+ All Categories
Home > Documents > R. M. M. - 26...GHEORGHE CĂINICEANU-ROMANIA D.M. EDITORIAL BOARD EMILIA RĂDUCAN BĂTINEȚU-GIURGIU...

R. M. M. - 26...GHEORGHE CĂINICEANU-ROMANIA D.M. EDITORIAL BOARD EMILIA RĂDUCAN BĂTINEȚU-GIURGIU...

Date post: 25-Jan-2021
Category:
Upload: others
View: 5 times
Download: 1 times
Share this document with a friend
107
ROMANIAN MATHEMATICAL SOCIETY Mehedinți Branch AUTUMN EDITION 2020 R. M. M. - 26 ROMANIAN MATHEMATICAL MAGAZINE ISSN 2501-0099
Transcript
  • ROMANIAN MATHEMATICAL SOCIETYMehedinți Branch

    AUTUMN EDITION 2020

    R. M. M. - 26 ROMANIAN MATHEMATICAL

    MAGAZINE

    ISSN 2501-0099

  • Romanian Mathematical Society-Mehedinți Branch 2020

    1 ROMANIAN MATHEMATICAL MAGAZINE NR. 26

    ROMANIAN MATHEMATICAL

    SOCIETY

    Mehedinți Branch

    ROMANIAN MATHEMATICAL MAGAZINE

    R.M.M.

    Nr.26-AUTUMN EDITION 2020

  • Romanian Mathematical Society-Mehedinți Branch 2020

    2 ROMANIAN MATHEMATICAL MAGAZINE NR. 26

    ROMANIAN MATHEMATICAL

    SOCIETY

    Mehedinți Branch

    DANIEL SITARU-ROMANIA EDITOR IN CHIEF

    ROMANIAN MATHEMATICAL MAGAZINE-PAPER VARIANT ISSN 1584-4897

    GHEORGHE CĂINICEANU-ROMANIA

    EDITORIAL BOARD

    D.M.BĂTINEȚU-GIURGIU-ROMANIA

    CLAUDIA NĂNUȚI-ROMANIA

    NECULAI STANCIU-ROMANIA

    DAN NĂNUȚI-ROMANIA

    IULIANA TRAȘCĂ-ROMANIA

    EMILIA RĂDUCAN-ROMANIA

    DRAGA TĂTUCU MARIANA-ROMANIA

    DANA PAPONIU-ROMANIA

    GIMOIU IULIANA-ROMANIA

    DAN NEDEIANU-ROMANIA

    OVIDIU TICUȘI-ROMANIA

    MARIA UNGUREANU-ROMANIA

    ROMANIAN MATHEMATICAL MAGAZINE-INTERACTIVE JOURNAL ISSN 2501-0099 WWW.SSMRMH.RO

    DANIEL WISNIEWSKI-USA

    EDITORIAL BOARD VALMIR KRASNICI-KOSOVO

  • Romanian Mathematical Society-Mehedinți Branch 2020

    3 ROMANIAN MATHEMATICAL MAGAZINE NR. 26

    CONTENT

    ABOUT SOME ION IONESCU’S INEQUALITIES – D.M. Bătinețu-Giurgiu, Daniel Sitaru,Neculai

    Stanciu ................................................................................................................................... 4

    A GENERALIZATION OF FINSLER-HADWIGER’S INEQUALITY - D.M. Bătinețu-Giurgiu, Daniel

    Sitaru, Claudia Nănuți ............................................................................................................. 9

    A SIMPLE PROOF OF J.RADON’S INEQUALITY(1913) - Daniel Sitaru .................................... 11

    ABOUT CALCULUS OF SOME LIMITS - Florică Anastase ........................................................ 12

    ABOUT NAGEL AND GERGONNE’S CEVIANS – Bogdan Fuștei ................................................. 16

    SOLVED PROBLEMS - Florentin Vișescu ................................................................................ 23

    SOLVING SOME PROBLEMS WITH DETERMINANTS - Marian Ursărescu............................... 28

    STRUCTURI ALGEBRICE (III) – Vasile Buruiană ...................................................................... 31

    ABOUT SOME CLASSES OF SEQUENCES – Florică Anastase .................................................. 35

    ABOUT PROBLEM JP.207 - RMM-SPRING EDITION 2020 - Marin Chirciu .............................. 42

    ABOUT PROBLEM JP.227 - RMM-SPRING EDITION 2020 - Marin Chirciu .............................. 45

    ABOUT PROBLEM JP.228 - RMM-SPRING EDITION 2020 - Marin Chirciu .............................. 50

    ABOUT PROBLEM JP.232 - RMM-SPRING EDITION 2020 - Marin Chirciu .............................. 54

    ABOUT PROBLEM JP.247 - RMM-SUMMER EDITION 2020 - Marin Chirciu ........................... 57

    PROPOSED PROBLEMS ......................................................................................................... 60

    INDEX OF PROPOSERS AND SOLVERS RMM-26 PAPER MAGAZINE .................................... 103

    REVIEW OF THE BOOK “CALCULUS MARATHON”………………………………………………………...104

  • Romanian Mathematical Society-Mehedinți Branch 2020

    4 ROMANIAN MATHEMATICAL MAGAZINE NR. 26

    ABOUT SOME ION IONESCU’S INEQUALITIES

    By D.M. Bătinețu-Giurgiu, Daniel Sitaru,Neculai Stanciu

    If ( ), then the following inequalities hold:

    (N-I)

    namely NESBITT-IONESCU inequality, and also:

    (*)

    Let be a triangle, with the usual notations and is the semi-perimeter, and its area.

    In Mathematical Gazette, 1897, ION IONESCU has established that, in any triangle the

    following inequality holds: √ (I-W) and this inequality has been rediscovered by ROLAND WEITZENBOCK, in 1919. Also, in Mathematical Gazette, vol., XLVIII, (1942-1943) at page 334, it is proved that, in any triangle the following inequalities hold: ( ) (**) (***).

    Next, we will establish other inequalities (some known):

    TSINTSIFAS’S INEQUALITY:

    If , then in any triangle the following inequality holds:

    √ (T)

    Proof. We have:

    ( )

    ( )

    ∑(

    *

    ( ) ( ) ∑

    ( )

    ( ) ( )

    ∑ ( ) ( )

  • Romanian Mathematical Society-Mehedinți Branch 2020

    5 ROMANIAN MATHEMATICAL MAGAZINE NR. 26

    ( )

    ( ) ( ) ( )

    ( )

    ( ) ( )

    ( √ ) √ √

    BĂTINEȚU-GIURGIU’S INEQUALITY:

    If , then in triangle the following inequality holds:

    √ (B-G)

    Proof 1. We have:

    ∑√

    √∏√

    √( )

    Proof 2. We have:

    ∑( )

    ( )

    √ √

    Proof 3. We have:

    ( )

    ∑(

    *

    ( )

    ( ) ∑

    ( )

    ( ) ( )

    ( )

    ( ) ( )

    √ √

  • Romanian Mathematical Society-Mehedinți Branch 2020

    6 ROMANIAN MATHEMATICAL MAGAZINE NR. 26

    THE SECOND INEQUALITY OF G. TSINTSIFAS

    If , then in any triangle the following inequality holds:

    (G.T.)

    Proof 1. We have:

    ∑( )

    ( )

    ∑ ( )

    ( )

    ( )

    ( )

    ( )

    Proof 2. We have:

    ∑(

    *

    ( ) ( ) ∑

    ( )

    ( ) ( )

    ∑ ( ) ( )

    ( ) ( )

    ( ) ( )

    ( )

    ( )( )( )( )

    ( )( )( )

    Theorem 1. If , then in any triangle the following inequality holds:

    (i)

    Proof. We have:

    ∑( )

    ( )

    ∑ ( )

  • Romanian Mathematical Society-Mehedinți Branch 2020

    7 ROMANIAN MATHEMATICAL MAGAZINE NR. 26

    ( )

    ( )( )

    ( )

    ( )( )

    If in (i) we take we obtain inequality (G.T.)

    BĂTINEȚU-GIURGIU-SITARU INEQUALITY

    If , then in any triangle the following inequality holds:

    (B-G-S)

    Proof 1. We have:

    ∑( )

    ( )

    Proof 2. We have:

    ∑√

    √∏√

    √( )

    .√( )

    /

    4 √

    5

    Proof 3. We have:

    ∑(

    *

    ( )

    ( )∑

    ( )

    ( ) ( )

    ( ) ( ) ( ) ( )

    ( )

    ( √ )

    Theorem 2. If , then in any triangle the following inequality holds:

    (ii)

    Proof. We have:

  • Romanian Mathematical Society-Mehedinți Branch 2020

    8 ROMANIAN MATHEMATICAL MAGAZINE NR. 26

    ∑( )

    ( )

    Theorem 3. If , then in any triangle the following inequality holds:

    √ (iii)

    Proof. We have:

    √ ∑√

    √ √∏√

    √ √( )

    √ .√( )

    /

    √ 4 √

    5

    If relationship (ii) is transformed in relationship (B-G-S), and if relationship (iii), becomes relationship (B-G-S). If in (B-G-S) inequality we obtain inequality:

    (F.G) namely inequality F. GOLDNER.

