+ All Categories
Home > Documents > PSA Process Simulation for Hybrid System Consisting of ... · Process Simulation for Hybrid System...

PSA Process Simulation for Hybrid System Consisting of ... · Process Simulation for Hybrid System...

Date post: 12-May-2020
Category:
Upload: others
View: 9 times
Download: 0 times
Share this document with a friend
8
550 HWAHAK KONGHAK Vol. 40, No. 5, October, 2002, pp. 550-557 PSA * * * (2002 3 2 , 2002 7 15 ) Process Simulation for Hybrid System Consisting of Membrane Steam Reformers and a Layered PSA Young-Jae Choi, Uk-June Lee*, Min Oh* and Sung-Taik Chung Department of Chemical Engineering, Inha University, Inchon 402-751, Korea *Department of Chemical Engineering, Hanbat National University, Daejeon 305-719, Korea (Received 2 March 2002; accepted 15 July 2002) -PSA . PSA , . 2 16% . 0.31 PSA 99.999% . PSA . 9% . -PSA . Abstract - In this study we propose hybrid system consisting of membrane steam reactors and a layered PSA process, and carry out theoretical analysis by means of modelling and process simulation. The proposed system is comprised of the reaction part including membrane reactors and separation part including a layer PSA column. Detailed mathematical description for each process is developed and dynamic simulation for the combined process is performed. The reaction part contains two mem- brane reactors and the methane conversion of the system is improved more than 1% comparing with the conventional one mem- brane reactor system. The hydrogen mole fraction at the exit of the membrane reactor is approximately 0.31 but in order to use it for a commercial purpose, layered PSA process, which includes two adsorbents, is employed. The purity of hydrogen gas at the exit of the layered PSA is 99.999%. By recycling all useful gases from the layered PSA except hydrogen to the membrane reactor as a feedstock, the process efficiency is highly improved. In particular, the hydrogen recovery is improved as much as 9% comparing with the non-recycle system. It is, therefore, concluded that the proposed hybrid system contributes to the effi- cient production of high purity hydrogen. Key words: Membrane Reactor, PSA, Modeling, Simulation, Hybrid System, Novel Configuration 1. , , . NO X , SO X , CO, CO 2 . , [1]. , . , , . To whom correspondence should be addressed. E-mail: [email protected]
Transcript
Page 1: PSA Process Simulation for Hybrid System Consisting of ... · Process Simulation for Hybrid System Consisting of Membrane Steam Reformers and a Layered PSA Young-Jae Choi, Uk-June

HWAHAK KONGHAK Vol. 40, No. 5, October, 2002, pp. 550-557

� �� ���� � PSA �� ����� ��

�������*�� *†���

����� �����*��� �����

(2002� 3� 2 ��, 2002� 7� 15 ��)

Process Simulation for Hybrid System Consisting of Membrane Steam Reformers and a Layered PSA

Young-Jae Choi, Uk-June Lee*, Min Oh*† and Sung-Taik Chung

Department of Chemical Engineering, Inha University, Inchon 402-751, Korea*Department of Chemical Engineering, Hanbat National University, Daejeon 305-719, Korea

(Received 2 March 2002; accepted 15 July 2002)

� �

� ����� �� �� ���� �� � ���-PSA ���� �� ��� ���� � !� "#$ �

� �%�&'. ��( ����) � ���* �+( ��,-. /0 PSA* �+( -1,-2* 345 627,

� !� 08 �9# :;. ��:< �%�&'. ��,-) 2= � ���* �+>4 627 � = ���* �

+( ?@� AB CD EFG H 16% IJK� L � 6M'. � ��� N�O PQ R�JS T �� U -G)

H 0.31 � P 0V#2* WX�Y �� ��O Z[+\ '] ^ Z[� �_2* `Eab /0 PSA <

X�O �� -1�&27 �� 99.999%* Pcd'. /0 PSA ���� �� �e� '] WX� JSf� 'a �

���� gh�� �F�� �+i2*j �� kG� l&'. CDJS m�F2* $� �� n�G) H 9% J

o IJ>M'. pq� �a( � ���-PSA ���� kG#$ �� ��� �Oi� L � 6M'.

Abstract − In this study we propose hybrid system consisting of membrane steam reactors and a layered PSA process, and

carry out theoretical analysis by means of modelling and process simulation. The proposed system is comprised of the reaction

part including membrane reactors and separation part including a layer PSA column. Detailed mathematical description for

each process is developed and dynamic simulation for the combined process is performed. The reaction part contains two mem-

brane reactors and the methane conversion of the system is improved more than 1% comparing with the conventional one mem-

brane reactor system. The hydrogen mole fraction at the exit of the membrane reactor is approximately 0.31 but in order to use

it for a commercial purpose, layered PSA process, which includes two adsorbents, is employed. The purity of hydrogen gas at

the exit of the layered PSA is 99.999%. By recycling all useful gases from the layered PSA except hydrogen to the membrane

reactor as a feedstock, the process efficiency is highly improved. In particular, the hydrogen recovery is improved as much as

9% comparing with the non-recycle system. It is, therefore, concluded that the proposed hybrid system contributes to the effi-cient production of high purity hydrogen.

