+ All Categories
Home > Documents > PROYECTO FIN DE CARRERA · combinaciones: limitaciones, ángulos de guía de las paletas,...

PROYECTO FIN DE CARRERA · combinaciones: limitaciones, ángulos de guía de las paletas,...

Date post: 14-May-2020
Category:
Upload: others
View: 2 times
Download: 0 times
Share this document with a friend
95
1
Transcript
Page 1: PROYECTO FIN DE CARRERA · combinaciones: limitaciones, ángulos de guía de las paletas, extracciones e inyecciones de aire, etc. Se tuvieron que realizar muchas simulaciones para

1

Page 2: PROYECTO FIN DE CARRERA · combinaciones: limitaciones, ángulos de guía de las paletas, extracciones e inyecciones de aire, etc. Se tuvieron que realizar muchas simulaciones para

2

PROYECTO FIN DE CARRERA

THE IMPLICATION OF OPERATION OF

GAS TURBINES FUELLED BY LHV, IN

CONTEXT TO GASIFICATION

PROCESSES.

AUTOR: FRANCISCO QUESADA BUENO.

MADRID, Septiembre de 2007

UNIVERSIDAD PONTIFICIA COMILLAS

ESCUELA TÉCNICA SUPERIOR DE INGENIERÍA (ICAI)

INGENIERO INDUSTRIAL

Page 3: PROYECTO FIN DE CARRERA · combinaciones: limitaciones, ángulos de guía de las paletas, extracciones e inyecciones de aire, etc. Se tuvieron que realizar muchas simulaciones para

3

ABSTRACT

Biomass, in the energy production industry, refers to living and recently dead

biological material and biodegradable wastes which can be used as fuel putting it

under a process called gasification.

There are numerous different gasification processes and raw materials that can be

used. The properties of the fuel obtained depend on the gasification technology and

the type of raw material used.

Fuels can be classified into three categories depending upon their heating value: high

heating value HHV, medium heating value MHV and low heating value LHV fuels.

The heating value is the amount of heat obtained by burning an unit quantity of fuel.

Nowadays, gas turbines work combusting fuels like kerosene, natural gas or liquid

petroleum in the combustion chamber. That fuels are fossil fuels with a high heating

value.

Today, the world is facing the problem of increased price and shortage of fossil fuels

along with the effect of using these fuels on the environment. In the future, to make a

truly sustainable energy system, we would have to replace fossil fuels with biomass

or other renewable fuels.

The aim of this project is to investigate the practical implications of operating modern

gas turbines on biofuels, the problem is that biofuels are mostly low heating value.

The amount of fuel injected in the combustion chamber will need to be much higher

and this may cause several problems, like the unbalance between compressor and

turbine that may leads to high speeds of shafts, increased pressure ratios of

compressors that can cause compressor surging and overload in the fuel system.

For this study, the GT-500 turbine has been used, it is a 20 MW power production gas

turbine unit designed and manufactured by Siemens. This turbine is designed for

Page 4: PROYECTO FIN DE CARRERA · combinaciones: limitaciones, ángulos de guía de las paletas, extracciones e inyecciones de aire, etc. Se tuvieron que realizar muchas simulaciones para

4

working with high heating value fuels. This thesis is based on the feasibility study

and thermodynamic analysis of GT-500 gas turbine by using low heating value fuels.

The working of the gas turbine GT-500 with low heating value fuels would need

several changes in the machine. This changes need to be as simple as possible and

after them, the efficiency and life of the machine have to be at appropiate levels.

This specific work includes the pre studies on types of gasification processes,

properties of the fuel after those processes, classification of fuels and the type of

gasifiers that can possibly be used in the preceding sections.

The composition of the fuels from various sources has been collected, different

thermodynamic properties have been calculated and it has been observed that the

values of various properties differed for different fuel compositions. The complete

fuel list is in appendix A.

The chapter 6 and 7 includes the thermodynamic analysis of the Siemens gas turbines

SGT-500 by using Siemens software GT Perform. GT perform is a computer program

that simulates the behaviour of the Siemens turbines. It allows to change many input

parameters and gives the output values that show the working point and state of the

machine like pressures, temperatures and flows. In these chapters, the results obtained

by GT perform are shown.

There are many parameters that can be changed in the machine, with numerous

combinations: limitations, vane guides angles, extractions and injections of air and so

on. Many simulations were to be made to see the problems of using low heating value

fuels and understand how the changes of the parameters affect to the working state of

the turbine.

The results suggest the changes that have to be made in the machine to avoid the

unbalance between compressor and turbine and keep the machine in a safe and

efficient working point.

When using low heating value fuels, the amount of fuel in the combustor has to be

much higher and this means that the fuel system needs to be bigger also. The chapter

Page 5: PROYECTO FIN DE CARRERA · combinaciones: limitaciones, ángulos de guía de las paletas, extracciones e inyecciones de aire, etc. Se tuvieron que realizar muchas simulaciones para

5

8 introduces the new dimensions of the fuel system for low and medium heating

values gases.

The conclusions suggest that is possible to use low heating value fuels in turbines

designed for been powered with high heating value fuels but several changes in the

machine are needed. Those changes are simple and because of them, the machine can

work at nearly normal conditions.

Page 6: PROYECTO FIN DE CARRERA · combinaciones: limitaciones, ángulos de guía de las paletas, extracciones e inyecciones de aire, etc. Se tuvieron que realizar muchas simulaciones para

6

RESUMEN

Cuando se habla de biomasa, en la industria de producción de energía, nos referimos

a material biológico vivo o recientemente muerto y a desechos biodegradables, que

pueden ser usados como combustible, después ser sometidos a un proceso llamado

gasificación.

Existen diferentes procesos de gasificación así como diversas materias primas que

pueden ser usadas. Las propiedades del combustible obtenido dependen de la

tecnología de gasificación y del tipo de materia prima usada.

Los combustibles pueden ser clasificados en tres categorías dependiendo de su poder

calorífico: combustibles de alto poder calorífico HHV, combustibles de poder

calorífico medio MHV y combustibles de bajo poder calorífico LHV. El poder

calorífico, es la cantidad de calor obtenido al quemar una unidad de masa de

combustible.

Actualmente, las turbinas de gas funcionan quemando combustibles como queroseno,

gas natural o petróleo liquido. Todos ellos son combustibles fósiles, con un alto poder

calorífico.

En estos días, el mundo se enfrenta al problema derivado del alto precio y escasez de

los combustibles fósiles, así como al efecto que tiene en el medio ambiente el uso de

dichos combustibles. En el futuro, para conseguir un sistema energético

verdaderamente sostenible, deberíamos cambiar los combustibles fósiles por biomasa

u otros combustibles renovables.

El objetivo de este proyecto es investigar las implicaciones prácticas de hacer

funcionar las actuales turbinas de gas con biocombustibles, el problema es que los

biocombustibles son en su mayoría de bajo poder calorífico. La cantidad de

combustible inyectado en la cámara de combustión tendría que ser mucho mayor, y

esto puede causar diversos problemas, como la sobrecarga en el sistema de

combustible y el desequilibrio entre compresor y turbina que a su vez puede provocar

Page 7: PROYECTO FIN DE CARRERA · combinaciones: limitaciones, ángulos de guía de las paletas, extracciones e inyecciones de aire, etc. Se tuvieron que realizar muchas simulaciones para

7

altas velocidades en los ejes y relaciones de compresión elevadas que pueden causar

que el compresor se cale.

Para este estudio, se ha usado la turbina SGT-500, que es una turbina de gas de

producción de energía eléctrica de 20 MW de potencia, diseñada y construida por

Siemens. Esta turbina ha sido diseñada para funcionar con combustibles de alto poder

calorífico. Este proyecto tiene como objetivo el estudio de viabilidad y análisis

termodinámico de SGT-500 cuando se usan combustibles de bajo poder calorífico.

El correcto funcionamiento de la turbina de gas SGT-500 con combustibles de bajo

poder calorífico, requiere varios cambios en la máquina. Es necesario que estos

cambios sean tan simples como sea posible y que después de realizarlos, la eficiencia

y vida de la máquina se mantenga a niveles aceptables.

.

Este proyecto incluye pre-estudios sobre tipos de procesos de gasificación, las

propiedades del combustible obtenido después de dichos procesos, la clasificación de

los combustibles y el tipo de gasificadores que podrían ser usados para obtener el

combustible.

Se ha recopilado de diversas fuentes la composición de numerosos biocombustibles

usados en la actualidad. Se han estudiado las diferentes propiedades termodinámicas

y se ha observado como varia el valor de estas propiedades en función de la

composición del combustible. En el anexo A se recoge la lista completa de

combustibles.

Los capítulos 6 y 7 incluyen el análisis termodinámico de la turbina SGT-500 de

Siemens usando el software GT-Perform. GT perform es un programa informático

que simula el comportamiento de las turbinas Siemens. Permite modificar muchos

parámetros y devuelve los valores que muestran el punto de trabajo y el estado de la

maquina tales como presiones, temperaturas y flujos. En estos capítulos, se muestran

los resultados obtenidos con GT perform.

Hay muchos parámetros que pueden ser modificados en la turbina con múltiples

combinaciones: limitaciones, ángulos de guía de las paletas, extracciones e

inyecciones de aire, etc. Se tuvieron que realizar muchas simulaciones para poder ver

Page 8: PROYECTO FIN DE CARRERA · combinaciones: limitaciones, ángulos de guía de las paletas, extracciones e inyecciones de aire, etc. Se tuvieron que realizar muchas simulaciones para

8

los problemas que conlleva usar combustibles de bajo poder calorífico y comprender

como las modificaciones en los parámetros afectan al estado de funcionamiento de la

turbina.

Los resultados sugieren los cambios que se deben de hacer en la máquina para evitar

el desequilibrio entre compresor y turbina y mantenerla en un punto de

funcionamiento eficiente y seguro.

Cuando se usan combustibles de bajo poder calorífico, la cantidad de combustible

inyectado en la cámara ha de ser mucho mayor y esto significa que el sistema de

combustible necesita ser más grande. El capitulo 8 introduce las nuevas dimensiones

del sistema de combustible para su uso con combustibles de bajo y medio poder

calorífico.

Las conclusiones sugieren que es posible usar combustibles de bajo poder calorífico

en turbinas diseñadas para ser alimentadas con combustibles de alto poder calorífico

pero es necesario realizar diversos cambios en la máquina. Esos cambios son simples

y gracias a ellos la máquina funcionaria en puntos muy cercanos a los del

funcionamiento con combustibles de alto poder calorífico.

Page 9: PROYECTO FIN DE CARRERA · combinaciones: limitaciones, ángulos de guía de las paletas, extracciones e inyecciones de aire, etc. Se tuvieron que realizar muchas simulaciones para

9

TABLE OF CONTENTS

ABSTRACT ..................................................................................................................3

ABBREVATIONS ....................................................................................................111

LIST OF TABLES ...................................................................................................133

LIST OF FIGURES ...................................................................................................14

1.INTRODUCTION ...................................................................................................15

1.2 SGT-500 Gas Turbines ......................................................................................17

2. OBJECTIVES ........................................................................................................19

3. METHOD OF ATTACK .......................................................................................20

4. PRE-STUDIES.......................................................................................................21

4.1 Biomass gasification ..........................................................................................21

4.1.2 Types of Gasifier.........................................................................................23

4.1.3 Updraft gasifier/counter-current fixed bed gasifier (UDG). .......................25

4.1.4 Downdraft gasifier or co-current fixed bed gasifier (DDG). ......................27

4.1.5 Fluidized-bed gasifier (FBG)....................................................................288

4.1.6 Circulating fluid-bed gasifier (CFBG)........................................................31

4.1.7 Entertained flow gasifier (EFBG).............................................................322

4.1.8 Comparison of gasifiers ..............................................................................34

5. CLASSIFICATION OF BIOMASS FUELS .......................................................36

5.1 Composition.......................................................................................................36

5.2 Basic fuel properties ..........................................................................................38

5.2.1 Stoichiometric Air-fuel-ratios.....................................................................38

5.2.2 Heating values.............................................................................................39

5.2.3 Wobbe indices.............................................................................................41

5.2.4 Flow ratios ..................................................................................................41

5.2.5 Stoichiometric adiabatic flame temperatures..............................................42

5.2.6 Molecular ratios ..........................................................................................43

6. GT PERFORM.......................................................................................................44

6.1 SGT-500 Parameters..........................................................................................45

7. RESULTS OBTAINED BY GT PERFORM ......................................................46

7.1 Base or reference case........................................................................................47

7.1.1 Simulation of several LHV fuels ................................................................48

Page 10: PROYECTO FIN DE CARRERA · combinaciones: limitaciones, ángulos de guía de las paletas, extracciones e inyecciones de aire, etc. Se tuvieron que realizar muchas simulaciones para

10

7.1.2 Utilization of two representative fuels, how the parameters affect. ...........52

7.1.3 Turbine Inlet temperature limitation v.s. power output limitation..............55

7.2 Power needed for compressing the fuel .............................................................57

7.2.1 Power and efficiency without fuel compressor power................................57

7.2.2 Power and efficiency with fuel compressor power.....................................58

7.3 Simulations of medium heating value MHV fuel. .............................................60

7.3.1 Results of reference case vs. MHV fuel......................................................61

7.3.2 Effect of increasing gamk2 .........................................................................63

7.3.3 Using a pressurized gasifier. .......................................................................66

7.4 Simulations with LHV and MHV fuels .............................................................69

7.4.1 Results in compressors maps. .....................................................................69

8. FUEL SYSTEM .....................................................................................................74

8.1 SGT-500 Fuel system ........................................................................................75

9. CONCLUSIONS....................................................................................................83

10. REFERENCES.....................................................................................................84

11. APPENDIX...........................................................................................................84

Page 11: PROYECTO FIN DE CARRERA · combinaciones: limitaciones, ángulos de guía de las paletas, extracciones e inyecciones de aire, etc. Se tuvieron que realizar muchas simulaciones para

