f_butadiene=f_butadiene+dv*(+r9); % moles of butadiene f_co=f_co+dv*((0.5*(3/7)*r_soc_oxidizing)+(0.5*(3/6)*r_soc_oxidizing)); % moles of carbonmonoxide f_co2=f_co2; % moles of carbondioxide f_gas=f_propane+f_ethane+f_hydrogen+f_propylene+f_water+f_methane+f_ethene+f_ethyn+f_butene+f_butadiene+f_co+f_co2; % Total moles in reactor % Fractional conversions frac_conv_dh=frac_conv_dh+r_dh*dv; % frac_conv_dh2=frac_conv_dh/f_propane_0; % Fractional conversion of dehydrogenation reaction frac_conv_soc=frac_conv_soc+r_soc*dv; % frac_conv_soc2=frac_conv_soc/(frac_conv_dh); % Fractional conversion of SOC reaction frac_conv_socox=frac_conv_socox+r_soc_oxidizing*dv; % frac_conv_socox2=frac_conv_socox/f_propane_0; % Fractional conversion of SOC side reactions

29

% Solid components: f_soc=f_soc-dv*(5*r_soc+5*r_soc_oxidizing); % moles of fresh SOC present f_sc=f_sc+dv*(5*r_soc+5*r_soc_oxidizing); % moles of spent SOC present %f_coke=f_coke+dv*(0.5*r5); % moles of coke f_total_solid=f_soc+f_sc+f_coke; % total moles in solid phase x_soc=f_soc/f_total_solid; % SOC fraction in solids x_sc=f_sc/f_total_solid; % SC fraction in solids % Temperature effects % Specific heats: Cp_soc=61.6; % Heat capacity of SOC (Ceriumoxide) [J/mole/K] Cp_propane=28.770+1.160E-1*T+1.96E-4*(T^2)-2.33E-7*(T^3)+6.87E-11*(T^4); % Heat capacity of propane [J/mole/K] Cp_ethane=(1.131+1.923E-2*T-0.000005561*(T^2))*R;% Heat capacity of ethane [J/mole/K] Cp_hydrogen=25.3990+2.018E-02*T-3.85E-05*(T^2)+3.19E-08*(T^3)-8.76E-12*(T^4); % Heat capacity of hydrogen [J/mole/K] Cp_propylene=31.298+7.245E-2*T+1.95E-4*(T^2)-2.16E-7*(T^3)+6.30E-11*(T^4); % Heat capacity of propylene [J/mole/K] Cp_water=(3.47+1.45E-3*T+12100/(T^2))*R; % Heat capacity of water [J/mole/K] Cp_methane=(1.7020+9.081E-03*T-0.000002164*(T^2))*R;% Heat capacity of methane [J/mole/K] Cp_butene=(1.9670+3.1630E-02*T+-9.8730E-06*(T^2))*R;% Heat capacity of butene [J/mole/K] % Temperature calculation based on ideal heat exchange T=T-dv*(dH_crack_1*r1+dH_crack_6*r6+dH_crack_8*r8+dH_soc_ox*r_soc_oxidizing+dH_dh*r_dh+dH_soc*r_soc)/((f_soc+f_sc)*Cp_soc*1.24+f_propane*Cp_propane+f_ethane*Cp_ethane+f_hydrogen*Cp_hydrogen+f_propylene*Cp_propylene+f_water*Cp_water+f_methane*Cp_methane); % Mass balance check m_vapor=f_propane*M_propane+f_ethane*M_ethane+f_hydrogen*M_hydrogen+f_propylene*M_propylene+f_water*M_water+f_methane*M_methane+f_ethene*M_ethene+f_ethyn*M_ethyn+f_butene*M_butene+f_butadiene*M_butadiene+f_co*M_co+f_co2+M_co2; % Total vapor mass present [kg] m_solid=f_soc*M_soc+f_sc*M_sc+f_coke*M_coke; % Total solid mass present [kg] m_total=m_vapor+m_solid; %Total mass present [kg] conv=(f_propane_0-f_propane)/f_propane_0; % Conversion of propane yield=(f_propylene-f_propylene_0)/(f_propane_0-f_propane); % Yield of propylene [formed mol propylene/reacted mol propane] yield2=yield*conv; % Yield of propylene [formed mol propylene/fed mol propane] results=[results; V f_propane f_ethane f_hydrogen f_propylene f_water f_methane f_ethene f_ethyn f_butene f_butadiene f_co f_co2]; % Molar flow rates array rates=[rates; V r1 r2 r3 r4 r5 r6 r7 r8 r9 r_dh r_soc r_soc_oxidizing];% Reaction rates array temperature=[temperature; V T]; % Temperature array conversion=[conversion; V conv yield yield2]; % Conversion array solid=[solid; V x_soc x_sc]; % Solid fractions array mass=[mass; V m_vapor m_solid m_total]; % Mass balance check array end % ------------------------------------------------------------------------------------------------------------------ % Plotting section: The code below offers different plots of calculated variables. % Results2 matrix consists of various components: % % 1. Volume ratio of DC catalyst / SOC [m3/m3]

30

% 2. Optimal residence time [s] % 3. Propylene yield [mole propylene/mole propane] % 4. Moles of coke formed [mol] % 5. Reactor exit temperature [K] % 6. Moles of propane present in reactor at start [mol] % 7. Mass fraction of catalyst [] % 8. Mass fraction of SOC [] % 9. Amount of catalyst [Kg] %10. Amount of SOC [Kg] %11. Amount of Sc [Kg] % Result matrix consists of various components: % % 1. Time [s] % 2. Fraction of propane % 3. Fraction of ethane % 4. Fraction of hydrogen % 5. Fraction of propylene % 6. Fraction of water % 7. Fraction of methane % 8. Fraction of ethene % 9. Fraction of ethyn %10. Fraction of butene %11. Fraction of butadiene %12. Fraction of carbonmonoxide %13. Fraction of carbondioxide % % Solid matrix consists of various components: % % 1. Time [s] % 2. Fraction of fresh SOC % 3. Fraction of spent SOC % 4. Fraction of coke % % Reaction rates result matrix of various reaction rates: % % 1. Time [s] % 2. Reaction rate of reaction r1 % 3. Reaction rate of reaction r2 % 4. Reaction rate of reaction r3 % 5. Reaction rate of reaction r4 % 6. Reaction rate of reaction r5 % 7. Reaction rate of reaction r6 % 8. Reaction rate of reaction r7 % 9. Reaction rate of reaction r8 %10. Reaction rate of reaction r9 %11. Reaction rate of the dehydrogenation reaction %12. Reaction rate of SOC hydrogen combustion (97% selective) %13. Reaction rate of SOC hydrocarbon combustion (3% selective) % % Conversion of propane: % % 1. Time [s] % 2. Conversion of propane % 3. Yield of propylene % % Mass matrix consists of various items: % % 1. Time [s] % 2. Vapor phase mass [kg]

31

% 3. Solid phase mass [kg] % 4. Total mass [kg] % Plotting conversion subplot(1,2,1) plot(conversion(:,1),conversion(:,2)) hold on plot(conversion(:,1),conversion(:,3),'r') plot(conversion(:,1),conversion(:,4),'--r') axis([0 V_final 0 1]); xlabel('Volume [m3]'); ylabel('% Conversion of propane [blue] and % Yield of propylene [red]'); output=[T f_sc f_soc yield2] f_propane f_propylene f_hydrogen f_water f_ethane f_co f_methane f_ethyn f_butene f_butadiene f_soc f_sc frac_conv_dh2 frac_conv_soc2 frac_conv_socox2 %plot(conversion(:,1),conversion(:,3),'--r') %plot(conversion(:,1),conversion(:,4),'--g') legend('Propane conversion','Selectivity','Propylene yield'); %axis([0 V0 0 1]); subplot(1,2,2) hold on plot(temperature(:,1),temperature(:,2)); xlabel('Volume [m3]'); ylabel('Reactor output temperature [K]'); %plot(conversion(:,1),optimal(:,8)) %hold on %plot(conversion(:,1),optimal(:,9)) %plot(conversion(:,1),optimal(:,10)) %starting_soc=[amount_soc amount_sc] break; % Estimating catalyst SOC ratio subplot(2,3,1) plot(results2(:,7),results2(:,2)) xlabel('Mass fraction DH cat in solid'); ylabel('Optimal residence time [s]'); subplot(2,3,2) plot(results2(:,1),results2(:,2)) xlabel('Volume fraction DH cat in solid'); ylabel('Optimal residence time [s]'); subplot(2,3,3) plot(results2(:,7),results2(:,9),'--r') hold on

32

plot(results2(:,7),results2(:,10),'--b') legend('DH Cat [Kg]','SOC [Kg]') xlabel('Mass fraction DH cat in solid'); ylabel('Amount of DH cat [kg]'); subplot(2,3,4) plot(results2(:,7),results2(:,3),'r') ylabel('Propylene yield'); xlabel('Mass fraction of DH catalyst'); subplot(2,3,5) plot(results2(:,7),results2(:,5),'b') ylabel('Reactor exit temperature [K]'); xlabel('Mass fraction of DH catalyst'); plot(results2(:,7),results2(:,6),'b') ylabel('Moles of propane at start in reactor [mol/m3]'); xlabel('Mass fraction of DH catalyst'); break; % Plotting mass balances hold on subplot(1,3,1) plot(mass(:,1),mass(:,2)); xlabel('Vapor phase mass'); subplot(1,3,2) plot(mass(:,1),mass(:,3)); xlabel('Solid phase mass'); subplot(1,3,3) plot(mass(:,1),mass(:,4)); xlabel('Total mass'); break; % Plotting solid fractions hold on plot(solid(:,1),solid(:,2)) xlabel('Time [s]'); ylabel('Mole fractions in solid phase'); plot(solid(:,1),solid(:,2)) plot(solid(:,1),solid(:,3),'--') plot(solid(:,1),solid(:,4),'--r') axis([0 t_final 0 1]); break; % Plotting vapor fractions hold on subplot(2,6,1) plot(results(:,1),results(:,2)); xlabel('Propane'); subplot(2,6,2) plot(results(:,1),results(:,3)); xlabel('Ethane'); subplot(2,6,3) plot(results(:,1),results(:,4)); xlabel('Hydrogen'); subplot(2,6,4) plot(results(:,1),results(:,5)); xlabel('Propylene'); subplot(2,6,5) plot(results(:,1),results(:,6)); xlabel('Water');

33

subplot(2,6,6) plot(results(:,1),results(:,7)); xlabel('Methane'); subplot(2,6,7) plot(results(:,1),results(:,8)); xlabel('Ethene'); subplot(2,6,8) plot(results(:,1),results(:,9)); xlabel('Ethyn'); subplot(2,6,9) plot(results(:,1),results(:,10)); xlabel('Butene'); subplot(2,6,10) plot(results(:,1),results(:,11)); xlabel('Butadiene'); subplot(2,6,11) plot(results(:,1),results(:,12)); xlabel('CO'); subplot(2,6,12) plot(results(:,1),results(:,13)); xlabel('CO2'); break; % Plotting reaction rates hold on subplot(2,6,1) plot(rates(:,1),rates(:,2)); xlabel('Cracking 1'); subplot(2,6,2) plot(rates(:,1),rates(:,3)); xlabel('Cracking 2'); subplot(2,6,3) plot(rates(:,1),rates(:,4)); xlabel('Cracking 3'); subplot(2,6,4) plot(rates(:,1),rates(:,5)); xlabel('Cracking 4'); subplot(2,6,5) plot(rates(:,1),rates(:,6)); xlabel('Cracking 5'); subplot(2,6,6) plot(rates(:,1),rates(:,7)); xlabel('Cracking 6'); subplot(2,6,7) plot(rates(:,1),rates(:,8)); xlabel('Cracking 7'); subplot(2,6,8) plot(rates(:,1),rates(:,9)); xlabel('Cracking 8'); subplot(2,6,9) plot(rates(:,1),rates(:,10)); xlabel('Cracking 9'); subplot(2,6,10) plot(rates(:,1),rates(:,11)); xlabel('Dehydrogenation'); subplot(2,6,11) plot(rates(:,1),rates(:,12)); xlabel('SOC hydrogen combustion'); subplot(2,6,12) plot(rates(:,1),rates(:,13));

34

xlabel('SOC hdyrocarbon combustion'); break; END OF SCRIPT

35

Appendix 5.1 Process Stream Summary (PSS)

STREAM Nr. : 101 IN 102 103 104 105

Name : LPG Feed Feed C101 Top C101 Feed V101 Overhead C101

COMP MW kg/hr kmol/hr kg/hr kmol/hr kg/hr kmol/hr kg/hr kmol/hr kg/hr kmol/hr

Propylene 42.08 0.00 0.00 353.57 8.40 composition unknown composition unknown 353.28 8.40

Propane 44.10 33234.45 753.68 56757.09 1287.11 0.00 0.00 0.00 0.00 56530.70 1281.98

Hydrogen 2.02 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00

Water 18.02 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00

Methane 16.04 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00

Ethane 30.07 699.67 23.27 699.67 23.27 0.00 0.00 0.00 0.00 699.67 23.27

Ethylene 28.05 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00

1-Butene 56.11 0.00 0.00 131.42 2.34 0.00 0.00 0.00 0.00 5.17 0.09

Butane 58.12 1049.51 18.06 1059.08 18.22 0.00 0.00 0.00 0.00 9.57 0.16

CO 28.01 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00

Oxygen 32.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00

Nitrogen 28.01 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00

SOC 176.50 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00

SpentSOC 176.50 0.00 0.00 0.00 0.00 0.00 0.00

Total 34983.63 795.00 59000.83 1339.34 114526.05 2608.08 114526.05 2608.08 57598.39 1313.90