    Theorem 4. If , then in any triangle the following inequality holds:

    √ (j)

    Proof 1. We have:

    ∑( ) ( )

    ( ) ∑

    ( ) ( )∑

    ( )

    ( )( )

    ∑ ( ) ( )

    ( )

    ( ) ( ) ( )

    ( )

    ( ) ( )

  • Romanian Mathematical Society-Mehedinți Branch 2020

    9 ROMANIAN MATHEMATICAL MAGAZINE NR. 26

    ( √ ) ( )

    √ ( √ ) √ √

    Proof 2. According to inequalities (T) and (B-G) we have:

    ∑ ( )

    √ √ √ . We conclude with some remarkable observations

    1. If in inequalities (T), (B-G), (j) we take , we obtain Ion Ionescu’s inequality, namely inequality (I-W).

    2. If triangle is equilateral then, from inequalities (T), (G.T) we obtain inequality (N-I), and from inequalities (B-G), (B-G-S), we obtain inequality (*).

    3. If triangle is equivalent then from inequality (j) we obtain inequality:

    namely

    Bibliography

    [1] Bătinețu-Giurgiu M.D., Boroica Gh., Mușuroia N., About some inequalities of Ion Ionescu, Argument Magazine, Year 20, 2018, pp 12-17.

    [2] Stoica Gh., A generalization of Tsintsifas inequality, Mathematical Magazine from Valea Jiului, Nr. 2, September, 2018, pp. 25-27.

    [3]Romanian Mathematical Magazine-Interactive Journal-www.ssmrmh.ro

    A GENERALIZATION OF FINSLER-HADWIGER’S INEQUALITY

    By D.M. Bătinețu-Giurgiu, Daniel Sitaru,Claudia Nănuți

    ABSTRACT: Finsler-Hadwiger’s inequality:

    In any triangle having the area , the following inequality holds:

    √ ( ) ( ) ( ) (F-H)

  • Romanian Mathematical Society-Mehedinți Branch 2020

    10 ROMANIAN MATHEMATICAL MAGAZINE NR. 26

    Let’s suppose and generalize this inequality, but first, we state some important results.

    IMPORTANT RESULTS:

    In Mathematical Gazette vol. XLVIII (1942-1943) at page 334 it is proved that:- in any triangle the following inequality holds: ( ) (i)

    and (ii)

    where is the semiperimeter of the triangle. Also, we will take into account Doucet’s

    inequality: √ (D) and D.S. Mitrinovic’s inequality: √ (M)

    MAIN RESULT:

    If ( ) 0

    1, then in any triangle having the area has the

    inequality: ( ) √ (( ) ( ) ( ) ) (*)

    Proof. We have:

    ∑( )

    ( )∑

    ( ) ( )

    ( ) ( ) ( )

    ( ) ( ) ( )

    ( ) ( ) ( ) ( )

    ( ) ( √ ) ( ) ( ) ( )

    ( )√ ( ) √ ( )√ √ Q.E.D.

    If then inequality (*) becomes ( ) √ ∑ ( )

    √ ( ) ( ) ( ) , namely inequality (F-H).

    If

    then inequality (*) becomes: ( ) √

    ∑ ( )

    (( ) ( ) ( ) )

    REFFERENCES:

    Romanian Mathematical Magazine-Interactive Journal-www.ssmrmh.ro

  • Romanian Mathematical Society-Mehedinți Branch 2020

    11 ROMANIAN MATHEMATICAL MAGAZINE NR. 26

    A SIMPLE PROOF OF J.RADON’S INEQUALITY(1913)

    If * + then:

    ( )

    ( )

    By Daniel Sitaru-Romania

    Proof: Let be ( ) ( )

    ( )

    ( )

    ( )

    ( ) ( ( ))

    ( )

    ( ) 4 ( )

    5 4

    ( )

    5

    4 ( )

    5

    ( )

    ( )

    ( )

    (

    *

    (

    *

    (

    *

    (

    *

    Analogous: ( )

    .

    /

    .

    /

    ( ) ( ) ( )

    ( ) (

    *

    (

    *

    ( )

    ( )

    ( ) ( )

    (

    *

    (

    *

    (

    *

    (

    *

    ( )

    ( ) (

    *

    (

    *

    ( )

    ( )

    Analogous for : * + then:

    ( )

    ( )

    ( )

    ( )

  • Romanian Mathematical Society-Mehedinți Branch 2020

    12 ROMANIAN MATHEMATICAL MAGAZINE NR. 26

    Equality holds for:

    The reverse Radon’s inequality: If * + then:

    ( )

    ( )

    Refferences: https://www.cut-the-knot.org/m/Algebra/RadonInequality.shtml

    Romanian Mathematical Magazine-Interactive Journal-www.ssmrmh.ro

    ABOUT CALCULUS OF SOME LIMITS

    By Florică Anastase-Romania

    Abstract: In this paper is given a method for calculus of some limits.

    Main result:

    If ( ) continuous and ( )

    , it follows:

    ( ∑( 4

    5+

    +

    Proof:

    ( )

    ( )

    ( ) ( ) ( )

    ( )

    ( ( ))

    ( )

    ( 4

    5+

    ( )

    ( )∑

    ∑( 4

    5+

    ( )∑

    ∑(

    *

    https://www.cut-the-knot.org/m/Algebra/RadonInequality.shtml

  • Romanian Mathematical Society-Mehedinți Branch 2020

    13 ROMANIAN MATHEMATICAL MAGAZINE NR. 26

    (∑( 4

    5+

    +

    Application 1:

    For find:

    ( ∑ √ 4

    5

    )

    Solution: By ( )

    such that:

    4 .

    /5

    (

    *∑

    ∑ √ 4

    5

    (

    *∑

    ∑(

    *

    ( ∑ √ 4

    5

    )

    Application 2: For find: 4 ∑ √ .

    /

    5

    Solution: By ( )

    such that:

    . .

    //

    (

    *∑

    ∑ √ 4

    5

    (

    *∑

  • Romanian Mathematical Society-Mehedinți Branch 2020

    14 ROMANIAN MATHEMATICAL MAGAZINE NR. 26

    ∑(

    *

    ( ∑ √ 4

    5

    )

    Application 3: For find:

    ( ∑ √ 4

    5

    )

    Solution: By ( ( ))

    such that:

    . .

    //

    (

    *∑

    ∑ √ 4

    5

    (

    *∑

    ∑(

    *

    ( ∑ √ 4

    5

    )

    Application 4: For find:

    ( ∑ √(

    *

    )

    Solution: By ( )

    such that:

  • Romanian Mathematical Society-Mehedinți Branch 2020

    15 ROMANIAN MATHEMATICAL MAGAZINE NR. 26

    (

    *

    (

    *∑

    ∑ √

    (

    *∑

    ∑(

    *

    ( ∑ √

    +

    Application 5: For ( ) , find:

    ∑ 4

    5

    Solution:

    ∑ 4

    5

    ∑( .

    /

    )

    ∑( .

    /

    )

    such that: ( (

    *

    +

    ( )∑

    ( )∑

    ∑(

    *

    ∑ 4

    5

    Application 6: For find:

  • Romanian Mathematical Society-Mehedinți Branch 2020

    16 ROMANIAN MATHEMATICAL MAGAZINE NR. 26

    (

    ( ∑ √ 4

    5

    ))

    Solution: By ( )

    such that:

    (

    *

    √ 4

    5

    (

    *

    (

    *∑

    ∑ √ 4

    5

    (

    *∑

    By ∑

    , we have:

    4 ∑ √ .

    /

    5

    , hence:

    (

    *

    ( ) (

    *

    .

    / .

    /

    Proposed problems:

    )

    ∑(√

    )

    )

    ∑(√

    )

    Refferences: Romanian Mathematical Magazine-Interactive Journal - www.ssmrmh.ro

    ABOUT NAGEL AND GERGONNE’S CEVIANS

    By Bogdan Fuștei-Romania

    ABSTRACT: In this Math Note we will establish a new geometric identity in triangle:

    (and the analogs),

    http://www.ssmrmh.ro/

  • Romanian Mathematical Society-Mehedinți Branch 2020

    17 ROMANIAN MATHEMATICAL MAGAZINE NR. 26

    where, Nagel’s cevian from Gergonne’s cevian from being the usual notations. This identity was proposed as a problem for RMM Magazine (IDENTITY IN TRIANGLE 122). In this note we will propose the way we’ve obtained this identity and some of its applications.

    ( )

    (and the analogs)

    ( )

    ( )

    ( )

    ( )

    =( )

    ( )

    ( )( ) ( )

    ( ) ( )

    ( ) ( )

    ( )

    (and the analogs) (

    ) ( ) (and the

    analogs)

    1. Let be (Nagel’s cevian from );

    and using cosine theorem in we have:

    ( ) ( )

    (and the analogs)

    ( ) 4

    5 ( ) ( )

    ( )

    ( )4

    5 ( )4

    5

    ( )( )

    4

    ( )( )

    5

    ( ) 4 ( )( )

    5

    But ( )( ) ( ) (and the analogs) ( )

    ( )

    (and the

    analogs)

    2. Using Stewart’s theorem, we obtain:

    ( ) ( ) ( )( )

    (and the analogs)

    ( ) ( ) ( )( )

    (and the analogs)

  • Romanian Mathematical Society-Mehedinți Branch 2020

    18 ROMANIAN MATHEMATICAL MAGAZINE NR. 26

    ( )

    ( )

    ( )

    ( ) ( )

    (

    )

    3. Using the inequality between the squared mean and the arithmetic mean:

    (and the analogs)

    Which is equivalent with: √ √ (and the analogs), but (and

    the analogs) √ √ (and the analogs).