11

ABBREVATIONS

LHV Low heating value

MHV Medium heating value

HHV High heating value

GT Gas Turbine

LPC Low pressure compressor

HPC High pressure compressor

LPT Low pressure turbine

HPT High Pressure turbine

Page 12: PROYECTO FIN DE CARRERA · combinaciones: limitaciones, ángulos de guía de las paletas, extracciones e inyecciones de aire, etc. Se tuvieron que realizar muchas simulaciones para

12

PT Power turbine

UDG Updraft gasifier

DDG Downdraft gasifier

FBG Fluid bed gasifier

CFBG Circulating Fluid bed gasifier

EFG Entrained flow gasifier

PIK Pressure ratio, compressor

PIT Pressure ratio, turbine

N Speed

G Mass flow

NNORM Normalized speed

GK Compressor (inlet) mass flow

Shaft#1 Power turbine Shaft

Shaft #2 Low pressure turbine shaft

Shaft# 3 High Pressure Turbine shaft

Page 13: PROYECTO FIN DE CARRERA · combinaciones: limitaciones, ángulos de guía de las paletas, extracciones e inyecciones de aire, etc. Se tuvieron que realizar muchas simulaciones para

13

LIST OF TABLES

Table 1: Comparison of gasifiers................................................................................................. 34

Table 2: Advantages and disadvantages of different gasifiers..................................................... 35

Table 3 Maximum, minimum and average molar concentrations of the found biomass

gasification product gases between 3 and 10 MJ/m..................................................................... 37

Table 4 Calculated adiabatic flame temperatures of the collected gasification product

gases.............................................................................................................................................. 43

Table 5:- GT-500 parameters....................................................................................................... 45

Table 6 Two representative fuels from Appendix A...................................................................... 52

Table 7 Explanation of figure 15.................................................................................................. 53

Table 8: Standard fuel operating conditions................................................................................ 76

Table 9: Fuel system for standard gas.......................................................................................... 77

Table: 10 MHV fuel operating conditions.................................................................................... 78

Page 14: PROYECTO FIN DE CARRERA · combinaciones: limitaciones, ángulos de guía de las paletas, extracciones e inyecciones de aire, etc. Se tuvieron que realizar muchas simulaciones para

14

Table 11: Fuel system for MHV gas............................................................................................. 79

Table 12: Operating conditions of SGT-500 for LHV.................................................................. 80

Table 13: Fuel system for LHV gas.............................................................................................. 81

LIST OF FIGURES

Figure 1: GT-500.......................................................................................................................... 18

Figure 2 (a) and 2(b): Updraft gasifier........................................................................................ 25

Figure 3 (a) & 3 (b): Downdraft gasifier..................................................................................... 27

Figure 4 (a) & 4 (b): Fluidized Bed Gasifier............................................................................... 29

Figure 5(a) and 5(b): Circulating Fluidized Bed Gasifier ........................................................... 31

Figure 6: Entrained Flow Gasifier............................................................................................... 33

Figure 7: Occurrences of heating value for biomass gasification product gases in the

range between 3 and 10 MJ/m³ for the fuels in appendix A. ................................................ 40

Figure 8: Occurrences of heating value for all low calorific value fuels attained from

literature ............................................................................................................................... 40

Figure 9 :The mass flow ratio for a variety of different fuels. To visualize the much

higher mass flow going through the turbine not only the gases from Appendix A,

but all acquired fuel compositions were used....................................................................... 42

Figure 10: Molecular ratios of the gasification product gases from Appendix A........................ 43

Figure 11: SGT-500 parameters................................................................................................... 45

Page 15: PROYECTO FIN DE CARRERA · combinaciones: limitaciones, ángulos de guía de las paletas, extracciones e inyecciones de aire, etc. Se tuvieron que realizar muchas simulaciones para

15

Figure 12: The effect of decrease in heating values on power output and efficiency.................. 48

Figure 13: The effect of decrease in heating values on speeds of LPC and HPC........................ 51

Figure 14: The effect of decrease in heating values on pressure ratio........................................ 51

Figure 15: Effect of change of parameters on gas # 22.............................................................. 54

Figure 16: Effect of change of parameters on gas # 66 ............................................................... 54

Figure 17: TIT vs. PO limitation.................................................................................................. 56

Figure 18: Power output and efficiency without calculating power needed to

compress the fuel................................................................................................................... 58

Figure 19: power output and efficiency with the power needed to compress the fuel................. 59

Figure 20: Result of refrence case vs MHV fuel .......................................................................... 61

Figure 21: Result of refrence case with MHV fuel....................................................................... 61

Figure 22: Speed of shaft2 and shaft 3 using MHV fuel............................................................... 63

Figure 23: Pressure ratio of LPC and HPC using MHV fuel ...................................................... 65

Figure 24: The gasifier integrated with the unit........................................................................... 66

Figure 25: Gasifier vs. bleeding after low pressure compressor................................................. 67

Figure 26: Low pressure compressor efficiency map................................................................... 70

Figure 27: Low pressure compressor speed map......................................................................... 71

Figure 28: High pressure compressor efficiency map.................................................................. 72

Figure 29: High pressure compressor speed map........................................................................ 73

1. INTRODUCTION

Fossil fuels supply most of the energy consumed today. The combustion of fossil

fuels causes the emission of greenhouse gases and sulfuric, carbonic, and nitric acids,

which fall to earth as acid rain and has adverse impact on the environment. The fossil

fuels may also cause the global warming. Today we are facing the problem of

increased price and shortage of fossil fuels along with its effect on the environment.

A possible solution to the problems with fossil fuels is to utilize renewable energy

sources such as wind, solar, tidal, geothermal and biomass for power generation.

Biofuels can be obtained by the gasification of biomass. There are numerous different

gasification processes and raw materials that can be used. The properties of the fuel

obtained depend on the gasification technology and the type of raw material used.

One very important physical property of the fuel is the heating value, that represents

Page 16: PROYECTO FIN DE CARRERA · combinaciones: limitaciones, ángulos de guía de las paletas, extracciones e inyecciones de aire, etc. Se tuvieron que realizar muchas simulaciones para

16

the intensity of the combustion and it is defined as the amount of heat produced by

combustion of a unit quantity of fuel.

The fuels obtained by the gasification of biomass can be classified into three

categories depending upon their heating values, the high heating value HHV, medium

heating value MHV and low heating value LHV fuels. There are other important

characteristics to take into account like the composition, tar formation, wobbe index,

laminar flame temperature and flammability limits. All these properties decide the

fuels which are convenient to be used.

Gas turbines are essential in power generation. Energy is extracted in the form of

shaft power, compressed air and thrust, in any combination. They are versatile and

can be used in a number of applications such as transports and industries. Nearly

every aircraft in the world is powered by gas turbines as well as some ships,

helicopters and locomotives. There are also prototypes of cars that are powered by

gas turbines. Industrial gas turbines range in size is very wide, from truck-mounted

mobile plants that are used as auxiliary power units to enormous, complex systems

that can generate a huge amount of electric power. Gas turbines for electric

generation are usually used in peaking power plants, supplying power during peak

demand due to their ability to be turned on and off within minutes.

Gas turbine is a very sensitive machine. Small changes in the fuel properties may

cause disturbances in operation and failure of its components as result.

The operation of gas turbines with LHV fuels leads to increased fuel flow which may

provoke the unbalance between compressor and turbine, and overload in the fuel

system of conventional gas turbine. The increased fuel flow causes the increase in

pressure ratios and speed of the shafts which may ultimately lead to compressor

surge.

This specific work includes the pre studies on classification of fuels and the type of

gasifiers that can possibly be used in the preceding sections.

In Chapter 4, the fundamentals of gasifiers for biomass gasification are reported. The

chapter 5 covers the classification of fuels.

Page 17: PROYECTO FIN DE CARRERA · combinaciones: limitaciones, ángulos de guía de las paletas, extracciones e inyecciones de aire, etc. Se tuvieron que realizar muchas simulaciones para

17

The chapter 6 and 7 includes the thermodynamic analysis of the Siemens gas turbines

SGT-500 by using Siemens software GT Perform. In these chapters, the results

obtained by GT perform are shown. The results suggest the changes that have to be

made in the machine to avoid the unbalance between compressor and turbine and

keep the machine in a safe and efficient working point.

The chapter 8 introduces the new dimensions of the fuel system for low and medium

heating values gases.

This thesis emphasizes on the use of low heating value biomasses for power

generation, specifically for the gas turbines.

1.2 SGT-500 Gas Turbines

The SGT-500 is a heavy duty industrial gas turbine designed and manufactured for

various industrial applications requiring high thermal efficiency and reliable trouble-

free operation. It has a limit of 4000 to 160000 hours time between overhaul TBO, an

output limit of 20.7 MW and turbine inlet temperature limit of 500 °C to 880 °C.

It is suitable for indoor, outdoor and onshore applications. It can be adjusted to

offshore environments and requirements common in the oil & gas industry with pre-

designed standard function modules. The gas turbine operates on a simple open cycle

utilizing a three shaft concept. The shaft number 1 corresponds to power turbine,

shaft number 2 corresponds to low pressure compressor and shaft number 3 to high

pressure compressor as shown in the figure 1.

Page 18: PROYECTO FIN DE CARRERA · combinaciones: limitaciones, ángulos de guía de las paletas, extracciones e inyecciones de aire, etc. Se tuvieron que realizar muchas simulaciones para

18

Figure 1: GT-500

The gas generator has 10 stage low pressure LP and 8 stage high pressure HP axial

flow compressor sections providing an overall compression ratio of 12.6. The LP and

HP compressors are driven by a 2-stage LP and a single stage HP axial flow turbine.

Seven can-type combustors are located in the annular space between the concentric

casings extending from the HP compressor exit diffuser duct. These combustors are

capable of burning a wide band of fuels. For power generation, the power turbine is a

three stage axial flow turbine extracting the output power from the exhaust flow

across the operating speeds 3000 rpm (50 Hz) and 3600 rpm (60 Hz). In mechanical

drive applications, the power turbine can be either a three stage axial flow turbine

extracting the output power from the exhaust flow across an operating speed range

2200 to 3600 rpm or single stage operation in the 5000 to 6300 rpm range. The

minimum operating speed can be decreased provided load vs. speed of driven

equipment are within certain limits.

Page 19: PROYECTO FIN DE CARRERA · combinaciones: limitaciones, ángulos de guía de las paletas, extracciones e inyecciones de aire, etc. Se tuvieron que realizar muchas simulaciones para

19

2. OBJECTIVES

The objective of this thesis work are summarized as under

• The literature study aiming of suitability of integrated gasifier.

• To classify the biomass fuels suitable for gas turbine applications and to study

their thermodynamic properties.

• Investigation of operational problems using LHV fuels.

• Optimization of gas turbine based on in house code GT perform.

• To document the design change which will be necessary to keep the speeds

and pressure ratio of gas turbine within limits to avoid compressor surging.

• To calculate the new dimensions of the fuel system to be able to manage a

higher fuel flow keeping constant the press

Page 20: PROYECTO FIN DE CARRERA · combinaciones: limitaciones, ángulos de guía de las paletas, extracciones e inyecciones de aire, etc. Se tuvieron que realizar muchas simulaciones para

20

3. METHOD OF ATTACK

In the first step, a study about the gasification techniques and types of gasifier will

lead to the classification of fuels on the basis of their properties like Wobbe index,

heating value, air fuel ratio, adiabatic flame temperature etc. will be done.

In the next step, the simulations on GT Perform will be performed. GT perform is a

program developed by Siemens that simulates the behaviour of the Siemens gas

turbines. In this project, a version of the program will be used where only the SGT-

500 gas turbine is available.

The first approach to the program will be to use it under all standard conditions and

by the use of standard fuel which is natural gas in our case. After having a base case

with standard fuel and standard conditions, a number of simulations will be made for

a number of syngases (e.g. gasified biomass) and under different operating

conditions.

It is necessary to understand the parameters that one can change in the program (and

also in the machine). These parameters include the turbines flow constants, the

injection and extraction of air at several points of the machine and also the type of

load or limitations of the machine. These parameters have rules and limitations, it is

Page 21: PROYECTO FIN DE CARRERA · combinaciones: limitaciones, ángulos de guía de las paletas, extracciones e inyecciones de aire, etc. Se tuvieron que realizar muchas simulaciones para

21

not possible to use any value, some of the parameters can be changed freely while the

others are locked. Two different fuels will be selected, one with LHV and another one

with MHV to see how the change of parameters affects the behaviour of the machine

in each case.

In order to address the unbalance between compressor and turbine, the first approach

is bleeding of the compressed air after low pressure compressor. The second approach

is leading the compressed air after high pressure compressor to a pressurized gasifier.

In order to examine the performance of the compressor and draw the working points

of the map of compressor will be defined and the surge limits will be inspected.

The final work will be to set of recommendation regarding the re-designing of the

fuel system using MHV and LHV gases.

4. PRE-STUDIES

The aim of this part is to gain better understanding of the gasification process for

different biomass. The gasification process of biomass can result in different qualities

of gases with low or high heating values. Different types of gas cleaning processes

are being used for removal of tar in order to use it in Gas Turbines.

Based on the fuel composition, it is obtained the values of the physical properties

such as heating value, wobbe index, molecular weight and combustion properties

such as flammability limits, ignition delay or laminar flame speed; these properties

make fuels suitable or not for using them in the turbine.

4.1 Biomass gasification

Gasification is a process to convert a solid to a gas that can be used in modern power

generation applications such as a heat engine or gas turbine.

Page 22: PROYECTO FIN DE CARRERA · combinaciones: limitaciones, ángulos de guía de las paletas, extracciones e inyecciones de aire, etc. Se tuvieron que realizar muchas simulaciones para

22

Biomass has great potential as a renewable and relatively clean feedstock for

producing modern energy carriers, such as electricity and transportation fuels.

Currently, biomass gasification is considered as one of the most promising thermo

chemical technologies.

Biomass gasification, also known as incomplete combustion of biomass resulting in

production of combustible gases consisting of Carbon monoxide (CO), Hydrogen

(H2) and traces of Methane (CH4). This mixture is called synthetic gas. Synthetic gas

can be used to run internal and external combustion engines, can be used as substitute

for fossil fuels in direct heat applications and can be used to produce methanol, in an

economically viable way. Since any biomass material can undergo gasification, this

process is much more attractive than ethanol production or biogas where only

selected biomass materials can be used as raw material.