Enthalpy kW -26950 -44763 ? ? -37918

Phase L L V V+L V

Press. Bara 17.0 17.0 16.2 16.2 16.2

Temp oC 15.0 22.0 47.4 47.4 47.4

STREAM Nr. : 106 107 108 109 110

Name : Discharge T101 Gas feed R101 Effluent R101 Discharge S101 Discharge E103

COMP MW kg/hr kmol/hr kg/hr kmol/hr kg/hr kmol/hr kg/hr kmol/hr kg/hr kmol/hr

Propylene 42.08 353.28 8.40 353.28 8.40 31468.39 747.81 31468.39 747.81 31468.39 747.81

Propane 44.10 56530.70 1281.98 56530.70 1281.98 23636.17 536.01 23636.17 536.01 23636.17 536.01

Hydrogen 2.02 0.00 0.00 0.00 0.00 184.36 91.46 184.36 91.46 184.36 91.46

Water 18.02 0.00 0.00 0.00 0.00 11926.78 662.04 11926.78 662.04 11926.78 662.04

Methane 16.04 0.00 0.00 0.00 0.00 57.65 3.59 57.65 3.59 57.65 3.59

Ethane 30.07 699.67 23.27 699.67 23.27 632.01 21.02 632.01 21.02 632.01 21.02

Ethylene 28.05 0.00 0.00 0.00 0.00 37.69 1.34 37.69 1.34 37.69 1.34

1-Butene 56.11 5.17 0.09 5.17 0.09 131.42 2.34 131.42 2.34 131.42 2.34

Butane 58.12 9.57 0.16 9.57 0.16 9.57 0.16 9.57 0.16 9.57 0.16

CO 28.01 0.00 0.00 0.00 0.00 248.46 8.87 248.46 8.87 248.46 8.87

Oxygen 32.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00

Nitrogen 28.01 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00

SOC 176.50 0.00 0.00 0.00 0.00 7254820.00 41103.80 0.00 0.00 0.00 0.00

SpentSOC 176.50 0.00 0.00 0.00 0.00 578736.00 3278.96 0.00 0.00 0.00 0.00

Total 57598.39 1313.90 57598.39 1313.90 7901888.50 46457.40 68332.50 2074.65 68332.50 2074.65

Enthalpy kW -39019 -24050 472807 -29390 -54295

Phase V V V+S V V

Press. Bara 2.0 2.0 1.9 1.9 1.6

Temp oC -20.4 378.9 595.9 595.9 99.9

36

STREAM Nr. : 111 112 113 114 115

Name : Discharge K101 Feed V102 Overhead V102 Overhead C102 Discharge K102

COMP MW kg/hr kmol/hr kg/hr kmol/hr kg/hr kmol/hr kg/hr kmol/hr kg/hr kmol/hr

Propylene 42.08 31468.39 747.81 31468.40 747.81 31468.31 747.81 31468.31 747.81 31468.31 747.81

Propane 44.10 23636.17 536.01 23636.17 536.01 23636.15 536.01 23636.15 536.01 23636.15 536.01

Hydrogen 2.02 184.36 91.46 184.36 91.46 184.36 91.46 184.36 91.46 184.36 91.46

Water 18.02 11926.78 662.04 11926.78 662.04 93.33 5.18 0.00 0.00 0.00 0.00

Methane 16.04 57.65 3.59 57.65 3.59 57.65 3.59 57.65 3.59 57.65 3.59

Ethane 30.07 632.01 21.02 632.01 21.02 632.01 21.02 632.01 21.02 632.01 21.02

Ethylene 28.05 37.69 1.34 37.69 1.34 37.69 1.34 37.69 1.34 37.69 1.34

1-Butene 56.11 131.42 2.34 131.42 2.34 131.42 2.34 131.42 2.34 131.42 2.34

Butane 58.12 9.57 0.16 9.57 0.16 9.57 0.16 9.57 0.16 9.57 0.16

CO 28.01 248.46 8.87 248.46 8.87 248.46 8.87 248.46 8.87 248.46 8.87

Oxygen 32.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00

Nitrogen 28.01 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00

SOC 176.50 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00

SpentSOC 176.50 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00

Total 68332.50 2074.65 68332.51 2074.65 56498.94 1417.79 56405.61 1412.61 56405.61 1412.61

Enthalpy kW -49438 -65408 -13015 -12665 -11792

Phase V V+L V V V

Press. Bara 12.0 12.0 12.0 11.8 25.0

Temp oC 225.0 29.9 29.9 29.9 74.5

STREAM Nr. : 116 117 118 119 120

Name : Feed C104 Bottom C104 Discharge E106 Feed C105 Overhead C105

COMP MW kg/hr kmol/hr kg/hr kmol/hr kg/hr kmol/hr kg/hr kmol/hr kg/hr kmol/hr

Propylene 42.08 31468.31 747.81 31465.60 747.75 31465.60 747.75 31465.61 747.75 471961.00 11215.63

Propane 44.10 23636.15 536.01 23635.94 536.00 23635.94 536.00 23635.93 536.00 1991.63 45.17

Hydrogen 2.02 184.36 91.46 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00

Water 18.02 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00

Methane 16.04 57.65 3.59 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00

Ethane 30.07 632.01 21.02 18.83 0.63 18.83 0.63 18.83 0.63 115.09 3.83

Ethylene 28.05 37.69 1.34 0.06 0.00 0.06 0.00 0.06 0.00 0.26 0.01

1-Butene 56.11 131.42 2.34 131.42 2.34 131.42 2.34 131.42 2.34 0.00 0.00

Butane 58.12 9.57 0.16 9.57 0.16 9.57 0.16 9.57 0.16 0.00 0.00

CO 28.01 248.46 8.87 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00

Oxygen 32.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00

Nitrogen 28.01 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00

SOC 176.50 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00

SpentSOC 176.50 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00

Total 56405.61 1412.61 55261.41 1286.89 55261.41 1286.89 55261.41 1286.88 474067.98 11264.63

Enthalpy kW -17370 -15440 -10229 -10620 55158

Phase V+L L V V V

Press. Bara 25.0 24.2 24.0 13.0 10.0

Temp oC 30.0 60.9 100.0 75.2 19.0

37

STREAM Nr. : 121 122 123 124 125

Name : Mixed heatpump Discharge K103 Discharge E107 Discharge E108 Feed V104

COMP MW kg/hr kmol/hr kg/hr kmol/hr kg/hr kmol/hr kg/hr kmol/hr kg/hr kmol/hr

Propylene 42.08 480382.00 11415.75 480382.00 11415.75 480382.00 11415.75 480382.00 11415.75 480382.00 11415.75

Propane 44.10 2022.28 45.86 2022.28 45.86 2022.28 45.86 2022.27 45.86 2022.27 45.86

Hydrogen 2.02 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00

Water 18.02 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00

Methane 16.04 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00

Ethane 30.07 120.19 4.00 120.19 4.00 120.19 4.00 120.18 4.00 120.18 4.00

Ethylene 28.05 0.28 0.01 0.28 0.01 0.28 0.01 0.28 0.01 0.28 0.01

1-Butene 56.11 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00

Butane 58.12 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00

CO 28.01 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00

Oxygen 32.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00

Nitrogen 28.01 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00

SOC 176.50 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00

SpentSOC 176.50 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00

Total 482524.75 11465.62 482524.75 11465.62 482524.75 11465.62 482524.73 11465.62 482524.7311465.62

Enthalpy kW 56143 61443 21740 12872 12872

Phase V V V+L L V+L

Press. Bara 10.0 18.0 17.0 16.0 10.0

Temp oC 19.0 54.4 43.4 29.5 19.0

STREAM Nr. : 126 127 128 OUT 129 130

Name : Overhead V104 Split Product Propylene Product LPG feed from storage Discharge P109

COMP MW kg/hr kmol/hr kg/hr kmol/hr kg/hr kmol/hr kg/hr kmol/hr

Propylene 42.08 39532.65 939.45 31112.19 739.35 31112.19 739.35 0.00 0.00 0.00 0.00

Propane 44.10 143.93 3.26 113.28 2.57 113.28 2.57 33234.45 753.68 33234.45 753.68

Hydrogen 2.02 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00

Water 18.02 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00

Methane 16.04 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00

Ethane 30.07 23.91 0.80 18.82 0.63 18.82 0.63 699.67 23.27 699.67 23.27

Ethylene 28.05 0.07 0.00 0.06 0.00 0.06 0.00 0.00 0.00 0.00 0.00

1-Butene 56.11 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00

Butane 58.12 0.00 0.00 0.00 0.00 0.00 0.00 1049.51 18.06 1049.51 18.06

CO 28.01 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00

Oxygen 32.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00

Nitrogen 28.01 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00

SOC 176.50 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00

SpentSOC 176.50 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00

Total 39700.57 943.51 31244.34 742.54 31244.34 742.54 34983.63 795.00 34983.63 795.00

Enthalpy kW 4624 3639 3607 -26950 ?

Phase V V V L L

Press. Bara 10.0 10.0 9.0 17.0 20.0

Temp oC 19.0 19.0 15.0 15.0 15.0

38

STREAM Nr. : 151 152 153 154 155

Name : Recycle Propane Bottom C101 Discharge P110 Discharge P110 SpentSOC feed R102

COMP MW kg/hr kmol/hr kg/hr kmol/hr kg/hr kmol/hr kg/hr kmol/hr kg/hr kmol/hr

Propylene 42.08 353.57 8.40 0.28 0.01 0.28 0.01 0.28 0.01 0.00 0.00

Propane 44.10 23522.64 533.44 226.39 5.13 226.39 5.13 226.39 5.13 0.00 0.00

Hydrogen 2.02 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00

Water 18.02 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00

Methane 16.04 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00

Ethane 30.07 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00

Ethylene 28.05 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00

1-Butene 56.11 131.42 2.34 126.25 2.25 126.25 2.25 126.25 2.25 0.00 0.00

Butane 58.12 9.57 0.16 1049.51 18.06 1049.51 18.06 1049.51 18.06 0.00 0.00

CO 28.01 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00

Oxygen 32.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00

Nitrogen 28.01 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00

SOC 176.50 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 7254820.00 41103.80

SpentSOC 176.50 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 578736.00 3278.96

Total 24017.20 544.34 1402.44 25.45 1402.44 25.45 1402.44 25.45 7833556.00 44382.75

Enthalpy kW -17814 -856 -937 -936 502197

Phase L L L L S

Press. Bara 17.0 16.8 20.0 16.8

Temp oC 31.3 89.2 89.2 89.2 595.9

STREAM Nr. : 156 157 158 159 OUT 160

Name : Effluent R102 SOC feed R101 Effluent S102 Exhaust air Discharge V102

COMP MW kg/hr kmol/hr kg/hr kmol/hr kg/hr kmol/hr kg/hr kmol/hr kg/hr kmol/hr

Propylene 42.08 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.08 0.00

Propane 44.10 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.02 0.00

Hydrogen 2.02 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00

Water 18.02 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 11833.45 656.86

Methane 16.04 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00

Ethane 30.07 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00

Ethylene 28.05 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00

1-Butene 56.11 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00

Butane 58.12 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00

CO 28.01 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00

Oxygen 32.00 641.46 20.05 0.00 0.00 641.46 20.05 641.46 20.05 0.00 0.00

Nitrogen 28.01 37408.92 1335.39 0.00 0.00 37408.92 1335.39 37408.92 1335.39 0.00 0.00

SOC 176.50 7844290.00 44443.57 7844290.00 44443.57 0.00 0.00 0.00 0.00 0.00 0.00

SpentSOC 176.50 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00

Total 7882340.38 45799.01 7844290.00 44443.57 38050.38 1355.44 38050.38 1355.44 11833.55 656.86

Enthalpy kW 509497 501958 7540 161 -52393

Phase V+S S V V L

Press. Bara 1.4 1.2 1.0 12.0

Temp oC 682.2 676.0 669.0 39.9 29.9

39

STREAM Nr. : 161 162 163 164 165

Name : Discharge P108 Feed C103 Glycol recycle Overhead C103 Top C104

COMP MW kg/hr kmol/hr kg/hr kmol/hr kg/hr kmol/hr kg/hr kmol/hr kg/hr kmol/hr

Propylene 42.08 0.08 0.00 0.00 0.00 composition unknown

Propane 44.10 0.02 0.00 0.00 0.00

Hydrogen 2.02 0.00 0.00 0.00 0.00

Water 18.02 11833.45 656.86 93.33 5.18

Methane 16.04 0.00 0.00 0.00 0.00

Ethane 30.07 0.00 0.00 0.00 0.00

Ethylene 28.05 0.00 0.00 0.00 0.00

1-Butene 56.11 0.00 0.00 0.00 0.00

Butane 58.12 0.00 0.00 0.00 0.00

CO 28.01 0.00 0.00 0.00 0.00

Oxygen 32.00 0.00 0.00 0.00 0.00

Nitrogen 28.01 0.00 0.00 0.00 0.00

SOC 176.50 0.00 0.00 0.00 0.00

SpentSOC 176.50 0.00 0.00 0.00 0.00

Total 11833.55 656.86 ? ? ? ? 93.33 5.18 56701.67 1288.85

Enthalpy kW -52393 ? ? ? ?

