+ All Categories
Home > Documents > Ramu Dubey and Vishnu Narayan Mishra - CONICYT · 16 Ramu Dubey and Vishnu Narayan Mishra 1....

Ramu Dubey and Vishnu Narayan Mishra - CONICYT · 16 Ramu Dubey and Vishnu Narayan Mishra 1....

Date post: 06-Aug-2020
Category:
Upload: others
View: 5 times
Download: 0 times
Share this document with a friend
15
Transcript
Page 2: Ramu Dubey and Vishnu Narayan Mishra - CONICYT · 16 Ramu Dubey and Vishnu Narayan Mishra 1. Introduction The fractional optimization problem with multiple objective functions have

16 Ramu Dubey and Vishnu Narayan Mishra

1. Introduction

The fractional optimization problem with multiple objective functions havebeen the subject of intense investigations in the past few years, which haveproduced a number of optimality and duality results for these problems.Higher-order duality in non-linear programming has been studied in lastfew years by many researchers. In various numerical algorithms, higher-order duality is considered over first-order as it gives more closer bounds.

Higher-order duality in nonlinear programs have been studied by someresearchers. Mangasarian [8] formulated a class of higher-order dual prob-lems for the nonlinear programming problem ”min {f(x) : g(x) ≥ 0}”by introducing twice differentiable function h : Rn × Rn → R and k :Rn×Rn → Rm. The concept of higher-order convexity presented by Zhang[12] and derived duality results in multiobjective programming problem.Later on, Yang et al. [11] considered a unified higher-order dual model fornondifferentiable multiobjective programs and proved duality results un-der generalized assumptions. Suneja et al. [10] introduced a higher order(F,α, σ)-type I functions and formulated higher order dual programs for anondifferentiable multiobjective fractional programming problem.

Motivated by several concepts of generalized convexity, Gulati and Agar-wal [4] gave the concept of second-order -V-type I functions for multiob-jective programming problem which were recently extended to nondifferen-tiable case by Jayswal et al. [6]. Recently, Jayswal et al. [7] considerdedhigher-Order duality for multiobjective programming problems and dis-cussed duality theorems under (F,α, ρ, d) − V− type-I functions. Severalre searchers [[1], [2], [3], [9], [13]-[17]] have done their work in the relatedareas.

In this paper, we have generalized the definitions of higher-order pseudoquasi/ strictly pseudo quasi/weak strictly pseudo quasi- (V, ρ, d)-type-Ifunctions for a nondifferentiable multiobjective higher-order fractional pro-gramming problem. We have formulated higher-order unified dual and es-tablished duality results under higher order pseudo quasi/ strictly pseudoquasi/weak strictly pseudo quasi- (V, ρ, d)-type-I assumptions.

Page 3: Ramu Dubey and Vishnu Narayan Mishra - CONICYT · 16 Ramu Dubey and Vishnu Narayan Mishra 1. Introduction The fractional optimization problem with multiple objective functions have

Nondifferentiable higher-order duality theorems for new type of ... 17

2. Preliminaries and Definitions

Throughout this paper, we use the index sets K = {1, 2, ..., k} and M ={1, 2, ...,m}.

Definition 2.1. Let Q ⊆ Rn be a compact convex set. The supportfunction of Q is defined by

s (y|Q) = max{yT z : z ∈ Q}.

Consider the following nondifferentiable multiobjective fractional program-ming problem:

(MFP)MinimizeΨ(x) =

µφ1(x) + s(x|C1)ψ1(x)− s(x|E1)

,φ2(x) + s(x|C2)ψ2(x)− s(x|E2)

, ...,φk(x) + s(x|Ck)

ψk(x)− s(x|Ek)