However under present conditions, economic factors seem to provide the strongest

argument of considering gasification. In many situations where the price of petroleum

fuels is high or where supplies are unreliable the biomass gasification can provide an

economically viable.

The combustion products from complete combustion of biomass generally contain

nitrogen, water vapor, carbon dioxide and surplus. However in gasification where

there is a surplus of solid fuel (incomplete combustion) the products are combustible

gases like Carbon monoxide (CO), Hydrogen (H2) and traces of Methane.

In a gasifier, biomass undergoes three processes:

1. Pyrolysis or devolatilization is a thermal decomposition process that occurs at

moderate temperatures with a high heat transfer rate to the biomass in the

absence of oxygen. In practice, it is not possible to achieve a completely

oxygen-free atmosphere. Because some oxygen will be present in any

pyrolytic system, nominal oxidation will occur. Pyrolysis produces

combustible gases, including carbon monoxide, hydrogen and methane. The

pyrolysis gases require further treatment.

Page 23: PROYECTO FIN DE CARRERA · combinaciones: limitaciones, ángulos de guía de las paletas, extracciones e inyecciones de aire, etc. Se tuvieron que realizar muchas simulaciones para

23

When biomass decomposes at elevated temperatures, three primary products

are formed: gas, bio-oil and char. At high temperatures the bio-oil vapors are

decomposed in secondary products like gas and polymeric tar.

2. The combustion process occurs as the volatile products and some of the char

reacts with oxygen to form carbon dioxide and carbon monoxide, which

provides heat for the subsequent gasification reactions.

3. The gasification process occurs as the char reacts with carbon dioxide and

steam to produce carbon monoxide and hydrogen in the presence of

gasification agent. The resulting gas is called producer gas or syngas. Syngas

is primarily carbon monoxide and hydrogen (more than 85 percent by

volume) and smaller quantities of carbon dioxide and methane. Syngas can be

used as a fuel to generate electricity or steam. When mixed with air, syngas

can be used in internal and external combustion engines with few

modifications. The gasification process requires heat and an oxidant such as

oxygen (O2) or steam (H2O). Heat addition can occur directly by partial

oxidation of the fuel or indirectly using some means of high rate indirect heat

transfer.

4.1.2 Types of Gasifier

There are basically five types of gasifiers used. Fixed bed gasification processes can

be divided into two different process designs

• Counter-current fixed bed ("up draft")

• The co-current fixed bed ("down draft")

Moving bed gasification processes can be classified into three process designs.

• Fluidized bed

Page 24: PROYECTO FIN DE CARRERA · combinaciones: limitaciones, ángulos de guía de las paletas, extracciones e inyecciones de aire, etc. Se tuvieron que realizar muchas simulaciones para

24

• Entrained flow

• Circulating Fluid-Bed

Page 25: PROYECTO FIN DE CARRERA · combinaciones: limitaciones, ángulos de guía de las paletas, extracciones e inyecciones de aire, etc. Se tuvieron que realizar muchas simulaciones para

25

4.1.3 Updraft gasifier/counter-current fixed bed gasifier (UDG).

Figure 2 (a) and 2(b): Updraft gasifier

Page 26: PROYECTO FIN DE CARRERA · combinaciones: limitaciones, ángulos de guía de las paletas, extracciones e inyecciones de aire, etc. Se tuvieron que realizar muchas simulaciones para

26

Biomass enters through a lock-hopper and flows down against the flow of air and that

is why it is named as counter-current gasifier. The air is introduced to the biomass

through grates at bottom of furnace. High temperatures are generated initially where

the air first contacts with the char, but combustion gases enter a portion of excess

char, where any CO2 and H20 is reduced to CO and H2. As the air rises to lower

temperature zone, they meet the descending biomass and pyrolyze the incoming

biomass in the range 200 to 500 C. The counter flow arrangement is tolerant to

biomass moisture (up to 40 or 50%M) since drying process occurs by produced gas,

however the produced gas has the tar content 5 to10 percent and is suitable for staged

combustion. The dirty product gas of the UDG means that it is not applicable for most

applications that require clean gas, such as synthetic fuel, chemical or gas turbine

applications. It is best only for heat applications, such as boiler firing. [SCHL96]

Page 27: PROYECTO FIN DE CARRERA · combinaciones: limitaciones, ángulos de guía de las paletas, extracciones e inyecciones de aire, etc. Se tuvieron que realizar muchas simulaciones para

27

4.1.4 Downdraft gasifier or co-current fixed bed gasifier (DDG).

Figure 3 (a) & 3 (b): Downdraft gasifier

Page 28: PROYECTO FIN DE CARRERA · combinaciones: limitaciones, ángulos de guía de las paletas, extracciones e inyecciones de aire, etc. Se tuvieron que realizar muchas simulaciones para

28

Biomass enters through an open top in an air-blown system or through a lock-hopper

in an oxygen-blown system. The open top DDG design is simple and low-cost. Air is

introduced to gasifier through a set of nozzles. The drying zone contains un-reacted

fuel. In the pyrolysis zone, the fuel reacts with oxygen. Most of the volatile

components of the fuel are burned in this zone and provide heat for continued

pyrolysis reactions. The open top design ensures uniform access of air to the pyrolysis

region. In combustion zone, hot combustion gases from the pyrolysis region react

with the charcoal to convert the carbon dioxide and water vapor into carbon

monoxide and hydrogen. The inert char and ash, which constitute the next zone, are

normally too cool to cause further reactions; however, since this zone is available to

absorb heat or oxygen as conditions change, it serves both as a buffer and as a

charcoal storage region. Below this zone is the grate. The presence of char and ash

serves to protect the grate from excessive temperatures. Adding blast to the char zone

is an excellent approach for achieving low tar gas (<100 mg tar/Nm3). The downdraft

gasifier is useful for small scale applications, and may have a practical upper limit of

5 MW [SCHL96].

Page 29: PROYECTO FIN DE CARRERA · combinaciones: limitaciones, ángulos de guía de las paletas, extracciones e inyecciones de aire, etc. Se tuvieron que realizar muchas simulaciones para

29

4.1.5 Fluidized-bed gasifier (FBG).

The FBG gasifier is well known for reliable performance, isothermal operation, and

suitability to large scale application. It can accommodate much greater quantity and,

normally, a much lower quality of fuel.

Figure 4 (a) & 4 (b): Fluidized Bed Gasifier

Page 30: PROYECTO FIN DE CARRERA · combinaciones: limitaciones, ángulos de guía de las paletas, extracciones e inyecciones de aire, etc. Se tuvieron que realizar muchas simulaciones para

30

The bed material can either be sand or char, or some combination which is pre heated

to a temperature of 1000 ºF. The fluidizing medium is usually air; however, oxygen

and/or steam are also used. Air, steam or oxygen blends are delivered through a flow

distributor into a fluidized bed of sand. The fluidized bed gives rapid heating of

reactant gases in addition to excellent mixing of biomass solids and inert media. The

inert fluidizing media is typically comprised of silica, mullite, or olivine sand. The

fluidized bed system is made in such a way that the ash particles are carried out of the

bed with the gas stream. This ash is then removed from the gas stream by a special

ash removal system. Tar production is moderately high at ~1% to 2%, but less than a

fixed bed updraft gasifier. In any case, the FBG is quite robust for both pyrolysis and

gasification, but secondary processing of the generated gas may be required for more

critical applications besides strictly thermal energy supply. [SCHL96].

Page 31: PROYECTO FIN DE CARRERA · combinaciones: limitaciones, ángulos de guía de las paletas, extracciones e inyecciones de aire, etc. Se tuvieron que realizar muchas simulaciones para

31

4.1.6 Circulating fluid-bed gasifier (CFBG).

Figure 5(a) and 5(b): Circulating Fluidized Bed Gasifier

Page 32: PROYECTO FIN DE CARRERA · combinaciones: limitaciones, ángulos de guía de las paletas, extracciones e inyecciones de aire, etc. Se tuvieron que realizar muchas simulaciones para

32

In CFBG, pulverized fuel is added to the bottom of the pyrolysis chamber. A stream

of circulating sand particles takes the coke particles with it, after which they are

separated by a primary cyclone and re-circulated. CFBG is a fast fluidization process

and speed up the gasification process. The formation of a fast fluidized bed depends

on the following conditions: (a) small particle materials (b) high operating gas

velocity (c) continuous solid circulation. CFBG circulate the char continuously which

increases the residence time of char and hence less char loss. The higher velocity

regime gives an alternative approach to increasing char residence time to promote

higher efficiency gasification. These features enhance heat and mass transfer, raise

reaction rate, and strengthen fast pyrolysis. This both facts make the productivity of

the CFBG much higher and gas quality much better than other kind of air blown.

[SCHL96].

Page 33: PROYECTO FIN DE CARRERA · combinaciones: limitaciones, ángulos de guía de las paletas, extracciones e inyecciones de aire, etc. Se tuvieron que realizar muchas simulaciones para

33

4.1.7 Entertained flow gasifier (EFBG)

They are commonly used for coal because of finer particle sizes and higher operating

temperatures. However, entrained flow gasifiers are not practical for biomass for

several reasons including operating temperature limiting properties of biomass ash

and the impracticality of generating finely ground biomass feedstock. Biomass also

has a lower energy density and higher moisture holding capacity, which makes it

impractical to slurry feed biomass gasifiers. Certain types of biomasses can form slag

that is corrosive for ceramic inner walls. Several commercial designs are available for

coal, but these will not work with more than 10 to 15% biomass in a coal blend.

[SCHL96]

Figure 6: Entrained Flow Gasifier

Page 34: PROYECTO FIN DE CARRERA · combinaciones: limitaciones, ángulos de guía de las paletas, extracciones e inyecciones de aire, etc. Se tuvieron que realizar muchas simulaciones para

34

4.1.8 Comparison of gasifiers

The table 1 shows the comparison between different types of gasifiers based on their

operating temperatures, tars content in the products, their application areas and their

operational control.

Parameters Co-current Counter-

Current

Fluidized bed Circulating

Bed

Entrained

bed

Temp C 700 - 1200 700 -900 < 900 < 900 1500

Tars Low Very high intermediate intermediate absent

Scale < 5 MW < 20 MW 10 < MW< 100 20 < MW > 100 MW

Feed Stock Very critical Critical Less critical Less critical Very fine

particles

Control easy Very easy intermediate intermediate Very

complex

Table 1: Comparison of gasifiers

Page 35: PROYECTO FIN DE CARRERA · combinaciones: limitaciones, ángulos de guía de las paletas, extracciones e inyecciones de aire, etc. Se tuvieron que realizar muchas simulaciones para

35

The table 2 shows the advantages and disadvantages of different types of gasifiers.

Name Advantages Disadvantages

Updraft Mature for Heat

Small Scale Applications

Can Handle High Moisture

No Carbon in Ash

Feed size limits

High Tar Yields

Scale limitations

Slagging potential

Downdraft Small scale applications

Large particulates

Low tars

Moisture sensitive

Scale limitations

Feed size limits

Producer gas

Fluidized Bed Large scale applications

Direct and indirect Heating

Feed characteristics

Can produce syngas

Medium tar yields

High particle loading

Circulating Bed Large scale applications

Feed characteristics

Can produce syngas

Medium tar yields

High particle loading

Entrained flow Can be scaled

Can produce syngas

Potential for low tar

Large amount of carrier gas

Particle size limits

Higher particle loading

Potentially high S/C

Table 2: Advantages and disadvantages of different gasifiers

Page 36: PROYECTO FIN DE CARRERA · combinaciones: limitaciones, ángulos de guía de las paletas, extracciones e inyecciones de aire, etc. Se tuvieron que realizar muchas simulaciones para

36

5. CLASSIFICATION OF BIOMASS FUELS

The composition of the fuels from various sources has been collected, different

thermodynamic properties have been calculated and it has been observed that the

values of various properties differed for different fuel compositions. Calculation of

the heating values differed from source to sources. The complete fuel list is in

appendix A.

5.1 Composition

There is variety of different gasification techniques, which yield gases that can be

very different in composition. The composition of the product gases depend strongly

on the variable parameters of the gasification process like pressure and equivalence

ratio and the gasification technique used.

The gasification product gases are basically a mixture of H2, CO, and N2 and can also

contain CH4, CO2, and H2O. Some further minor species may be present also, but

their effect is neglected in this study due to their small fraction.

During the literature study that preceded the calculations composition data of

interesting fuels was collected from various sources. Some of the sources also

included additional fuel properties like heating value and molecular weight. To ensure

consistency in data, only the compositions of the fuels were used and all other fuel

properties were derived from the composition. This way the fuel properties and their

quantitative change with change of composition can be compared.

A total of 68 fuels mixtures was found and included in a spreadsheet (Appendix A).

The processes that yielded these fuels were very different. 25 of them are biomass

gasification product gases whose LHV was in the interesting range between 3 and 10

MJ/m³. It should be noted that none of those in that range had a LHV of more than 8

MJ/m³. Unless indicated otherwise the discussion in this study refers to these biomass

gasification product gases only.

Page 37: PROYECTO FIN DE CARRERA · combinaciones: limitaciones, ángulos de guía de las paletas, extracciones e inyecciones de aire, etc. Se tuvieron que realizar muchas simulaciones para

37

The upper and lower limits of the molar fractions of the different species together

with their average value can be found in table 3.

Species Minimum molar

concentration

Maximum molar

concentration

Average molar

concentration

H2 0.096 0.251 0.167

CO 0.108 0.315 0.193

CH4 0.000 0.132 0.032

CO2 0.000 0.289 0.105

H2O 0.000 0.097 0.015

N2 0.278 0.733 0.488

Table 3 Maximum, minimum and average molar concentrations of the found biomass gasification

product gases between 3 and 10 MJ/m

According to the obtained composition datasets, CO is in average the most abundant

combustible species contained in the fuels. Its volumetric heating value is higher than

that of H2. Due to the fact that CH4 is in average a rather minor species CO is usually

the main contributor to the volumetric heating value of the fuel.