Phase L L L V V

Press. Bara 15.0 ? ? ? 24.0

Temp oC 30.0 ? ? ? -62.0

STREAM Nr. : 166 167 168 169 170

Name : Feed V103 Reflux C104 Overhead C104 Bottom C105 C4+

COMP MW kg/hr kmol/hr kg/hr kmol/hr kg/hr kmol/hr kg/hr kmol/hr kg/hr kmol/hr

Propylene 42.08 composition unknown composition unknown 2.71 0.06 353.57 8.40 0.28 0.01

Propane 44.10 0.00 0.00 0.21 0.00 23522.64 533.44 226.39 5.13

Hydrogen 2.02 0.00 0.00 184.36 91.46 0.00 0.00 0.00 0.00

Water 18.02 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00

Methane 16.04 0.00 0.00 57.65 3.59 0.00 0.00 0.00 0.00

Ethane 30.07 0.00 0.00 613.18 20.39 0.00 0.00 0.00 0.00

Ethylene 28.05 0.00 0.00 37.63 1.34 0.00 0.00 0.00 0.00

1-Butene 56.11 0.00 0.00 0.00 0.00 131.42 2.34 126.25 2.25

Butane 58.12 0.00 0.00 0.00 0.00 9.57 0.16 1049.51 18.06

CO 28.01 0.00 0.00 248.46 8.87 0.00 0.00 0.00 0.00

Oxygen 32.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00

Nitrogen 28.01 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00

SOC 176.50 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00

SpentSOC 176.50 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00

Total 38496.92 1382.94 37352.72 1257.22 1144.20 125.72 24017.20 544.34 1402.44 25.45

Enthalpy kW ? ? -904 -17827 ?

Phase V+L L V L L

Press. Bara 23.8 25.0 24.0 11.0 15.8

Temp oC -62.0 -62.0 -62.1 30.4 15.0

40

STREAM Nr. : 171 172 173 IN 174 175

Name : Discharge V104 Spit stream heat pump Air Air feed R102 Light ends

COMP MW kg/hr kmol/hr kg/hr kmol/hr kg/hr kmol/hr kg/hr kmol/hr kg/hr kmol/hr

Propylene 42.08 440849.00 10476.29 8420.45 200.10 0.00 0.00 0.00 0.00 2.71 0.06

Propane 44.10 1878.34 42.60 30.66 0.70 0.00 0.00 0.00 0.00 0.21 0.00

Hydrogen 2.02 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 184.36 91.46

Water 18.02 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00

Methane 16.04 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 57.65 3.59

Ethane 30.07 96.27 3.20 5.09 0.17 0.00 0.00 0.00 0.00 613.18 20.39

Ethylene 28.05 0.21 0.01 0.02 0.00 0.00 0.00 0.00 0.00 37.63 1.34

1-Butene 56.11 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00

Butane 58.12 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00

CO 28.01 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 248.46 8.87

Oxygen 32.00 0.00 0.00 0.00 0.00 11375.57 355.50 11375.57 355.50 0.00 0.00

Nitrogen 28.01 0.00 0.00 0.00 0.00 37408.92 1335.39 37408.92 1335.39 0.00 0.00

SOC 176.50 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00

SpentSOC 176.50 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00

0.00 0.00

Total 442823.8110522.10 8456.22 200.97 48784.49 1690.89 48784.49 1690.89 1144.20 125.72

Enthalpy kW 8248 985 -142 1055 -816

Phase L V V V V

Press. Bara 10.0 10.0 1.0 2.4 24.0

Temp oC 19.0 19.0 14.9 102.0 15.0

STREAM Nr. : 176 178 179 180 181

Name : Discharge V102 Discharge V101 Reflux C101 Discharge P104 Discharge P107

COMP MW 0 353.5688 kg/hr kmol/hr kg/hr kmol/hr 0 353.5688 0 353.5688

Propylene 42.08 kg/hr kmol/hr composition unknown composition unknown kg/hr kmol/hr kg/hr kmol/hr

Propane 44.10 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00

Hydrogen 2.02 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00

Water 18.02 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00

Methane 16.04 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00

Ethane 30.07 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00

Ethylene 28.05 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00

1-Butene 56.11 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00

Butane 58.12 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00

CO 28.01 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00

Oxygen 32.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00

Nitrogen 28.01 641.46 0.00 0.00 0.00 0.00 0.00 641.46 20.05 641.46 20.05

SOC 176.50 37408.92 0.00 0.00 0.00 0.00 0.00 37408.92 1335.39 37408.92 1335.39

SpentSOC 176.50 SOC 0.00 0.00 0.00 0.00 0.00

0.00 0.00 0.00

Total 38050.38 0.00 56927.66 1294.19 56927.66 1294.19 0.00 0.00 38050.38 1355.44

Enthalpy kW 7882340 ? ? 38050 38050

Phase L L L L L

Press. Bara 12.0 16.2 18.0 20.0 10.5

Temp oC 30.0 47.4 47.4 30.0 19.0

41

STREAM Nr. : 182 183 184 185 OUT

Name : Reflux C105 Reflux C104 Feed C102 Light ends

COMP MW kg/hr kmol/hr kg/hr kmol/hr kg/hr kmol/hr kg/hr kmol/hr

Propylene 42.08 440849.00 10476.29 composition unknown 31468.31 747.81 2.71 0.06

Propane 44.10 1878.34 42.60 0.00 0.00 23636.15 536.01 0.21 0.00

Hydrogen 2.02 0.00 0.00 0.00 0.00 184.36 91.46 184.36 91.46

Water 18.02 0.00 0.00 0.00 0.00 93.33 5.18 0.00 0.00

Methane 16.04 0.00 0.00 0.00 0.00 57.65 3.59 57.65 3.59

Ethane 30.07 96.27 3.20 0.00 0.00 632.01 21.02 613.18 20.39

Ethylene 28.05 0.21 0.01 0.00 0.00 37.69 1.34 37.63 1.34

1-Butene 56.11 0.00 0.00 0.00 0.00 131.42 2.34 0.00 0.00

Butane 58.12 0.00 0.00 0.00 0.00 9.57 0.16 0.00 0.00

CO 28.01 0.00 0.00 0.00 0.00 248.46 8.87 248.46 8.87

Oxygen 32.00 0.00 0.00 0.00 0.00 0.00 0.00

Nitrogen 28.01 0.00 0.00 0.00 0.00 0.00 0.00

SOC 176.50 0.00 0.00 0.00 0.00 0.00 0.00

SpentSOC 176.50 0.00 0.00 0.00 0.00 0.00 0.00

0.00 0.00 0.00

Total 442823.81 10522.10 37352.72 1257.22 56498.94 1417.79 1144.20 125.72

Enthalpy kW 8248 ? -13015 -816

Phase L L V V

Press. Bara 10.5 23.8 11.9 22.0

Temp oC 19.0 -62.0 30.0 14.8

42

Appendix 5.2 Heat exchanger design

Heat exchange network

Number Equipment Pinch temp T in T out Quantity

Heat duty

Aspen number F*Cp

above pinch

below pinch

[C] [C] [C] [kg/hr] [kW] [kW] [kW] Cold streams to be heated 1 HE 60.9 -20.4 378.9 57605.81 14970 E101 37 11920 3050 2 HE 60.9 60.9 100.0 55411.11 5212 E106 133 5212 0 3 HE 60.9 -62.5 15.0 1143.73 89 E113 1 0 89 4 RB 60.9 89.2 90.2 10607 C101 10607 10607 0 5 RB 60.9 60.9 61.9 22607 C104 22607 22607 0 Subtotal: 53485 50347 3139 Hot streams to be cooled

6 HE 70.9 595.9 99.9 68340.32 -24908 E103 50 -

24908 0

7 HE 70.9 225.0 29.9 68340.32 -15971 E104 82 -

12611 -3360 8 HE 70.9 74.5 30.0 56413.00 -5579 E105 125 -456 -5123 9 HE 70.9 682.2 39.9 38049.98 -7379 E103 N 11 -7022 -357 10 HE 70.9 43.4 29.5 482674.45 -8871 E110 637 0 -8871 11 C 70.9 47.4 46.4 -4617 C101 4617 0 -4617

Subtotal: -67324 -

44997 -22327 Total: -13839 5349 -19188

43

Stre

am c

oupl

ing

Hot

pi

nch

tem

p:

70.9

Ab

ove

pinc

h C

old

stre

am

coup

led

to

Hot

stre

am Q

Col

d st

ream

H

ot s

tream

Equi

pmen

t U

D

elta

T

ln

R

S Ft

Ar

ea

Cos

t Ar

ea

Mat

eria

l Pr

essu

re

Pres

sure

[kW

] En

thal

py

rem

aini

ng

T in

T

out

Enth

alpy

re

mai

ning

T

in

T ou

t

fig 1

2.20

[m

2]

[$]

[squ

are

foot

]

[bar

] [P

SI]

t1

t2

T1

T2

1

9 70

22

4898

.3

60.9

24

8.2

0.0

682.

2 70

.9

HE

50

112.

4 3.

3 0.

30

0.88

14

19

2278

00

1527

8 C

S 2

29

1

6

4898

.3

0.0

248.

2 37

8.9

2000

9.7

595.

9 49

8.3

HE

50

233.

2 0.

7 0.

38

0.99

42

4 36

1200

45

68

SS 4

10

2 29

2

6 52

12

0.0

60.9

10

0.0

1479

7.7

498.

3 39

4.5

HE

50

365.

0 2.

7 0.

09

0.99

28

8 26

4200

31

05

SS 4

10

24

348

4

6

1060

7 0.

0 89

.2

90.2

41

90.6

39

4.5

183.

3 H

E 50

17

9.1

211.

2 0.

00

1 11

84

8360

00

1274

7 SS

410

24

34

8

5

6 41

91

1841

6.5

60.9

61

.1

0.0

183.

3 99

.8

HE

50

72.8

45

0.2

0.00

1

1151

81

7000

12

389

SS 4

10

24

348

5

7

1261

1 58

05.5

61

.1

61.6

0.

0 22

5.0

70.9

H

E 50

54

.6

276.

2 0.

00

1 46

19

2518

000

4972

2 SS

410

24

34

8

5

8 45

6 53

49.4

61

.6

61.7

0.

0 74

.5

69.0

H

E 50

9.

8 27

6.2

0.00

1

927

1859

00

9973

C

S 25

36

3

LP s

team

5

H

U

5349

0.

0 61

.7

61.9

-

190.

0 13

3.5

HEA

TER

30

0 97

.3

238.

8 0.

00

1 18

3

Su

btot

al:

53

49

[kW

]

52

1010

0

B

elow

pi

nch

Col

d st

ream

co

uple

d to

H

ot s

tream

Q

C

old

stre

am

Hot

stre

am

Eq

uipm

ent

U

Del

ta

T ln

R

S

Ft

Area

C

ost A

rea

Mat

eria

l Pr

essu

re

Pres

sure

[kW

] En

thal

py

rem

aini

ng

T in

T

out

Enth

alpy

re

mai

ning

T

in

T ou

t

[m

2]

[$] [s

quar

e fo

ot]

[b

ar]

[PSI

]

3

7 89

0.

0 -6

2.5

15.0

-3

271.

0 70

.9

69.8

H

E 50

88

.7

0.0

0.58

0.

98

20

3070

0 22

0 SS

410

24

34

8

3271

[k

W] C

U

7 32

71

- -

- 0.

0 69

.8

29.9

C

OO

LER

30

0 18

.1

2.0

0.40

0.

9 66

8 12

0500

71

90

SS 4

10

12

174

1

8

3050

0.

0 -2

0.4

60.9

-2

073.

3 70

.9

46.6

H

E 50

30

.0

0.3

0.89

0.

9 22

62

3175

00

2434

4 C

S 25

36

3

2073

[k

W] C

U

8 20

73

- -

- 0.

0 46

.6

30.0

C

OO

LER

30

0 10

.7

1.0

0.62

0.

88

736

5130

00

7925

SS

410

25

36

3

357

[kW

] CU

9

357

- -

- 0.

0 70

.9

39.9

C

OO

LER

30

0 25

.0

1.6

0.39

0.

96

50

5390

0 53

4 SS

410

2

29

88

71

[kW

] CU

10

88

71

- -

- 0.

0 43

.4

29.5

C

OO

LER

30

0 10

.2

1.0

0.57

0.

94

3088

17

2820

0 33

236

SS 4

10

18

261

46

17

[kW

] CU

11

46

17

- -

- 0.

0 47

.4

46.4

C

OO

LER

30

0 16

.9

0.1

0.63

0.

99

921

6765

00

9913

SS

410

17

24

7 Su

btot

al:

19

188

[kW

] CU

34

4030

0

CU

= C

old

Util

ities

, HU

= H

ot U

tiliti

es

Addi

tiona

l equ

ipm

ent

kW

T1 <

122>

T2

<12

3>

t1 <

reb>

t2

<re

b>

Del

ta T

ln

U

R

S Ft

Ar

ea

E1

14

(C10

5 re

boile

r) 39

702.

305

54.4

2 43

.38

18

19

30.1

2 30

0 11

.042

06

0.02

7457

9 1

4393

.82

E1

17

(coo

ler)

80.6

68

89

15

20

40

#NU

M!

300

E1

17 ->

koe

len

met

luch

t

44

Appendix 5.3 Process Flow Sheet

See large print

45

Appendix 5.4 Utility summary

SUMMARY OF UTILITIES

EQUIPMENT UTILITIES

Heating Cooling Power REMARKS

Nr. Name Load Consumption (t/h) Load Consumption (t/h) Actual Consumption (t/h, kWh/h)

Steam Hot Cooling Air Refrig. Load Steam (t/h) Electr.

kW LP MP HP Oil kW Water kW HP MP kWh/h

E101 C101 Condenser 4617 229

E110 R101 Effluent cooler 3271 140

E112 C104 feed cooler 2073 108

E113 C104 Condenser 5134 ?

E115 Heat pump trim cooler 8871 564

E116 Exhaust air cooler 357 15

E117 C4+ cooler 81 neglected

E118 C104 Reboiler 5349 19

P101 C101 reflux pump 6.81

P102 Bottom C102 ?