    But we know that

    (and the analogs)

    √ (and the

    analogs). So, we’ll obtain the inequality:

    √ (and the analogs)

    Summing we will obtain a new inequality, namely:

    √ ∑

    But ∑

    √ ∑

    But

    and the analogs

    √ ∑

    (and the analogs) ∑

    √ ∑

    4. We know that ( ) ∑

    (

    ) ∑

    ∑ ∑

    ∑ ( ) ∑

    But

    (and the analogs), so we will obtain a new identity, namely:

    5.

    (Tereshin Inequality)

    ( ) (and the analogs)

    ( ) ∑( )

  • Romanian Mathematical Society-Mehedinți Branch 2020

    19 ROMANIAN MATHEMATICAL MAGAZINE NR. 26

    .∑ ∑

    / ∑( ) √∑( )

    ∑ ∑

    (and the analogs);

    6. From the above expressions of and

    we can easily observe that

    (and the analogs)

    So, we can write that:

    7. We know that

    . So,

    Taking into account the above we can write that:

    . Summing we will

    obtain the identity: ( ) ∑

    ( ) ∑

    8. We know that ( )

    (and the analogs)

    ( )

    ( )

    ( )

    ∑ ∑

    From the above we can write that: ∑(

    ) ∑ ∑( )

    9. We know that

    (and the analogs);

    From the above we will have: √

    (and the analogs) √

  • Romanian Mathematical Society-Mehedinți Branch 2020

    20 ROMANIAN MATHEMATICAL MAGAZINE NR. 26

    From the above we will have: √

    (and the analogs) √

    Summing we will obtain: ( ) √

    Summing we will have the following inequality:

    ( )√

    ( ) ∑

    10. From inequality

    ( )

    (Tereshin’s inequality)

    .

    / ∑

    √ ∑

    √ ∑

    11.

    (Laurențiu Panaitopol –Mathematical Gazzete)

    √ ∑

    So, finally, we have as being true a new inequality, namely:

    √ ∑

    So,

    ( )

    (and analogs);

    (and analogs)

    (and the analogs);

    ( )

  • Romanian Mathematical Society-Mehedinți Branch 2020

    21 ROMANIAN MATHEMATICAL MAGAZINE NR. 26

    ( )( ) (and the analogs)

    12. We know that:

    ( ) (and the

    analogs)

    ( ) ∑

    ( )

    , so, we have the following:

    (

    *

    From the above we have:

    (and the analogs), but

    So, we have the identity: ∑

    ( )

    13. We proved that:

    ( ) (and the analogs).

    But

    (and the analogs) ( ) (and the analogs)

    ( ) (and the analogs)

    (and the analogs)

    Taking into account the above inequality we have:

    ∏( ) ∏( )

    From the above we have: ∏(

    )

    But we will obtain the following: ∏(

    )

    ∏(

    )

    we will obtain the following:

    ∏(

    )

    14. From

    and

    (and the analogs), we will obtain:

    .

    / ( )

    .

    /

    .

    /

    (and the analogs)

  • Romanian Mathematical Society-Mehedinți Branch 2020

    22 ROMANIAN MATHEMATICAL MAGAZINE NR. 26

    .

    /

    .

    /

    .

    /

    .

    /

    (and the analogs)

    ( ) (

    * ∑

    So, finally we have the identity: ∑

    .

    /

    Taking into account the above we have the following inequality:

    (

    * ∑

    (

    * ∑

    (and the analogs),

    (and the analogs)

    Squaring and taking into account:

    (and the analogs)

    ( )

    (and the analgos)

    So, finally we have:

    (and the analogs). Summing we will obtain: ∑

    15. But ∑

    , so we will obtain the following: ∑

    .

    /

    (and the analogs);

    (and the analogs)

    ∑(

    *

    But ∏

    so, we will have the inequality: ∏

    16. From Tereshin’s inequality presented above and the new identity we will obtain the

    following:

    .

    /

    (and the analogs)

    But

    (and the analogs) and from the above we can write the following:

  • Romanian Mathematical Society-Mehedinți Branch 2020

    23 ROMANIAN MATHEMATICAL MAGAZINE NR. 26

    (and the following)

    we have the following:

    (and the following)

    Summing we will obtain a new inequality, namely: ∑

    .

    /

    (and the analogs)

    (and the analogs)

    (and the analogs). From the above we have:

    (and the analogs)

    Summing we will obtain: ∑

    17. From

    (and the analogs) we have ∑

    ( ) ∑ ∑

    ∑ ∑

    These are just a little part of the relationships that can be obtained using the established relationship in this note. Any other new obtained relationships will be published in the form

    of problems for RMM.

    Refferences: Romanian Mathematical Magazine-Interactive Journal-www.ssmrmh.ro

    SOLVED PROBLEMS

    By Florentin Vișescu – Romania

    1. Let ( ). We denote

    We prove that:

    a) If and then

    b) If ( ) and

    then

    c) If √ and then

    d) If ( √ ) and then

  • Romanian Mathematical Society-Mehedinți Branch 2020

    24 ROMANIAN MATHEMATICAL MAGAZINE NR. 26

    Demonstration.

    a), b) We consider the function ( )

    ( )

    ( ) ( )

    ( ) ( )

    ( )

    ( )

    ( )

    ( )

    ( )

    ( )

    a) If ( ) convexe and then .

    /

    ( ) ( ) ( )

    or

    .

    /

    as and

    . Then

    b) If ( ) concave and then .

    /

    ( ) ( ) ( )

    or

    as ( ) ( ) and

    Then:

    c), d) We consider the function ( )

    ( )

    ( )

    ( )

  • Romanian Mathematical Society-Mehedinți Branch 2020

    25 ROMANIAN MATHEMATICAL MAGAZINE NR. 26

    ( ) ( ) ( ) ( )

    ( )

    ( √ )( √ )

    ( )

    If √ ( ) convexe and then √ we have

    .

    /

    ( ) ( ) ( )

    or taking into account that .

    ( )

    namely

    If ( √ ) ( ) concave and then ( √ ) we have:

    .

    /

    ( ) ( ) ( )

    or, taking into account that

    ( )

    namely

    2. Let be ( ). We denote

    ( )( )( ) ( ) ( ) ( )

    Prove that:

    a) If then

    b) If ( ) with

    then

    c) If with then

    d) If then

    Demonstration.

    b), c) We consider the function ( )

    ( )

    ( )

    ( )

    ( )

    ( )

    ( )( )

    ( )

    b) If ( ) ( ) concave .

    / ( ) ( ) ( )

    ( ) or

    .

    /

    Taking into account that

    we obtain

  • Romanian Mathematical Society-Mehedinți Branch 2020

    26 ROMANIAN MATHEMATICAL MAGAZINE NR. 26

    .

    / or

    namely

    c) If ( ) convexe .

    / ( ) ( ) ( )

    and taking into account that we obtain

    .

    / or

    namely .

    a) We consider the function ( ) ( )

    ( )

    ( )

    ( )

    ( ) concave. Then .

    / ( ) ( ) ( ) as we choose

    and we obtain .

    / ( ) ( ) ( )

    as ( ) ( ) ( ) ( ) or

    ( ) [ ( )( )( )]

    ( ) ( )( )( ) or

    d) We consider the function ( ) ( )

    ( ) ( )

    ( )

    ( )

    ( )

    for . So, concave on ( ). Then we have:

    .

    / ( ) ( ) ( ). But as ( ) ( ) ( ) ( )

    or ( ) ( ) ( )

    ( ) ( ) ( )

    ( ) ( ) ( ) namely

    3. a) Let be ( ) ∫ ∫ ∫

    √( )

    and ( ) ( )

    Prove that if then ( ) ( ) and if then ( ) ( )

    b) Let be ( ) ∫ ∫ ∫

    ( )

    and ( )

    ( )

  • Romanian Mathematical Society-Mehedinți Branch 2020

    27 ROMANIAN MATHEMATICAL MAGAZINE NR. 26

    Prove that if √ then ( ) ( ) and if √

    ( ) ( )

    c) Let be ( ) ∫ ∫ ∫

    (.

    / *

    and ( ) .

    /

    Prove that if then ( ) ( ) and if then ( ) ( )

    d) Prove that if then ∫ ∫ ∫

    . √( )

    /

    .

    /

    Demonstration

    a) According to the demonstration from example 1. a) and b), we have:

    √( )

    for and

    √( )

    for

    ( ).

    Applying the triple integral, we obtain the desired inequality.

    b) According to the demonstration from example 1) c) and d) we have:

    .

    /

    .

    / for (√ ) and

    .

    /

    .

    / for ( √ )

    Applying the triple integral, we obtain the inequalities.

    c) According to the demonstration from example 2. b) and e), we have:

    (.

    / *

    for ( ) and

    (.

    / *

    for .

    Applying the triple integral, we obtain inequality d) according to the demonstration from 2)

    a), we have

    . √( )

    /

    for . Applying the triple integral, we

    obtain the inequality.

