+ All Categories
Home > Documents > Radiation Tolerant Optical Fibres for LHC Beam Instrumentation Radiation Effects T. Wijnands †,...

Radiation Tolerant Optical Fibres for LHC Beam Instrumentation Radiation Effects T. Wijnands †,...

Date post: 04-Jan-2016
Category:
Upload: christian-hutchinson
View: 221 times
Download: 1 times
Share this document with a friend
Popular Tags:
29
Radiation Tolerant Optical Fibres for LHC Beam Instrumentation Radiation Effects T. Wijnands , L.K. De Jonge , J. Kuhnhenn , S. K. Hoeffgen , U. Weinand CERN, TS Department Fraunhofer INT Euskirchen Germany
Transcript
Page 1: Radiation Tolerant Optical Fibres for LHC Beam Instrumentation Radiation Effects T. Wijnands †, L.K. De Jonge †, J. Kuhnhenn ‡, S. K. Hoeffgen ‡, U. Weinand.

Radiation Tolerant Optical Fibres for LHC Beam Instrumentation

Radiation Effects

T. Wijnands†, L.K. De Jonge†, J. Kuhnhenn‡, S. K. Hoeffgen‡, U. Weinand‡

†CERN, TS Department‡ Fraunhofer INT Euskirchen Germany

Page 2: Radiation Tolerant Optical Fibres for LHC Beam Instrumentation Radiation Effects T. Wijnands †, L.K. De Jonge †, J. Kuhnhenn ‡, S. K. Hoeffgen ‡, U. Weinand.

29-30 September 2007 6th LHC Radiation Workshop 2

Silica

• Silica (SiO2) exists in– crystalline form

– amorphous form (a-SiO2)

(amorphous : no long range order)

• a-SiO2 is easily formed :– bond angle can vary by ~70– rotation of bond is nearly free

Page 3: Radiation Tolerant Optical Fibres for LHC Beam Instrumentation Radiation Effects T. Wijnands †, L.K. De Jonge †, J. Kuhnhenn ‡, S. K. Hoeffgen ‡, U. Weinand.

29-30 September 2007 6th LHC Radiation Workshop 3

Silica Optical Fibers

• Fibres are long ‘drawn’ strands of silica• Fibre drawing generates additional disorder via

– irregular arrangements of Si and O in the lattice– impurity atoms (such as OH)

• Random structure leads to – light scattering – light absorption

• Dopants – to modify refractive index – to modify attenuation spectrum

Page 4: Radiation Tolerant Optical Fibres for LHC Beam Instrumentation Radiation Effects T. Wijnands †, L.K. De Jonge †, J. Kuhnhenn ‡, S. K. Hoeffgen ‡, U. Weinand.

29-30 September 2007 6th LHC Radiation Workshop 4

Color defects

• Color defects lead to optical absorption bands– Silanonol absorbs at 1380 nm (“water peak”)

(SiOH group from hydrogen pollution)

• Radiation creates additional color defects via– radiolysis mechanism (ionisation)– knock on mechanism (displacement)

Page 5: Radiation Tolerant Optical Fibres for LHC Beam Instrumentation Radiation Effects T. Wijnands †, L.K. De Jonge †, J. Kuhnhenn ‡, S. K. Hoeffgen ‡, U. Weinand.

29-30 September 2007 6th LHC Radiation Workshop 5

Optical fiber loss components

SiOH

AbsorptionScattering

-4

Page 6: Radiation Tolerant Optical Fibres for LHC Beam Instrumentation Radiation Effects T. Wijnands †, L.K. De Jonge †, J. Kuhnhenn ‡, S. K. Hoeffgen ‡, U. Weinand.

29-30 September 2007 6th LHC Radiation Workshop 6

Experimental techniques

Study radiation induced defects via :• Photoluminescence• Electron Spin Resonance• Optical attenuation measurements

– at fixed wavelengths (here 1310 and 1550 nm)– for complete spectrum (here only at beginning/end)

Page 7: Radiation Tolerant Optical Fibres for LHC Beam Instrumentation Radiation Effects T. Wijnands †, L.K. De Jonge †, J. Kuhnhenn ‡, S. K. Hoeffgen ‡, U. Weinand.

29-30 September 2007 6th LHC Radiation Workshop 7

Radiation tests in 1999-2000

Radiation Induced Attenuation (RIA) :

• SM fibre 1330 nm 0.1 dB/km per Gy

• LHC Tunnel (ARCs) : 10 Gy per year

Page 8: Radiation Tolerant Optical Fibres for LHC Beam Instrumentation Radiation Effects T. Wijnands †, L.K. De Jonge †, J. Kuhnhenn ‡, S. K. Hoeffgen ‡, U. Weinand.