Key words: Membrane Reactor, PSA, Modeling, Simulation, Hybrid System, Novel Configuration

1. � �

��� ����� �� � ���� � ��� ��� �� �

� �� � � ! "#$% &'( )� ��, *+, �� , ��

- . "#/0 12 34$% &� 5607. 892- ��: "#;

NOX, SOX, CO, CO2 �: �< => ?@ A�BC'2D EF: G

H I� �JKL'2: "# )� MN 34 % &7. ��� O�P

'2 Q/ R, S � � T8 4U )� O> ����: �3S V

>0 W0 "#$% &'(, XY �� �3S V>� :< R, � Z

0 [\ 4] � � % O�P^ _`'2 abc &7[1].

de ��: fg� �H 34� hi j k O�P^ _`'2 ��

� R, � l2m _`� Q� 8n4 opY qr$% &'(, de

s St 0#� ��: R, ��; 0u v; 8n: GH� wxy

z: {07. |i} s 0#� �3S V> ~�; �7�� |i

} s� :< ~�S ��4 ~���x ����'2 n� K�K(,

� ��: ���� N0� :< ~����- R�� ��4 ���

�'2 ��P'2 ��, ���7. ~����- R�� ��4 |i

†To whom correspondence should be addressed.E-mail: [email protected]

550

Page 2: PSA Process Simulation for Hybrid System Consisting of ... · Process Simulation for Hybrid System Consisting of Membrane Steam Reformers and a Layered PSA Young-Jae Choi, Uk-June

� �� ���� � PSA �� ����� �� 551

} s � � ��P'2 ���'2D ���P ~�0 R�= �

'2 ��c �_�'2: ~�0 k LoY qr$(, �3S V> ~

� ��� �� E� �; ���- ~�0 4� ! �7[2].

��� s ~�S� �3S V> ~��- ~� � ¡ �¢B£S

�� �¤ ��P^ 8ny� :< �¥$�¦'(, Adris �[3]; �7

��: |i} §s "# � �¨� ©ª s ~�S�-: �� �

3S V> ~�� Q< ��P �« �¬ % 0� Q� 0­P 8n

� �r ®7. Shu �[4]; 7�� U¯^�U U°± �� |i} s

KK�, �� ©ª s ~�S�-: �� �3S V> ~�� Q

� ²³P 8n� �r ®%, Xuu Froment[5, 6]: ~��«x ´¤

. µ¶ ~�S(plug flow reactor) �« "# � .y: ²³wxu

�·, ¸¹ ®7. 0y: 8n� 0�- Barbieriu Di Maio[7]� ��

�"� �< �� �3S V> ��� Q� |i}-s ~�Sy: ��

¢ ºº: zH� ªV »�y ¼� y�, m~ 4U �/, �½ g�, �

�u �¾=: ¿ ��� Q� Àx� 8nÁ7. 0� � � � �

à~�S ?�� Q< ���"4 �r$Ä% Å,� wxy ÆÇ

� {ÈÉ �¤ ²³ wxu �· ®7. � ~�S: OÊ, ~�S Ë

~��-: �� ��0 �� ��: �� ��Ì7 ÍYb ��c-

���4 Î�{(, 0 wx � ¡: A�4 �~ Ï � &Ð a �

&Ä7. Madia �[8]; Pd-Ag s ~�S�- ��, ~�=x m~ 4U

: �/ � ~�=: ¿ ��x v; �¤ 4K ªV»�� »�BC'

2D �� �3S V> ~��-: � Àx� Q � 8n� Á7. Í

Ñ'2�Ò: ��Ó0 ~�S: @n�-: �� � ¡� ªÊ zH

( � ¡0 ~�S: Ô0_�� hÕ �� n?� Ö! :×Ø

aÙ7. XY ~�=: �/0 Ú Û ~�S�-: ��� �K S �

� �JK: �f0 �� K ÜÝ OÊ, �Þ: ��0 A�Ø aÙ

%, ²³ wx� Sß� � �� ��P �« {Èà7. Kim �[9];

|i} s ~�S� 0#� �� �3S V> ~��- ��� áâ:

OÅ� ã# � ��Ó äå %b � ��Ó �« æ� � ~

�S ���-: ��� �� P# � �" ®'(, ��� ~�S

: ç _�'2 Î�{� �è é * "# ®7. )� 0� 0#

� H2O/CH4 �, m~ 4U �/ .�% ¾ê ëO �: ��»�4 �

 ¡� Eì� �� ¸¹ ®7.