P103 Bottom C103 ?

P104 Bottom C105 13.52

P106 C104 reflux pump 3.46

P107 C105 reflux pump 14.43

P108 Discharge V102 pump 0.17

P109 LPG feed pump 1.68

P110 Bottom C101 0.23

K101 R101 Effluent Compressor 4857 4857

K102 C102 Overhead Compressor 873 873

K103 C105 Overhead Compressor 5301 5301

K104 Air Compressor 1197 1197

T101 Expander overhead C101 -1101 -1101

T102 Expander bottom C104 -391 -391

T103

Expander Propylene product -32 -32

TOTAL 5349 19 0 0 0 24404 1056 0 0 10745 0 0 10704

Project ID Number : CPD3300

Completion Date :

Januari 12th 2004

46

Appendix 5.5 Preliminary Block scheme of the Hipphox process

* The numbers of the flows are based on the first mass balances calculation described in chapter 5. These numbers are therefore not the optimized numbers. The numbers between the brackets are the ton of component per ton of product.

H2O (l) 93.71 kta (0.37) 30°C, 12 bara

2

3

4

8 Separation section 22°C 16 bara

Reaction section 600 °C 2 bara

Separation section 30 – 75 °C 12 – 25 bara

Regeneration section 600 °C 1-2 bara

LPG [v] 306.15 kta (1.22) 15 °C, 17 bara

Propylene-product (v) 250 kta 15°C, 9 bara

C4+ (l)

9.18 kta (0.04) 15°C, 16 bara

O2 (in air) 83.23 kta (0.34) 15 °C, 1 bara

Propane + C2 [v] 473.21 kta (1.89) 600 °C, 2 bara

SOC recycle

exhaust air

By-product (v) 35.05 kta (0.14) 15°C, 2 bara

Total IN: 389.38 kta (1.56) Total OUT: 389.38 kta (1.56)

556.43 kta (2.23) 600 °C 2 bara

1

9

10

12 13

7

11 H2 (v) 1.43 kta (0.01)

15°C, 2 bara

Propane (l) 176.24 kta (0.70) 31°C, 17 bara

6 5

47

Appendix 7.1 Heat & Mass balance for streams total

HEAT & MASS BALANCE FOR STREAMS TOTAL

IN OUT

Plant EQUIPMENT EQUIPM. EQUIPMENT Plant

Mass Heat Mass Heat Stream IDENTIF. Stream Mass Heat Mass Heat

kg/hr kW kg/hr kW Nr. Nr. kg/hr kW kg/hr kW

34984 -26950 101 M 102 59001 -44763

24017 -17814 151

1 59001 -44764 Total 59001 -44763 0

59001 -44763 102 C101 105 57598 -37918

152 1402 -856

0 E101 4616

10606 E105

V101

P101

0 59001 -34157 Total 59001 -34158 0 0

57598 -37918 105 106 57598 -39019

T101 1101

0 0 57598 -37918 Total 57598 -37918 0 0

57598 -39019 106 107 57598 -24050

0 14969

E102 E103 E104

0 0 57598 -24050 Total 57598 -24050 0 0

57598 -24050 107 108 7901888 472807

R101

7844290 501958 157

0 0 7901888 477908 Total 7901888 472807 0 5101

7901888 472807 108 S101 109 68332 -29390

155 7833556 502197

0 0 7901888 472807 Total 7901888 472807 0 0

68332 -29390 109 110 68332 -54295

E103 E105 E106 E107 24905

0 0 68332 -29390 Total 68332 -29390 0 0

68332 -54295 110 111 68332 -49438

4857 K101

0 0 68332 -49438 Total 68332 -49438 0 0

68332 -49438 111 112 68333 -65408

E108 E109 E110 15971

0 1 68332 -49438 Total 68333 -49437 0 0

68333 -65408 112 V102 113 56499 -13015

160 11834 -52393

0 0 68333 -65408 Total 68332 -65408 0 0

48

56499 -13015 113=185 114 56406 -12665

C102 164 11834 -52393

-63 C103

11740 0 56499 -13078 Total 68239 -65058 0 51980

56406 -12665 114 115 56406 -11792

873 K102

0 0 56406 -11792 Total 56406 -11792 0 0

56406 -11792 115 116 56406 -17370

E104 E111 E112 5578.9488

0 1 56406 -11792 Total 56406 -11791 0 0

56406 -17370 116 C104 117 55261 -15440

168 1144 -904

6160

E107 E108 E111 E118

V103

P106

E113 5135

0 0 56406 -11210 Total 56406 -11210 0 0

55261 -15440 117 118 55261 -10229

5212 E106

0 0 55261 -10228 Total 55261 -10229 0 1

55261 -10229 118 119 55261 -10620

T102 391

0 0 55261 -10229 Total 55261 -10229 0 0

55261 -10620 119 C105 120 474068 55158

442824 8248 171=182 169 24017 -17827

39702 E114

0 0 498085 37330 498085 37331 0 0

474068 55158 120 121 482525 56143

8456 985 172 M

1 0 482524 56143 Total 482525 56143 0 0

482525 56143 121 122 482525 61443

5300 K103

0 0 482525 61442 Total 482525 61443 0 0

482525 61443 122 123 482525 21740

E114 39702

0 0 482525 61443 Total 482525 61442 0 0

482525 21740 123 E115 124 482525 12872

8868

0 0 482525 21740 Total 482525 21740 0 0

482525 12872 124 125 482525 12872

valve 0

0 0 482525 12872 Total 482525 12872 0 0

482525 12872 125 V104 126 39701 4624

171 442824 8248

0 0 482525 12872 Total 482524 12872 0 0

39701 4624 126 SP101 127 31244 3639

49

172 8456 985

0 0 39701 4624 Total 39701 4624 0 0

31244 3639 127 128 31244 3607

T103 32

0 0 31244 3639 Total 31244 3639 0 0

24017 -17827 169 180=151 24017 -17814

14 P104

0 0 24017 -17813 Total 24017 -17814 0 1

48784 1055 174 156 7882340 509497

7833556 502197 155

R102

0 6245 7882340 503252 Total 7882340 509497 0 0

7882340 509497 156 157 7844290 501958

S102 158 38050 7540

0 1 7882340 509497 Total 7882340 509498 0 0

38050 7540 158 159 38050 161

E102 E116 7379

38050 7540 Total 38050 7540

48784 -142 173 174 48784 1055

1197 K104

48784 1055 Total 48784 1055

1144 -904 168 175 1144 -816

89 E109

1144 -816 1144 -816

11740.88 6250 Total 1 57084

OUT - IN : -11740 50834

Project ID Number : CPD3300

Completion Date : 12th January 2003

50

App

endi

x 8.

1 A

spen

sim

ulat

ion

51

Appendix 8.2 Calculation of reactor dimensions

For the calculation of the reactor dimensions the following input data is used: Table A.1 Input for reactor dimension calculations

Reactor volume 71 m3

Solid volume fraction 0.3 Gas volume 50 m3 Residence time τ 3.65 s Gas flow 13.6 m3/s

With the calculated reactor volume different H/D ratio’s are chosen, which are used to calculate the specific area. From the area and the gas flow the superficial gas velocity can be calculated. The absolute particle velocity is obtained by summing up the superficial gas velocity and the relative particle speed. The relative particle speed can be obtained by using the following iteration procedure. First the relative particle speed is set to a certain arbitrarily chosen value. Using the following relation the Reynolds-particle number can be calculated:

Re vDρµ

= (A.1)

with: ρ = density of the gas, a mixture of propane and propylene [kg/m3], v = relative particle speed [m/s], D = diameter of the particle [m], µ = viscosity of the gas [Pa*s]. From the Reynolds number the drag-factor can be obtained using the following formula:

3518.5*ReDC

−= (A.2)

This formula was obtained from Yang et al. [59]. The drag-factor of the particle can be used to calculate the velocity of the particle again.

1/ 24 ( )

3p s g

pg D

gdv

Cρ ρ

ρ −

=

(A.3)

These steps are repeated several times until the adequate relative particle speed is obtained, which is 0.68 m/s in this case. In the following the pressure drop over the column is calculated. Two effects have a main influence on the pressure drop in the reactor. Firstly friction of the gas with the walls and

52

secondly the static pressure drop caused by the downward motion of the particles. The pressure drop due to friction with the walls can be calculated using the following formula.

( ) ( )2 22 12 1 2 1

2 1

12 m A wr m

P P g h h v v Aφ φ φρ ρ

− + − + − = −

(A.4)

with:

( )2 21 12 24wr w

i i

LA f v K vD

= + ∑ (A.5)

P = pressure [Pa], ρ = density [kg/m3], g = gravity constant [m/s2], h = height [m], v = velocity [m/s], φ = mass flow [kg/s], φA = added energy (which is the energy that is released or withdrawn by reaction) [J/s], Awr = energy dissipation [J/kg], f = friction coefficient (chosen to be 0.007 for moderate roughness), L = length of the tube [m], D = diameter of the tube [m], Kw = friction loss factor and the index 1 and 2 point out the location at the beginning and the end respectively. The static pressure drop caused by the downward motion of the particles can be calculated using the following formula found in literature ([58], page 4206).

s pp g hε ρ∆ = (A.6)

where ε is the holdup in the column, ρp the density of the particle, and h the height of the column. These two formula’s give a pressure drop over the vessel, where the static pressure drop has the opposite effect in the downer reactor than the friction pressure drop.

53

Appendix 8.3 Heat transfer calculation

The heat transfer coefficient can be found using the following formula:

p p

g

h dNu

λ= (A.1)

With: Nu =the Nusselt number, hp = the heat transfer coefficient [W/(m2K)], dp = the particle diameter [m] and λg = the thermal conductivity of the gas [W/(mK)]. The Nusselt number for a single sphere is described by:

0.5 0.332 0.6Re Prp gNu = + (A.2)

With:

Reρ

η= g p p

pg

v d (A.3)

Prν

=g a (A.4)

here Rep is the Reynolds-particle number and Pr the Prandtl number for the gas, with vp = the relative particle speed [m/s], ηg = the dynamic viscosity of the gas [Pa·s], ν = the kinematic viscosity of the gas, which is defined as η/ρ, and a = the thermal diffusivity [m2/(skg2)], which is defined as follows:

,

g

g p g

aC

λ

ρ= (A.5)

With: Cp,g = the specific heat of the gas [J/(kgK)] Values for the density, viscosity and specific heat of the gas are taken at a temperature of 600˚C. With the particle volume and surface, and the amount of particles present in the riser the total amount of heat exchange area in the riser, A, can be calculated. The overall heat transfer capacity now can be calculated with:

lntotalQ h A T= ∆ (A.6)

54

Where ∆Tln is the logarithmic mean temperature difference:

( ) ( )( )( )

( )

, , , ,ln

, ,

, ,

ln

soc in gas in soc out gas out

soc in gas in

soc out gas out

T T T TT

T TT T

− − −∆ =

− −

(A.7)

The same procedure can be done for the reactor, except of course with using the correct values of temperatures and gas properties.

55

Appendix 8.4 Calculation of column pressure drop

To calculate the column pressure drop, formulas from [21, page 571, 575] and [24, page 454, 456] are used. Estimates have to be made for the densities of the top and bottom stream, ρG and ρL and the distillate flow (D). They are based on the output of Aspen, for the simulation of the complete process, in which the column pressure drops were estimated. The flooding velocity (v) can be calculated with formula (A.1) by assuming that the F-factor (F) is equal to 1.5 for towers with 2 ft tray spacing [24].

1.5 GF v ρ= = (A.1)

The dry plate pressure drop hd can be calculated with:

2

0

51 Gd

L

vhC

ρρ

=

[mmL] (A.2)

in which C0 is the orifice coefficient, taken as 0.8 [21]. The residual head hr can be calculated with:

12500r

L

= [mmL] (A.3)

The weir liquid crest how can be calculated using an estimate for the weir length (lw), as estimate a value of 0.77 is taken [21].

750owL w

Dhlρ

=

[mmL] (A.4)

The total plate drop ht can be calculated using an estimate for the weir height (hw), as estimate a value of 80 mm is taken [21].

t d w ow rh h h h h= + + + [mmL] (A.5)

The total plate pressure drop ∆Pt can now be calculated with:

39.81 10t t LP h ρ−∆ = ⋅ [Pa] (A.6)

The column pressure drop is then:

5 1.21 10

t tP NP ∆∆ = ⋅

⋅ [bara] (A.7)

in which 1.2 is a design factor, to take a certain margin for the pressure drop in the columns. The results of this calculation are shown for column C101, C104 and C105 in the following table.

