+ All Categories
Home > Documents > RadionuclideTechniquein MechanicalEngineering RTM

RadionuclideTechniquein MechanicalEngineering RTM

Date post: 24-Jan-2022
Category:
Upload: others
View: 2 times
Download: 0 times
Share this document with a friend
30
ZAG ZYKLOTRON AG R adionuclide T echnique in M echanical Engineering RTM A high A high precision precision measuring measuring method method for for wear wear and and corrosion corrosion diagnosis diagnosis on on operating operating engines engines and and machines machines
Transcript
Page 1: RadionuclideTechniquein MechanicalEngineering RTM

ZAG ZYKLOTRON AG

Radionuclide Technique in Mechanical Engineering RTM

A high A high precisionprecision measuringmeasuring methodmethod forfor wearwear andand

corrosioncorrosion diagnosisdiagnosis on on operatingoperating enginesengines and and machinesmachines

Page 2: RadionuclideTechniquein MechanicalEngineering RTM

Principle of an Thin-Layer-Activation at a Cyclotron

1: evacuated beam line 3: aperture, a thin foil

2: diaphragm (slit) 4: ion beam (Protons or Deuterons)

Page 3: RadionuclideTechniquein MechanicalEngineering RTM

Principle of an Thin-Layer-Activation at a Cyclotron

0

10

20

30

40

50

60

70

80

90

100

0 0,5 1 1,5 2 2,5 3

Depth in the Material [ mm ]

Arb

itra

ry U

nit

s

SM

Total activity

specific activity

Page 4: RadionuclideTechniquein MechanicalEngineering RTM

Activity-versus-Depth Distribution in the material (real measurement)

0,0

0,1

0,2

0,3

0,4

0,5

0,6

0,7

0,8

0,9

1,0

0 10 20 30 40 50 60 70

Depth in Material [ µm]

Rela

tive I

nte

nsit

y

Detector

Energy region

Material

SM = 40 +/- 2 µm SR = 67 +/- 2 µm

: 3 x 3 " NaI(Tl)

: total spectrum

: 60% Fe; 14% Ni; 23% Cr

:

:

Page 5: RadionuclideTechniquein MechanicalEngineering RTM

Principle of a Concentration Measurement

Control and

evaluation unit

Engine with activated component

Activated material sample

CMD FMD RMD

Page 6: RadionuclideTechniquein MechanicalEngineering RTM

Principle of a Thin Layer Difference Measurement

Control and

evaluation unit

Engine with activated component Activated material sample

TLD Detector RMD

Page 7: RadionuclideTechniquein MechanicalEngineering RTM

Principle of a Thin Layer Difference Measurement

The total wear is proportional to the remaining counting rate of the activated part.

Example: 75% of the starting activity ► Wear depth 17 µm

0,0

0,1

0,2

0,3

0,4

0,5

0,6

0,7

0,8

0,9

1,0

0 10 20 30 40 50 60 70

Depth in Material [ µm]

Rela

tive In

ten

sit

y

Page 8: RadionuclideTechniquein MechanicalEngineering RTM

RTM Wear Measurement System

Page 9: RadionuclideTechniquein MechanicalEngineering RTM

CP42 Compact Cyclotron KAZ

Page 10: RadionuclideTechniquein MechanicalEngineering RTM

Heavy Cast Iron Crankcase in Activation Position

Page 11: RadionuclideTechniquein MechanicalEngineering RTM

Crankcase made of Aluminium in Activation Position

Page 12: RadionuclideTechniquein MechanicalEngineering RTM

Crankcase of a Truck , Activation of a Camshaft Bearing

Page 13: RadionuclideTechniquein MechanicalEngineering RTM

TR19/9 Mini Cyclotron MIZ

Page 14: RadionuclideTechniquein MechanicalEngineering RTM

Beam Line to RTM Activation Facility at MIZ

Page 15: RadionuclideTechniquein MechanicalEngineering RTM

RTM Activation Facility at MIZ

Page 16: RadionuclideTechniquein MechanicalEngineering RTM

RTM Activation Facility at MIZ

Page 17: RadionuclideTechniquein MechanicalEngineering RTM

Principle of an Activation at a Cyclotron

Page 18: RadionuclideTechniquein MechanicalEngineering RTM

Typical Parts for a Two-Component-Measurement

Page 19: RadionuclideTechniquein MechanicalEngineering RTM

Typical Parts for a Two-Component-Measurement

Labeled Areas on Tappets

Co-56

Labeled Areas on Cams

Co-57

Page 20: RadionuclideTechniquein MechanicalEngineering RTM

Two-Component-Measurement Example Wear Depth

0

0,02

0,04

0,06

0,08

0,1

0,12

0 200 400 600 800 1000 1200 1400 1600 1800 2000

Test time [min]