�JK íî �  O: ïâ�- ���]0{ �����]��-

�#� =>0 ðØ$% &� �R4U2�Ò �#� 4U� ñç �

�� S �� 7ò� �� _` z PSA� ªÊ À¡P0% O�P^

_`'2 abc &7. PSA ��; R,/x óH� ô�� :× �

�¤ V: õö÷'2 n�$�&'(, ø�¡x ô�� ù0S � �

� "0Ú ¨¥ �¤ 4K úÅ2 0û�c &7.

ü 8n�-� ��: V> ~�'2�Ò %ô�: ��� R,< ý

� &� s V> ~�Su �¢ PSA2 n�� þÿ�� Fig. 1x v

0 �¥ % 0� Q� 0­P %� B� ®7. �¥� þÿ��;

2V: |i} s ~�S2 n�� ~���x 2V: � ðØ � �

¢ PSA2 n�� ����'2 {�� q7.

~���� "#� 2V: |i} s ~�S BU�; Choi �[11]� :

< 8n$� S× ~�S� �< ��� �� � ¡ � � &7�

Z0 Ì%� � &7. hi- ü 8n�-� Choi �[11]� :< p��

|i} s ~�S BU�: n�u ~���: ��P �« "# ®7.

~����- ?@� 4U� G �P=^ �� �� E ~�=^

�3S, �� �N R�=^ Î,���, 0,��� �: ��0 ðØ

�7. %ô�: ��� �S � � �: 4U� ����� �� �x

S� � Ë �V: �'2 n�� �¢ PSA� �¾$� �� 4U4

���7. PSA� 4�, õö, A�, �ö: 4úÅ2 n�$�� 0 z

õöúÅ�- 99.99% 0¢: %ô� ��� � � &'(, A�úÅ

�- �ö� �� � ÿ4U� ~��: ¾n2 \ô B� L9�

íAÝ � &7.

0u v; þÿ��: 0­P 8n� � �, ü 8n�-� � ��

� Q� ��� ��P �« �¬� Ë ���"� �r ®7. �"

: wx� ÆÇ� {ÈÉ ²³�x �· ®'( 0� � � ��P �

«x ���": ���� ¸3 ®7. ̧ 3� � ��: ��P �«�

Sß � ��: V>2�Ò %ô�: ��� R, � �Þ þÿ��

� Q� n�� �¥ % 0� Q� ���"� �r ®'(, 0� S

~'2 � �P= R, �� Ì7 O�P^ �� �@ ®7.

2. � �

2-1. � ���

s ~�S� ©ª4 ��$� V> ~�0 Î�{� ��x s �

Fig. 1. Hybrid membrane-PSA system.

HWAHAK KONGHAK Vol. 40, No. 5, October, 2002

Page 3: PSA Process Simulation for Hybrid System Consisting of ... · Process Simulation for Hybrid System Consisting of Membrane Steam Reformers and a Layered PSA Young-Jae Choi, Uk-June

552 ��������� �����

� R�� ��4 ��$� ����'2 n�$( 0� � �� "

0� æì� |i} s'2 n��7. hi- Î~ �3S V> ~�S

u� Ó� ~�S ��- �� ~�x ��4 ¨B� Î�É7. 4�~

��- ���P ��� �� �� � ¡; R�= z: X� ��

�� � �� 0¨BC'2D 34 B� � &7. s ~�S�-

� 0u v; L�� �#Ï � &'(, ��: ��P ��� :� �

i�: ���� ~�0 0� Q� Q�P ¼i Ý � &7. XY |i

} s; �¤ ��y2 n�� S¢ ÿ=2�Ò 100%: ���� 4

K% ��� ��Ý � &7� M�- �� �� � ��� ~�x 8

Å � W; 8n4 0û�c�7. |i} sy �� ��: ���

g� w� úÅ2 R�$� �g �< ��4 �, � ¨¥ �À�

7Ðx v; ±Å2 {È�q7[2].

(1)

Fig. 2�-� ��� ��P'2 �� � |i} s ~�S�-: s

V> ~� L�� {È�Ä7. |i} s; ©ª ~� ���- R,�

��� 8gP'2 ��Ø'2D �� �� ©qB£%, �; ���

- ù; �� � ¡ �#�7. ��� |i} s� 100% ô� !

�� K� ��� s: ò� ��: ��: ��: ��e: N0�

�� �2 ��4 �; �è�-� R,Ï � &7. |i} s "#

� Qú� �: V> ~� ´!"�- Q�$� GH� Æ�M; �

#�x |i} �g: 4#07. k {�4, ��P^ |i} s: ��

��è; ~� ���-: ù; ©ª ~� g�u �½ g�� �·

� �7� Z0(, hi- ù; �� g�� 4K� s ~�Sy: p

�0 ªÊ Hn�7. �� g�� xA ! 34B£� �Î� _`;

s: �$� %0� Z'2 .F- ªÊ &; |i} sy: �ã� Q

� 8n4 de� y� ªÊ op ! �r$% &7[2].