On the other hand it should be noted that the CH4, even though usually contained in

rather small fractions compared to the other two combustibles, can also be a major

contributor to the heating value due to its high volumetric heating value (34 MJ/Nm³

compared to 10.2 MJ/Nm³ for H2 and 12.0 MJ/Nm³ for CO).

A problem concerning the direct combustion of gasification product gases in a gas

turbine is the tar-content of the fuel. Also, other minor species may lead to corrosion

problems in the fuel system. This study primarily focuses on the combustibility

characteristics of the fuels and thus does not consider these effects.

Page 38: PROYECTO FIN DE CARRERA · combinaciones: limitaciones, ángulos de guía de las paletas, extracciones e inyecciones de aire, etc. Se tuvieron que realizar muchas simulaciones para

38

5.2 Basic fuel properties

In order to provide an overview over the differences in the fuel properties and for

easy implementation of new composition sets a spreadsheet has been developed to

calculate a series of fuel properties from the composition.

Standard conditions with 101325 Pa pressure and 288.15 K temperature were

assumed. Some of the properties of biomass fuel are as under:

• Molecular weight

ii MWxMW ∑=

The molar weight MW of the fuels varies between 21.5 and 27.2 kg/kmol. This strong

variation is mostly due to the low molecular weight of hydrogen.

• Density

The density ρ was approximated with the ideal gas law:

TR

pMWfuel

⋅⋅

It varies between 0.91 and 1.15 kg/m³, which is rather high compared to ρCH4 = 0.68

kg/m³.

5.2.1 Stoichiometric Air-fuel-ratios

These measures are the ratio of the amount of air and fuel needed to theoretically

achieve complete combustion without excess oxygen. Due to the high amount of

dilutive components this figure is significantly lower for gasification product gases

than for natural gas fuels in use today.

Page 39: PROYECTO FIN DE CARRERA · combinaciones: limitaciones, ángulos de guía de las paletas, extracciones e inyecciones de aire, etc. Se tuvieron que realizar muchas simulaciones para

39

Volumetric: icombistoichv axFA ∑= ,,)/(

In this equation “a” is a stoichiometric factor that quantifies how many oxygen

molecules are needed to oxidize a molecule of the combustible fraction i. It has a

value of 0.5 for H2 and CO and a value of 2 for CH4.

Mass-based: fuel

airstoichvstoichm FAFA

ρρ

⋅= ,, )/()/(

The values for the volumetric stoichiometric air-fuel-ratio vary between 0.7 and 2.0,

while the value for pure methane is 9.5. These low values indicate that combustor and

turbine will have to accommodate a significantly higher volume flow than in natural

gas combustion.

5.2.2 Heating values

The different definitions of heating values are a measure for the heat release that is

achieved in combustion of a given fuel.

They can be formulated either based on mass or on volume. Both values were

calculated, but in the further studies only the volumetric heating values will be used,

as the fuels looked are in gaseous state.

The higher heating value describes the total thermal energy release in the combustion,

whereas the lower heating value neglects the heat of vaporization that the water

vapour in the flue gas contains. Due to the fact that this part of energy contained in

the combustion products has no direct implications on the gas turbine process only

the lower heating value will be considered later in this study. It ranges from 3.25

MJ/m³ and 7.77 MJ/m³ with an average of 5.10 MJ/m³.

Volumetric LHV: voliivol LHVxLHV .∑=

Page 40: PROYECTO FIN DE CARRERA · combinaciones: limitaciones, ángulos de guía de las paletas, extracciones e inyecciones de aire, etc. Se tuvieron que realizar muchas simulaciones para

40

Mass-based LHV: ρ

volmass

LHVLHV =

Volumetric HHV: OH

OHvapOHCHHvolvol MW

hxxxLHVHHV

2

2242 )2(

ρ⋅+++=

0

1

2

3

4

5

6

7

3,5 4

4,5 5

5,5 6

6,5 7

7,5 8

8,5 9

9,5

and

larger

LHV_v (MJ/m³)

Occ

urre

nce

Figure 7: Occurrences of heating value for biomass gasification product gases in the range between

3 and 10 MJ/m³ for the fuels in appendix A.

0

1

2

3

4

5

6

7

3,5 4

4,5 5

5,5 6

6,5 7

7,5 8

8,5 9

9,5

and

larger

LHV_v (MJ/m³)

Occ

urre

nce

Figure 8: Occurrences of heating value for all low calorific value fuels attained from literature

Page 41: PROYECTO FIN DE CARRERA · combinaciones: limitaciones, ángulos de guía de las paletas, extracciones e inyecciones de aire, etc. Se tuvieron que realizar muchas simulaciones para

41

Fig 7 shows the frequency distribution of the heating values for the biomass

gasification product gases in 3-10 MJ/m³ range. It can be clearly seen that most gases

are in the 4.5 to 6 MJ/m³ range.

Fig 8 also includes the other gases found in the literature. The distribution is similar

to the seen for biomass gases, with a few more gases in the upper LHV range.

5.2.3 Wobbe indices

The Wobbe index is a figure which is important when designing a fuel system. For a

given valve setting two gases with the same Wobbe index will release the same

amount of heat.

Inferior:

ref

volLHVWI

ρρ

=inf

Superior:

ref

volHHVWI

ρρ

=sup

5.2.4 Flow ratios

In order to give an estimation of the expected additional mass flow in the turbine two

formulas to calculate the turbine-compressor-mass-flow ratio were derived. The first

one takes the overall λ as a constant compared to a reference case (e.g. natural gas

combustion), whereas the second one determines a ratio for the same power output as

in a base case. The latter formula is more practical as the turbine should be utilized to

its full capacity to provide cost-efficient operation.

Constant-λ mass flow: stoichmC

T

FAm

m

,)/(1

φ+=&

&

Constant-Power mass flow: LHV

LHV

FAm

m ref

refstoichm

ref

C

T ⋅+=,,)/(

&

&

Page 42: PROYECTO FIN DE CARRERA · combinaciones: limitaciones, ángulos de guía de las paletas, extracciones e inyecciones de aire, etc. Se tuvieron que realizar muchas simulaciones para

42

0,8000

0,9000

1,0000

1,1000

1,2000

1,3000

1,4000

1,5000

1,6000

0,00 5,00 10,00 15,00 20,00 25,00 30,00 35,00

LHV_v (MJ/m³)

MF

_T/M

F_C

const. λ const. Power

Figure 9 :The mass flow ratio for a variety of different fuels. To visualize the much higher mass

flow going through the turbine not only the gases from Appendix A, but all acquired fuel

compositions were used

5.2.5 Stoichiometric adiabatic flame temperatures

Individually, H2 and CO have higher adiabatic flame temperatures at stoichiometric

conditions than CH4 (2383K and 2385K as compared to 2220K at ambient state). The

dilutive components in turn lower the flame temperature.

The stoichiometric adiabatic flame temperatures of the 25 GPGs were calculated for

both ambient state and compressor outlet state. For this the Chemkin equilibrium

reactor model with the GRI-Mech 3.0 mechanism was applied. The upper and lower

limits as well as the average values of the results are given in table 4.

Property Minimum Maximum Average

Tad,st (p=1atm,T0=298K) (K) 1677 2125 1887

Tad,st (p=12atm, T0=650K) (K) 1958 2374 2149

Page 43: PROYECTO FIN DE CARRERA · combinaciones: limitaciones, ángulos de guía de las paletas, extracciones e inyecciones de aire, etc. Se tuvieron que realizar muchas simulaciones para

43

Table 4 Calculated adiabatic flame temperatures of the collected gasification product gases.

5.2.6 Molecular ratios

Apart from the minimum and maximum molar concentrations of the different species

in the fuels as given in Table 3, it is also important to know in which boundaries their

molecular ratios vary.

0,0

0,5

1,0

1,5

0,0 0,5 1,0 1,5 2,0

H2:CO ratio

CH

4:C

O r

atio

Figure 10: Molecular ratios of the gasification product gases from Appendix A.

Figure 10 shows how the mass flow ratio for a variety of different fuels. To visualize

the much higher mass flow going through the turbine not only the gases from

Appendix A, but all acquired fuel compositions were used.

The H2:CO ratio varies between 0.37 and 1.73. This means that there is always

hydrogen present next to CO in the mixtures and that the CO oxidization will be able

to follow the fast wet CO combustion pathway with the determining reaction CO +

OH → CO2 + H, which makes the CO combustion much more rapid than in the dry

case. The average value for this ratio is 0.92.

Page 44: PROYECTO FIN DE CARRERA · combinaciones: limitaciones, ángulos de guía de las paletas, extracciones e inyecciones de aire, etc. Se tuvieron que realizar muchas simulaciones para

44

The CH4:CO ratio ranges between 0 and 1.192. The average value is at a low 0.2,

though.

6. GT PERFORM

Siemens has developed GT Perform computer program for thermodynamic

simulations of gas turbines. The program can simulate different gas turbines like GT-

500, GT-600, GT-700 and GT-800. For this thesis the GT-500 simulator was used.

The program optimizes the compressors, turbines and combustion chamber of open

cycle gas turbines GT-500. It simulates the open cycle gas turbines, without any

integration of additional cycles like co-generation or combined cycle. It doesn’t

calculate the power needed to compress the fuel. The simulations can be done at any

operating conditions, ambient or elevated.

Input design requirements of the program include the type and composition of fuel,

Inlet and outlet pressure losses, type of application (either power generation or

mechanical drive), percentage of base load, type of injection to combustion chambers,

power turbine speed and different parameters of compressors and turbines like

pressure loss co-efficient, temperature, pressure, mass flow, turbine constants,

injection and extraction of air at different points etc. The fuel properties are input as

composition, gas constant, heating value and specific heat.

The program output includes the temperature, pressure, pressure ratios, speed of

shafts, mass flow of the fuel in combustion chamber, mass flows at compressors and

turbines, electric power output, compressor and turbine efficiency, shaft power and

heat rate etc.

It works with International SI and US units. It is compatible with all versions of

windows.

Page 45: PROYECTO FIN DE CARRERA · combinaciones: limitaciones, ángulos de guía de las paletas, extracciones e inyecciones de aire, etc. Se tuvieron que realizar muchas simulaciones para

45

6.1 SGT-500 Parameters

The figure 11 explains some of the parameters of interest of GT-500 used in GT

Perform.

Figure 11: SGT-500 parameters

S.No Parameter Meaning

1 GAMK2 or GAMK LPC Air extraction after low pressure compressor.

2 GAMK3 or GAMK HPC Air extraction after high pressure compressor.

3 GAMT2 or GAMT LPT Air injection before low pressure turbine.

4 GAMT3 or GAMT HPT Air injection before high pressure turbine.

5 GINTE2 or GINTE LPT Air injection after low pressure turbine.

6 GINTE3 or GINTE HPT Air injection after high pressure turbine.

7 HPT constant High pressure turbine constant.

8 PT constant Power turbine constant.

Table 5:- GT-500 parameters

Page 46: PROYECTO FIN DE CARRERA · combinaciones: limitaciones, ángulos de guía de las paletas, extracciones e inyecciones de aire, etc. Se tuvieron que realizar muchas simulaciones para

46

GAMK2 of 0.025 means that 2.5% of total flow is extracted after low pressure

compressor. The HPT and PT constants change the turbine capacities (“flow

numbers”). Only the flow numbers of the high pressure turbine (HPT) and the power

turbine (PT) can be altered in the SGT-500 without surplus effort (a washer is

changed, altering the guide vane angles).

Page 47: PROYECTO FIN DE CARRERA · combinaciones: limitaciones, ángulos de guía de las paletas, extracciones e inyecciones de aire, etc. Se tuvieron que realizar muchas simulaciones para

47

7. RESULTS OBTAINED BY GT PERFORM

The results obtained by GT perform by simulating biogases with alteration of GT-500

parameters are presented in the following sections. A step by step approach is

presented.

7.1 Base or reference case

The first approach to the program is to simulate the gas turbine SGT-500 under

standard conditions and with a standard fuel “natural gas” as base case.

The SGT-500 has the following limitations for speed and power output

• Maximum low pressure (LP) shaft speed = 5900 rpm

• Maximum high pressure (HP) shaft speed = 7300 rpm

• Maximum electrical power output = 20.7 MW (generator limitation)

The limitations on speed are obligatory to avoid from compressor surge, while the

power output is limited due to generator.

The reference or base case has the following standard conditions in GT Perform.

• Power Generation, 50 Hz, with gear

• Inlet and outlet pressure losses = 0 mbar

• Power factor = 1.0

• Fuel is standard natural gas (LHV = 46 798 kJ/kg), fuel temp = 25°C

• Load 100 % of base load (TIT = 850°C)

• Air pressure 1.01325 bar (“Site elevation = 0 meter”)

• Ambient air temperature 15°C

• Relative air humidity is 60 %

• No water/steam injection

The results of the base case are presented in appendix C and D.

Page 48: PROYECTO FIN DE CARRERA · combinaciones: limitaciones, ángulos de guía de las paletas, extracciones e inyecciones de aire, etc. Se tuvieron que realizar muchas simulaciones para

48

7.1.1 Simulation of several LHV fuels

The next measure is to simulate the gas turbine with several LHV fuels from

appendix A and to compare the results with the base case.

In the figures 12, 13 and 14, all the values are normalized with respect to base case.

The base case is represented by the points (1, 1). If the value on x-axis is “7.99”, the

fuel flow needed with biomass fuel in combustor is 7.99 times the fuel flow of the

base case.

The heating value decreases in x-axis with an increase in fuel ratio. The fuel ratio is

mass flow of the bio-fuel with respect to natural gas under same conditions.

Figure 12: The effect of decrease in heating values on power output and efficiency

The graph in figure 12 is unusual because it shows that the lower heating value of the

fuel provides higher power output and efficiency. This has an explanation.

Page 49: PROYECTO FIN DE CARRERA · combinaciones: limitaciones, ángulos de guía de las paletas, extracciones e inyecciones de aire, etc. Se tuvieron que realizar muchas simulaciones para

49

The total input power (PI) supplied to the combustor is due to the heating value and

the enthalpy of the fuel.