  • Romanian Mathematical Society-Mehedinți Branch 2020

    28 ROMANIAN MATHEMATICAL MAGAZINE NR. 26

    SOLVING SOME PROBLEMS WITH DETERMINANTS

    By Marian Ursărescu-Romania

    Abstract: In this article, we will solve some problems with determinants. A lot of these problems had appeared in math magazines or were proposed to various mathematic contests. For start we will remember the next lemma:

    Lemma: Let be ( ). Then, ( ) ( ) is a polynomial function having the grade , which has the form: ( )

    Remarks:

    1. If ( ), then , -; if ( ) then , -, and if ( ) then , -

    2. If ( ) then:

    ( ) , where (

    ) or ( ) or

    ( )

    Applications:

    1.Let be ( ) such that and ( ) .

    Prove that .

    Proof: ( ) ( ) ( ) ( )

    (we have used the fact that ) ( ) or ( ) (1)

    Let be ( ) ( ) . From (1) ( ) or

    ( ) ( )

    2. Let ( ) such that ( ) . Prove that ( )

    (NMO-Romania)

    Proof: Let be ( ) ( ( )) , -

    ( ) ( ) ( )

    We have ( ) ( ) ( ( ))

  • Romanian Mathematical Society-Mehedinți Branch 2020

    29 ROMANIAN MATHEMATICAL MAGAZINE NR. 26

    ( ) ( ) ( ( ))

    But and from hypothesis ( ) and because

    ( ) ( ) ( )

    3. Let be ( ) such that . Prove that the matrix √ is invertible. (Mathematical Gazette)

    Proof: We must prove that ( √ ) . By absurdum suppose that (

    √ ) . Let ( ) ( )

    , with (√ ) √ √ √ ( )

    , false, √

    4. Let ( ) such that and ( ) are odds. Prove that the matrix is invertible . (Mathematical Gazette)

    Proof:We must prove that ( ) . By absurdum suppose that such that ( ) . Let be ( )

    , -. We have: ( ) odd. ( ) ( ) odd.

    But ( ) (from Bézout) ( ) ( ) ( ) , -

    ( ) ( )

    ( ) ( ) ( ) } are odd numbers, false, because are

    consecutives.

    5. Let ( ) and

    .

    Prove that: ( ) ( ) ( ) ( )

    (RMO-Romania)

    Proof:Let be ( ) ( )

    ( )

    ( )

    ( ) (

    ) ( )

    By summing ( ) ( ) ( )

  • Romanian Mathematical Society-Mehedinți Branch 2020

    30 ROMANIAN MATHEMATICAL MAGAZINE NR. 26

    ( ) (

    ( ) )

    ( ( ) ) (1)

    But is the root having the order of the unit (2)

    But (1) (2) ( ) ( ) ( )

    (( ) )

    ( )

    In the ending, some proposed problems on R.M.M.:

    1. Let ( ) with such that ( ) . Prove that:

    ( ) (RMO-Romania)

    2. Let be ( ) such that ( ) ( ) . Prove that:

    ( ) ( ) (R.M.M.)

    3. Let be ( ) such that ( ) . Prove that:

    ( ) ( ) (R.M.M.)

    4. Let be ( ). Prove that:

    ( ) ( ) ( ) ( )

    (R.M.M.)

    5. Let be ( ) such that ( ) . Prove that:

    ( ) .

    / ( ) (R.M.M.)

    6. Let be ( ) such that . Prove that:

    ( ) ( ) (R.M.M.)

    7. Let ( ). Prove that: ( ) ( ) ( ( ))

    8. Let be ( ). If odd, then the matrix is invertible,

    (R.M.M.)

    Refferences: Romanian Mathematical Magazine-Interactive Journal - www.ssmrmh.ro

    http://www.ssmrmh.ro/

  • Romanian Mathematical Society-Mehedinți Branch 2020

    31 ROMANIAN MATHEMATICAL MAGAZINE NR. 26

    STRUCTURI ALGEBRICE (III)

    By Vasile Buruiană – Romania

    Exemple si observații

    1. este factorial, deoarece cu ( ) | | arată că ( ) este inel Krull cu toți divizorii principali.

    2. Orice inel Krull pentru care are un număr finit de atomi este factorial.

    Într-adevăr: fie

    un divizor și descompunerea sa unică în atomi. Există

    astfel că ( ) și ( ) cu

    unitatea lui , deci ( ) și deci orice divizor este principal.

    În particular corpurile comutative sunt inele factoriale.

    3. Inelul , - nu este inel Krull (deci nici factorial) fiindcă nu îndeplinește condiția h) din teorema 1 pentru inelele Krull: inelului, dar inelului.

    4. Orice inel principal este factorial.

    Demonstrație. PAS 1. Pentru orice șir de ideale ( ) ( ) astfel încât

    ( ) ( )

    Într-adevăr luăm ( ) care este principal, deci cu ( ) astfel ca

    ( ) ( ) ( ) ( ) ( ) ( ) ( )

    PAS 2. ( ) orice ireductibil este prim). Într-adevăr există astfel ca și evident ( )

    PAS 3. inversabil există un divizor ireductibil al său. Într-adevăr dar este ireductibil, afirmația este adevărată. Dacă este ireductibil neunități și neasociate cu astfel ca . Dacă sau sunt ireductibile afirmația este dovedită. Astfel există

    astfel ca , etc ( )

    ( )

    ( ) ceea ce nu este posibil la infinit

    există un pas astfel ca | și este ireductibil.

    PAS 4. Orice se descompune în produs finit de elemente ireductibile. Într-adevăr prin PAS 3, ex | ireductibil cu . Pentru , continuăm, ș.a.m.d. Prin pasul procesul se oprește într-un număr finit de pași.

  • Romanian Mathematical Society-Mehedinți Branch 2020

    32 ROMANIAN MATHEMATICAL MAGAZINE NR. 26

    PAS 5. Cu PAS 2 și PAS 4 folosind Teorema 2.e. rezultă afirmația. Cum orice inel euclidian este principal orice inel euclidian este și el factorial.

    5. Teorema 3 (Gauss): Dacă este inel factorial atunci , - este inel factorial.

    Demonstrația se face în mai mulți pași.

    PAS 1. este inel integru , - este integru în care unitățile sunt cele din (deci în , - unitate cu și , - atunci | | coeficienții lui )

    Într-adevăr

    cu și

    {

    PAS 2. Dacă este prim din este prin în , -. Într-adevăr dacă | și și coeficienți ai astfel ca . Fie și minim cu proprietatea că

    . Deoarece | ∑

    și |∑

    | | sau | ceea ce este

    absurd.

    PAS 3. Pentru , - notăm (( ) ( ) și îl numim

    conținutul lui cu (( ) se numește primitiv.

    Avem (( ) (( ) ( ))

    Într-adevăr fie ( ) ( ) ( ) ( ) deci ar fi suficient să arătăm că produsul a două polinoame primitive este primitiv. Dar acesta nu ar fi adevărat ci rezultă

    că , prim, cu |

    | sau |

    sau nu este primitiv, ceea ce este absurd.

    PAS 4. Pentru , - primitiv și | | (dacă și este primitiv și

    cu )

    Într-adevăr | , - cu ( ) ( ) ( )

    ( ) ( ) căci este primitiv |

    PAS 5. Dacă grad pentru , -, atunci sunt echivalente

    a) este ireductibil în , -

  • Romanian Mathematical Society-Mehedinți Branch 2020

    33 ROMANIAN MATHEMATICAL MAGAZINE NR. 26

    b) este primitiv și ireductibil în , -, unde este corpul de fracții al lui .

    Demonstrație.

    a) b) Evident este primitiv. Dar ar fi reductibil în , - , - , grad , grad grad și grad , grad cu unde au grade egale cu ale respectiv ( îl putem lua produsul numitorilor lui și ). Dacă ( ) ,

    ( ) cu primitiv

    | deci este reductibil și , -, ceea ce este contradictoriu.

    b) este evidentă.

    PAS 6. ireductibil în , - este prim.

    Într-adevăr, pentru grad , afirmația este evidentă pe baza factorialității lui și pas 2.

    Dacă grad și | este prim în , - | sau | în , -. Dacă | și

    în astfel ca , - | în , -

    | în , -

    Analog dacă | este prim.

    PAS 7. Orice element din , - este produs finit de elemente prime. Este suficient să aratăm că orice element nenul și neinversabil din , - este produs finit de elemente ireductibile.

    Într-adevăr pentru grad afirmația este evidentă.

    Dar grad fie ( ) cu primitiv. Dacă este ireductibil, afirmația este demonstrată. Dar cu având grade mai mici decât al lui , atunci prin reducție ele se descompun în produse finite și deci și .

    PAS 8. Pe baza PAS 7 și PAS 6 , - este factorial.

    6. Observație. În pasul al sașelea am folosit faptul că inelul , - este factorial. Aceasta rezultă independent de demonstrația precedentă, aratând că este inel euclidian. Într-adevăr, pentru , -, există , - astfel încât și ori ori

    grad grad . Într-adevăr fie

    . Folosind inducție după avem: Pentru și afirmația este evidentă.

    Presupunem că ea este divizată pentru și fie de gradul

    are grad

    cu și ori ori grad grad

  • Romanian Mathematical Society-Mehedinți Branch 2020

    34 ROMANIAN MATHEMATICAL MAGAZINE NR. 26

    .

    / deci luând

    și

    obținem afirmația și pentru . Luând acum , - * + prin ( ) grad , obținem euclidianeitatea (deci și factorialitatea) lui , -

    7. În general, dacă este factorial , - este factorial după cum rezultă folosind exemplul 6. Aplicând metoda reducție.