2-2. PSA ��

ü 8n�- "#$� �� PSA ��; �¤ 4K: R�=0 ¨B

� Hn$K '% %ô�: ��� R, � Z �P'2 % &'

{, �¾$� 4U4 44K(��, ��, 0,���, 0,���) 0�2

0� Q� G: (; %b4 Hn�7. ), X� õö�4 X� ���

Q<-� *; õö �� 4K�2 0 OÊ � V: õö�� "#<

-� L � %ô�: ��� �S �+7. 0 OÊ 7Õ �>: õö

�� ��� �V: õö÷ "#Ý � &'{, ]ì�#x m�: ò

â %b ® Û {: õö÷� 2V: 7Õ õö�� ��B, 7

� �¢ õö BU� "# � Z0 �-ë 7. õö�2� õö��

x X��- N0� Ì0� o��x ��i0" 5A4 "#$Ä'(, �

"0Ú; \ 4�úÅ2�Ò �öúÅ� 0.S/K 4V: úÅ2 n

�$�q7. � "0Ú ¨¥� � ÷�- qr$� SüP^ úÅy�

Q� �è: »�u ÷ ���-: �Þ µ¶_� Fig. 3x Fig. 4�

�� {È�Ä7[10].

Fig. 4� {ÈÉ \ 4�úÅ(I)�-� ~�S @n�- {u �xS

� �x� E ~�= � R�=^ CH4, CO2, H2, CO4 õö÷'2 �

¾$â- õöúÅ: �è/K 4� � úÅ07. � 01 úÅ2-

Î�� �è �K � õöúÅ(II)2 Î�� �è �K â- CH4,

CO2, H2, CO4 Åg �f$�K( é õö>^ CH4, CO2, H2, CO�

õö$%, î õö>: R�=^ H24 ��q7. õö÷ @n2 {� R

�=^ H2; ä]�� ä]�7. 7Ð'2� QS�/K �è0 2�

K! $� � A�úÅ(III)2 0�K(, 0 úÅ�- õö� é õö

>: ��^ CH4, CO2, CO4 �Â_�'2 3c {Í! $% 0 ��

y; s ~�S2 ô $� \"#�7. 4Ks'2 �Â_�'2 N2

4U� �¾ B£( ÷ ��: é õö> 6� � �öúÅ(VI)�

�ì( � "0Ú 4ì% \ 4�úÅ2 0�q7.

3. ���

�¥� þÿ��: ~���^ |i} s ~�S� Q� ��P �«

5 ðØ� ¢6� 0­P %�; Choi �[11]� :< �r$Ä'(, ü

8n�- ~���� Q� ��P �«; 0� 6� � n� ®7. )

� PSA BU�; 7Ð: 4� "# � ��P �« 7� ®7.

8 SÞ� 0¢SÞ07.

9 BU�; ��� ��07.

F D A⋅l

----------- PH2 r, PH2 p,–( ) Nm3 h⁄[ ]=

Fig. 2. Principle of membrane reforming.

Fig. 3. Pressure history in the bed for the layered PSA process.

Fig. 4. Flow direction in the bed for the PSA process.

���� �40� �5� 2002� 10�

Page 4: PSA Process Simulation for Hybrid System Consisting of ... · Process Simulation for Hybrid System Consisting of Membrane Steam Reformers and a Layered PSA Young-Jae Choi, Uk-June

� �� ���� � PSA �� ����� �� 553

: SÞ¢x õö� "0: =>�Ó; LDF(Linear Driving Force)

�«2 �B�7.

; ��±Å� Extended Langmuir ��*'2 �[�7.

< õö÷ ��-: �èé � Darcy’s Law� hÕ7.

= �� z õö÷�: n�P^ ^ê(úâP, �>)� ?Î 7.

@ �g, ñ� .�% ��� Q� ~O_� n?� ABÝ � &7.

=> �K*

(2)

õö� ��2: i ��: =>�Ó g�*; 7Ðx v0 LDF�«

2 �[�7.

(3)

qi*� i�� 4U¢x ��¢B� &� õö/07.

¨P ��x OCõö %bÝ OÊ: 7��Å õö; 7Ðx v0

Extended Langmuir ��* "#Á7.

(4)

�JK �K*

(5)

õö� ���-: �è: »�� 7Ðx v0 Darcy’s Law2 �[

Á7.

(6)

õö��- � úÅ: GH OÅ ��; 7Ðx v7.