E = Enthalpy

H.V = Heating value

PE = Power due to the enthalpy.

P H.V = Power due to the heating value of the fuel.

PI = Input power supplied to combustor

Po = Output power

PI = PE + P H.V (1)

PE = E * fuel flow (2)

P H.V = H.V * fuel flow (3)

PI = [H.V+E] *[fuel flow] (4)

The enthalpy for high heating value fuels is neglected because it is negligible as

compared to the heating value.

The enthalpy can’t be neglected for LHV bio-fuels because the values of the enthalpy

and heating value are in the same scale, while PE increases according to equation (2)

with an increase in fuel flow. As a consequence the input PI and output power Po also

increases.

The output power Po in figure 12 is constant for fuel ratio equal to or greater than

5.66. This is because of the power output PO limitation of GT Perform.

Page 50: PROYECTO FIN DE CARRERA · combinaciones: limitaciones, ángulos de guía de las paletas, extracciones e inyecciones de aire, etc. Se tuvieron que realizar muchas simulaciones para

50

If Po is constant then PI has to be nearly constant. If we assume that PI is constant and

PE is increasing, then according to equation (4), PH.V has to decrease.

The efficiency is defined as:

Eff = PO / P H.V (5)

In equation (5), the power output PO is constant and PH.V is decreasing, that’s why the

efficiency is higher with low heating values in figure 12.

The power and efficiency is increasing in figure 12 because the program doesn’t take

into account the power needed to compress the fuel, and in the case of LHV fuels, the

fuel flow is very high. The fuel introduced in the combustor is assumed to be

compressed. The power needed to compress that fuel is not added in the figure 12.

The power output is constant in figure 12 because the gas turbine has a power

limitation of 20.7 MW. This limitation can be removed in program but it is needed as

a safety measure for the electric generator.

In the figure 13, the speeds of the shaft 2 (low pressure compressor and turbine) and

shaft3 (high pressure compressor and turbine) are presented.

These speeds are normalised with respect to base case. The speed at point (1, 1)

represents the base case.

Page 51: PROYECTO FIN DE CARRERA · combinaciones: limitaciones, ángulos de guía de las paletas, extracciones e inyecciones de aire, etc. Se tuvieron que realizar muchas simulaciones para

51

Figure 13: The effect of decrease in heating values on speeds of LPC and HPC

In the figure 14, the efficiency and pressure ratio are normalized with respect to base

case.

Figure 14: The effect of decrease in heating values on pressure ratio

Page 52: PROYECTO FIN DE CARRERA · combinaciones: limitaciones, ángulos de guía de las paletas, extracciones e inyecciones de aire, etc. Se tuvieron que realizar muchas simulaciones para

52

It is observed in figure 13 that the speed of low pressure compressor and high

pressure compressor initially increases with increase in fuel ratio (decrease in heating

value) up to interval (1-6) and gradually decrease afterwards. This has an explanation

also with the reference of pressures graph (figure 14).

When the fuel flow in combustor is up to six times higher than the base case, the flow

going through the turbine increases, this crafts the turbine to run with high speed, but

when the fuel flow is further increased, the power output of the gas turbine hits its

maximum value of 20.7 MW and further increase in fuel flow through combustor will

drop the speeds and increase the pressure ratio of low and high pressure compressor.

7.1.2 Utilization of two representative fuels, how the parameters affect.

The following simulation is performed to know the effect of the parameters listed in

table 5 on the speeds and pressure ratios of low and high pressure compressor, power

and efficiency of GT-500 .The fuels selected are listed in table 6.

The selected fuels are the following:

S.No Fuel from Appendix A Heating Value

MJ/KG

Mass flow of fuel

kg/s

1 Fuel #22 9.36 6.5

2 Fuel #66 3.36 16.7

Table 6 Two representative fuels from Appendix A

The composition of fuels is listed in Appendix A. These fuels are selected because of

their heating values.

The parameters listed in table 5 are increased than their standard values and the

results are represented in figure 15 and 16. The table 7 explains the terminologies

represented in figure 15 and 16.

Page 53: PROYECTO FIN DE CARRERA · combinaciones: limitaciones, ángulos de guía de las paletas, extracciones e inyecciones de aire, etc. Se tuvieron que realizar muchas simulaciones para

53

S.No Parameter Explanation The constant

parameters

1 Ref No change in parameters All

2 Hpt Hpt constt increased 4 times 3 - 9 (from

serial no)

3 Hpt pt Both Hpt and Pt constants increased 4

times

4 - 9

4 Gamk 2 Gamk2 increased 4 times, 5 - 9

5 Gamk 3 Gamk 3 increased 4 times 4 and 6-9

6 Gamt 2 Gamt 2 increased 4 times 4,5,7,8,9

7 Gamt 3 Gamt 3 increased 4 times 4,5,6,8,9

8 Ginte 2 Ginte 2 increased 4 times 4,5,6,7,9

9 Ginte 3 Ginte 3 increased 4 times 4 - 8

Table 7 Explanation of figure 15

The fuel flow in combustor at “ref” is used as reference. This reference value is used

to normalize the fuel ratio. The power, efficiency, speeds and pressure ratio are

normalized with respect to base case.

Page 54: PROYECTO FIN DE CARRERA · combinaciones: limitaciones, ángulos de guía de las paletas, extracciones e inyecciones de aire, etc. Se tuvieron que realizar muchas simulaciones para

54

Figure 15: Effect of change of parameters on gas # 22

Figure 16: Effect of change of parameters on gas # 66

Page 55: PROYECTO FIN DE CARRERA · combinaciones: limitaciones, ángulos de guía de las paletas, extracciones e inyecciones de aire, etc. Se tuvieron que realizar muchas simulaciones para

55

The figure 15 shows that there is no significant effect on the speed and pressure ratio

of low and high pressure compressor by change of parameters listed in table 5.

The figure 16 shows that the extraction after high pressure compressor decreases the

efficiency of GT-500 and that the efficiency has an inverse relation with fuel flow for

a specific fuel. Also we know from the equation 6 that:

Power output = efficiency * HV * fuel flow (6)

The power output is constant for a specific fuel, when the fuel flow increases the

efficiency decreases.

7.1.3 Turbine Inlet temperature limitation v.s. power output limitation

There could be two types of constrains applied on GT Perform for operation of GT-

500 gas turbine. One limitation is on the turbine inlet temperature TIT of high

pressure turbine, it’s maximum limit is 850 ºC. Another limitation is on power output

PO, it’s maximum limit is 20.7 MW. Both the limitations are praticle limitations on

GT-500 gas turbine, even they can be removed from the GT Perform but it is

recommended to work in these limitations. Only one limit can be used at a time.

Normally the turbine inlet temperature limitation is used in GT Perform simulations.

In all the simulations performed previously, the limitation to turbine inlet temperature

TIT=850ºC was used. It means that the gas turbine can offer as much power as

possible but the turbine inlet temperature can’t exceed the limit of 850ºC.

Turbine Inlet temperature limit is replaced by power output limit. It means that the

output power can not be higher than a specific value; it is a limit introduced in the

total output power of the gas turbine unit. In a specific case as shown in figure 12,

when power output is exceeding its maximum limit, the power output limit of 18

MW is used.In this case the power turbine PT constant is increased from 254 to 260

and high pressure turbine HPT constant from 948 to 970.

Page 56: PROYECTO FIN DE CARRERA · combinaciones: limitaciones, ángulos de guía de las paletas, extracciones e inyecciones de aire, etc. Se tuvieron que realizar muchas simulaciones para

56

The results are the following:

Figure 17: TIT vs. PO limitation

By utilizing the PO limitation, the power and efficiency of GT-500 are lower but the

speeds and pressure ratio of LPC and HPC are much closer to the base case.

If the speeds and pressure ratio of LPC and HPC are too high with TIT limitation, it

would be better to use the P.O. limitation. The better speed and pressure ratios of

LPC and HPC can be obtained at the cost of low output and efficiency to avoid

compressor surge problem and to avoid imbalance between compressor and turbine.

Page 57: PROYECTO FIN DE CARRERA · combinaciones: limitaciones, ángulos de guía de las paletas, extracciones e inyecciones de aire, etc. Se tuvieron que realizar muchas simulaciones para

57

However practically, it is difficult to set a limitation on the power out put of gas

turbine, which needs to change the generator.

If we assume that the power needed for compressing the fuel is obtained from the

power output of the machine, then the results obtained so far are not realistic because

the power needed to compress the fuel has been ignored. So the simulations and

results obtained after this work will accommodate the power needed to compress the

biomass and hence the results are realistic.

7.2 Power needed for compressing the fuel

As a lot of power is needed to compress the biogas in a separate fuel gas compressor,

it should be calculated. If the biogas is assumed to be at atmospheric pressure, it

should be compressed to at least 18.5 bar; it is the gas pressure for which the fuel gas

control valve and governor are designed for. The efficiency of the compressor is

assumed to be 75%. The power needed for the biogas compressor must be calculated

outside GT Perform, since it is not possible to add components to the program. The

calculations are in Appendix B

7.2.1 Power and efficiency without fuel compressor power

The figure 18 shows the results that were obtained earlier, when the power needed for

compressing the fuel wasn’t taken into account.

Page 58: PROYECTO FIN DE CARRERA · combinaciones: limitaciones, ángulos de guía de las paletas, extracciones e inyecciones de aire, etc. Se tuvieron que realizar muchas simulaciones para

58

Figure 18: Power output and efficiency without calculating power needed to compress the fuel

7.2.2 Power and efficiency with fuel compressor power

This graph shows the results after calculating the power needed to compress the fuel.

It is assumed that the power needed for compressing the fuel is taken from the power

output of the unit.

Page 59: PROYECTO FIN DE CARRERA · combinaciones: limitaciones, ángulos de guía de las paletas, extracciones e inyecciones de aire, etc. Se tuvieron que realizar muchas simulaciones para

59

Figure 19: power output and efficiency with the power needed to compress the fuel

Figure 19 represents the realistic results. The low heating value of biomass fuel gives

the less efficiency and less power output. In spite of that, the efficiency in the fuel

ratio interval (1-10) is quite good. It is higher than 90% of the efficiency of the

reference case, and also in the interval (1-6) the efficiency is even higher than the

reference case.

Page 60: PROYECTO FIN DE CARRERA · combinaciones: limitaciones, ángulos de guía de las paletas, extracciones e inyecciones de aire, etc. Se tuvieron que realizar muchas simulaciones para

60

7.3 Simulations of medium heating value MHV fuel.

Since it is interesting to see the running lines of the compressors, it is good to run at

say three different load points (say 20%, 60% and 100% of base load) and plot the

pressure ratios for the LP and HP compressors vs. the speed of respectively shaft

using a high heating value fuel as reference.

The speeds and pressure ratios for the compressors are kept as close as possible to the

base case (SGT-500 running on natural gas).

It is recommended to use a gas with moderate LHV (i.e. a medium calorific value

(MCV) gas), since otherwise the gas turbine will hit the power output limitation

resulting in a reduction of the firing temperature. The increased mass flow through

the turbine due to the low heating value of the gas will of course lead to increased

pressure ratios over the compressors and increased shaft speeds. The surge margin

will hence reduce. To overcome this, it is necessary to change the turbine capacities

(“flow numbers”). Only the flow numbers of the high pressure turbine (HPT) and the

power turbine (PT) can be altered in the SGT-500 without too much effort (a washer

is changed, altering the guide vane angles). In this project, it is recommended by

siemens to open up the HP-turbine to a higher flow number maximum up to 270

without affecting the turbine efficiency (254 is the reference flow number of the

HPT).

Afterwards, the PT flow number is decreased to reduce the LPT pressure ratio and

shaft speed. The PT flow number should not be lowered < 900 since this lowers the

gas turbine performance. The results obtained are shown here.

Page 61: PROYECTO FIN DE CARRERA · combinaciones: limitaciones, ángulos de guía de las paletas, extracciones e inyecciones de aire, etc. Se tuvieron que realizar muchas simulaciones para

61

7.3.1 Results of reference case vs. MHV fuel

Figure 20: Result of refrence case vs MHV fuel

Figure 21: Result of refrence case with MHV fuel

Page 62: PROYECTO FIN DE CARRERA · combinaciones: limitaciones, ángulos de guía de las paletas, extracciones e inyecciones de aire, etc. Se tuvieron que realizar muchas simulaciones para

62

As can be seen from Figure 20, the pressure ratio increased for the LPC even

though the HPT and PT constants are rematched. It might therefore be necessary

to bleed off some air from the compressor(s). This is done by changing

(increasing) the “GAMK” values. The GAMK expresses how much air is bled off

as percent of the flow into the compressor. The GAMK is used since some air is

bled off for cooling the discs and for sealing air purpose and also to account for

air leakages. The GAMT and GINTE are used to model the disc cooling etc.

To be accurate in the modeling, the GAMT and GINTE mass flows of the

reference case in kg/s are calculated and for the other cases, they have been kept

the same as reference case.

The reason is that the disc cooling areas are constant, and since the GAMT and

GINTE are expressed as percentages, increase of the mass flow in the turbines

will also increase the cooling flows, which isn’t the case since the disc cooling

areas are fixed.

It is exercised to start increasing the GAMK2, which is the GAMK for the low

pressure compressor. Increase of the bleed off after the low pressure LP

compressor can decrease the pressure ratio and speed of the LP compressor.

Page 63: PROYECTO FIN DE CARRERA · combinaciones: limitaciones, ángulos de guía de las paletas, extracciones e inyecciones de aire, etc. Se tuvieron que realizar muchas simulaciones para

63

7.3.2 Effect of increasing gamk2

The graph of figure 22 shows the speeds in absolute value. The bar “bio*” shows the

results when the bio fuel is used with no changes in the parameters. The bar “bio

hpt*” shows the result when the hpt constant is increased. The bar “bio hpt pt*”

shows the result when the hpt constant is increased and the pt constant is decreased.

Figure 22: Speed of shaft2 and shaft 3 using MHV fuel

Page 64: PROYECTO FIN DE CARRERA · combinaciones: limitaciones, ángulos de guía de las paletas, extracciones e inyecciones de aire, etc. Se tuvieron que realizar muchas simulaciones para

64

It can be seen that the increase in “gamk 2” doesn’t affect the speed of compressors.