56

Table A.1 Result of above calculation procedure

Column Nt ρG ρL v D hd hr ht how ∆Pt ∆P

[-] [kg/m3] [kg/m3] [m/s] [kg/s] [mmL] [mmL] [mmL] [mmL] [Pa] [bar]

C101 26 37 437 0.25 0.4 0.41 29 117 8 503 0.16

C104 29 13 385 0.42 16.0 0.47 32 220 107 831 0.29

C105 119 21 466 0.33 7.0 0.38 27 162 54 739 1.05

57

Appendix 8.5 Equipment data sheets

78

Appendix 10.1 Properties of components for F&EI

Properties of components for F&EI

Nf (3) Nr (3) Nh (3) MF (1) Flashpoint [F] (2)

Propylene 4 1 1 21 -162 PROPANE 4 0 1 21 gas HYDROGEN 4 0 0 21 gas WATER 0 0 0 0 METHANE 4 0 1 21 gas ETHANE 4 0 1 21 gas Ethylene 4 2 1 24 gas 1-BUTene 4 0 1 21 gas N-BUTANE 4 0 1 21 -76 CO 4 0 3 21 gas OXYGEN 0 0 0 0 gas NITROGEN 0 0 0 0 gas SOC 0 0 1 0 SPENTSOC 0 1 1 16 TEG 1 0 0 4 350 (1) Dictaat risicobeheersing [61], figure 5.1, table 5.2 (280-281) (2) List of pure components (3) http://www.orcbs.msu.edu/chemical/nfpa/nfpa.html

79

Appendix 10.2 F&EI Index of Monolith reactor

F&EI Index of Monolith reactor

Fire & Explosion Index

Area/Country: Division: Location Date

- - 17/12/2003

Site Manufacturing Unit Process Unit

- Reactor R101

Materials in Process Unit

Propylene, propane, hydrogen, methane, water, ethane, ethylene, butene, butane, CO,

oxygen, nitrogen, SOC, SpentSOC

State of Operation Basic Materials for Material Factor

Design

Ethylene

Material Factor 24

1. General Process Hazards Penalty Factor Penalty Range Used

Base Factor 1.00 1.00

A. Exothermic Chemical Reactions 0.30 - 1.25 0.00

B. Endothermic Processes 0.20 - 0.40 0.40

C. Material Handling and Transfer 0.25 - 1.05 0.50

D. Enclosed or Indoor Process Units 0.25 - 0.90 0.00

E. Access 0.20 - 0.35 0.00

F. Drainage and Spill Control 0.25 - 0.50 0.00

General Process Hazards Factor (F1) 1.90

2. Special Process Hazards Penalty Factor Penalty Range Used

Base Factor 1.00 1.00

A. Toxic Material(s) 0.20 - 0.80 0.60

B. Sub-Atmosferic Pressure (< 500 mm Hg) 0.50 0.00

C. Operation In or Near Flammable Range 0.00

1. Tank Farms Storage Flammable Liquids 0.50

2. Process Upset or Purge Failure 0.30 0.30

3. Always in Flammable Range 0.80

D. Dust Explosion 0.25 - 2.00 0.00

E. Pressure Operating Pressure: 200 kPa

Relief Setting: 240 kPa 0.20

F. Low Temperature 0.20 - 0.30 0.00

G. Quantity of Flammable Material: 50 kg

Hc = 50.3 MJ/kg

1. Liquids or Gases in Process 0.00

2. Liquids or Gases in Storage

3. Combustible Solids in Storage, Dust in Process

H. Corrosion and Erosion 0.10 - 0.75 0.10

I. Leakage - Joints and Packing 0.10 - 1.50 0.10

J. Use of Fired Equipment 0.00

K. Hot Oil Heat Exchange System 0.15 - 1.15 0.00

L. Rotating Equipment 0.50 0.00

Special Process Hazards Factor (F2) 2.30

Process Units Hazards Factor (F1 x F2) = F3 4.37

Fire and Explosion Index (F3 x MF = F&EI) 105

80

Appendix 10.3 F&EI index of the riser regenerator

F&EI index of the riser regenerator

Fire & Explosion Index

Area/Country: Division: Location Date

- - 17/12/2003

Site Manufacturing Unit Process Unit

- Regenerator R102

Materials in Process Unit

Oxygen, Nitrogen, SOC, SpentSOC

State of Operation Basic Materials for Material Factor

Design SpentSOC

Material Factor 16

1. General Process Hazards Penalty Factor Penalty Range Used

Base Factor 1.00 1.00

A. Exothermic Chemical Reactions 0.30 - 1.25 0.50

B. Endothermic Processes 0.20 - 0.40 0.00

C. Material Handling and Transfer 0.25 - 1.05 0.50

D. Enclosed or Indoor Process Units 0.25 - 0.90 0.00

E. Access 0.20 - 0.35 0.00

F. Drainage and Spill Control 0.25 - 0.50 0.00

General Process Hazards Factor (F1) 2.00

2. Special Process Hazards Penalty Factor Penalty Range Used

Base Factor 1.00 1.00

A. Toxic Material(s) 0.20 - 0.80 0.00

B. Sub-Atmosferic Pressure (< 500 mm Hg) 0.50 0.00

C. Operation In or Near Flammable Range 0.00

1. Tank Farms Storage Flammable Liquids 0.50

2. Process Upset or Purge Failure 0.30

3. Always in Flammable Range 0.80

D. Dust Explosion 0.25 - 2.00 2.00

E. Pressure Operating Pressure: 200 kPa

Relief Setting: 240 kPa 0.20

F. Low Temperature 0.20 - 0.30 0.00

G. Quantity of Flammable Material: 63546 kg

Hc = 0.4 MJ/kg

1. Liquids or Gases in Process

2. Liquids or Gases in Storage 3. Combustible Solids in Storage, Dust in Process 0.00

H. Corrosion and Erosion 0.10 - 0.75 0.10

I. Leakage - Joints and Packing 0.10 - 1.50 0.10 J. Use of Fired Equipment 0.00

K. Hot Oil Heat Exchange System 0.15 - 1.15 0.00

L. Rotating Equipment 0.50 0.00

Special Process Hazards Factor (F2) 3.40

Process Units Hazards Factor (F1 x F2) = F3 6.80

Fire and Explosion Index (F3 x MF = F&EI) 109

81

Appendix 10.4 F&EI index of the depropanizer

F&EI index of the depropanizer

Fire & Explosion Index

Area/Country: Division: Location Date

- - 17/12/2003

Site Manufacturing Unit Process Unit

- Depropanizer C101

Materials in Process Unit

Propylene, propane, ethane, 1-butene, butane

State of Operation Basic Materials for Material Factor

Design

Propane

Material Factor 21

1. General Process Hazards Penalty Factor Penalty Range Used

Base Factor 1.00 1.00

A. Exothermic Chemical Reactions 0.30 - 1.25 0.00

B. Endothermic Processes 0.20 - 0.40 0.00

C. Material Handling and Transfer 0.25 - 1.05 0.50

D. Enclosed or Indoor Process Units 0.25 - 0.90 0.00

E. Access 0.20 - 0.35 0.00

F. Drainage and Spill Control 0.25 - 0.50 0.00

General Process Hazards Factor (F1) 1.50

2. Special Process Hazards Penalty Factor Penalty Range Used

Base Factor 1.00 1.00

A. Toxic Material(s) 0.20 - 0.80 0.20

B. Sub-Atmosferic Pressure (< 500 mm Hg) 0.50 0.00

C. Operation In or Near Flammable Range 0.00

1. Tank Farms Storage Flammable Liquids 0.50

2. Process Upset or Purge Failure 0.30 0.30

3. Always in Flammable Range 0.80

D. Dust Explosion 0.25 - 2.00 0.00

E. Pressure Operating Pressure: 1700 kPa

Relief Setting: 2040 kPa 0.53

F. Low Temperature 0.20 - 0.30 0.00

G. Quantity of Flammable Material: 10 kg

Hc = 50.34 MJ/kg 1. Liquids or Gases in Process 0.00

2. Liquids or Gases in Storage

3. Combustible Solids in Storage, Dust in Process H. Corrosion and Erosion 0.10 - 0.75 0.10

I. Leakage - Joints and Packing 0.10 - 1.50 0.10

J. Use of Fired Equipment 0.00 K. Hot Oil Heat Exchange System 0.15 - 1.15 0.00

L. Rotating Equipment 0.50 0.00

Special Process Hazards Factor (F2) 2.23

Process Units Hazards Factor (F1 x F2) = F3 3.35

Fire and Explosion Index (F3 x MF = F&EI) 70

82

Appendix 10.5 F&EI index of the de-ethanizer

F&EI index of the de-ethanizer

Fire & Explosion Index

Area/Country: Division: Location Date

- - 17/12/2003

Site Manufacturing Unit Process Unit

- De-ethanizer C104

Materials in Process Unit

Propylene, propane, hydrogen, methane, ethane, ethylene, butene, butane, CO

State of Operation Basic Materials for Material Factor

Design

Ethylene

Material Factor 24

1. General Process Hazards Penalty Factor Penalty Range Used

Base Factor 1.00 1.00

A. Exothermic Chemical Reactions 0.30 - 1.25 0.00

B. Endothermic Processes 0.20 - 0.40 0.00

C. Material Handling and Transfer 0.25 - 1.05 0.70

D. Enclosed or Indoor Process Units 0.25 - 0.90 0.00

E. Access 0.20 - 0.35 0.00

F. Drainage and Spill Control 0.25 - 0.50 0.00

General Process Hazards Factor (F1) 1.70

2. Special Process Hazards Penalty Factor Penalty

Range Used

Base Factor 1.00 1.00

A. Toxic Material(s) 0.20 - 0.80 0.60

B. Sub-Atmosferic Pressure (< 500 mm Hg) 0.50 0.00

C. Operation In or Near Flammable Range 0.00

1. Tank Farms Storage Flammable Liquids 0.50

2. Process Upset or Purge Failure 0.30 0.30

3. Always in Flammable Range 0.80

D. Dust Explosion 0.25 - 2.00 0.00

E. Pressure Operating Pressure: 2400 kPa

Relief Setting: 2880 kPa 0.63

F. Low Temperature 0.20 - 0.30 0.00

G. Quantity of Flammable Material: 16 kg

Hc = 6.43 MJ/kg 0.00

1. Liquids or Gases in Process 0.00

2. Liquids or Gases in Storage

3. Combustible Solids in Storage, Dust in Process

H. Corrosion and Erosion 0.10 - 0.75 0.10

I. Leakage - Joints and Packing 0.10 - 1.50 0.10

J. Use of Fired Equipment 0.00

K. Hot Oil Heat Exchange System 0.15 - 1.15 0.00

L. Rotating Equipment 0.50 0.00

Special Process Hazards Factor (F2) 2.73

Process Units Hazards Factor (F1 x F2) = F3 4.64

Fire and Explosion Index (F3 x MF = F&EI) 111

83

Appendix 10.6 F&EI index of the P/P-splitter

F&EI index of the P/P-splitter

Fire & Explosion Index

Area/Country: Division: Location Date

- - 17/12/2003

Site Manufacturing Unit Process Unit

- P-Psplitter with heat pump C105

Materials in Process Unit

Propylene, propane, ethane, butene, butane

State of Operation Basic Materials for Material Factor

Design

Propylene

Material Factor 21

1. General Process Hazards Penalty Factor Penalty Range Used

Base Factor 1.00 1.00

A. Exothermic Chemical Reactions 0.30 - 1.25 0.00

B. Endothermic Processes 0.20 - 0.40 0.00

C. Material Handling and Transfer 0.25 - 1.05 0.50

D. Enclosed or Indoor Process Units 0.25 - 0.90 0.00

E. Access 0.20 - 0.35 0.00

F. Drainage and Spill Control 0.25 - 0.50 0.00

General Process Hazards Factor (F1) 1.50

2. Special Process Hazards Penalty Factor Penalty

Range Used

Base Factor 1.00 1.00

A. Toxic Material(s) 0.20 - 0.80 0.20

B. Sub-Atmosferic Pressure (< 500 mm Hg) 0.50 0.00

C. Operation In or Near Flammable Range 0.00

1. Tank Farms Storage Flammable Liquids 0.50

2. Process Upset or Purge Failure 0.30 0.30

3. Always in Flammable Range 0.80

D. Dust Explosion 0.25 - 2.00 0.00

E. Pressure Operating Pressure: 1800 kPa

Relief Setting: 2160 kPa 0.55

F. Low Temperature 0.20 - 0.30 0.00

G. Quantity of Flammable Material: 200 kg

Hc = 48.91 MJ/kg

1. Liquids or Gases in Process 0.00

2. Liquids or Gases in Storage

3. Combustible Solids in Storage, Dust in Process

H. Corrosion and Erosion 0.10 - 0.75 0.10

I. Leakage - Joints and Packing 0.10 - 1.50 0.10

J. Use of Fired Equipment 0.00

K. Hot Oil Heat Exchange System 0.15 - 1.15 0.00

L. Rotating Equipment 0.50 0.00

Special Process Hazards Factor (F2) 2.25

Process Units Hazards Factor (F1 x F2) = F3 3.38

Fire and Explosion Index (F3 x MF = F&EI) 71

84

Appendix 10.7 Loss control credit factors

Loss control credit factors

Loss Control Credit Factors

Area/Country: Division: Location Date

- - 17/12/2003

Site Manufacturing Unit Process Unit

- Reactor R101

Materials in Process Unit

Propylene, propane, hydrogen, methane, water, ethane, ethylene, butene, butane, CO,

oxygen, nitrogen, SOC, SpentSOC

State of Operation Basic Materials for Material Factor

Design

Ethylene

1. Process Control Credit Factor (C1) Credit Factor Credit

Range Used

A. Emergency Power 0.98 1.00

B. Cooling 0.97 - 0.99 1.00

C. Explosion Control 0.84 - 0.98 0.98

D. Emergency Shutdown 0.96 - 0.99 0.96

E. Computer Control 0.93 - 0.99 0.97

F. Inert Gas 0.94 - 0.96 0.96

G. Operating Instructions/Procedures 0.91 - 0.99 0.98

H. Reactive Chemical Review 0.91 - 0.98 0.91

I. Other Process Hazards Analysis 0.91 - 0.98 0.91

Loss Control Credit Factor (C1) 0.71

2. Material Isolation Credit Factor (C2) Credit Factor Credit Range Used

A. Remote Control Valves 0.96 - 0.98 0.98

B. Dump/Blowdown 0.96 - 0.98 0.96

C. Drainage 0.91 - 0.97 0.91

D. Interlock 0.98 0.98

Material Isolation Credit Factor (C2) 0.84

3. Fire Protection Credit Factor (C3) Credit Factor Credit Range Used

A. Leak Detection 0.94 - 0.98 0.94

B. Structural Steel 0.95 - 0.98 0.97

C. Fire Water Supply 0.94 - 0.97 0.97

D. Special Systems 0.91 1.00

E. Sprinkler Systems 0.74 - 0.97 0.97

F.Water Curtains 0.97 - 0.98 1.00

G. Foam 0.92 - 0.97 1.00

H. Hand Extinguishers/Monitors 0.93 - 0.98 1.00

I. Cable Protection 0.94 - 0.98 0.98

Loss Control Credit Factor (C3) 0.84

Loss Control Credit Factor (C1 x C2 x C3) 0.50

85

App

endi

x 10

.8 H

azar

d an

d O

pera

bilit

y st

udy

Haz

ard

and

Ope

rabi

lity

stu

dy

Ves

sel:

Mon

olit

h r

eact

or

Inte

nti

on:

con

vert

s th

e pr

opan

e in

to p

ropy

len

e u

sin

g a

mon

olit

h c

oate

d w

ith

Pt

cata

lyst

an

d a

SOC

, wh

ich

flo

ws

dow

nw

ards

tog

eth

er w

ith

th

e ga

s st

ream

. Li

ne:

fee

d lin

e of

pro

pan

e; s

upp

lies

the

prop

ane

rich

fee

d st

ream

into

th

e re

acto

r (1

07

) G

uid

e w

ord

Dev

iati

on

Cau

se

Con

sequ

ence

s N

eces

sary

act

ion

s no

N

o ga

s st

ream

sup

ply

Bloc

kage

Va

lve

failu

re

No

reac

tion

will

tak

e pl

ace,

it

is p

ossi

ble

that

th

e ga

s w

ill

be

accu

mul

ated

so

me

whe

re e

lse,

or

ther

e is

sim

ply

no s

uppl

y.