O��:

I. \ 4�úÅ

@z=0 (7a)

@z=0 (7b)

@z=L (7c)

@z=L (7d)

II. õö úÅ

@z=0 (8a)

@z=0 (8b)

@z=L (8c)

@z=L (8d)

III. �ÂA�úÅ

@z=0 (9a)

@z=0 (9b)

@z=L (9c)

@z=L (9d)

IV. �öúÅ

@z=0 (10a)

@z=0 (10b)

@z=L (10c)

@z=L (10d)

� úÅ�-: valve: ¢B� Table 1� {È�Ä'( =�ì � æ

Å»�� Table 2� {È�Ä7.

)� Langmuir isothermx LDF �«� ±D� �¤ �iEÒ �;

Table 3� {È�Ä7[10].

PSA ��: �� ï� � �· S � � �P=^ H2: ô�,

ø�¡ ��K�2- 7Ðx v0 �: ®7.

εt∂Ci z( )

∂t--------------- ρa

∂qi z( )∂t

--------------+ ∂∂z----- εbu z( )Ci z( )( ) ∂2

∂z2-------- Dz Ci z( )⋅[ ] +–=

z∀ 0 L,( )∈

∂qi z( )∂t

-------------- k i qi* z( ) qi z( )–( )= z∀ 0 L,[ ]∈

qi* z( )

qsibiPi z( )

1 biPi z( )i 1=

NoComp

∑+

----------------------------------------= z∀ 0 L,[ ]∈

∂∂t---- εtρgcpg ρbcps+( ) T z( )⋅[ ] ∂

∂z----- εbu z( ) ρgcpgT z( )⋅[ ]–=

+Kz∂2T z( )

∂z2---------------- ρa Ha i,∆

∂qi

∂t-------⋅

i∑ U

D---- T z( ) Text z( )–[ ]⋅–⋅+⋅

z∀ 0 L,[ ]∈

∂P z( )∂z

-------------- 180– µ εb u z( )⋅ ⋅1 εb–( )2

dp2εb

3-------------------= z∀ 0 L,[ ]∈

Dz∂Ci z( )

∂z---------------– εbu 0( )

yRE_0 i, PRE_0

R TRE_0⋅---------------------------- Ci L( )–

⋅=

P 0( ) PRE_0=

∂Ci L( )∂z

---------------- 0=

εbu L( ) 0=

Dz∂Ci 0( )

∂z----------------– εbu 0( )

yAD_0 i, PAD_0

R TAD_0⋅----------------------------- Ci 0( )–

⋅=

P 0( ) PAD_0=

∂Ci L( )∂z

---------------- 0=

εbu L( )QAD_L

A--------------

Patm

P L( )-----------

⋅=

∂Ci 0( )∂z

---------------- 0=

P 0( ) PBD_0=

∂Ci L( )∂z

---------------- 0=

εbu L( ) 0=

∂Ci 0( )∂z

---------------- 0=

εbu 0( )QD_0

A-----------

Patm

P 0( )-----------

⋅=

Dz∂Ci z( )

∂z---------------– εbu L( )

yD_L i, PD_L

R TD_L⋅------------------------ Ci L( )–

⋅=

P L( ) PD_L=

Table 1. Operating sequence for valves

STEP Valve 1 Valve 2 Valve 3-R Valve 3-P Valve 4

I Open Close Close Close CloseII Open Open Close Close Close ProductIII Close Close Open Close Close RecycleIV Close Close Close Open Open Purge

Table 2. Parameters used in the simulation

Physical properties of bed and adsorbent

AC layer ZE layer

Bed length (cm) 5Bed inner dia. (cm) 1Bed density (g/cm3) 544 691Bed porosity 0.36 0.36Particle density (g/cm3) 850 1,080Heat capacity of adsorbent (cal/g⋅Κ) 6.590 6.904

*AC: Activated carbon, ZE: Zeolite 5A

HWAHAK KONGHAK Vol. 40, No. 5, October, 2002

Page 5: PSA Process Simulation for Hybrid System Consisting of ... · Process Simulation for Hybrid System Consisting of Membrane Steam Reformers and a Layered PSA Young-Jae Choi, Uk-June

554 ��������� �����

(11)

(12)

�S�- purityH2� � GS ¨¥: õöúÅ�- õö÷ K{ ä]

�� ä]� �Þ4U z H2 4U: �¡0(, recoveryH2� � GS

¨¥ õö÷ �2 �¾� H2 4U: ò� Q� õöúÅ�- ä]�

�-: �¡07.

4. � � �

4-1. � �

þE� PDAEs BU�: �ì<� n S �<- �¤ 4K _`0

"#Ï � &'{, Method of Lines(MOL) _` Sü F2 "# ®

7. MOL _`�-� GE� _�*� {È{ &� �½� Q� E�

å 7åe"*'2 » Ø'2D �Þ ��P �« B½ �� Q

� E�å ðØ � ¢E�/��� Q� _�* BU�'2 »  !