We

ar

de

pth

[µm

]

0

1000

2000

3000

4000

5000

6000

Sp

eed

[1/m

in]

1,8 nm/h

2,1 nm/h

0,13 nm/h

2,4 nm/h

1,15 nm/h

4,2 nm/h

Page 21: RadionuclideTechniquein MechanicalEngineering RTM

Measurement Example

0

0,05

0,1

0,15

0,2

0,25

0,3

0,35

0,4

0,45

0 200 400 600 800 1000 1200 1400 1600 1800

Test Time [min]

We

ar

ma

ss

[m

g ]

0

1000

2000

3000

4000

5000

6000

7000

8000

9000

Ro

tati

on

Sp

ee

d [

1/m

in ]

62 µg/h

wear rate = 0 µg/h 50 µg/h

10 µg/h

Page 22: RadionuclideTechniquein MechanicalEngineering RTM

Measurement Example

0

0,05

0,1

0,15

0,2

0,25

0,3

0,35

0,4

0,45

0 200 400 600 800 1000 1200 1400 1600 1800

Test Time [min]

Wea

r m

as

s [m

g ]

0

1000

2000

3000

4000

5000

6000

7000

8000

9000

Ro

tati

on

Sp

ee

d [

1/m

in ]

CMD+FMD CMD FMD Speed

62 µg/h

wear rate = 0 µg/h 50 µg/h

10 µg/h

Page 23: RadionuclideTechniquein MechanicalEngineering RTM

Measurement Example

Page 24: RadionuclideTechniquein MechanicalEngineering RTM

Measurement Example

Page 25: RadionuclideTechniquein MechanicalEngineering RTM

Measurement Example

Page 26: RadionuclideTechniquein MechanicalEngineering RTM

New Labelling Technologies

• Activation Diamond Like Carbon DLCThickness of DLC layer only some µm

• Implantation of 7Be into Plastic MaterialProject supported by AiF (Arbeitsgemeinschaft industrieller Forschungsvereinigungen)

Partner in this Project: IAVF Antriebstechnik GmbH, Karlsruhe

Page 27: RadionuclideTechniquein MechanicalEngineering RTM

Setup for the Activation of DLC Parts with 3He-beam

12C (3He,2α) 7Be

3 Piston Rings Tappet

Page 28: RadionuclideTechniquein MechanicalEngineering RTM

3,3 nm/h1,0 nm/h

0,5 nm/h

20

45

70

95

120

145

0 15 30 45 60 75Laufzeit

Ver

sch

leiß

xx

x

F

läch

enp

ress

un

g

xx

x

0

0,03

0,06

0,09

0,12

Rei

bko

effi

zie

nt

nm

N/mm2

h0 15 30 45 60 75Running Time / h

DLC-layer free of metall in a high load test

3 m/s sliding speed

125 °C oil temperature

DLC-COATINGS

pin-on-disc-tribometerlubricant: engine oil

IAVFAntriebstechnik GMBH

145

120

95

70

45

20

Su

rface

Pre

ssu

re/

N/m

m2

Wear

/ n

m

0.12

0.09

0.06

0.03

0

0.5 nm / h

1.0 nm / h

3.3 nm / h

0 15 30 45 60 75

Fri

cti

on

Co

eff

icie

nt

Standard Deviation of

Wear Depth: 1.3 %

Page 29: RadionuclideTechniquein MechanicalEngineering RTM

IAVFAntriebstechnik GMBH

SYNTHETIC MATERIALSliding surface: PTFE based coating;

wear rate after run-in; 0.5 m/s sliding speedbearing test benchlubricant: diesel

500

600

700

800

900

1000

1100

1200

0,01

0,02

0,03

0,04

0,05

0,06

0,07

0,08

Ver

sch

leiß

nm

Rei

bkoee

ffiz

ient

0,22 nm/h

0,20 nm/h

25

50

75

100

125

150

0 20 40 60 80

1

2

3

4

5

6

Imp

uls

e

Laufzeit

Imp./min

Flä

chen

pre

ssung

h

N/mm²

1200

1100

1000

900

800

700

600

500

Wear

/ n

m

150

125

100

75

50

25Co

un

tR

ate

per

min

0 20 40 60 80 h

Running Time

Fri

cti

on

Co

eff

icie

nt0.08

0.07

0.06

0.05

0.04

0.03

0.02

0.01

6

5

4

3

2

1

N/m

m2

Su

rface

Pre

ssu

re

0.22 nm/h

0.20 nm/h

Standard Deviation of Wear Depth: 1,5 %

Page 30: RadionuclideTechniquein MechanicalEngineering RTM

ZAG ZYKLOTRON AG

Thank you for your attention!

Any questions ?


Recommended