    8. Există inele factoriale neprincipale. Într-adevăr: fie inel factorial care nu este corp neinversabil. Fie în , - idealul ( ). Dacă acest ideal ar fi principal, ar exista , - astfel ca , - , - , - | și | și este inversabil , - , - , - astfel ca ( ) ( ) . Nu se poate ca căci ar rezulta inversabil . Facând ( ) deci iarăși o absurditate

    nu avem că ( ) este principal. Deoarece am văzut că , - este factorial , - este factorial și nu este principal când este inel factorial care nu este corp.

    9. , - * | + (inelul întregilor lui Gauss) este inel euclidian deci este factorial (și principal).

    Demonstrație. Definim ( ) ( )( ) numită norma lui

    . Evident ( ) ( ) ( ). Apoi , -, există , - astfel ca

    și ori ori ( ) ( ). Într-adevăr dacă

    , - cu

    astfel ca | |

    | |

    . Luăm .

    Avem .

    / ( ) ( )

    și ( ) 0 .

    /1 ( ) .

    /

    ( ) ( ). Deci ( ) ( ) verifică faptul că , - este inel euclidian.

    10. Fie [ √ ] { √ | } care este inel integru. El nu este factorial. Într-adevăr

    fie ( √ ) ( √ )( √ ) (norma)

    Evident ( ) ( ) ( ) și | ( )| ( ). Apoi ( este unitate în [ √ ])

    ( ( ) ) * +. În fine este un element ireductibil care nu este prim. Într-adevăr, dacă ( ) ( ) ( ) ( ) ( ). Cum se consideră neunități și neasociate cu ( ) ( ) . Cum nu are soluții în

    nu există neunități și neasociate cu astfel că este ireductibil în [ √ ].

    Nu este prim însă fiindcă | ( √ )( √ ) și 3 √ căci dacă | √

    ( )| ( √ ) | ceea ce este fals.

    11. Inelul , - de asemenea nu este factorial fiindcă nu există ( ).

  • Romanian Mathematical Society-Mehedinți Branch 2020

    35 ROMANIAN MATHEMATICAL MAGAZINE NR. 26

    12. Dacă este factorial și și ( ) și deci cu (identitatea lui Bezout)

    13. Fie inel integru în care orice element nenul și neinversabil se descompune în produs finit de elemente ireductibile.

    Atunci: Acest factorial , idealul (în acest caz, , -)

    Demonstrație:

    ” ” Dacă este factorial , -. Avem caci dacă

    | , iar dacă

    deci . Reciproc: , -

    ( ) deci cu Teorema 2 avem că este factorial.

    ABOUT SOME CLASSES OF SEQUENCES

    By Florică Anastase-Romania

    ABSTRACT: In this article are studied few classes of sequences gived by initial conditions and a nonlinear formula of recurrence.

    Application 1: ( ) is a sequence of real numbers with

    . Find:

    ( )

    Solution: From

    ( ) descending and ( ) is convergent, then

    .

    / ( )

    ( )

    √ .

    /

    ( )

    Application 2: ( ) is a sequence of real numbers ( ), and √

    . Find:

    ( )

    Solution: We prove: ( ) √

    √ √

    √ (√ √ )

  • Romanian Mathematical Society-Mehedinți Branch 2020

    36 ROMANIAN MATHEMATICAL MAGAZINE NR. 26

    ( )( )

    √ (√ √ ) ( ) is increasing. So: ( ) is convergent and

    , .

    / for and

    ( )

    .

    /

    [.

    /

    ]

    .

    /

    .

    /

    Application 3:

    If ( ) is a sequence of real numbers ( ), and √ √

    . Find:

    ( )

    Solution: We prove to: ( ) , and ( ) then .

    /

    for which . We have:

    √ √

    . So:

    ( )

    Application 4:

    ( ) is a sequence of real numbers and √ . Find:

    Solution: √ ( ) is increasing and

    ( ) sequence of real numbers .

    /

    √ .

    /

    .

    /

    .

    /

    is a geometric progression with:

    and

    .

    /

  • Romanian Mathematical Society-Mehedinți Branch 2020

    37 ROMANIAN MATHEMATICAL MAGAZINE NR. 26

    .

    /

    .

    /

    .

    /

    Application 5: ( ) is a sequence of real numbers

    Find:

    Solution:

    and

    .

    / √

    .

    /

    Application 6: Find:

    (

    ( √

    ) √

    ( √

    ( √

    ),

    ⏟ )

    Solution:

    Let

    (

    4 √

    5 √

    ( √

    4 √

    5)

    ⏟ )

    ( √

    )

    ( √

    ( √

    ),

  • Romanian Mathematical Society-Mehedinți Branch 2020

    38 ROMANIAN MATHEMATICAL MAGAZINE NR. 26

    then:

    Application 7: ( )

    .

    / ( ) is a sequcen of real numbers and

    .

    /. Study the convergence of sequence ( ) and find: ( )

    Solution: From

    .

    /

    From

    , and

    .

    / then

    ( ) ( ) is convergent.

    .

    /

    (

    +

    (

    +

    Refferences: Romanian Mathematical Magazine-Interactive Journal- www.ssmrmh.ro

    ABOUT PROBLEM JP.207-RMM-SPRING EDITION 2020

    By Marin Chirciu – Romania

    1) In the following relationship holds:

    Proposed by George Apostolopoulos – Messolonghi – Greece

    Solution: Lemma:

    1) In the following relationship holds:

    ( )

    http://www.ssmrmh.ro/

  • Romanian Mathematical Society-Mehedinți Branch 2020

    39 ROMANIAN MATHEMATICAL MAGAZINE NR. 26

    Proof. We use

    hence:

    ∑ ( )( )

    ( ), which is a consequence of:

    ∑ ( )( ) ( )

    Back to the main problem: By Lemma the inequality becomes: ( )

    ,

    which is equivalent with Euler’s , ( )( ) and . Equality holds for an equilateral triangle.

    Remark. Replacing by we obtain:

    2) In the following relationship holds:

    Proposed by Marin Chirciu – Romania

    Solution: Lemma

    3) In the following relationship holds:

    Proof: By

    we obtain:

    ( )

    . Which is a consequence of: ∑

    ( )

    Back to the main problem: By Lemma inequality can be written:

    For the right-hand inequality:

    ( ) ( )

    Case 1). If ( ) , the inequality is obvious.

    Case 2). If ( ) , the inequality can be written:

    ( ) ( )

    Which follows by Gerretsen’s inequality: . It remains to prove that:

  • Romanian Mathematical Society-Mehedinți Branch 2020

    40 ROMANIAN MATHEMATICAL MAGAZINE NR. 26

    ( ) ( )( )

    ( )( ) , obviously by Euler .

    For the left-hand inequality:

    . Which is a

    consequence of Gerretsen’s inequality: . It remains to prove:

    (Euler’s inequality)

    Equality holds for an equilateral triangle.

    Remark. Between sums

    and

    . The following

    relationship exists:

    4) In the following relationship holds:

    Proposed by Marin Chirciu – Romania

    Solution: By lemmas ∑

    and ∑

    ( ), the inequality can

    be written:

    ( ) ,

    Which follows by Gerretsen’s inequality: . It remains to prove that:

    ( )( )

    Obviously by Euler’s inequality: . Equality holds for an equilateral triangle.

    Refferences: Romanian Mathematical Magazine – Interactive Journal – www.ssmrmh.ro

    ABOUT PROBLEM JP.227-16 RMM – SPRING EDITION 2020

    By Marin Chirciu – Romania

    1) Prove that in any triangle the following relationship holds:

    (

    ) ( )

    Proposed by Nguyen Viet Hung – Hanoi – Vietnam

    http://www.ssmrmh.ro/

  • Romanian Mathematical Society-Mehedinți Branch 2020

    41 ROMANIAN MATHEMATICAL MAGAZINE NR. 26

    Solution: We use Hölder’s inequality:

    ( )

    ( ) , with

    equality if and only if

    and the known identities in triangle:

    . We obtain:

    ( )

    (

    *

    ( )

    ( ) , wherefrom (

    ) ( ) . Equality if and only if the

    triangle is equilateral.

    Remark. Analogous we can propose:

    2) In the following relationship holds:

    ( )

    Solution: We use Bergström’s inequality:

    ( )

    , with

    equality if and only if

    and the known identities in triangle:

    . We obtain:

    ( )

    ( )

    ( ) , wherefrom

    ( )

    Equality holds if and only if the triangle is equilateral.

    Remark. The problem can be developed:

    3) In the following relationship holds:

    (

    ) ( ) , where

    Proposed by Marin Chirciu – Romania

    Solution: We use Hölder’s inequality:

    ( )

    ( ) and

    , with equality if and only if

    and the know identities in triangle

    . We obtain:

    ( )

    (

    *

    ( )

    ( ) ,

    wherefrom (

    ) ( )

    Equality holds if and only if the triangle is equilateral.

  • Romanian Mathematical Society-Mehedinți Branch 2020

    42 ROMANIAN MATHEMATICAL MAGAZINE NR. 26

    Remark: Replacing with we propose:

    4) Prove that in any triangle the following relationship holds:

    (

    ) ( )

    Solution: We use Hölder’s inequality:

    ( )

    ( ) , with

    equality if and only if

    and the known identities in triangle.

    . We obtain:

    ( )

    (

    *

    ( )

    ( ) , wherefrom

    (

    ) ( ) . Equality holds if and only if the triangle is equilateral.