�7[12].

�½� Q� E�å 7åe"*'2 �  S �� Q�P^ �ì

<`'2� ��N� ,̀ ��H�`, MWR(Method of Weighted Residual),

OC(Orthogonal Collocation) _` �0 &7. .¤{ [\/K: GE�

_�*: �ì<`� Q� 0­P 8n4 G�q Æ�u X� �ì<

`x: ±Å� H�Y H � 0­P e�� 4D< G% &K ''

(, "#ê: ��� hi �ì<`0 w�$� Z0 Î~P07. hi

- ü 8n� &�-� º 4K: �ì<` "# � ¨P�"� �

r ®'(, �I�x ���� &� 4] JK�0 &� _`� Sß

� 0­P 8n� qr ®7[12].

�½e"� Q� �ìP _`'2� BFDM(Backward Finite Difference

Method) _`x ��H�` wÿ� OC _` "# ®7. BFDM

_`: OÊ �I0 #0 ! 0û�KS� Á'{, 0 _`: ìHP

^ wØ^ �ìP �,(Numerical diffusion) [¢0 {ÈL'2D ��

�� Æ�M0 & Z'2 R�$Ä7. OC _`: OÊ ü BU�x

�"� õö÷� "#$� ªÊ *; wx� {ÈM Z'2 Ì% $%

&'(, ü õö÷: OÊ�� NOÝ �� wx� Ì®7. .¤{ 0

_`; �Þ ��� Q� e"� B�Ø'2D e"7å*: N�4 ù

�K! $( ���4 2�K� úM0 &�, �Þ: n½ ��H�

` "# � º V: n½'2 {P%, � n½� Q � OC _`

"# � . úM Ì7 ®7. . wx �� Qf� Æ�y <wÝ

� &Ä'(, hi- ü 8n: ���"� 0 _` "# � �r$

Ä7[12].

õö÷: ç _�� hi 10V: ��H�2 {PÄ'(, � ��H

��- 3N e": OC on finite elements method� "# ®7. �¢

¢B� 0.S/K: ¨P�¨� Q� �"� �r ®% ¨P�¨

1ß ½#'2 Å, ®7. �Þ��0 �¢¢B� 0.S/K(PSA: O

Ê GSP �¢¢B) �"� �r ®'( RSÒ¢�- T ²rB½;

9,212ß 0Ä7.

4-2. �� ��

Shu �[4]: ²³�- s ~�S á: ��4 500oC2 Î�Ý Û

~�S @n�-: � ¡; 43.5%2 Ì% $Ä'(, ¨Î� ���-

¨P�" wx� 43.61%2 0.11%: ÍN� Ì®7. )� Jang �[10]

� Park �[14]: ��i0" � o��'2 �q� �¢ PSA ²³�

-u ¨Î� ��(o��/��i0" �)�- ��: ô�� �· ®

Û −0.25%-0.17% "0: ÍN� �� Ì®7. 0u v; �·� �

� s ~�Su PSA �� ��� Q� �� �«5 � �": ��

purityH2

u L( )tad_start

tad_end∫ CH2L( )dt

u L( )tad_start

tad_end∫ Cii 1=

NoComp

∑ L( )dt--------------------------------------------------------------=

recoveryH2

u L( )tad_start

tad_end∫ CH2L( )dt

u 0( )tcycle_start

tcycle_end∫ CH20( )dt

------------------------------------------------------=

Table 3. Langmuir isotherm parameters, mass-transfer coefficient of LDF model and heats of adsorption

Componentai,1×103[mol/g] ai,2[K] b i,0×107[1/mmHg] bi,1[K] −∆Ha[cal/mol] ki[1/sec]

AC ZE AC ZE AC ZE AC ZE AC ZE AC ZE

CH4 −1.78 −0.29 1.98 1.04 26.60 6.44 1,446.7 1,862.1 4,482 4,635 0.4 0.2CO2 −14.2 02.09 6.63 0.63 33.03 0.67 1,496.6 3,994.3 6,112 12,128 0.1 0.1H2 04.32 01.24 0.0 0.36 06.72 2.20 1,850.5 1,159.3 1,879 1,486 1.0 1.0CO 00.92 −0.58 0.52 0.83 07.86 2.53 1,730.9 2,616.3 3,986 6,954 0.3 00.15

*AC: Activated Carbon, ZE: Zeolite 5A

Fig. 5. Membrane reactor system.

Fig. 6. Methane conversion profile for Case 1 and Case 2.