Mak

e su

re

that

th

e bl

ocka

ge

is

solv

ed

and

the

supp

ly

is

reco

vere

d.

Sepa

ratio

n se

ctio

n sh

ould

be

pr

epar

ed;

e.g.

reb

oile

rs.

mor

e M

ore

gas

stre

am s

uppl

y Va

lve

open

, no

cont

rol

Too

muc

h ga

s in

rea

ctor

, te

mpe

ratu

re w

ill

decr

ease

, an

d pr

essu

re w

ill r

ise

in r

eact

or,

as t

he p

ress

ure

will

ris

e an

d te

mpe

ratu

re

will

dec

reas

e, t

he r

eact

ion

will

be

less

, so

co

nver

sion

will

be

low

er.

No

runa

way

, as

th

e ov

eral

l rea

ctio

n is

end

othe

rmic

.

Rep

air

the

valv

e an

d co

ntro

l th

e ga

s st

ream

.

less

Le

ss g

as s

trea

m s

uppl

y Pa

rtia

l blo

ckag

e

Valv

e fa

ilure

Le

ss

gas

will

go

in

to

the

reac

tor,

le

ss

prop

ylen

e w

ill b

e pr

oduc

ed.

Solid

loa

ding

will

be

high

er,

mor

e ch

ance

fo

r bl

ocka

ge in

side

rea

ctor

.

Cont

rol

the

gas

stre

am,

gas

stre

am c

anno

t be

too

hig

h or

too

lo

w

As w

ell a

s Fe

ed

stre

am

has

anot

her

com

posi

tion,

pr

opan

e co

ncen

trat

ion

incr

ease

s

Dis

tilla

tion

colu

mn

wor

ks t

oo g

ood

Mor

e pr

opan

e in

fee

d st

ream

, bu

t do

es n

ot

mea

n di

rect

ly t

hat

mor

e pr

opyl

ene

will

be

prod

uced

Mak

e su

re t

hat

the

com

posi

tion

of

the

top

flow

of

dist

illat

ion

colu

mn

is c

onst

ant,

usi

ng a

con

trol

sys

tem

Pa

rt o

f Fe

ed s

trea

m h

as a

n ot

her

com

posi

tion,

pro

pane

con

cent

ratio

n de

crea

ses

Dis

tilla

tion

colu

mn

C101

do

es

not

wor

k op

timal

Le

ss

prop

ane

in

feed

st

ream

, le

ss

prop

ylen

e is

pro

duce

d.

Reac

tor

tem

pera

ture

inc

reas

es,

no f

urth

er

cons

eque

nce.

Mak

e su

re t

hat

the

com

posi

tion

of

the

top

flow

of

dist

illat

ion

colu

mn

is c

onst

ant,

usi

ng a

con

trol

sys

tem

Rev

erse

G

as s

trea

m d

oes

not

stre

am in

to t

he

reac

tor,

but

out

of

the

reac

tor

Expa

nder

(T

101)

do

es

not

wor

k pr

oper

ly

Gas

str

eam

has

a p

ress

ure

low

er t

han

2 ba

ra a

nd w

ill n

ot f

low

into

the

rea

ctor

M

ake

sure

th

at

the

expa

nder

w

orks

pr

oper

ly,

cont

rol

syst

em

that

als

o co

ntro

ls t

he p

ress

ure

of

the

feed

str

eam

86

Lin

e: f

eed

line

of S

OC

; su

pplie

s th

e SO

C in

to t

he

reac

tor

(15

7)

Gu

ide

wor

d D

evia

tion

C

ause

C

onse

quen

ces

Nec

essa

ry a

ctio

ns

No

No

SOC

supp

ly

Cycl

one

does

not

wor

k Bl

ocka

ge

Valv

e fa

ilure

No

SOC

into

th

e re

acto

r,

tem

pera

ture

dr

ops,

no

prop

ylen

e pr

oduc

ed.

Prev

ent

bloc

kage

, m

ake

sure

tha

t th

e SO

C w

ill a

lway

s flo

w i

nto

the

reac

tor.

Al

so

emer

genc

y he

atin

g m

ay b

e ap

plie

d.

Mor

e M

ore

SOC

supp

ly

Bloc

kage

som

ewhe

re,

so t

hat

the

reac

tor

will

be

over

load

ed w

ith

SOC,

acc

umul

atio

n of

SO

C in

the

rea

ctor

Pr

even

t bl

ocka

ge o

f th

e SO

C

Less

Le

ss S

OC

supp

ly

Part

ial

bloc

kage

in

the

hopp

er o

r in

th

e cy

clon

e Le

ss S

OC

into

the

rea

ctor

, le

ss h

ydro

gen

will

be

burn

ed,

conv

ersi

on o

f pr

opan

e w

ill

be lo

wer

.

Goo

d de

sign

of

SOC

supp

ly,

buff

er

abov

e th

e re

acto

r, s

o th

at e

xtra

SO

C ca

n be

sup

plie

d if

nece

ssar

y Pa

rt o

f Sp

ent

SOC

pres

ent

Not

all

the

spen

t SO

C is

reg

ener

ated

Le

ss S

OC

pres

ent

that

can

rea

ct, bu

t as

the

SO

C is

pre

sent

in

exce

ss,

this

will

rar

ely

happ

en

Chec

k th

e re

gene

ratio

n of

th

e SO

C, m

ake

sure

tha

t al

l SO

C w

ill

be r

egen

erat

ed

Rev

erse

SO

C w

ill

be

suck

ed

out

of

the

reac

tor

Pres

sure

of

gas

stre

am is

low

er t

han

insi

de t

he r

eact

or,

flow

will

rev

erse

an

d al

so t

he S

OC

will

go

out

of t

he

reac

tor

Too

little

SO

C in

rea

ctor

, les

s SH

C re

actio

n Co

ntro

l sy

stem

th

at

cont

rols

th

e pr

essu

re o

f th

e ga

s st

ream

Lin

e: p

rodu

ct s

trea

m o

ut

of r

eact

or (

10

8)

Gu

ide

wor

d D

evia

tion

C

ause

C

onse

quen

ces

Nec

essa

ry a

ctio

ns

No

No

flow

out

of

reac

tor

No

flow

int

o th

e re

acto

r, b

lock

age

insi

de

reac

tor,

fa

ilure

of

tu

rbin

e T1

01,

failu

re

of

the

seal

ho

pper

H

102.

No

prod

uct

stre

am,

pres

sure

be

ginn

ing

reac

tor

will

ris

e, p

ress

ure

at t

he e

xit

will

dr

op

Shut

dow

n of

the

pla

nt

Mor

e M

ore

flow

out

of

reac

tor

Too

high

pre

ssur

e dr

op,

turb

ine

101

wor

ks e

xces

sive

Th

e ga

s flo

w r

ate

is t

oo h

igh

Non

e, t

he s

yste

m i

s de

sign

ed f

or

taki

ng o

n m

ore

wor

k.

Less

Le

ss f

low

out

of

reac

tor

Less

flo

w

into

th

e re

acto

r,

part

ial

bloc

kage

mon

olith

, fa

ilure

of

turb

ine

T101

, pa

rtia

l fa

ilure

of

the

seal

in

stre

am 1

57

Less

pro

duct

str

eam

, pr

essu

re a

t ex

it w

ill

drop

N

one,

ch

eck

if th

e st

ream

do

es

not

go i

nto

stre

am S

OC

supp

ly t

o R10

1 <

157>

.

As w

ell a

s H

ighe

r pr

opyl

ene

conc

entr

atio

n H

ighe

r te

mpe

ratu

re in

the

rea

ctor

H

ighe

r te

mpe

ratu

re

Non

e Pa

rt o

f

Less

pro

pyle

ne in

pro

duct

str

eam

Fe

ed

stre

am

has

a lo

wer

co

ncen

trat

ion

of p

ropa

ne,

Reac

tor

does

no

t op

erat

e op

timal

, te

mpe

ratu

re t

oo lo

w.

Low

er p

rodu

ctio

n of

pro

pyle

ne

Cont

rol

the

tem

pera

ture

of

th

e re

acto

r (c

ontr

ol s

yste

m)

Rev

erse

N

ot a

pplic

able

87

HA

ZOP

V

esse

l: R

egen

erat

ive

rise

r In

ten

tion

: re

gen

erat

es t

he

spen

t SO

C, t

he

spen

t SO

C t

akes

up

oxyg

en f

rom

air

, an

d tr

ansp

orts

th

e SO

C f

rom

th

e bo

ttom

to

the

top

of t

he

reac

tor.

Li

ne:

fee

d st

ream

15

5 (

SOC

str

eam

) G

uid

e w

ord

Dev

iati

on

Cau

se

Con

sequ

ence

s N

eces

sary

act

ion

s N

o N

o SO

C is

su

pplie

d to

th

e ris

er

reac

tor

Bloc

kage

N

o re

gene

ratio

n of

the

SO

C, S

OC

cycl

e is

in

terr

upte

d H

eat

gas

feed

st

ream

R10

1 <

107>

with

a

heat

er

whi

le

the

bloc

kage

is s

olve

d (c

ontr

ol s

yste

m).

Mor

e M

ore

flow

of

SOC

into

the

ris

er

Valv

e fa

ilure

Ris

er w

ill n

ot b

e ab

le t

o br

ing

up a

ll th

e SO

C, p

roba

bly

a bl

ocka

ge o

f th

e ris

er w

ill

occu

r.

Rep

air

the

valv

e,

clos

e lin

e 15

5 (s

pent

SO

C su

pply

to

R10

2)

man

ually

, so

lve

the

riser

blo

ckag

e by

kee

ping

to

blow

air

in t

he r

iser

(m

anua

lly).

Le

ss

Less

flo

w o

f SO

C in

to t

he r

iser

Ca

used

by

cont

rol

syst

em,

part

ial

bloc

kage

insi

de c

yclo

ne

Less

sup

ply

of S

OC

into

the

ris

er,

less

SO

C w

ill b

e re

gene

rate

d, n

o co

nsta

nt S

OC

flow

cy

cle

Put

mor

e SO

C in

to t

he r

iser

(co

ntro

l sy

stem

),

repa

ir bl

ocka

ges

in

cycl

one,

hea

t ga

s fe

ed s

trea

m R

101

<10

7>w

ith

a he

ater

(c

ontr

ol

syst

em)

As w

ell a

s N

ot a

pplic

able

Part

of

Mor

e sp

ent

SOC

pres

ent,

mor

e SO

C ha

s re

acte

d in

the

rea

ctor

. H

ighe

r te

mpe

ratu

re,

mor

e pr

opan

e in

str

eam

107

. sl

ight

ly

mor

e SO

C w

ill

be

rege

nera

ted,

ho

wev

er o

nly

up t

o 1.

1 tim

es t

he d

esig

ned

quan

tity,

as

the

oxyg

en a

mou

nt i

s lim

ited

due

to t

he a

ir flo

w. T

empe

ratu

re w

ill r

ise.

Non

e,

tem

pera

ture

ef

fect

s ar

e co

ntro

lled

for

the

reac

tor

(con

trol

sy

stem

).

Rev

erse

N

ot a

pplic

able

Lin

e: f

eed

stre

am 1

74

(ai

r st

ream

) G

uid

e w

ord

Dev

iati

on

Cau

se

Con

sequ

ence

s N

eces

sary

act

ion

s N

o

No

air

stre

am

Bloc

kage

, co

mpr

esso

r do

es

not

wor

k pr

oper

ly

No

air

supp

ly

to

the

riser

re

acto

r,

SOC

part

icle

s w

ill n

ot b

e lif

ted

an r

egen

erat

ed,

SOC

cycl

e is

inte

rrup

ted

Stop

th

e SO

C su

pply

(c

ontr

ol

syst

em),

he

at

the

reac

tor

prod

uct

stre

am (

cont

rol

syst

em),

rep

air

the

failu

re.