It is observed that the speeds are within the specified range. They are quite near to the

base case and also far away from the limits: 5900 rpm for shaft 2 and 7300 for shaft

3.

Page 65: PROYECTO FIN DE CARRERA · combinaciones: limitaciones, ángulos de guía de las paletas, extracciones e inyecciones de aire, etc. Se tuvieron que realizar muchas simulaciones para

65

Figure 23: Pressure ratio of LPC and HPC using MHV fuel

The graph in figure 23 shows the pressure ratio in absolute value:

It is noticed that the increase of gamk2 decreases the pressure ratio of the low

pressure compressor. It is an acceptable way out when the pressure ratio of the LPC is

too high. The increase of gamk2 increases the pressure ratio of the high pressure

compressor HPC; it is also favorable because the pressure ratio in HPC is lower than

the base case for LHV fuel.

Page 66: PROYECTO FIN DE CARRERA · combinaciones: limitaciones, ángulos de guía de las paletas, extracciones e inyecciones de aire, etc. Se tuvieron que realizar muchas simulaciones para

66

7.3.3 Using a pressurized gasifier.

An alternative option is to integrate the gas turbine with pressurized biomass gasifier

as shown in figure 24. It would then be an advantage to extract air from the high

pressure compressor (increase GAMK3) and use this air in the gasifier. The energy

needed for the gas compression could then be drastically reduced, and one would

merely need a booster compressor to increase the biogas pressure somewhat before

injecting it into the gas turbine. This point is therefore to model how a large

extraction of air after the HP compressor affects the gas turbine performance and the

power demand for the booster compressor. The booster compressor+ gasifier

efficiency has been assumed to be 60%.

Figure 24: The gasifier integrated with the unit

Page 67: PROYECTO FIN DE CARRERA · combinaciones: limitaciones, ángulos de guía de las paletas, extracciones e inyecciones de aire, etc. Se tuvieron que realizar muchas simulaciones para

67

Figure 25: Gasifier vs. bleeding after low pressure compressor

The results of three types of simulations are compared in figure 25, i.e. standard or

base case, the bleeding after low pressure compressor and bleeding after high

pressure compressor with integrated gasifier.

It is obvious from figure 25 that the results are superior with the integration of a

gasifier because the speeds and pressures of compressors are very close to the base

case and the power and efficiency are even higher. The incorporation of gasifier is an

expensive solution but the results are remarkable.

The bleeding of air after low pressure compressor is simple and cheap solution but the

results are not remarkable because the energy is lost as compressed air.

Page 68: PROYECTO FIN DE CARRERA · combinaciones: limitaciones, ángulos de guía de las paletas, extracciones e inyecciones de aire, etc. Se tuvieron que realizar muchas simulaciones para

68

These simulations are performed with a MHV fuel, and the results are appealing. It is

needed to do the same study with a LHV fuel to perceive if the results are still good

enough.

It is also necessary to observe the results of speeds and pressure ratios of LPC and

HPC and efficiency of GT-500 in the compressor and efficiency maps provided by

Siemens.

Page 69: PROYECTO FIN DE CARRERA · combinaciones: limitaciones, ángulos de guía de las paletas, extracciones e inyecciones de aire, etc. Se tuvieron que realizar muchas simulaciones para

69

7.4 Simulations with LHV and MHV fuels

In section 7.3 it was concluded that there are two key solutions by the use of medium

heating value fuels, to get high enough efficiency and power output and to keep the

pressure ratios and speeds within limitations.

1. Bleeding air after low pressure compressor: increase in gamk2.

2. Integration of a pressurized gasifier after high pressure compressor.

Now, the last step in this regard is to manipulate the above two conclusions with the

LHV fuels. The results are shown in actual compressor maps obtained by Siemens.

7.4.1 Results in compressors maps.

There are two types of compressor maps

• Efficiency maps.

• Speed map.

The inputs in the maps are pressure ratio and fuel flow. The value of the flow is not

the absolute; it is a value in characteristic, using a reference value.

In these maps, both solutions (bleeding and gasifier) are presented, with both medium

and low heating value fuels.

Page 70: PROYECTO FIN DE CARRERA · combinaciones: limitaciones, ángulos de guía de las paletas, extracciones e inyecciones de aire, etc. Se tuvieron que realizar muchas simulaciones para

70

• LOW PRESSURE COMPRESSOR

Figure 26: Low pressure compressor efficiency map

The figure 26 represents the efficiency of LPC for base case, bleeding after low

pressure compressor, and integration of gasifier after high pressure compressor, for

medium and low heating value gases. Figure 27 shows that all the points are in same

area of graph. All the points are really close to each other and they are far away from

the surge margin. They are all in the same blue area.

Page 71: PROYECTO FIN DE CARRERA · combinaciones: limitaciones, ángulos de guía de las paletas, extracciones e inyecciones de aire, etc. Se tuvieron que realizar muchas simulaciones para

71

Figure 27 shows the speed of the low pressure compressor LPC.

Figure 27: Low pressure compressor speed map

The figure 27 represents the speed of LPC for base case, bleeding after low pressure

compressor, and integration of gasifier after high pressure compressor for medium

and low heating value gases. Figure 27 shows that all the points are in same area of

graph. Figure 26 and 27 shows that there will be no problems in the low pressure

compressor by the utilization of LHV fuels.

Now, the results are plotted in high pressure compressor map.

Page 72: PROYECTO FIN DE CARRERA · combinaciones: limitaciones, ángulos de guía de las paletas, extracciones e inyecciones de aire, etc. Se tuvieron que realizar muchas simulaciones para

72

• HIGH PRESSURE COMPRESSOR

Figure 28: High pressure compressor efficiency map

Figure 28 is the map of efficiency of the high pressure compressor. The points are not

as close as in the low pressure compressor but they are in the same area in moderate

working range.

The next map shows the speed in the high pressure compressor

Page 73: PROYECTO FIN DE CARRERA · combinaciones: limitaciones, ángulos de guía de las paletas, extracciones e inyecciones de aire, etc. Se tuvieron que realizar muchas simulaciones para

73

Figure 29: High pressure compressor speed map

Figure 29 is the speed map of high pressure compressor; the points are not in the

same area and they are far away from the surge margin. It shows that there will be no

problems in the high pressure compressor by the utilization of LHV fuels.

Page 74: PROYECTO FIN DE CARRERA · combinaciones: limitaciones, ángulos de guía de las paletas, extracciones e inyecciones de aire, etc. Se tuvieron que realizar muchas simulaciones para

74

8. FUEL SYSTEM

The fuel system includes all components needed to control fuel during start-up and

operation. It consists of the values and pipes listed in table 3.The fuel system must

supply clean, accurately metered fuel to the combustion chambers. All fuel systems

have basically the same components; how these specific units do their jobs differs

radically from one system to another.

A complete gas turbine fuel system more specifically comprises a fuel distribution

control system, a fuel purge system, a purging air supply system and a fuel nozzle

wash system in which, fuel distribution is controlled to be done uniformly to a

number of fuel nozzles with enhanced reliability of fuel distribution, and residual oil

in fuel pipings and nozzles.

A gas turbine fuel purge system comprises a number of fuel supply pipings for

supplying fuel to a number of fuel nozzles via a header; and a drain piping connected

to plurality of fuel supplying pipings and a purging air supply piping for supplying air

to each said sealing connection pipe.

The Gas Turbine Fuel Control system provides a unique approach to integrated and

stand-alone fuel control for new and retrofit applications and can be configured for

the control of any gas turbine and speed control is used to position the fuel control

valve at the minimum fuel flow requirement and still maintains the power turbine

speed requested.

Many industrial machines are delivered suitable to burn either gaseous fuel or liquid

fuels. Thus, a fuel system is frequently a part of the installation.

Page 75: PROYECTO FIN DE CARRERA · combinaciones: limitaciones, ángulos de guía de las paletas, extracciones e inyecciones de aire, etc. Se tuvieron que realizar muchas simulaciones para

75

8.1 SGT-500 Fuel system

The fuel system helps to define requirements for proper fuel flow and placement to

ensure optimum combustion performance and to design and build fuel nozzles,

valves, pipes and injection systems.

The table 5 shows the system designed for SGT-500 operating with Natural Gas. In

our case using LHV fuel, the gas volume flows increase i.e. the velocities in the

system becomes very high, the dimensions of all of values and pipes in table 5 has to

be changed to reduce velocities. This is due to avoid high pressure drops in the

system, but also sound problems that might occur at high media velocities.

According to the recommendations of Siemens, the pressure losses in the fuel system

of LHV operated gas turbines is kept on the same level as for standard gas or slightly

higher. This of course means that valves and pipes have to increase in diameter. The

values in table 5 represent physical dimensions of equipment in the fuel system and

they are constant for a specific fuel system, but with LCV gas it will not be possible

to utilize the standard fuel system, so we have to design a larger system to handle

LCV gas.

The operating conditions of SGT-500 with standard fuel are as under in table 8 and

the table 9 shows the fuel system of base case.

Page 76: PROYECTO FIN DE CARRERA · combinaciones: limitaciones, ángulos de guía de las paletas, extracciones e inyecciones de aire, etc. Se tuvieron que realizar muchas simulaciones para

76

`

Parameters Values

Fuel Temperature 25 ºC

Individual gas constant 464.66 J/kg,K

Ratio of specific heat 1.2859

Minimum safe fuel gas

pressure 16.33

Compressor pressure 12 bars

Fuel mass flow 1.14 kg/s

Value Area 586.55 mm2

Nozzle Pressure drop 6.96 bars

Value pressure ratio 0.87

Table 8: Standard fuel operating conditions

Page 77: PROYECTO FIN DE CARRERA · combinaciones: limitaciones, ángulos de guía de las paletas, extracciones e inyecciones de aire, etc. Se tuvieron que realizar muchas simulaciones para

77

Pipes or valves

Area / diameters

[mm2] [mm]

STANDARD FUEL

Pipe to gas filter 77.9mm

Gas filter area 3,000 mm2

Pipe to inner system and

S.O.V. 1 52.5mm

Pipe to S.O.V. 2 52.5 mm

Pipe to governor valve 52.5 mm

Pipe to S.O.V. 3 Dual fuel

only 52.5 mm

Pipe to hose 52.5 mm

Hose to manifold 52.5 mm

Manifold 43.1 mm

Pipe to burner 22.3 mm

Burner stem outer pipe inner

diameter 64.0 mm

Burner stem inner pipe outer

diameter 40.0 mm

No of burners 7

Burner effective area (Each) 134mm2

Table 9: Fuel system for standard gas

Page 78: PROYECTO FIN DE CARRERA · combinaciones: limitaciones, ángulos de guía de las paletas, extracciones e inyecciones de aire, etc. Se tuvieron que realizar muchas simulaciones para

78

Table 10 shows the operating conditions of SGT-500 for MHV gas =18 kj / kg and

the table 11 shows the fuel system for this new fuel system.

Parameters values

Fuel Temperature 25 ºC

Individual gas constant 321.39 J/kg,K

Ratio of specific heat 1.29

Minimum safe fuel gas

pressure 18 bar

Compressor pressure 12 bars

Fuel mass flow 2.92 kg/s

Value Area 568.9 mm2

Nozzle Pressure drop 7.01 bars

Value pressure ratio 0.599

Table: 10 MHV fuel operating conditions

Page 79: PROYECTO FIN DE CARRERA · combinaciones: limitaciones, ángulos de guía de las paletas, extracciones e inyecciones de aire, etc. Se tuvieron que realizar muchas simulaciones para

79

Table 11: Fuel system for MHV gas

Table 12 shows the operating conditions of SGT-500 for low heating value gas = 7 kj

/ kg and the table 13 shows the fuel system for this new fuel system.

Pipes or valves

Area / diameters

[mm2] [mm]

MHV FUEL

Pipe to gas filter 109.1 mm

Gas filter area 4,200 mm2

Pipe to inner system and

S.O.V. 1 73.5mm

Pipe to S.O.V. 2 73.5mm

Pipe to governor valve 73.5mm

Pipe to S.O.V. 3 Dual fuel

only 73.5mm

Pipe to hose 73.5mm

Hose to manifold 73.5mm

Manifold 60.3 mm

Pipe to burner 31.2 mm

Burner stem outer pipe inner

diameter 89.6 mm

Burner stem inner pipe outer

diameter 56.0 mm

No of burners 7

Burner effective area (Each) 188 mm2

Page 80: PROYECTO FIN DE CARRERA · combinaciones: limitaciones, ángulos de guía de las paletas, extracciones e inyecciones de aire, etc. Se tuvieron que realizar muchas simulaciones para

80

Parameters values

Fuel Temperature 25 ºC

Individual gas constant 348.89 J/kg,K

Ratio of specific heat 1.359

Minimum safe fuel gas

pressure 18.5 bar

Compressor pressure 11.65 bars

Fuel mass flow 7.1 kg/s

Value Area 2344.44 mm2

Nozzle Pressure drop 7.21 bars

Value pressure ratio 0.78

Table 12: Operating conditions of SGT-500 for LHV

Page 81: PROYECTO FIN DE CARRERA · combinaciones: limitaciones, ángulos de guía de las paletas, extracciones e inyecciones de aire, etc. Se tuvieron que realizar muchas simulaciones para

81

Pipes or Valves

Area / diameters

[mm2] [mm]

L.H.V. FUEL

Pipe to gas filter 183.065mm

Gas filter area 16567.5 mm2

Pipe to inner system and

S.O.V. 1 123.375mm

Pipe to S.O.V. 2 126 mm

Pipe to governor valve 126 mm

Pipe to S.O.V. 3 Dual fuel

only 126 mm

Pipe to hose 126 mm

Hose to manifold 126 mm

Manifold 103.44 mm

Pipe to burner 53.52 mm

Burner stem outer pipe inner

diameter 153.6 mm

Burner stem inner pipe outer

diameter 96mm

No of burners 7

Burner effective area (Each) 740.015mm2

Table 13: Fuel system for LHV gas

Page 82: PROYECTO FIN DE CARRERA · combinaciones: limitaciones, ángulos de guía de las paletas, extracciones e inyecciones de aire, etc. Se tuvieron que realizar muchas simulaciones para

82

In the first step the pressure drop that one have to deal within the governing valve was

calculated, if the fuel system is connected to a gas pipe with a certain pressure.