���� �40� �5� 2002� 10�

Page 6: PSA Process Simulation for Hybrid System Consisting of ... · Process Simulation for Hybrid System Consisting of Membrane Steam Reformers and a Layered PSA Young-Jae Choi, Uk-June

� �� ���� � PSA �� ����� �� 555

�� ¸3 ®7.

4-2-1. s ~�S: �� � ¡ �·

ü 8n Q¢ BU�^ |i} s ~�Su PSA �� z Uä ~�

�� <V � |i} s ~�S n��- Fig. 5u v; 1V s ~�

S2 n�� BU�(Case 1) x 2V s ~�S2 n�� BU�(Case

2)�-: ��: � ¡ �· � Ìâ Fig. 6x v0 v; � ¡2

Bã � B½: µ¶� hi ��: � ¡ A�¡0 N0� Ì0!

�7. Case 1: @n�- �� �� � ¡; 43.61%0% case 2: @

n�- �� �� � ¡; 50.83%2 2V: s ~�S BU�0 v;

Ô02 0û�q 1V: s ~�SÌ7 ��: � ¡0 î 16.6% 4/

�¢� Z a � &7. 0� case 2: n�¢ � 01 ~�S: ��

��'2 ô�� m~4U � G¾Ø'2D � ���-: ����

: N� ù! �y� W'2D Î�{! �7. ), � 01 ~�S�-

: ����: N� ~����- R�� ��4 ����'2 Åg 0

¨ ! $( hi- ����0 �~� _�'2 Xë0! �7. hi

- 54P^ ~�0 Åg �K$� �Þ: � ¡ ù0! �7.

4-2-2. õö÷�-: �� ¿ �¡ »�

õö÷�-: �� ¿ �¡ »�� �· �Ìâ Fig. 7x v0 õö

÷ ¾n�-: ��: ¿ �¡; 0.3280% õö÷ @n� �x� ä]

��-: ��: ¿ �¡; 0.9999 0Ä7. Fig. 8�-� GSP �¢¢

B� 0.Y Û, õöúÅ�-: ��� ¿ �¡ {È�Ä'(, ±

�� �u v0 õöúÅ(II úÅ)�- é õö>^ ��y0 � ��

�q$� &� õö�� õö$% î õö>^ ��� õö÷ �x

â- ��: ¿ �¡0 34Ø a � &7.

Fig. 9� GSP �¢¢B� �ÓÁ Û, � GS� Q� õö÷ feed

endu product end�-: ��u ��: ¿�¡ �B� Z07. õö

÷: product end(z=L)�- ��: ¿�¡; 4�úÅ� MM 34 �

õöúÅ�- ��: ¿�¡0 d%2 ù�Kâ- %ô�: ��4 �

Fig. 7. H2 mole fraction profile of PSA inlet and outlet.

Fig. 8. Component mole fraction profile at adsorption step(cyclic steady-state).

Fig. 9. Component mole fraction profile for one cycle at cyclic steady-state.

Fig. 10. Hydrogen recovery profile.

HWAHAK KONGHAK Vol. 40, No. 5, October, 2002

Page 7: PSA Process Simulation for Hybrid System Consisting of ... · Process Simulation for Hybrid System Consisting of Membrane Steam Reformers and a Layered PSA Young-Jae Choi, Uk-June

556 ��������� �����

�Z a � &'(, )� ��; õö�� õö$� �: {ÍK '

Ð a � &7.

4-2-3. ô� � ø�¡ �·

Fig. 10�-� PSA��: �ÂA�úÅ�- �ö� 4U�� s ~

�S2 \ô  B[ Ûu B£K 'Ù OÊ: ��: ø�¡ B

½� hÕ Ø�: �B2 {È�Ä7. ßS 200ß/K� �; ø�¡

Ì0% &'{, . Ë�� \ô  B� ù; ø�¡ Ì0% &'( G

SP �¢¢B� 0.Y Û(î 1,300ß)� \ô ; 0.695, �ô :

OÊ� 0.6342 \ô B î 9.6% 4/ 34Ø a � &7. Fig. 11

; \ô Åu �ô Å�-: �� ô�� {È�Ä7. � OÊ ��

� &� ��: ô�� 99.999%2 {È\'(, \ô : OÊ�� ô

�� �A] Æ�4 ^� Z'2 {È\7.

4-2-4. õö÷�-: ��»�

Fig. 12� õö÷��-: ��»�� 3NL �½�- {È�Ä7. �

�: úÅ� hi 4U¢y0 õö�� õö � �öx� �ìâ-

��: ��: »�� Ì®7. õö��y0 õö$â- õö�� :<

��4 ¢_ ®74 �öx� �ìâ- �ö�2 ^< ��4 �b

A a � &7.