29-30 September 2007 6th LHC Radiation Workshop 8

Collimation areas LHC

• Monte Carlo simulations (2005)– Fibres exposed to ~10 kGy/year

• Requirement :– RIA cannot exceed 6 dB total

for BPM analog signals– ~500 m fibre length exposed

This was a reason for concern :• 6 dB would be reached in 2.4 days LHC operation• For 10 yrs LHC we would need factor 1000 better• How about the ducts and blowing with oil ?

Surface Building

Acces shaft

Underground Tunnel

Underground Galery

Optical fiber

Acknowledgement : R. Schmidt

Page 9: Radiation Tolerant Optical Fibres for LHC Beam Instrumentation Radiation Effects T. Wijnands †, L.K. De Jonge †, J. Kuhnhenn ‡, S. K. Hoeffgen ‡, U. Weinand.

29-30 September 2007 6th LHC Radiation Workshop 9

60Co irradiation test standard SM LHC fibres

• Material testing for duct blowing technique • Attenuation at 1310 nm in fibres for tunnel in :

– Ge-P doped MCVD (Draka NK Cables Ltd)– Ge-doped PCVD (Draka Fibre Technology BV)

Page 10: Radiation Tolerant Optical Fibres for LHC Beam Instrumentation Radiation Effects T. Wijnands †, L.K. De Jonge †, J. Kuhnhenn ‡, S. K. Hoeffgen ‡, U. Weinand.

29-30 September 2007 6th LHC Radiation Workshop 10

Optical absorption in standard LHC SM fibres

Ge-doped

Ge-P doped

no irradiation

no irradiation Co-60

1 kGy/hr

Co-60

500 Gy/hr

Page 11: Radiation Tolerant Optical Fibres for LHC Beam Instrumentation Radiation Effects T. Wijnands †, L.K. De Jonge †, J. Kuhnhenn ‡, S. K. Hoeffgen ‡, U. Weinand.

29-30 September 2007 6th LHC Radiation Workshop 11

RIA in Ge-doped SM fibres

• In GeO2 fibres :– Ge(0), …, Ge(3) defects

(0,..,3 electrons trapped at O vacancies of Ge-ions)– Ge(0) and Ge(3) much lower in concentration

compared to Ge(1) and Ge(2)– 100-450 nm absorption bands

• Annealing– detrapping of the electrons– Ge(3) trap is deeper than G(2) and so on– Ge(3) gives residual attenuation

E.J. Friebele et al, J. Appl. Phys. Vol. 45 No.8 July 1974

Page 12: Radiation Tolerant Optical Fibres for LHC Beam Instrumentation Radiation Effects T. Wijnands †, L.K. De Jonge †, J. Kuhnhenn ‡, S. K. Hoeffgen ‡, U. Weinand.

29-30 September 2007 6th LHC Radiation Workshop 12

Optical absorption in standard LHC SM fibres

Ge-doped

Ge-P doped

no irradiation

no irradiation Co-60

1 kGy/hr

Co-60

500 Gy/hr

Page 13: Radiation Tolerant Optical Fibres for LHC Beam Instrumentation Radiation Effects T. Wijnands †, L.K. De Jonge †, J. Kuhnhenn ‡, S. K. Hoeffgen ‡, U. Weinand.

29-30 September 2007 6th LHC Radiation Workshop 13

RIA in Ge-P doped SM fibres

• In pure SiO2 - P2O5 fibres :– P1, P2, P3, P4, POHC and S defects observed– Absorption via P1 effect dominates at 1450 nm :

• PO32- molecular ions

– Annealing :• POHC decrease and PO3

2- increase

• all others constant

O

O

O

P

Griscom et al, J. Appl. Phys. Vol. 54 No.7 July 1983

Page 14: Radiation Tolerant Optical Fibres for LHC Beam Instrumentation Radiation Effects T. Wijnands †, L.K. De Jonge †, J. Kuhnhenn ‡, S. K. Hoeffgen ‡, U. Weinand.

29-30 September 2007 6th LHC Radiation Workshop 14

Optical Fibre irradiation tests – Fraunhofer INT

Sample preparation (video)

Fibre Splicing

Page 15: Radiation Tolerant Optical Fibres for LHC Beam Instrumentation Radiation Effects T. Wijnands †, L.K. De Jonge †, J. Kuhnhenn ‡, S. K. Hoeffgen ‡, U. Weinand.