Mor

e

Mor

e ai

r st

ream

Co

mpr

esso

r fa

ilure

To

o m

uch

air,

ver

y hi

gh v

eloc

ities

Re

pair

the

com

pres

sor,

no

ad

ditio

nal a

ctio

ns r

equi

red.

Le

ss

Less

air

supp

ly

Com

pres

sor

prob

lem

, bl

ocka

ge

in

air

flow

Le

ss a

ir su

pply

to

the

riser

rea

ctor

, SO

C pa

rtic

les

will

pa

rtia

lly

not

be

lifte

d an

re

gene

rate

d,

SOC

cycl

e is

pa

rtia

lly

inte

rrup

ted

Shut

do

wn

SOC

stre

am

into

th

e re

acto

r (c

ontr

ol s

yste

m),

hea

t he

at

gas

feed

str

eam

R10

1 <

107>

with

a

heat

er

whe

n ne

eded

(c

ontr

ol

syst

em),

rep

air

bloc

kage

.

88

As w

ell a

s hi

gher

oxy

gen

conc

entr

atio

n in

air

Dis

turb

ance

in o

utsi

de e

nviro

nmen

t N

orm

ally

non

e W

hen

mor

e th

an n

orm

al S

OC

has

reac

ted

the

tem

pera

ture

of

th

e st

orag

e ve

ssel

at

S102

will

incr

ease

: lim

it th

e in

flow

of

SO

C in

to

the

reac

tor

(con

trol

sys

tem

) Pa

rt o

f co

ncen

trat

ion

of

oxyg

en

in

air

is

belo

w s

toic

hiom

etric

D

istu

rban

ce in

out

side

env

ironm

ent

not

enou

gh S

OC

will

be

rege

nera

ted

he

at g

as f

eed

stre

am R

101

<10

7>

with

a

heat

er

(con

trol

sy

stem

),

solv

e th

e pr

oble

m

Rev

erse

N

ot a

pplic

able

Lin

e: r

iser

ou

tflo

w (

air

and

rege

ner

ated

SO

C, 1

56

) G

uid

e w

ord

Dev

iati

on

Cau

se

Con

sequ

ence

s N

eces

sary

act

ion

s N

o

No

riser

out

flow

N

o ai

r su

pply

in

to

the

riser

or

bl

ocka

ge in

side

the

ris

er

SOC

cycl

e in

terr

upte

d H

eat

gas

feed

str

eam

R10

1 <

107>

w

ith

a he

ater

(c

ontr

ol

syst

em),

so

lve

prob

lem

. M

ore

M

ore

riser

out

flow

m

ore

air

inflo

w

SOC

part

icle

s w

ill le

ave

with

str

eam

158

So

lve

prob

lem

Le

ss

Less

ris

er o

utflo

w

Part

ial b

lock

age,

Le

ss a

ir su

pply

Pr

essu

re i

n to

p ris

er d

rops

. Le

ss S

OC

is

lifte

d, o

r if

the

gas

stre

am i

s to

o lo

w,

no

SOC

is li

fted

Stop

th

e SO

C in

flow

(c

ontr

ol

syst

em)

As w

ell a

s N

ot a

pplic

able

Pa

rt o

f Sp

ent

SOC

pres

ent

Ris

er d

oes

not

wor

k op

timal

, no

t al

l th

e SO

C is

reg

ener

ated

Rea

ctor

will

not

rec

eive

eno

ugh

heat

H

eat

gas

feed

str

eam

R10

1 <

107>

w

ith

a he

ater

(c

ontr

ol

syst

em),

so

lve

prob

lem

. Rev

erse

SO

C is

not

lift

ed

No

air

flow

Th

e SO

C fa

lls d

own

due

to g

ravi

ty a

nd w

ill

accu

mul

ate

or l

eave

the

sys

tem

thr

ough

th

e ai

r fe

ed p

ipe

Ris

er

rege

nera

tor

mus

t ha

ve

a si

eve,

so

that

the

SO

C ca

nnot

leav

e th

e sy

stem

th

roug

h th

e ai

r fe

ed

pipe

. Ac

cum

ulat

ion

shou

ld

be

prev

ente

d,

air

flow

m

ust

be

cont

rolle

d

89

Appendix 11.1 Economic Calculations

1) Capital Investment costs

Direct capital costs:

cost of equipment - www.matche.com [55] and Coulson&Richardson volume 6, 3rd edition, chapter 6 [21].

Purchased equipment costs

Reactors & Columns @ 2003

Name Equipm.

Type Figure Quant.

Diam. (m) Curve

H (m) Costs (US $)

Material of Construction Factor

Press. (Bara) Factor

Costs Equipm. (US $) 1998

Costs Total (US $) 1998

Costs Total (US $) 2003

R101 Vessel Vert. Fig. 6-5

3.01 c4-+

10 50000

SS 2

2.0 1.0 100,000 100,000 102,696

R102 Vessel Vert. Fig. 6-5

0.9 c2-+

15 25000

SS 2

2.0 1.0 50,000 50,000 51,348

C101 Vessel Vert. Fig. 6-5

0.9 c2-+

18 40000

CS 1

16 1.2 48,000

Trays

Sieve Fig. 6-7 26

0.9 c1 200

CS 1 5,200 53,200 54,634

C102 Vessel Vert. Fig. 6-5

0.4 c1

4 4000

SS 2

12 1.2 9,600

Trays

Sieve Fig. 6-7 8

0.4 c1 200

SS 1.7 2,720 12,320 12,652

C103 Vessel Vert. Fig. 6-5

1.0 c2

15 20000

SS 2

12 1.2 48,000

Trays

Sieve Fig. 6-7 20

1.0 c1 320

SS 1.7 10,880 58,880 60,467

C104 Vessel Vert. Fig. 6-5

0.99 c2-+

19.8 47000

CS 1.0

24 1.4 65,800

Trays

Sieve Fig. 6-7 29

0.99 c1 220

CS 1 6,380 72,180 74,126

C105-1 Vessel1 Vert. Fig. 6-5

1.98 c3-+

39.6 150000

CS 1.0

12 1.2 180,000

Trays1

Sieve Fig. 6-7 62

1.98 c1 700

CS 1 43,400 223,400 229,422

C105-2 Vessel2 Vert. Fig. 6-5

1.98 c3-+

36.6 140000

CS 1.0

12 1.2 168,000

Trays2

Sieve Fig. 6-7 57

1.98 c1 700

CS 1 39,900 207,900 213,504

Total Reactors 154,044 Columns 644,806

90

Name M of C Sh / Tubes

Curve Fig. 6.3

Surface (m2)

Costs (US $) Type Factor

Press. (Bar) Factor

Costs (US $) @ 1998

Costs Total(US $) 2003

E101 CS/Brass c2 921 200,000 Float. Hd 1.0 17 1.1 220,000 225,931

E102 CS/Brass c2 1419 300,000 Float. Hd 1.0 2 1.0 300,000 308,087

E103 CS/Brass c2 424 90,000 Float. Hd 1.0 2 1.0 90,000 92,426

E104 CS/Brass c2 2262 400,000 Float. Hd 1.0 25 1.25 500,000 513,479

E105 CS/Brass c2 1184 250,000 Float. Hd 1.0 24 1.3 312,500 320,924

E106 CS/Brass c2 288 70,000 Float. Hd 1.0 24 1.3 87,500 89,859

E107 CS/Brass c2 1151 245,000 Float. Hd 1.0 24 1.3 306,250 314,506

E108 CS/Brass c2 4619 900,000 Float. Hd 1.0 24 1.3 1,125,000 1,155,327

E109 CS/Brass c2 20 11,000 Float. Hd 1.0 24 1.3 13,750 14,121

E110 CS/Brass c2 668 150,000 Float. Hd 1.0 12 1.1 165,000 169,448

E111 CS/Brass c2 927 180,000 Float. Hd 1.0 25 1.3 225,000 231,065

E112 CS/Brass c2 736 150,000 Float. Hd 1.0 25 1.3 187,500 192,555

E113 CS/Brass c2 cryogenic

E114 CS/Brass c2 4394 890,000 Float. Hd 1.0 18 1.1 979,000 1,005,392

E115 CS/Brass c2 3088 600,000 Float. Hd 1.0 18 1.1 660,000 677,792

E116 CS/Brass c2 50 20,000 Float. Hd 1.0 2 1.0 20,000 20,539

E117 CS/Brass c2 negligible, cooling with air

E118 CS/Brass c2 183 50,000 Float. Hd 1.0 24 1.3 62,500 64,185

Total 5,395,635

91

Compressors & Expanders @ 2003

Name Size S kW

Const.C Table 6.2

Equipm. Index n

Costs C*S^n US $

Cost Round-of US $

Costs 2003 US $

K101 4857 960 0.8 853,819 853,819 876,836K102 873 960 0.8 216,313 216,313 222,144K103 5301 960 0.8 915,709 915,709 940,394K104 1197 960 0.8 278,450 278,450 285,956 T101 1101 960 0.8 260,436 260,436 267,457T102 391 960 0.8 113,766 113,766 116,833T103 32 960 0.8 15,232 15,232 15,643

Total 2,725,263

Cyclones @ 2003

name

size diameter [m]

size diameter [inch]

number of cyclones

Costs [55] per cyclone* US $

Cost perunit US $

S101 1.01 39.7637 2 23500 47,000S102 0.72 28.3464 5 14500 72,500

Total 119,500

Vessels @ 2003

name Equipm.

Type Figure Quant.

Diam. (m) Curve

H (m) Costs (US $)

M of C Factor

Press. (Bara) Factor

Costs Equipm. (US $) 1998

Costs Total (US $) 1998

Costs Total(US $) 2003

V101 vessel horizontal 3 9 CS 16.2 Fig.6.6 c4 25,000 1.0 1.2 30,000 30,000 30,809 V102 vessel horizontal 1.5 4.0 SS 12.0 Fig.6.6 c2+ 8,000 2.0 1.2 19,200.00 19,200.00 19,718 V103 vessel horizontal 2.5 10.0 CS 23.8 Fig.6.6 c3+ 25,000 1.0 1.4 35,000.0 35,000.0 35,944 V104 vessel horizontal 5.25 15.75 CS 10.0 Fig.6.6 c4 65,000 1.0 1.2 78,000.0 78,000.0 80,103

Total 166,573

92

From the tables above an estimate of the total equipment cost can be made. The direct costs are @ 2003:

Type of Costs

Factor f Table 6.1 Fluids-solids-gases

Costs US $

Total Equipment cost (PCE) 9,205,820 f*PCE Equipment erection 0.45 4,142,619 Piping 0.45 4,142,619 Instrumentation 0.15 1,380,873 Electrical 0.10 920,582 Buildings, process 0.10 920,582 Utilities 0.45 4,142,619 Storages 0.20 1,841,164 Site development 0.05 460,291 Ancillary buildings 0.20 1,841,164

Total Direct costs (PPC) 28,998,334

f*PPC Design and Engineering 0.25 7,249,584 Contractor's fee 0.05 1,449,917 Contingency 0.10 2,899,833

Total Indirect costs 11,599,334

Fixed Capital Costs (FCC) @ 2003 40,597,668

Fixed Capital Costs @ 2003 (M euro) 32.8

Exchange: 1 US $ = 0.807 @18-12-2003 2) Calculation of Total Investment Costs and Working Capital

Total Investment Costs (euro million) 36.4Fixed Capital Costs @ 2003 (euro million) 32.8Working Capital (euro million) 3.6

93

3) Calculation of Total Production Costs

Raw materials

Stream stream number

flow (kg/h)

flow (t/a)

Cost/ton $/t

Costs/a $ million/a

Costs/a euro million/a

LPG 101 34983.63 279,869 190 53.18 42.91 kg/s kg $/kg Catalyst 23.7 16,680 0.39 0.32SOC 2.18E+03 43,579.4 4 0.17 0.14 m3 $/m3 Monolith 71.0 700 0.02 0.01

Total raw materials 53.57 43.38

notes: stream hours / year

Catalyst life [years]

SOC life [years]

1$ [euro]

8000 3 3 0.807

Utilities (data from literature [21] and [54])

Stream stream number

flow (kg/s)

flow (t/a)

Cost/ton $/t

Costs/a $ million/a

Costs/a euro million/a

CW E110 1118463 0.03 0.0336 0.0271 E112 862996 0.03 0.0259 0.0209 E116 122885 0.03 0.0037 0.0030 E115 4510503 0.03 0.1353 0.1092 E101 1832319 0.03 0.0550 0.0444 euro/t LP steam E118 154064 10 1.9091 1.5406 kW (load) kWh/a Euro/kWh Refrigerant (cryogenic) E112 5134.511 41,076,088 2.7486 2.2181 kW (load) (kWh/a) ($/kWh) Electricity* T101 -1101 -7,486,800 0.083 -0.6199 -0.5003 T102 -391 -2,658,800 0.083 -0.2201 -0.1777 T103 -32 -215,337 0.083 -0.0178 -0.0144 K101 4857 45,712,941 0.083 3.7850 3.0545 K102 873 8,216,471 0.083 0.6803 0.5490 K103 5301 49,891,765 0.083 4.1310 3.3337 K104 1197 11,265,882 0.083 0.9328 0.7528

total electricity (IN) 10704 104,726,122 0.083 8.6713 6.9978

Total utilities 13.5824 10.9610

94

*: electricity expanders: kW (load) * 0.85 delivered to the net electricity compressors: kW (load) / 0.85 required from the net

Summary of production costs from table 6.6 [21]

Values euro million/a

% of total Production costs Remarks

Variable costs 1. Raw materials 43.38 56.21 2. Miscellaneous materials 0.20 0.25 10% of Maintenance 3. Utilities 10.96 14.20 4. Shipping and packaging 0.00 0.00 negligible

Subtotal A 54.54 Fixed costs 5. Maintenance 1.97 2.55 6% of Fixed capital costs

6. Operating labour 1.35 1.75

costs per operator: 90000euro, 3 operatorsper shift, 5 shifts per day

7. Laboratory costs 0.27 0.35 20% of Operating labour 8. Supervision 0.27 0.35 20% of Operating labour 9. Plant overheads 0.68 0.87 50% of Operating labour 10. Capital charges 4.91 6.37 15% of Fixed capital costs 11. Insurance 0.33 0.42 1% of Fixed capital costs

12. Local taxes 0.00 0.00 set to zero, not taken intoaccount yet

13. Royalties & Licence costs 0.00 0.00 Licence costs are set to zero

Subtotal B 9.77 Direct Production Costs

(A+B) 64.32 14. Sales expense 15. General overheads 16. Research and development

12.86 16.67 20% of Direct productioncosts

Subtotal C 12.86 Annual production cost (A+B+C) 77.18 100.00

Annual production rate (t/a) 250,000 Production costs (euro/kg) 0.3087

95

4) Calculation of economic criteria a) Net Cash Flow (NCF)

The construction time is two years; in these two years the investments will take place. The plant life time is twenty years; in these twenty years there are no investments.