    Remark.

    5) In the following relationship holds:

    ( )

    Solution: We use Bergström’s inequality

    ( )

    , with

    equality if and only if the

    and the known identities in triangle

    . We obtain:

    ( )

    ( )

    ( ) , wherefrom

    ( ) .

    Equality holds if and only if the triangle is equilateral.

    6) In the following relationship holds:

    (

    ) ( ) , where

    Proposed by Marin Chirciu – Romania

    Solution: We use Hölder’s inequality

    ( )

    ( ) and

    with equality if and only if

    and the known identities in triangle

    we obtain:

    ( )

    (

    *

    ( )

  • Romanian Mathematical Society-Mehedinți Branch 2020

    43 ROMANIAN MATHEMATICAL MAGAZINE NR. 26

    ( ) , wherefrom (

    ) ( )

    Equality holds if and only if the triangle is equilateral.

    Remark.

    7) In the following inequality holds:

    .

    / ( ) , where

    Proposed by Marin Chirciu – Romania

    Solution: We use Hölder’s inequality

    ( )

    ( ) and

    , with equality if and only if

    and the known identies in triangle

    We obtain:

    ( )

    .

    /

    ( )

    ( ) , wherefrom (

    ) ( )

    Equality holds if and only if the triangle is equilateral.

    8) In the following relationship holds:

    .

    / ( ) , where

    Proposed by Marin Chirciu – Romania

    Solution: We use Hölder’s inequality

    ( )

    ( ) and

    with equality if and only if

    and the known identies in triangle

    We obtain:

    ( ) , where (

    ) ( )

    Equality holds if and only if the triangle is equilateral.

  • Romanian Mathematical Society-Mehedinți Branch 2020

    44 ROMANIAN MATHEMATICAL MAGAZINE NR. 26

    ( )

    .

    /

    ( )

    ( ) , wherefrom

    (

    * ( )

    Equality holds if and only if the triangle is equilateral.

    9) In the following relationship holds:

    (

    ) ( ) , where

    Proposed by Marin Chiricu – Romania

    Solution: We use Hölder’s inequality:

    ( )

    ( ) and

    , with equality if and only if

    and the known relationships in triangle

    . We obtain:

    ( )

    .

    /

    ( )

    ( ) , wherefrom (

    ) ( )

    Equality holds if and only if the triangle is equilateral.

    10) In the following relationship holds:

    (

    ) ( ) , where

    Proposed by Marin Chirciu – Romania

    Solution: We use Hölder’s inequality

    ( )

    ( ) and

    , with equality if and only if

    and the known relationships in triangle

    We obtain:

    ( )

    .

    /

    ( )

  • Romanian Mathematical Society-Mehedinți Branch 2020

    45 ROMANIAN MATHEMATICAL MAGAZINE NR. 26

    ( ) , wherefrom (

    ) ( )

    Equality holds if and only if the triangle is equilateral.

    ABOUT PROBLEM JP.228-16 RMM SPRING EDITION 2020

    Proposed by Marin Chirciu – Romania

    1) Prove that if are the lengths of the sides of a triangle, then:

    ( )

    Proposed by Nguyen Viet Hung – Hanoi – Vietnam

    Solution: We prove the stronger inequality:

    2) In the following inequality holds: √

    Solution: We have: (∑√

    *

    ∑√

    ∑√

    ( )( )

    , which follows from:

    ( )

    ( )( )

    and ∑

    , true from:

    , because ∑

    (from Jensen)

    Equality holds if and only if the triangle is equilateral.

    Remark: Inequality 2) is stronger than inequality 1):

    3) In the following relationship holds: √

    ( )

    Solution

    ( )

    ( )

    ( )

  • Romanian Mathematical Society-Mehedinți Branch 2020

    46 ROMANIAN MATHEMATICAL MAGAZINE NR. 26

    ( )

    ( )

    ( ), ( ) ( ) -

    , ( ) ( )( )- ( ) ( )

    We distinguish the following cases:

    Case 1). If ( ) , obvious inequality.

    Case 2). If ( ) , the inequality can be rewritten:

    ( ) ( ) , ( ) ( )( )-, which follows from

    Blundon-Gerretsen’s inequality: ( )

    ( )

    It remains to prove that: ( ) ( )

    ( )

    ( ),( )( ) ( )( )-

    ( )( )

    Obviously from Euler’s inequality . Equality holds if and only if the triangle is equilateral.

    Remark: The inequalities can be written:

    4) In the following inequality holds:

    ( )

    Solution: See inequalities 2) and 3).Equality holds if and only if the triangle is equilateral.

    Remark: Let’s find an inequality having an opposite sense:

    5) In the following relationship holds:

    Solution: We have: (∑√

    *

    ∑√

  • Romanian Mathematical Society-Mehedinți Branch 2020

    47 ROMANIAN MATHEMATICAL MAGAZINE NR. 26

    ∑√

    ( )( )

    ( )

    which follows from: ∑

    ( )

    ( )( )

    and ∑

    ( )

    , true from CBS:

    We obtain: 4∑

    5

    (∑

    √( )( )

    )

    (∑√

    √( )( )*

    ∑ ∑

    ( )( )

    ( )

    ( )

    We’ve used: ∑ ∑

    ( )( )

    and

    (Gerretsen). It follows that ∑

    ( )

    Equality holds if and only if the triangle is equilateral.

    Remark: We can write the double inequality:

    6) In the following relationship holds:

    Proposed by Marin Chirciu – Romania

    Solution: See inequalities 2) and 5). Equality holds if and only if the triangle is equilateral.

    Remark. The sequence of inequalities can be written:

    7) In the following relationship holds:

    ( )

    Solution: See inequalities 4), 6), Euler’s inequality and ( ) ( ). Equality holds if and only if the triangle is equilateral.

  • Romanian Mathematical Society-Mehedinți Branch 2020

    48 ROMANIAN MATHEMATICAL MAGAZINE NR. 26

    ABOUT PROBLEM JP.232-16 RMM SPRING 2020

    Proposed by Marin Chirciu – Romania

    1) Prove that in any triangle the following relationship holds:

    Proposed by Nguyen Viet Hung – Hanoi – Vietnam

    Solution: We prove the following: Lemma:

    2) In the following relationship holds: √

    Solution: We have: (√

    *

    ∑√

    [.

    /

    ]

    .

    /

    , which follows from ∑

    [.

    /

    ] and

    . Let’s get to the main problem: Using the Lemma, the inequality can be written:

    √ (Doucet’s inequality). Equality holds if and only if the

    triangle is equilateral. Remark. Let’s find an inequality having an opposite sense:

    3) In the following relationship holds: √

    Proposed by Marin Chirciu – Romania

    Solution: Using the Lemma, the inequality can be written:

    (

    *

    4 √

    5

    ( ) , which follows from Gerretsen’s inequality

    ( )

    . It remains to prove that:

  • Romanian Mathematical Society-Mehedinți Branch 2020

    49 ROMANIAN MATHEMATICAL MAGAZINE NR. 26

    ( )

    ( ) ( )( )

    Obviously from Euler’s inequality . Equality holds if and only if the triangle is equilateral.

    Remark. We can write the double inequality:

    4) In the following relationship holds: √

    Solution: See inequalities 1) and 3). Equality holds if and only if the triangle is equilateral.

    Remark. Replacing with we propose:

    5) In the following relationship holds: √

    Proposed by Marin Chirciu – Romania

    Solution: We prove the following Lemma:

    6) In the following relationship holds:

    (√

    )

    ( ) ( )

    Solution: We have (√

    *

    ∑√

    ( ) ( )

    ( ) ( )

    Which follows from ∑

    ( ) ( )

    and ∑

    Let’s get back to the main problem: Using the Lemma, the inequality can be written:

    ( ) ( )

    ( ) ( )

    We distinguish the following cases:

    Case 1). If ( ) , the inequality is obvious.

    Case 2). If ( ) , the inequality can be written:

  • Romanian Mathematical Society-Mehedinți Branch 2020

    50 ROMANIAN MATHEMATICAL MAGAZINE NR. 26

    ( ) ( ), which follows from Blundon-Gerretsen’s inequality:

    ( )

    ( ). It remains to prove that:

    ( ) ( )

    ( )( ) (Euler’s inequality)

    Equality holds if and only if the triangle is equilateral.

    Remark. Let’s find an inequality having an opposite sense:

    7) In the following inequality follows:

    Proposed by Marin Chirciu – Romania

    Solution: Using the Lemma, the inequality can be written:

    ( ) ( )

    ( ) ( ) which follows from Gerretsen’s inequality

    ( )

    . It remains to prove that:

    ( )

    ( ( )) ( )

    ( )( )

    Obviously from Euler’s inequality . Equality holds if and only if the triangle is equilateral.

    Remark. The double inequality can be written:

    8) In the following relationship holds:

    Proposed by Marin Chirciu – Romania

    Solution: See inequalities 5) and 7). Equality holds if and only if the triangle is equilateral.