29-30 September 2007 6th LHC Radiation Workshop 15

Screening test at Fraunhofer INT

Fusion sp lices

60C o

VariableAttenuator

LED/LDSource

2-Ch opticalPower m eter

BA

Con

nect

ors

C oupler

Lead box

Lead tubes

C oncrete sh ie ld ing

LabView controlleddata acquis ition system

GP

IB

Control com puter forrem ote access

E thernet

T herm ally s tab ilized m easurem ent booth

T est fibre spool

G am m am at TK1000(m ax. 600 C i 60Co)

F ibre optic cables

Page 16: Radiation Tolerant Optical Fibres for LHC Beam Instrumentation Radiation Effects T. Wijnands †, L.K. De Jonge †, J. Kuhnhenn ‡, S. K. Hoeffgen ‡, U. Weinand.

29-30 September 2007 6th LHC Radiation Workshop 16

Radiation Induced attenuation

0 2000 4000 6000 8000 10000

0

5

10

15

20

25

30

35

40

Ge-doped 1,2,3 PSC 1,2 Unknown F-doped

Indu

ced

Loss

[dB

/km

]

Dose [Gy(SiO2)]

=1310 nm, D=104 Gy, D=0.2 Gy/s, T=24-28°C, l=50-200 m, P=10/40 µW

1

3

2

2

1

Page 17: Radiation Tolerant Optical Fibres for LHC Beam Instrumentation Radiation Effects T. Wijnands †, L.K. De Jonge †, J. Kuhnhenn ‡, S. K. Hoeffgen ‡, U. Weinand.

29-30 September 2007 6th LHC Radiation Workshop 17

Standard Ge-doped SM fiber

10-2 10-1 100 101 102 103 104 105

0.1

1

10

100

1

3.0 Gy/s

1.4 Gy/s

0.2 Gy/s

Indu

ced

Loss

[dB

/km

]

Dose [Gy(SiO2)]

Dose rate variationParameter variation(1): Wavelength(2): Lightpower

2

0.02 Gy/s

1

2

Page 18: Radiation Tolerant Optical Fibres for LHC Beam Instrumentation Radiation Effects T. Wijnands †, L.K. De Jonge †, J. Kuhnhenn ‡, S. K. Hoeffgen ‡, U. Weinand.

29-30 September 2007 6th LHC Radiation Workshop 18

Radiation hardened F-doped fiber

10-2 10-1 100 101 102 103 104 105

0.1

1

3.0 Gy/s

1.4 Gy/s

0.2 Gy/s

Indu

ced

Loss

[dB

/km

]

Dose [Gy(SiO2)]

Dose rate variationParameter variation(1): Wavelength(2): Lightpower(3): Temperature

1

2

3

0.02 Gy/s

1

2

3

Page 19: Radiation Tolerant Optical Fibres for LHC Beam Instrumentation Radiation Effects T. Wijnands †, L.K. De Jonge †, J. Kuhnhenn ‡, S. K. Hoeffgen ‡, U. Weinand.

29-30 September 2007 6th LHC Radiation Workshop 19

High Energy Physics irradiation test at CERN

Fusion splices

1x8 PLCCoupler

LED/LDSource

2-Ch opticalPower meter

BA

LabView controlleddata acquisition system

GP

IB

Control computer forremote access Internet

Measurement booth

Up to 7 test fibre spools

16 Fibres in 72-way cable

1x8 MEMSSwitch

LightShutter

OTDR

Return fibres in 72-way cable

Inward fibres in 72-way cable

Lead cable reference fibre

Reference fibre

Beam

Page 20: Radiation Tolerant Optical Fibres for LHC Beam Instrumentation Radiation Effects T. Wijnands †, L.K. De Jonge †, J. Kuhnhenn ‡, S. K. Hoeffgen ‡, U. Weinand.

29-30 September 2007 6th LHC Radiation Workshop 20

LHC Radiation Test Facility (TCC2)

Page 21: Radiation Tolerant Optical Fibres for LHC Beam Instrumentation Radiation Effects T. Wijnands †, L.K. De Jonge †, J. Kuhnhenn ‡, S. K. Hoeffgen ‡, U. Weinand.

29-30 September 2007 6th LHC Radiation Workshop 21

High Energy Physics Radiation field

0 200 400 600 800 1000 1200 1400 1600 1800 2000

0.0

0.2

0.4

0.6

0.8

1.0

1.2

1.4

1.6

1.8

2.0

2.2

2.4

2.6

Indu

ced

Loss

[dB

/km

]

Dose [Gy]

Ge-doped Unknown F-doped

Page 22: Radiation Tolerant Optical Fibres for LHC Beam Instrumentation Radiation Effects T. Wijnands †, L.K. De Jonge †, J. Kuhnhenn ‡, S. K. Hoeffgen ‡, U. Weinand.