The idea is to calculate how the pressure drops are distributed in the fuel system when

it is connected to a gas pipe with a certain pressure. In other words the given pressure

could be at any value (not too high) and to calculate how the pressure drop is

distributed in the fuel system.

According to the recommendations of Siemens, the pressure losses in the fuel system

are kept on the same level as for standard gas or slightly higher or lower. This of

course means that valves and pipes have to increase in diameter.

The values in the table 5 represent physical dimensions of equipment in the fuel

system, and they are constant for that fuel system. The table 6 represents the same

dimensions in the case of MHV gas and table 7 shows the same in the case of LHV

gases.

Page 83: PROYECTO FIN DE CARRERA · combinaciones: limitaciones, ángulos de guía de las paletas, extracciones e inyecciones de aire, etc. Se tuvieron que realizar muchas simulaciones para

83

9. CONCLUSIONS

It is possible to use LHV fuels in gas turbine by implication of simple changes in the

unit. The investigation of operational problems using LHV fuels suggests two

possible solutions. To simulate these solutions, an in house code GT Perform was

used.

It is concluded that the unbalance between compressor and turbine can be countered

by two ways. The first solution suggests the bleeding of air after low pressure

compressor, it is a very simple solution but it causes an efficiency drop.

The second solution suggests to integrate a pressurised gasifier after extraction of air

after high pressure compressor. This is a superior solution for the reasons:

• The gas turbine only needs simple modifications.

• The fuel obtained is already pressurised.

• More power output and efficiency of unit is obtained

Both Solutions, bleeding after low pressure compressor and integrating a gasifier after

high pressure compressor are simulated and the results can be seen in this thesis. The

results show that in both solutions the gas turbine works near to standard working

points. The speed and pressure ratio of compressor are within the limits to avoid

surge limit.

It is calculated to increase the diameter of all of the pipes and valves of the fuel

system by 1.4 times if an MHV gas with a heating value of 18 kj/kg is used, and to

increase the diameter of pipes by a factor of 2.35 times, if a LHV gas of heating value

7 kj/kg is used.

Page 84: PROYECTO FIN DE CARRERA · combinaciones: limitaciones, ángulos de guía de las paletas, extracciones e inyecciones de aire, etc. Se tuvieron que realizar muchas simulaciones para

84

10. REFERENCES

[SARA01] Herb Saravanamuttoo, ”Gas Turbine Theory” , Jan 2001

[BOYC06] Meherwan P Boyce , ”Gas Turbine Engineering Handbook”, April 28,

2006.

[LEFE98] Arthur Lefebvre , “Gas Turbine Combustion”, Sep 1998.

[SCHL96] Martin D. Schlesinger , “Fuels and Furnaces”, 1996.

[KERR92] Jack L. Kerrebrock , “Aircraft engines and gas turbines”, 1992.

[KOST85] A. Kostyuk and V. Frolov , “Steam and gas turbines”, 1985.

[GLAS97] Irvin Glassman , “Combustión”, 1997.

Page 85: PROYECTO FIN DE CARRERA · combinaciones: limitaciones, ángulos de guía de las paletas, extracciones e inyecciones de aire, etc. Se tuvieron que realizar muchas simulaciones para

85

11. APPENDIX

• Appendix A, Complete fuel list

# FUEL

Composition

x (volume

fractions)

H2 CO CH4 CO2 O2 N2 H2O

1 Hydrogen 1.000 0.000 0.000 0.000 0.000 0.000 0.000

2 CO 0.000 1.000 0.000 0.000 0.000 0.000 0.000

3 Methane 0.000 0.000 1.000 0.000 0.000 0.000 0.000

11 Syngas GE [1] Schwarze Pumpe 0.619 0.262 0.069 0.028 0.000 0.022 0.000

13 Syngas GE [1] Opti Nexen 0.318 0.635 0.004 0.036 0.000 0.005 0.002

16 Syngas GE [1] Vresova 0.468 0.150 0.116 0.245 0.000 0.021 0.000

24

Biogas [3] (average gas,

wikipedia.org) 0.010 0.000 0.600 0.350 0.003 0.006 0.031

30

GPG [4] Carbon Black Plant

(Wood) 0.060 0.063 0.000 0.028 0.000 0.323 0.480

31 Coke Oven Gas 0.540 0.074 0.306 0.020 0.004 0.056 0.000

32

Blue Water Gas (mostly from

coal) 0.490 0.410 0.008 0.047 0.000 0.045 0.000

33 Carburretted Water Gas 0.370 0.305 0.210 0.056 0.004 0.055 0.000

44 GPG Ptasinski [5] Sludge 0.192 0.056 0.004 0.147 0.000 0.415 0.186

45 GPG Ptasinski [5] Manure 0.171 0.038 0.002 0.147 0.000 0.396 0.246

47

StatIFA [6] Fin Lahti Kymijärvi

Plant 0.059 0.046 0.034 0.129 0.000 0.402 0.330

54 GPG Mississippi [9] FERCO 0.262 0.382 0.189 0.151 0.000 0.016 0.000

56 GPG Mississippi [9] Princeton 0.294 0.392 0.174 0.131 0.000 0.009 0.000

58 GPG Mississippi [9] Univ. Vienna 0.315 0.227 0.152 0.274 0.000 0.032 0.000

34 Coke producer Gas 0.110 0.290 0.005 0.050 0.000 0.545 0.000

38 GPG Ptasinski [5] Coal 0.158 0.324 0.001 0.009 0.000 0.503 0.005

5 Syngas GE [1] Cinergy 0.248 0.395 0.015 0.093 0.000 0.022 0.227

6 Syngas GE [1] Tampa 0.372 0.466 0.001 0.133 0.000 0.025 0.003

7 Syngas GE [1] El Dorado 0.354 0.450 0.000 0.171 0.000 0.021 0.004

8 Syngas GE [1] Pernis 0.344 0.351 0.003 0.300 0.000 0.002 0.000

9 Syngas GE [1] Sierra Pacific 0.145 0.236 0.013 0.056 0.000 0.493 0.057

10 Syngas GE [1] ILVA 0.086 0.262 0.082 0.140 0.000 0.430 0.000

12 Syngas GE [1] Sarlux 0.227 0.306 0.002 0.056 0.000 0.011 0.398

14 Syngas GE [1] Exxon Singapore 0.445 0.354 0.005 0.179 0.000 0.016 0.001

15 Syngas GE [1] Motiva Delaware 0.320 0.495 0.001 0.158 0.000 0.022 0.004

17 Syngas GE [1] Tonghua 0.103 0.223 0.038 0.145 0.000 0.482 0.009

Page 86: PROYECTO FIN DE CARRERA · combinaciones: limitaciones, ángulos de guía de las paletas, extracciones e inyecciones de aire, etc. Se tuvieron que realizar muchas simulaciones para

86

19

Syngas S [2] DOW Plaquemine

(USA) 0.414 0.385 0.001 0.185 0.000 0.015 0.000

20 Syngas S [2] Nuon Power (NL) 0.123 0.248 0.000 0.008 0.004 0.426 0.191

21

Syngas S [2] Elcogas Puertollano

(E) 0.107 0.292 0.000 0.019 0.003 0.537 0.042

22 Syngas S [2] ISAB Energy (I) 0.313 0.285 0.000 0.032 0.000 0.001 0.369

23 Syngas S [2] Elettra GLT (I) 0.090 0.163 0.146 0.136 0.000 0.410 0.055

25 GPG [4] Lurgi (Brown Coal) 0.250 0.160 0.050 0.140 0.000 0.400 0.000

26 GPG [4] Lurgi (Bituminous) 0.248 0.172 0.041 0.110 0.000 0.429 0.000

27 GPG [4] Winkler (Lignite) 0.120 0.220 0.010 0.100 0.000 0.550 0.000

28 GPG [4] Wellman-Galusha (Coke) 0.150 0.290 0.030 0.030 0.000 0.500 0.000

29 GPG [4] Blast furnace gas 0.090 0.040 0.050 0.220 0.000 0.600 0.000

39 Blast furnance Gas 0.025 0.240 0.000 0.175 0.000 0.560 0.000

70 GPG Nimbkar [10] Rice hulls 0.096 0.161 0.010 0.000 0.000 0.733 0.000

68

GPG Nimbkar [10] Pressed

sugarcane 0.165 0.165 0.000 0.130 0.000 0.540 0.000

65

GPG Nimbkar [10] Wheat Straw

pellets Downdraft 0.180 0.155 0.000 0.125 0.000 0.540 0.000

67 GPG Nimbkar [10] Coconut shells 0.125 0.215 0.000 0.130 0.000 0.530 0.000

66 GPG Nimbkar [10] Coconut husks 0.183 0.180 0.000 0.125 0.000 0.512 0.000

71 GPG Nimbkar [10] Cotton stalks 0.117 0.157 0.034 0.000 0.000 0.692 0.000

52 StatIFA [6] Swi Xylowatt Gasifier 0.140 0.180 0.020 0.130 0.000 0.530 0.000

62 GPG Mississippi [9] USEPA 0.100 0.148 0.049 0.128 0.000 0.575 0.000

48 GPG Ptasinski [5] Grass/plants 0.232 0.146 0.018 0.145 0.000 0.362 0.097

42 GPG Ptasinski [5] Treated Wood 0.213 0.194 0.010 0.112 0.000 0.409 0.062

43

GPG Ptasinski [5] Untreated

Wood 0.227 0.177 0.013 0.126 0.000 0.381 0.076

64

GPG Nimbkar [10] Wood

Downdraft 0.180 0.195 0.025 0.125 0.000 0.475 0.000

41 GPG Ptasinski [5] Straw 0.225 0.205 0.010 0.113 0.000 0.384 0.063

57 GPG Mississippi [9] Carbona 0.217 0.238 0.007 0.094 0.000 0.444 0.000

61

GPG Mississippi [9] Univ.

Zaragosa 0.160 0.215 0.033 0.144 0.000 0.448 0.000

50 StatIFA [6] Swe Värö Gasifier 0.103 0.151 0.073 0.159 0.000 0.435 0.079

51 StatIFA [6] Swe Värnamo Plant 0.175 0.108 0.067 0.155 0.000 0.495 0.000

55 Producer gas [8] 0.180 0.220 0.030 0.060 0.000 0.510 0.000

53 Wikipedia [7] Woodgas 0.140 0.270 0.030 0.045 0.006 0.509 0.000

49

StatIFA [6] Fin BIONEER

Process 0.110 0.300 0.030 0.070 0.000 0.490 0.000

40 GPG Ptasinski [5] Vegetable Iols 0.251 0.275 0.001 0.003 0.000 0.467 0.003

60

GPG Mississippi [9] Univ.

Brussels 0.100 0.160 0.090 0.180 0.000 0.470 0.000

69 GPG Nimbkar [10] Corn cobs 0.165 0.186 0.064 0.000 0.000 0.585 0.000

63 GPG Mississippi [9] IGT 2 0.191 0.111 0.132 0.289 0.000 0.278 0.000

Page 87: PROYECTO FIN DE CARRERA · combinaciones: limitaciones, ángulos de guía de las paletas, extracciones e inyecciones de aire, etc. Se tuvieron que realizar muchas simulaciones para

87

# FUEL Dens. Air/Fuel ratio heating value

kg/m³ kg_air/kg_fuel MJ/kg

1 Hydrogen 0.08 34.05902778 119.9503968

2 CO 1.14 2.451374509 10.10282042

3 Methane 0.65 17.12294264 50.02119701

11 Syngas GE [1] Schwarze Pumpe 0.47 6.883042987 24.18924651

13 Syngas GE [1] Opti Nexen 0.82 3.285318759 12.8283503

16 Syngas GE [1] Vresova 0.75 4.042882675 13.53317739

24 Biogas [3] (average gas, wikipedia.org) 1.05 6.396470188 18.70192689

30 GPG [4] Carbon Black Plant (Wood) 0.85 0.406986183 1.558095817

31 Coke Oven Gas 0.43 11.85383366 37.2927242

32 Blue Water Gas (mostly from coal) 0.65 4.017364373 15.12507718

33 Carburretted Water Gas 0.68 6.195376838 20.50388548

44 GPG Ptasinski [5] Sludge 0.95 0.77249147 2.790701159

45 GPG Ptasinski [5] Manure 0.95 0.635775406 2.291761473

47 StatIFA [6] Fin Lahti Kymijärvi Plant 1.01 0.666268452 2.196927838

54 GPG Mississippi [9] FERCO 0.87 4.501799918 15.13104499

56 GPG Mississippi [9] Princeton 0.83 4.654638171 15.77655588

58 GPG Mississippi [9] Univ. Vienna 0.91 3.527230217 11.71978969

34 Coke producer Gas 1.05 1.11376978 4.351662158

38 GPG Ptasinski [5] Coal 0.98 1.391195875 5.448658719

5 Syngas GE [1] Cinergy 0.84 2.342840935 8.9201337

6 Syngas GE [1] Tampa 0.83 2.830375778 10.89906229

7 Syngas GE [1] El Dorado 0.87 2.567175354 9.902497233

8 Syngas GE [1] Pernis 0.97 2.036945056 7.759234017

9 Syngas GE [1] Sierra Pacific 0.99 1.217826104 4.599045737

10 Syngas GE [1] ILVA 1.10 1.716929053 5.945351749

12 Syngas GE [1] Sarlux 0.77 1.954717903 7.52960899

14 Syngas GE [1] Exxon Singapore 0.78 2.92329369 11.00993089

15 Syngas GE [1] Motiva Delaware 0.90 2.536761069 9.845702757

17 Syngas GE [1] Tonghua 1.10 1.210682516 4.371206479

19 Syngas S [2] DOW Plaquemine (USA) 0.82 2.729990942 10.39103987

20 Syngas S [2] Nuon Power (NL) 0.94 1.10520121 4.335205583

21 Syngas S [2] Elcogas Puertollano (E) 1.02 1.091360835 4.321235159

Page 88: PROYECTO FIN DE CARRERA · combinaciones: limitaciones, ángulos de guía de las paletas, extracciones e inyecciones de aire, etc. Se tuvieron que realizar muchas simulaciones para