  • Romanian Mathematical Society-Mehedinți Branch 2020

    51 ROMANIAN MATHEMATICAL MAGAZINE NR. 26

    ABOUT PROBLEM JP.247-17 RMM SUMMER EDITION 2020

    By Marin Chirciu – Romania

    1) If then: (√ √ √ ) ( )

    Proposed by Nguyen Viet Hung – Hanoi – Vietnam

    Solution: Lemma:

    2) If then: ∑ ( ) ∑ ( )

    Proof: It follows by Schur’s inequality:

    ( )( ) ( )( ) ( )( ) ,

    for . Equality holds if and only if . Back to the problem:

    Denote √ √ √ . The inequality can be written:

    ( ) ( ). By homogeneity becomes:

    ( ) ( ) ( )

    ∑ ∑ ∑ ∑ (1)

    By (1) and Schur’s lemma it suffices to prove:

    ∑ ( ) ( ) ∑ ∑ ∑

    ∑ ( ) ∑ ( ) ∑ ∑ ( ) ∑

    ∑ ( ) ∑ ( ) , equality holds for .

    Equality holds if and only if

    .

    Remark. The inequality can be generalized:

    3) If then: (√ √ √ ) ( ) ( )( )

    Proposed by Marin Chirciu – Romania

    Solution: Denote √ √ √ . The inequality can be written:

  • Romanian Mathematical Society-Mehedinți Branch 2020

    52 ROMANIAN MATHEMATICAL MAGAZINE NR. 26

    ( ) ( ) ( )( )

    By homogeneity it becomes:

    ( ) ( ) ( ) ( )( )

    ( )∑ ∑ ∑ ( )∑ (2)

    By (2) and Schur’s lemma it suffices to prove:

    ( ) 0∑ ( ) ( )1 ∑ ∑ ( )∑

    ( )∑ ( ) ( ) ( ) ∑ ( )

    ( )∑

    ( )∑ ( ) ( ) ( ) ( )∑

    ( )∑ ( ) ( ) ( )

    ( )∑ ( )∑

    ( )∑ ( ) ( ) ( ) ( )∑

    ( )∑ ( ) ( )4∑ ( )5

    Obviously, because ∑ ( ) ∑ ( )

    Equality holds for . Equality holds if and only if

    .

    Note: For we obtain problem JP.247 – 17 RMM Summer Edition 2020, proposed by Nguyen Viet Hung, Hanoi, Vietnam. Application in triangle:

    4) In if then:

    (√

    )

    Proposed by Marin Chirciu – Romania

  • Romanian Mathematical Society-Mehedinți Branch 2020

    53 ROMANIAN MATHEMATICAL MAGAZINE NR. 26

    Solution: Replace in 3) ( ) by .

    / and using the relationship:

    .Equality holds if and only if .

    References: Romanian Mathematical Magazine – Interactive Journal – www.ssmrmh.ro

    PROPOSED PROBLEMS

    5-CLASS-STANDARD

    V.1. a) Let be the number ⏟

    . Find the reminder of the division of the number

    by .

    b) Does number ⏟

    divides with ?

    Proposed Corina Maria Viespescu, Mihai Ionescu –Romania

    V.2. Fie . Dacă ( ) și ( ) arătați că

    . Proposed by Petre Stângescu-Romania

    V.3. Aflați dacă restul împărțirii lui la este , iar diferența dintre câtul împărțirii

    lui la și câtul împărțirii lui la este . Proposed by Petre Stângescu-Romania

    V.4. Fie cu și . Arătați că .

    Proposed by Petre Stângescu-Romania

    V.5. Aflați numărul știind că la împărțirea cu dă restul , iar la împărțirea cu dă

    câtul . Proposed by Petre Stângescu-Romania

    V.6. Fie , cu și . Aflați și dacă câtul

    împărțirii lui la este iar câtul împărțirii lui la este 30.

    Proposed by Petre Stângescu-Romania

    V.7. Aflați numărul de trei cifre ̅̅ ̅̅ ̅ pentru care câtul împărțirii lui ̅̅ ̅̅ ̅ la inversul său

    este , iar restul este . Proposed by Petre Stângescu-Romania

    http://www.ssmrmh.ro/

  • Romanian Mathematical Society-Mehedinți Branch 2020

    54 ROMANIAN MATHEMATICAL MAGAZINE NR. 26

    V.8. Fie . Aflați restul împărțirii lui la .

    Proposed by Petre Stângescu-Romania

    V.9. Fie mulțimea * | |( )+. Aflați card ( ).

    Proposed by Petre Stângescu-Romania

    V.10. Aflați dacă . Proposed by Petre Stângescu-Romania

    V.11. Fie cu | . Aflați dacă ( ) ( ) .

    Proposed by Petre Stângescu-Romania

    V.12. Find all prime numbers, such that: are prime numbers.

    Proposed by Gheorghe Calafeteanu – Romania

    V.13. If is a prime number prove that: ( ) is perfect square.

    Proposed by Gheorghe Calafeteanu – Romania

    V.14.

    If each letter represents distinct non-zero digits then prove that there exist no solution.

    Proposed by Naren Bhandari – Nepal

    All solutions for proposed problems can be finded on the http//:www.ssmrmh.ro which is the adress of Romanian Mathematical

    Magazine-Interactive Journal. 6-CLASS-STANDARD

  • Romanian Mathematical Society-Mehedinți Branch 2020

    55 ROMANIAN MATHEMATICAL MAGAZINE NR. 26

    VI.1. Se consideră dreptunghic în . Fie punctele ( ) cu este bisectoarea din și este mijlocul segmentului , -. Arătați că dacă avem:

    1) ( )

    2) este bisectoarea . Proposed by Petre Stângescu-Romania

    VI.2. Determinați mulțimea *( ) | +.

    Proposed by Petre Stângescu-Romania

    VI.3. Fie astfel încât |( ). Să se arate că nu poate fi poate fi pătrat perfect. Proposed by Petre Stângescu-Romania

    VI.4. Aflați toate numerele ̅̅ ̅̅ ̅ de trei cifre nenule pentru care

    ̅̅ ̅̅ ̅ ( ̅̅ ̅ ̅̅ ̅ ̅̅ ̅) . Proposed by Petre Stângescu-Romania

    VI.5. Aflați numărul ̅̅ ̅̅ ̅̅ ̅ de patru cifre nenule știind că ̅̅ ̅̅ ̅̅ ̅ ̅̅ ̅̅ ̅ ̅̅ ̅̅ ̅ ̅̅ ̅̅ ̅ ̅̅ ̅̅ ̅

    Proposed by Petre Stângescu-Romania

    VI.6. Să se demonstreze că pentru orice și număr prim, numărul nu poate fi cub perfect. Proposed by Petre Stângescu-Romania

    VI.7. Aflați numărul ̅̅ ̅̅ ̅̅ ̅ știind că ̅̅ ̅̅ ̅̅ ̅ este pătrat perfect.

    Proposed by Petre Stângescu-Romania

    VI.8. Suma a două numere naturale nenule este . Împărțind pe unul la celălalt obținem restul . Aflați numerele. Proposed by Petre Stângescu-Romania

    VI.9. Fie oarecare. Să se arate că , -.

    Proposed by Petre Stângescu-Romania

    VI.10. Fie . Să se arate că: ( ) , -

    Proposed by Petre Stângescu-Romania

    VI.11. Fie . Demonstrați că ( ) , - dacă și numai dacă și sunt direct sau invers proporționale cu numerele respectiv .

    Proposed by Petre Stângescu-Romania

    VI.12. Un călător a parcurs un drum în trei zile. În prima zi a parcurs din cât a parcurs în

    celelalte două zile. În a doua zi a parcurs din cât a parcurs în celelalte două zile. În ultima zi a parcurs km, număr prim. Știind că în fiecare zi numărul kilometrilor parcurși este un număr natural, aflați lungimea drumului parcurs de călător.

    Proposed by Petre Stângescu-Romania

  • Romanian Mathematical Society-Mehedinți Branch 2020

    56 ROMANIAN MATHEMATICAL MAGAZINE NR. 26

    VI.13. Aflați restul împărțirii la al numărului .

    Proposed by Petre Stângescu-Romania

    VI.14. Fie cu și ( ). Să se arate că | | .

    Proposed by Petre Stângescu-Romania

    VI.15. If prove that is divisible with if and only if is divisible

    with 23. Proposed by Gheorghe Calafeteanu – Romania

    VI.16. Prove that for the number can’t be a perfect square.

    Proposed by Gheorghe Calafeteanu – Romania

    All solutions for proposed problems can be finded on the http//:www.ssmrmh.ro which is the adress of Romanian Mathematical Magazine-Interactive Journal.

    7-CLASS-STANDARD

    VII.1. Let be triangle, the middle of ( ) ( ) such that and

    ( ) . Prove that the points are collinears.

    Proposed by Petre Rău – Romania

    VII.2. Prove that for any two natural real numbers and and any nonzero natural number

    the following inequality is true: ( ) ( ).

    Proposed by Petre Rău –Romania

    VII.3. Fie dreptunghic în . Dacă și ( ( )) sunt bisectoarea, respectiv

    mediana din , iar este aria ( ), arătați că: √ .

    Proposed by Petre Stângescu-Romania

    VII.4 Fie cu ( ) sunt bisectoarea, respectiv înălțimea din

    ( ( ))

    i) Arătați că

    √ . ii) Dacă

    , aflați raportul catetelor

    Proposed by Petre Stângescu-Romania

  • Romanian Mathematical Society-Mehedinți Branch 2020

    57 ROMANIAN MATHEMATICAL MAGAZINE NR. 26

    VII.5. Fie cu și . Să se arate că

    .

    Proposed by Petre Stângescu-Romania

    VII.6. Să se demonstreze că nu există cu .