Gross Income

Stream production rate price Income [t/a] [$/ton] [euro/ton] [M euro/a] Propylene <128> 250,000.0 375 302.6 75.66 [W] [$/GJ] [54] [euro/GJ] light ends <175> 18,000,000 4 3.2 1.67C4 <170> 19,190,000 4 3.2 1.78

total 79.11

Production costs (excl.depreciation) 72.26 Net Cash Flow 6.85

1$ 0.807 euro

b) Rate of Return (ROR) and Pay Out (Back) Time (POT)

Total investment 36.4 euro million ROR 18.4 % POT years

96

Year

Net Cash flow or Net Future Value (euro million)

Cumulative Net Cash flow or Net Future Worth (NFW) (euro million)

Net Present Value at 10% (euro million)

Cumulative Net PresentValue at10% (euro million)

Start 0 0 0.0 0.0 0.0Construction 1 -18.2 -18.2 -18.2 -18.2Construction 2 -18.2 -36.4 -18.2 -36.4Production 3 6.8 -29.6 5.1 -31.3Production 4 6.8 -22.7 4.7 -26.6Production 5 6.8 -15.9 4.3 -22.3Production 6 6.8 -9.0 3.9 -18.5Production 7 6.8 -2.2 3.5 -14.9Production 8 6.8 4.7 3.2 -11.7Production 9 6.8 11.5 2.9 -8.8Production 10 6.8 18.4 2.6 -6.2Production 11 6.8 25.2 2.4 -3.8Production 12 6.8 32.1 2.2 -1.6Production 13 6.8 38.9 2.0 0.4Production 14 6.8 45.8 1.8 2.2Production 15 6.8 52.6 1.6 3.8Production 16 6.8 59.5 1.5 5.3Production 17 6.8 66.3 1.4 6.7Production 18 6.8 73.2 1.2 7.9Production 19 6.8 80.0 1.1 9.0Production 20 6.8 86.9 1.0 10.0Production 21 6.8 93.7 0.9 11.0Production 22 6.8 100.6 0.8 11.8Salvage 23 3.6 107.4 0.4 12.2

97

Iteration process by varying the Discounted cash flow rate of return (DCFRR)

r NFW/(1+r)^n

0.166319307 1 -1.56E+01 DCFRR 16.6% 2 -1.34E+01 3 4.32E+00 4 3.70E+00 5 3.17E+00 6 2.72E+00 7 2.33E+00 8 2.00E+00 9 1.72E+00 10 1.47E+00 11 1.26E+00 12 1.08E+00 13 9.27E-01 sum 14 7.95E-01

15 6.81E-01 16 5.84E-01 17 5.01E-01 18 4.29E-01 19 3.68E-01 20 3.16E-01 21 2.71E-01 22 2.32E-01 23 1.06E-01 9.96E-06

98

Appendix 13.1 The selection of PIQUAR criteria and weighing factors

From a list of 150 criteria 29 criteria were chosen by the CPD group. From these criteria each individual present at the kick-off meeting chose 10. The results of this are shown in the table A.1. Table A.1 Selection of the piquar criteria. The choice of the principals counts four times, that of the students one time and that of Pieter Swinkels two times. The highlighted factors came out as the final ten. There were three criteria that had a score of six but only two of them could be chosen, therefore the one that was chosen by a principal and Pieter Swinkels was preferred over the one just chosen by one principal. The remaining ten criteria are shown in table A.2.

Piquar criteria

Alex Gadi Pieter Truke Maarten Marthe Marlieke Bas multiplication factor: factor: 4 4 2 1 1 1 1 1

1 Economically feasible economic plant well-defined quantitative 1 1 1 1 1 1 1 1 15 2 Comply with market demands economic world ill-defined quantitative 1 1 5 3 Transparent concept / configuration functional plant ill-defined qualitative 1 1 2 4 Efficient use of raw materials functional plant ill-defined quantitative 1 1 1 1 7 5 Flexibilty (operation) functional plant ill-defined quantitative 0 6 Product quality and quantity functional plant well-defined quantitative 1 1 1 1 1 1 10 7 Comply with (future) environmental legislation functional world well-defined quantitative 1 1 1 1 1 1 10 8 Process must be robust functional plant ill-defined qualitative 1 1 6 9 Intrinsically safe functional plant ill-defined qualitative 1 1 1 1 10

10 Integrated risk analysis functional plant ill-defined qualitative 1 1 1 3 11 Energy efficient functional plant ill-defined quantitative 1 1 1 1 1 1 1 1 15 12 High feedstock efficiency functional plant ill-defined quantitative 1 2 13 Correct spatial planning functional plant well-defined qualitative 1 1 5 14 Optimization possibilities functional plant well-defined qualitative 1 1 2 15 No product loss functional plant well-defined quantitative 1 4 16 Waste management functional plant well-defined quantitative 1 1 1 1 7 17 Expansion possibilities functional site ill-defined qualitative 0 18 Safety for operators in plant and surrounding functional world ill-defined qualitative 1 1 6 19 Controllability operational plant ill-defined qualitative 1 1 1 1 4 20 Surroundings considered, meet locations specific demand operational plant ill-defined qualitative 1 1 5 21 Translation of client's wishes organizational plant ill-defined qualitative 1 4 22 Designer is satisfied organizational plant ill-defined qualitative 1 1 2 23 Keep alternatives during design process organizational plant well-defined qualitative 1 1 1 6 24 Design decisions are explicit and can be repeated organizational plant well-defined qualitative 1 1 3 25 Maximum room for innovation organizational plant ill-defined qualitative 1 1 2 26 Good documentation of project organizational plant ill-defined qualitative 1 4 27 Team spirit with an open mind organizational plant ill-defined qualitative 1 1 1 1 8 28 Flexibility physical plant ill-defined qualitative 1 1 29 Dismantling is safe / environmentally friendly physical world well-defined qualitative 1 2

99

Table A.2 Piquar criteria.

Criteria A Product quality and quantity B Economically feasible C Energy efficient D Intrinsically safe E Efficient use of raw materials F Waste management G Process must be robust H Team spirit with an open mind I Comply with (future) environmental legislation J Safety for operators in plant and surrounding Weighing Factor Calculation The next step was to assign values to the criteria from 1 to 10 to each criterion. From this the weighing factors can be calculated. In order to determine quantitatively the importance of each quality factor, the weighting factor has to be calculated for each criterion. The procedure is described in section 1.3.

The determined weighing factor values are shown in table A.3 Table A.3 Weighing factors

Criterion WF Product quality and quantity 0.368 Economically feasible 0.175 Energy efficient 0.092 Intrinsically safe 0.087 Efficient use of raw materials 0.081 Waste management 0.044 Process must be robust 0.042 Team spirit with an open mind 0.040 Comply with (future) environmental legislation 0.035 Safety for operators in plant and surrounding 0.034

PIQUAR Analysis When the criteria and their weighing factors are known the group will evaluate to what extent the accomplishments of each week comply with these criteria. The evaluation is done by each group member individually by assigning a value to each criterion, this is then multiplied with the weighing factor, which gives the Piquar number per individual, a value between 0 and 1. These are added up and the average is taken, which gives the Piquar number of that particular week. The recent performance factor (RPF) we have given for the recent performance is showing in the following table:

100

Table A.4 Quality Factor Evaluation

Criterion Weighing factor

Week 3 (RPF)

Un-quality factor

Product quality and quantity 0.368 0.26 0.27 Economically feasible 0.175 0.14 0.15 Energy efficient 0.092 0.24 0.07 Intrinsically safe 0.087 0.14 0.08 Efficient use of raw materials 0.081 0.20 0.07 Waste management 0.044 0.04 0.04 Process must be robust 0.042 0.18 0.03 Team spirit with an open mind 0.040 0.40 0.02 Comply with (future) environmental legislation 0.035 0.20 0.03 Safety for operators in plant and surrounding 0.034 0.12 0.03 The un-quality factor is calculated based on the correlation: UQF = Weighting Factor ×(1-RPF) (A.1) where UQF is the un-quality factor, and RPF is the recent performance factor given by the group members. The quality factor in the design group so far is 21%, which is calculated from the equation: QF = 1-Sum (UQF) (A.2) From the result shows in the figure below we know that in the future period in order to improve the performance on quality factor, we should especially put more attention on “Product quality and quantity” and “Economically feasible” criterion to decrease the un-quality value.

101

Week 3

Quality

Process must be robust

Team spirit with an open mind

Comply with (future) environmental

legislation

Safety for operators in plant and surrounding

Intrinsically safe

Product quality and quantity

Economically feasible

Energy efficientEfficient use of raw

materials

Waste management

Figure A.1 Piquar graph week 3 Weighing factor calculation. Table A.5 Wheighing factor assignment

Gadi Alex Pieter Bas Marlieke Maarten Truke Marthe Average

1 Economically feasible 1 5 6 2 6 1 1 5 3.25 2 Efficient use of raw materials 5 3 3 3 2 4 10 6 4.75 3 Product quality and quantity 2 8 9 1 1 3 3 3 3.00

4 Comply with (future) environmental legislation 6 2 8 10 8 8 6 9 7.83

5 Process must be robust 3 10 5 5 9 7 5 7 6.46 6 Intrinsically safe 4 1 1 8 5 6 4 2 4.46 7 Energy efficient 9 4 4 4 4 2 7 1 3.88 8 Waste management 10 7 2 7 3 10 8 4 6.21

9 Safety for operators in plant and surrounding 7 6 10 9 10 5 9 10 8.54

10 Team spirit with an open mind 8 9 7 6 7 9 2 8 6.63

Each group member assigned weighing factors from 1 tot 10 for each criterion, which is shown in the table above. Again the vote of the principals counts 4 times and Pieter’s vote 2 times that of the students. The importance decreases from 1 to 10.

102

From this the following matrix can be obtained which gives the importance of the criteria relative to another: Now the method will be described that was used to determine the weighing factors that are used in the Piquar method. Table A.6 Importance relation matrix of the weighing factors.

A B C D E F G H I J

A 1 1 2 2 3 4 4 4 5 5 B 1 1 2 2 2 2 3 3 3 3 C 1/2 1/2 1 1 1 2 2 2 2 2 D 1/2 1/2 1 1 1 1 2 2 2 2 E 1/3 1/2 1 1 1 1 1 2 2 2 F 1/4 1/2 1/2 1 1 1 1 1 1 1 G 1/4 1/3 1/2 1/2 1 1 1 1 1 1 H 1/4 1/3 1/2 1/2 1/2 1 1 1 1 1 I 1/5 1/3 1/2 1/2 1/2 1 1 1 1 1 J 1/5 1/3 1/2 1/2 1/2 1 1 1 1 1

The values are as follows:

5: Ci is extremely more important than Cj. 4: Ci is strongly more important than Cj. 3: Ci is essentially more important than Cj. 2: Ci is moderately more important than Cj. 1: Ci is equally important to Cj. 1/2: Ci is of moderate inferiority to Cj. 1/3: Ci is of essential inferiority to Cj. 1/4: Ci is of strong inferiority to Cj. 1/5: Ci is of extreme inferiority to Cj. The criteria are shown in table A.7. Table A.7 Piquar criteria.

Safety for operators in plant and surrounding A

Comply with (future) environmental legislation B

Team spirit with an open mind C

Process must be robust D

Waste management E

Efficient use of raw materials F

Intrinsically safe G

Energy efficient H

Economically feasible I

Product quality and quantity J

103

From table A.6 the weighing factors can be calculated using the following method. The eigenvalues form the matrix of table A.6 are shown in table A.8: Table A.8 Eigenvalues table A.6.

0 0 10.0003 1 0.0009 2 -0.0008 3 -0.0002 + 0.0007i 4 -0.0002 - 0.0007i 5 -0.0003 + 0.0006i 6 -0.0003 - 0.0006i 7 0.0003 + 0.0002i 8 0.0003 - 0.0002i 9 -0.0002

The first eigenvalue was chosen to be the most suitable for calculating the weighing factors. From the vector belonging to the first eigenvalue the weighing factors could be calculated, they are shown in table A.9. Table A.9 Piquar weighing factors. Product quality and quantity 0.319 Economically feasible 0.189 Energy efficient 0.099 Intrinsically safe 0.094 Efficient use of raw materials 0.088 Waste management 0.048 Process must be robust 0.045 team spirit with an open mind 0.043 Comply with (future) environmental legislation 0.038 safety for operators in plant and surrounding 0.037


Recommended