88

22 Syngas S [2] ISAB Energy (I) 0.68 2.459024536 9.362808101

23 Syngas S [2] Elettra GLT (I) 1.04 2.249298915 7.241755529

25 GPG [4] Lurgi (Brown Coal) 0.94 1.808923042 6.298981625

26 GPG [4] Lurgi (Bituminous) 0.93 1.756104983 6.198600049

27 GPG [4] Winkler (Lignite) 1.07 0.98934739 3.76513297

28 GPG [4] Wellman-Galusha (Coke) 0.99 1.5866996 5.876469252

29 GPG [4] Blast furnace gas 1.16 0.792430022 2.559972425

39 Blast furnance Gas 1.23 0.603264803 2.452112277

70 GPG Nimbkar [10] Rice hulls 1.03 0.802953709 3.023852684

68 GPG Nimbkar [10] Pressed sugarcane 1.05 0.878151929 3.355913171

65

GPG Nimbkar [10] Wheat Straw

pellets Downdraft 1.03 0.907993235 3.449644057

67 GPG Nimbkar [10] Coconut shells 1.09 0.86971728 3.392682041

66 GPG Nimbkar [10] Coconut husks 1.03 0.986926962 3.769159165

71 GPG Nimbkar [10] Cotton stalks 1.00 1.146057005 4.071000468

52 StatIFA [6] Swi Xylowatt Gasifier 1.07 1.047761037 3.846836267

62 GPG Mississippi [9] USEPA 1.09 1.134418328 3.921174822

48 GPG Ptasinski [5] Grass/plants 0.94 1.336684041 4.839116921

42 GPG Ptasinski [5] Treated Wood 0.96 1.304542858 4.863678277

43 GPG Ptasinski [5] Untreated Wood 0.94 1.348917645 4.972160027

64 GPG Nimbkar [10] Wood Downdraft 1.02 1.302854692 4.74434339

41 GPG Ptasinski [5] Straw 0.94 1.389742673 5.186784564

57 GPG Mississippi [9] Carbona 0.97 1.391860229 5.266568152

61 GPG Mississippi [9] Univ. Zaragosa 1.05 1.351326463 4.891381384

50 StatIFA [6] Swe Värö Gasifier 1.07 1.430113688 4.814408369

51 StatIFA [6] Swe Värnamo Plant 1.02 1.504861504 5.03713029

55 Producer gas [8] 0.97 1.491818986 5.425544592

53 Wikipedia [7] Woodgas 1.01 1.469919766 5.425836557

49 StatIFA [6] Fin BIONEER Process 1.05 1.404356209 5.231476645

40 GPG Ptasinski [5] Vegetable Iols 0.87 1.693163051 6.482005977

60 GPG Mississippi [9] Univ. Brussels 1.11 1.56425676 5.205586062

69 GPG Nimbkar [10] Corn cobs 0.93 1.815508314 6.267586053

63 GPG Mississippi [9] IGT 2 1.06 2.180198878 7.020889823

Page 89: PROYECTO FIN DE CARRERA · combinaciones: limitaciones, ángulos de guía de las paletas, extracciones e inyecciones de aire, etc. Se tuvieron que realizar muchas simulaciones para

89

• APPENDIX B, POWER NEEDED TO COMPRESS THE

FUEL

Assumptions:

Atmospheric pressure = 1.013 bar

Final pressure = 18.5 bar

Biogas = perfect gas.

P = power for compressing fuel.

p= pressure

m’ = flow.

P = m’ * ∆h

P = m’ * Cp * (T2-T1)

T2/T1 = (p2/p1) ((γ-1)/ γ)

P = m’ * Cp * T1 ((p2/p1) ((γ-1)/ γ) -1)

Page 90: PROYECTO FIN DE CARRERA · combinaciones: limitaciones, ángulos de guía de las paletas, extracciones e inyecciones de aire, etc. Se tuvieron que realizar muchas simulaciones para

90

• APPENDIX C, RESULT SHEETS

PARAMETER UNITS

STANDARD

GAS bio43 bio40 bio10

HEATING VALUE MJ/kg 46.798 4.97 6.48 5.94

FUEL FLOW IN CC kg/sec 1.1394 11.6997 9.107 9.9813

N of Shaft # 1 ( PT) rpm 3600 3600 3600 3599.9998

N of Shaft # 2 (LPT) rpm 5304.7295 5536.9912 5592.5928 5559.3931

N of Shaft # 3 (HPT) rpm 7064.1035 7099.3735 7140.1064 7115.4785

LPC Pressure ratio x 4.238988095 4.61022333 4.59251539 4.59890819

HPC Pressure ratio x 2.932551663 3.05229504 3.04794121 3.04445979

POWER MW 16.9128 20.6998 20.6999 20.6998

EFFICIENCY x 0.317184536 0.35598773 0.35076633 0.34913436

POWER AFTER FUEL

COMP. MW 16.3431 14.84995 16.1464 15.70915

EFF. AFTER FUEL

COMP x 0.306500318 0.25538411 0.27360584 0.26495928

PARAMETER UNITS bio45 bio66 bio71 bio 22

HEATING VALUE MJ/kg 2.291 3.355 4.07 9.361

FUEL FLOW IN CC kg/sec 23.1668 16.7498 13.8792 6.4453

N of Shaft # 1 ( PT) rpm 3600 3599.9995 3600 3600

N of Shaft # 2 (LPT) rpm 5405.0796 5466.7817 5530.1372 5616.8975

N of Shaft # 3 (HPT) rpm 6993.5732 7055.0854 7095.6143 7158.6289

LPC Pressure ratio x 4.686743401 4.64420405 4.62282878 4.57653365

HPC Pressure ratio x 3.090635784 3.07124693 3.06926463 3.03181936

POWER MW 20.6998 20.6996 20.7004 20.7002

EFFICIENCY x 0.390009343 0.36834926 0.36645436 0.34309087

POWER AFTER FUEL

COMP. MW 9.1164 12.3247 13.7608 17.47755

EFF. AFTER FUEL COMP x 0.171764035 0.21931796 0.24360424 0.28967777

Page 91: PROYECTO FIN DE CARRERA · combinaciones: limitaciones, ángulos de guía de las paletas, extracciones e inyecciones de aire, etc. Se tuvieron que realizar muchas simulaciones para

91

• APPENDIX D, RESULT SHEETS CHANGING

PARAMETERS (DEFINITIONS AT THE END).

Parameters B.L 100 B.L 100 bio* bio hpt* bio hpt pt

*

Standard bf 24

Heating value 46.798 18.7 18.7 18.7 18.7

GAMK 2 0.0042 0.0042 0.0042 0.0042 0.0042

GAMK 3 0.025 0.025 0.0242 0.0245 0.0255

GAMT 2 0.0041 0.0041 0.004 0.004 0.0042

GAMT 3 0.007 0.007 0.0068 0.0068 0.0072

GINTE 2 0.0009 0.0009 0.0009 0.0009 0.0009

GINTE 3 0.0051 0.0051 0.0049 0.005 0.0052

FUEL FLOW 1.1463 2.9737 2.9766 3.0035 2.9163

FLOW NO OF

HPT 254 254 254 270 270

FLOW NO OF PT 948.3 948.3 948.3 948.3 910.3

N of Shaft # 2 5310.4194 5370.188 5373.5967 5324.4507 5165.9243

N of Shaft # 3 7066.7427 7079.5889 7082.1812 6926.375 6860.8301

LPC PR 4.24476905 4.33843269 4.3413936 4.41235689 4.19917094

HPC P.R 2.93259394 2.9585504 2.96114761 2.74676777 2.7603535

TOTAL PR 12.448184 12.8354718 12.8555073 12.1197197 11.5911962

POWER

OUTPUT 17.2122 18.2224 18.2597 18.1972

17.5727

Power for fuel 0.5722 1.4824 1.4897 1.4972 1.4627

Power after fuel

comp 16.64 16.74 16.77 16.7 16.11

EFFICIENCY 0.32085647 0.32769274 0.32769274 0.32769274 0.32222905

NEW EFF 0.31018996 0.30103479 0.30128047 0.29733582 0.29540765

Page 92: PROYECTO FIN DE CARRERA · combinaciones: limitaciones, ángulos de guía de las paletas, extracciones e inyecciones de aire, etc. Se tuvieron que realizar muchas simulaciones para

92

Parameters gamk2

0.01

gamk2

0.15

gamk2

0.20

gamk2

0.25 gamk2 0.30

Heating value 18.7 18.7 18.7 18.7 18.7

GAMK 2 0.01 0.015 0.02 0.025 0.03

GAMK 3 0.0258 0.0258 0.026 0.0262 0.0263

GAMT 2 0.0042 0.0043 0.0043 0.0043 0.0044

GAMT 3 0.0071 0.0072 0.0073 0.0073 0.0074

GINTE 2 0.0009 0.0009 0.0009 0.0009 0.0009

GINTE 3 0.0052 0.0053 0.0053 0.0053 0.0053

FUEL FLOW 2.9036 2.8928 2.8822 2.8717 2.8615

FLOW NO OF

HPT 270 270 270 270 270

FLOW NO OF

PT 910.3 910 910 910 910

N of Shaft # 2 5160.3906 5155.3574 5151.3438 5147.3584 5143.8066

N of Shaft # 3 6857.1987 6852.7104 6849.3569 6846.2114 6842.8276

LPC PR 4.16452823 4.13600474 4.10777734 4.07935255 4.052013423

HPC P.R 2.76528025 2.76922159 2.7733061 2.77758153 2.781804896

TOTAL PR 11.5160876 11.4535136 11.392124 11.3307343 11.27191078

POWER

OUTPUT 17.371 17.217 17.0557 16.893 16.7415

Power for fuel 1.451 1.447 1.4457 1.433 1.4315

Power after fuel

comp 15.92 15.77 15.61 15.46 15.31

EFFICIENCY 0.31992371 0.31827129 0.31644907 0.31457638 0.312866462

NEW EFF 0.29320047 0.29152223 0.28962576 0.28789148 0.286114478

Page 93: PROYECTO FIN DE CARRERA · combinaciones: limitaciones, ángulos de guía de las paletas, extracciones e inyecciones de aire, etc. Se tuvieron que realizar muchas simulaciones para

93

Parameters gasif gamk3

0.06*

gasif gamk3

0.04* bleed lhv gasif lhv

Heating value 18.7 18.7 7.757 7.757

GAMK 2 0.0042 0.0042 0.03 0.0044

GAMK 3 0.06 0.04 0.0242 0.067

GAMT 2 0.0043 0.0041 0.004 0.0043

GAMT 3 0.0073 0.007 0.0067 0.0072

GINTE 2 0.0009 0.0009 0.0009 0.0009

GINTE 3 0.0053 0.0051 0.005 0.0052

FUEL FLOW 2.8404 2.9196 7.4347 7.1254

FLOW NO OF

HPT 254 254

270 270

FLOW NO OF

PT 948.3 948.3

910 910

N of Shaft # 2 5219.6074 5306.1831 5251.0552 5103.5615

N of Shaft # 3 7027.3657 7057.5269 6860.4507 6812.4712

LPC PR 4.126135018 4.250789578 4.259968417 4.13945914

HPC P.R 2.892814429 2.930785484 2.837611788 2.74051644

TOTAL PR 11.93614291 12.45815239 12.0881366 11.3442558

POWER

OUTPUT 16.0305 17.2931 18.9121 16.9504

Power for fuel 0.190166754 0.175278994 3.71735 0.53638744

Power after fuel

comp 15.84033325 17.11782101 15.19475 16.4140126

EFFICIENCY 0.301804672 0.316743631 0.327931032 0.30667397

NEW EFF 0.298224421 0.313533189 0.263473123 0.29696941

Page 94: PROYECTO FIN DE CARRERA · combinaciones: limitaciones, ángulos de guía de las paletas, extracciones e inyecciones de aire, etc. Se tuvieron que realizar muchas simulaciones para

94

Definitions

• B.L. 100 standard : machine using standard fuel at 100% of base load

(B.L.).

• B.L. 100 b.f. 24: machine using bio fuel #24 (M.H.V fuel) at 100% of

base load.

• Bio*: machine using bio fuel #24 at 100% of B.L. and keeping flows of

gamt and ginte constant.

• Bio hpt*: machine using bio fuel #24 at 100% of B.L., keeping flows of

gamt and ginte constant and increasing h.p.t constant.

• Bio hpt pt*: machine using bio fuel #24 at 100% of B.L., keeping flows

of gamt and ginte constant , increasing h.p.t constant and decreasing

pt constant.

• Gamk2 + number: machine using bio fuel #24 at 100% of B.L.,

keeping flows of gamt and ginte constant , increasing h.p.t constant ,

decreasing pt constant and beeding air after low pressure compressor

in an amount equal to “number*total flow in low pressure compressor” .

• Gasif gamk3 + number : machine using bio fuel #24 at 100% of B.L.,

keeping flows of gamt and ginte constant , increasing h.p.t constant ,

decreasing pt constant and beeding air after high pressure compressor

in an amount equal to “number*total flow in high pressure compressor”

to be used in a gasifier .

Page 95: PROYECTO FIN DE CARRERA · combinaciones: limitaciones, ángulos de guía de las paletas, extracciones e inyecciones de aire, etc. Se tuvieron que realizar muchas simulaciones para

95

• Bleed lhv: machine using low heating value fuel at 100% of B.L.,

keeping flows of gamt and ginte constant , increasing h.p.t constant ,

decreasing pt constant and beeding air after low pressure compressor

in an amount equal to “0.15*total flow in low pressure compressor”

• Gasif lhv: machine using low heating value fuel at 100% of B.L.,

keeping flows of gamt and ginte constant , increasing h.p.t constant ,

decreasing pt constant and beeding air after high pressure compressor

in an amount equal to “0.067*total flow in high pressure compressor” to

be used in a gas


Recommended