    Proposed by Petre Stângescu-Romania

    VII.7. În dreptunghic în , punctele ( ) sunt picioarele înălțimii

    bisectoarei și medianei din . Dacă

    , aflați măsurile unghiurilor ascuțite ale .

    Proposed by Petre Stângescu-Romania

    VII.8. În ( ). Dacă , arătați că

    este dreptunghic. Proposed by Petre Stângescu-Romania

    VII.9. În cu ( ). Dacă

    , arătați că este

    dreptunghic.

    Proposed by Petre Stângescu-Romania

    VII.10. Fie dreptunghic în . Se consideră ( ) astfel încât

    . Aflați

    ( ). Proposed by Petre Stângescu-Romania

    VII.11 Fie cu ( ) . În exteriorul se consideră semicercul de

    diametru , -. Dacă să se arate că . ⏜/ .

    Proposed by Petre Stângescu-Romania

    VII.12. În ( ) . Știind că ( ) (√ ), aflați ( ) și

    ( ). Proposed by Petre Stângescu-Romania

    VII.13. Fie cu și . Demonstrați că ( )

    Proposed by Petre Stângescu-Romania

    VII.14. Fie cu . Arătați că dacă astfel încât și

    , atunci . Proposed by Petre Stângescu-Romania

    VII.15. Dacă astfel încât și , arătați că atunci

    . Proposed by Petre Stângescu-Romania

    VII.16. Fie √ √ √ √ , unde cu . Aflați și știind că

    media aritmetică și media geometrică a numerelor și sunt raționale.

    Proposed by Petre Stângescu-Romania

  • Romanian Mathematical Society-Mehedinți Branch 2020

    58 ROMANIAN MATHEMATICAL MAGAZINE NR. 26

    VII.17. For prove that: √

    Proposed by Gheorghe Calafeteanu – Romania

    VII.18. Find: 0√ √ √ √

    √ √ 1 , - - great integer function.

    Proposed by Gheorghe Calafeteanu – Romania

    All solutions for proposed problems can be finded on the http//:www.ssmrmh.ro which is the adress of Romanian Mathematical

    Magazine-Interactive Journal. 8-CLASS-STANDARD

    VIII.1. If then: * + 2

    3 2

    3 √* +

    * + , - , - - great integer function

    Proposed by Daniel Sitaru,Emil Stanciu – Romania

    VIII.2. If ( ), then:

    .

    /

    (

    *

    .

    /

    (

    *

    4.

    /

    (

    *

    .

    /

    (

    *

    5

    4.

    /

    (

    *

    .

    /

    (

    *

    5

    Proposed by D. M. Bătinețu – Giurgiu, Eugenia Turcu – Romania

    VIII.3. If ( ), then:

    .

    /

    (

    *

    .

    /

    (

    *

    Proposed by D. M. Bătinețu – Giurgiu, Lucian Lazăr – Romania

    VIII.4. If , then:

    4

    54

    54

    5

    ( )( )( )

    Proposed by D. M. Bătinețu – Giurgiu, Elena Nicu– Romania

  • Romanian Mathematical Society-Mehedinți Branch 2020

    59 ROMANIAN MATHEMATICAL MAGAZINE NR. 26

    VIII.5. If , then:

    (

    *

    Proposed by D. M. Bătinețu – Giurgiu, Daniela Micu – Romania

    VIII.6. If ( ), then: .

    /

    .

    /

    .

    /

    Proposed by D. M. Bătinețu – Giurgiu,Sorin Pîrlea – Romania

    VIII.7. 1. If we have the real numbers with and , prove that:

    ( )

    ( )

    ( )

    Proposed by Petre Rău– Romania

    VIII.8. Solve in the following system of equations: {( )( )

    ( )( )

    Proposed by Mioara Mihaela Mirea, Sorin Dumitrescu– Romania

    VIII.9. Aflați pentru care

    .

    Proposed by Petre Stângescu-Romania

    VIII.10. Fie cifre nenule, și √ ⏟

    ̅̅ ̅̅ ̅̅ ̅̅ ̅̅ √ ⏟

    ̅̅ ̅̅ ̅̅ ̅̅ ̅̅ .

    Aflați știind că . Proposed by Petre Stângescu-Romania

    VIII.11. Să se arate că dacă și sunt cifre, și , atunci √ ̅̅ ̅̅ ̅̅ ̅

    Proposed by Petre Stângescu-Romania

    VIII.12. Fie cu . Să se arate că √ ( )

    Proposed by Petre Stângescu-Romania

    VIII.13. Fie dreptunghi în . Dacă este lungimea bisectoarei din și este

    lungimea medianei din , aflați unghiurile ascuțite ale dacă

    √ √

    Proposed by Petre Stângescu-Romania

    VIII.14. Aflați dacă .

    Proposed by Petre Stângescu-Romania

  • Romanian Mathematical Society-Mehedinți Branch 2020

    60 ROMANIAN MATHEMATICAL MAGAZINE NR. 26

    VIII.15. Un trapez ( ) cm, cm este în același timp înscris într-un cerc de rază și circumscris unui cerc de rază . Aflați și .

    Proposed by Petre Stângescu-Romania

    VIII.16. If then:

    Proposed by Rahim Shahbazov- Azerbaijan

    VIII.17. Solve for natural numbers: {

    ( )

    Proposed by Gheorghe Calafeteanu – Romania

    VIII.18. Solve for real numbers: ,

    ,

    Proposed by Gheorghe Calafeteanu – Romania

    VIII.19. Solve for real numbers: {

    {

    Proposed by Gheorghe Calafeteanu – Romania

    VIII.20. Solve for integers:

    Proposed by Gheorghe Calafeteanu – Romania

    VIII.21. Solve for real numbers: {

    Proposed by Gheorghe Calafeteanu – Romania

    VIII.22. Let such that . Prove that:

    (

    *

    Proposed by Marin Chirciu – Romania

    VIII.23. Let and . Prove that:

    Proposed by Marin Chirciu – Romania

    VIII.24. If denotes the distinct or identical digits and

  • Romanian Mathematical Society-Mehedinți Branch 2020

    61 ROMANIAN MATHEMATICAL MAGAZINE NR. 26

    ie there exist the multiple of 17 such that sum of the digits is . Find such smallest and largest four-digit multiple of . Proposed by Naren Bhandari – Nepal

    VIII.25. If then:

    ( )( )( )

    (

    *

    Proposed by Daniel Sitaru-Romania

    All solutions for proposed problems can be finded on the http//:www.ssmrmh.ro which is the adress of Romanian Mathematical

    Magazine-Interactive Journal. 9-CLASS-STANDARD

    IX.1. In are distances from ( ) to sides of triangle. Prove that:

    √ √ √ √

    Proposed by Daniel Sitaru,Gabriel Tica -Romania

    IX.2. In the following relationship holds:

    (∑( )

    )(∑

    ( )

    ) ∑

    ( )

    Proposed by Daniel Sitaru,Cătălin Pană -Romania

    IX.3. In the following relationship holds: √ ( )

    ( )( )

    Proposed by Daniel Sitaru,Alina Tigae -Romania

    IX.4. In acute – orthocenter, – incenter the following relationship holds:

    4

    5 4

    5

    ( )

    Proposed by Daniel Sitaru,Ramona Nălbaru -Romania

    IX.5. If then:

  • Romanian Mathematical Society-Mehedinți Branch 2020

    62 ROMANIAN MATHEMATICAL MAGAZINE NR. 26

    ( )

    ( )( )

    Proposed by Daniel Sitaru,Claudiu Ciulcu -Romania

    IX.6. If ( ) then in any triangle having the area the following

    inequality holds:

    √( )( ) √( )( )

    √( )( ) √

    Proposed by D.M. Bătinețu – Giurgiu, Claudia Nănuți – Romania

    IX.7. If ( ) and is a triangle having the area then:

    ( )

    ( )

    ( )

    ( ) √

    Proposed by D.M. Bătinețu-Giurgiu – Romania, Martin Lukarevski - Macedonia

    IX.8. In triangle having the area the following inequality holds:

    ( ) ( )

    ( ) √

    Proposed by D.M. Bătinețu-Giurgiu, Nicolae Radu – Romania

    IX.9. If , ) and is a triangle having the area , then:

    .

    /

    .

    /

    .

    /

    (√ )

    Proposed by D.M. Bătinețu-Giurgiu, Neculai Stanciu – Romania

    IX.10. If ( ) then in any triangle having the area the following

    inequality holds:

    4

    54

    ( ) 5

    Proposed by D.M. Bătinețu-Giurgiu,Nineta Oprescu– Romania

    IX.11. If ( ) then in any triangle having the area the following

    inequality holds:

    4

    5 4( ) ( )

    5

    Proposed by D.M. Bătinețu-Giurgiu,Dorina Goiceanu – Romania

  • Romanian Mathematical Society-Mehedinți Branch 2020

    63 ROMANIAN MATHEMATICAL MAGAZINE NR. 26

    IX.12. In any triangle the following inequality holds:

    where is the area of the triangle.

    Proposed by D.M. Bătinețu – Giurgiu,Virginia Grigorescu – Romania

    IX.13. If , ) and is a triangle having the area , then:

    ( )

    ( )

    ( ) √

    Proposed by D.M. Bătinețu-Giurgiu, Dan Nănuți – Romania

    IX.14. If , ) and then in triangle having the area the following


Recommended