29-30 September 2007 6th LHC Radiation Workshop 22

High Energy Physics radiation field vs 60Co

0.1 1 10 100 1000

0.01

0.1

1

Complex field:

Indu

ced

Loss

[dB

/km

]

Dose [Gy]

Ge-doped Unknown F-doped

Complex field

60CoD1.8 kGy/d

D5 Gy/d D23 Gy/d

Page 23: Radiation Tolerant Optical Fibres for LHC Beam Instrumentation Radiation Effects T. Wijnands †, L.K. De Jonge †, J. Kuhnhenn ‡, S. K. Hoeffgen ‡, U. Weinand.

29-30 September 2007 6th LHC Radiation Workshop 23

SM fibres Fujikura Ltd Japan

• Radiation hardening via :– F-doping– Special manufacturing process– H-loading ?

Page 24: Radiation Tolerant Optical Fibres for LHC Beam Instrumentation Radiation Effects T. Wijnands †, L.K. De Jonge †, J. Kuhnhenn ‡, S. K. Hoeffgen ‡, U. Weinand.

29-30 September 2007 6th LHC Radiation Workshop 24

F-doping

What are the positive effects of Fluorine doping ?– Quenches defects absorbing in the short wavelength region– Breaking of strained bonds (reduction of disorder)– Increase of band gap energy– Reduction of glass viscosity

F-doping

F

F

K. Sanada et al , Journal of Non-Cryst. Solids 179 (1994) 339-344

Fluorine contents has an optimum !

Page 25: Radiation Tolerant Optical Fibres for LHC Beam Instrumentation Radiation Effects T. Wijnands †, L.K. De Jonge †, J. Kuhnhenn ‡, S. K. Hoeffgen ‡, U. Weinand.

29-30 September 2007 6th LHC Radiation Workshop 25

Reducing the SiOH impurity

• Silanol (SiOH) absorbs light between 1300-1500 nm• SiOH is produced via :

– NBOHC Defect + Hydrogen

Si - O• + •Ho Si – OHSi - O•

D.L. Griscom, J. of the Ceramic Soc. Japan, Int Edition Vol.99-903

Page 26: Radiation Tolerant Optical Fibres for LHC Beam Instrumentation Radiation Effects T. Wijnands †, L.K. De Jonge †, J. Kuhnhenn ‡, S. K. Hoeffgen ‡, U. Weinand.

29-30 September 2007 6th LHC Radiation Workshop 26

H – loading technique

• From literature :– H2 doping reduces losses of F-doped silica

– Large reduction in absorption peak at early stage of irradiation– Two staged process :

• H2 diffusion into the fibre core

• Reaction of H2 with existing defects

K. Sanada et al , Journal of Non-Cryst. Solids 179 (1994) 339-344

Page 27: Radiation Tolerant Optical Fibres for LHC Beam Instrumentation Radiation Effects T. Wijnands †, L.K. De Jonge †, J. Kuhnhenn ‡, S. K. Hoeffgen ‡, U. Weinand.

29-30 September 2007 6th LHC Radiation Workshop 27

Series sample testing (60Co) 1310 nm

0 20000 40000 60000 80000 100000

0

1

2

3

4

5

Sample #4 7S-0005/3

Indu

ced

Loss

[dB

/km

]

Dose [Gy(SiO2)]

Rapid defect generation from precursors

Slow diffusion process (involving H ?) and defect conversion

Page 28: Radiation Tolerant Optical Fibres for LHC Beam Instrumentation Radiation Effects T. Wijnands †, L.K. De Jonge †, J. Kuhnhenn ‡, S. K. Hoeffgen ‡, U. Weinand.

29-30 September 2007 6th LHC Radiation Workshop 28

Series samples testing (60Co) 1310 nm

Page 29: Radiation Tolerant Optical Fibres for LHC Beam Instrumentation Radiation Effects T. Wijnands †, L.K. De Jonge †, J. Kuhnhenn ‡, S. K. Hoeffgen ‡, U. Weinand.

29-30 September 2007 6th LHC Radiation Workshop 29

Conclusions• Radiation Effects in OF are complex• RIA in Co-60 and HEP radiation fields comparable

– radiolysis– knock on process– particle type– particle energy

• F-doped SM fibre Fujikura Ltd shows excellent performance• QA production lot acceptable• RIA < 5 dB/km at 1310 nm and 1550 nm (< 1 MGy)

unprecedented result – meets LHC BLM specifications !!!• Further studies are ongoing :

– What is the role of H ?– What is the annealing behavior ?– Spectral shifts ?

• Fibre monitoring in LHC IR3/IR7 is recommended


Recommended