5. �

ü 8n� � � 2V: |i} s ~�Su PSA ��0 wÿ� þ

ÿ��0 �¥ $Ä'( 0� Q� 0­P 8n4 �r$Ä7. 0­P

8n: nÞP^ _`­'2 �¥� ��� Q� ��P �«5 � ¨

P�"4 �r$Ä7. `�- a:� �u v0 �¥� BU�: ~�

�^ 2V: |i} s ~�S�-: ��: � ¡0 S×: 1V: s

~�S n� Ì7 î 16.6% ùÐ a � &Ä7. )� |i} s ~�

S: ~����- {� ÿ4U� PSA� � � ��Ø'2D

99.999%: %ô�� 4q ��� � � &Ä7. 0 ��x� �

� ø�� ��; |i} s ~�S� \ô BC'2D L9: \o

#0i� 54P^ 0b � � &Ä7. ü 8n� � � �¥� %

ô� �� ��� �� ~�-�� BU�: wÿ� Q� 0­P 8n�

l2m ¢ ���: Vp � V� �� {: BãM'2 �#

! "#Ï � & Z'2 "9�7.

� �

0 aÆ; 1999�c� ^ Q�·: KL� : � 8n$ÄÐ

(INHA-20348).

����

A : cross-sectional area of bed, area of the membrane [m2]

b : Langmuir isotherm parameter [mmHg−1]

C : gas-phase concentration [mol/m3]

cp : heat capacity [J/g · K]

dp : particle diameter [m]

D : apparent diffusion coefficient [m2/hr ]

D : bed diameter [m]

Dz : diffusivity [m2/sec]

∆H : heat of adsorption [J/mol]

k : mass-transfer coefficient [sec−1]

Kz : thermal conductivity [J/m · sec · k]

l : membrane thickness [m]

P : pressure in the bed, at each step [Pa]

Patm : Atmospheric Pressure [Pa]

q* : equilibrium adsorbed-phase concentration [mol/g]

q : concentration of adsorbate in solid phase [mol/g]

qs : saturation concentration of adsorbate in solid phase [mol/g]

Q : volume flow-rate [m3/sec]

R : ideal gas constant [m3 · Pa/mol · K]

T : gas-phase temperature [K]

t : time [sec]

U : overall heat transfer coefficient [W/m2 · K]

u : interstitial velocity [m/sec]

y : mole fraction [-]

z : length of the bed [m]

���� ��

ε : porosity [-]

bar

Fig. 11. Hydrogen purity profile.

Fig. 12. Temperature profile in 3-dimensional field for cyclic steady-state.

���� �40� �5� 2002� 10�

Page 8: PSA Process Simulation for Hybrid System Consisting of ... · Process Simulation for Hybrid System Consisting of Membrane Steam Reformers and a Layered PSA Young-Jae Choi, Uk-June

� �� ���� � PSA �� ����� �� 557

00,

of

ρ : density [g/m3]

µ : gas viscosity [Pa · s]

���

a : adsorbent

AD : adsorption step

b : bed

BD : blow-down step

D : desorption step

g : gas phase

i : component

p : permeation side

RE : repressurization step

r : reaction side

s : particle

t : total bed

����

1. Armor, J. N.: Appl. Catal. A, 176, 159(1999).

2. Aasberg-Petersen, K., Nielsen, C. S. and Jorgensen, S. L.: Catal. Today,

46, 193(1998).

3. Adris, A. M., Elnashaie, S. S. E. H. and Hughes, R.: Can. J. Chem.

Eng., 69, 1061(1991).

4. Shu, J., Grandjean, B. P. A. and Kaliaguine, S.: Appl. Catal. A, 119,

305(1994).

5. Xu, J. and Froment, G. F.: AIChE J., 35, 88(1989).

6. Xu, J. and Froment, G. F.: AIChE J., 35, 97(1989).

7. Barbieri, G. F. and Maio, P. D.: Ind. Eng. Chem. Res., 36, 2121(1997).

8. Madia, G. S., Barbieri, G. and Drioli, E.: Can. J. Chem. Eng., 77,

698(1999).

9. Kim, J. H., Choi, B. S. and Yi, J. H.: J. Chem. Eng. Jpn., 32, 760

(1999).

10. Jang, D. G., Shin, H. S., Kim, J. N., Cho, S. H. and Sub, S. S.: HWA-

HAK KONGHAK, 37, 882(1999).

11. Choi, Y. J., Oh, M. and Chung, S. T.: Proceedings PSE ASIA 20

457(2000).

12. Oh, M.: Ph. D. Thesis, University of London(1995).

13. Reid, R. C., Prausnitz, J. M. and Poling, B. E.: “The Properties

Gases & Liquids,” McGRAW-HILL, New York(1988).

14. Park, J. H., Kim, J. N. and Cho, S. H.: AIChE J., 46, 790(2000).

HWAHAK KONGHAK Vol. 40, No. 5, October, 2002


Recommended