¶Tsubject to x ∈ Y 0 = {x ∈ Y : πj(x) + s(x|Dj) ≤ 0, j ∈M},

where Y ⊆ Rn is an open set. The functions φ, ψ : Y → Rk, π :Y → Rm are differentiable on Y and Ci, Ei, Dj are compact convexsets in Rn for i ∈ K and j ∈ M . Let φi(x) + s(x|Ci) ≥ 0 and ψi(x) −s(x|Ei) > 0, i ∈ K. Let H = (H1, H2, ...,Hk) : X × Rn → Rk andK = (K1, K2, ...,Km) : X ×Rn → Rm be differentiable functions, d : X ×X → R, z = (z1, z2, ..., zk), v = (v1, v2, ..., vk) and w = (w1, w2, ..., wm),where zi ∈ Ci, vi ∈ Ei and wj ∈ Dj , for i ∈ K and j ∈M. Let ρ = (ρ1, ρ2)such that ρ1 = (ρ1, ρ2, ..., ρk) ∈ Rk, ρ2 = (ρk+1, ρk+2, ..., ρk+m) ∈ Rm.

Definition 2.2. A point u ∈ Y 0 is efficient solution of (MFP) if ∃ nox ∈ Y 0 such that Ψ(x) ≤ Ψ(u).

Definition 2.3. ∀ i ∈ K, j ∈ M,

Ãφi(.) + (.)

T ziψi(.)− (.)T vi

, πj(.) + (.)Twj

!is

higher order pseudo quasi (V, ρ, d)-type I at u of (MFP) if, ∀ x ∈ Y 0 andp ∈ Rn, such that

Page 4: Ramu Dubey and Vishnu Narayan Mishra - CONICYT · 16 Ramu Dubey and Vishnu Narayan Mishra 1. Introduction The fractional optimization problem with multiple objective functions have

18 Ramu Dubey and Vishnu Narayan Mishra

φi(x) + xT ziψi(x)− xT vi

<φi(u) + uT ziψi(u)− uT vi

+Hi(u, p)− pT∇pHi(u, p)

⇒ ηT (x, u)

(∇Ãφi(u) + uT ziψi(u)− uT vi

!+∇pHi(u, p)

)+ ρ1i d

2(x, u) < 0

and

−πj(u)− uTwj ≤ Kj(u, p)− pT∇pKj(u, p)

⇒ ηT (x, u){∇πj(u) +∇pKj(u, p)}+ ρ2jd2(x, u) ≤ 0.

Definition 2.4. ∀ i ∈ K, j ∈ M,

Ãφi(.) + (.)

T ziψi(.)− (.)T vi

, πj(.) + (.)Twj

!is

higher order strictly pseudo quasi (V, ρ, d)-type I at u of (MFP) if, ∀ x ∈ Y 0

and p ∈ Rn, such that

φi(x) + xT ziψi(x)− xT vi

≤ φi(u) + uT ziψi(u)− uT vi

+Hi(u, p)− pT∇pHi(u, p)

⇒ ηT (x, u)

(∇Ãφi(u) + uT ziψi(u)− uT vi

!+∇pHi(u, p)

)+ ρ1i d

2(x, u) < 0

and

−πj(u)− uTwj ≤ Kj(u, p)− pT∇pKj(u, p)

⇒ ηT (x, u){∇πj(u) +∇pKj(u, p)}+ ρ2jd2(x, u) ≤ 0.

Definition 2.5. ∀ i ∈ K, j ∈ M,

Ãφi(.) + (.)

T ziψi(.)− (.)T vi

, πj(.) + (.)Twj

!is

higher order weak strictly pseudo quasi (V, ρ, d)-type I at u of (MFP) if,∀ x ∈ Y 0 and p ∈ Rn, such that

φi(x) + xT ziψi(x)− xT vi

≤ φi(u) + uT ziψi(u)− uT vi

+Hi(u, p)− pT∇pHi(u, p)

Page 5: Ramu Dubey and Vishnu Narayan Mishra - CONICYT · 16 Ramu Dubey and Vishnu Narayan Mishra 1. Introduction The fractional optimization problem with multiple objective functions have

Nondifferentiable higher-order duality theorems for new type of ... 19

⇒ ηT (x, u)

(∇Ãφi(u) + uT ziψi(u)− uT vi

!+∇pHi(u, p)

)+ ρ1i d

2(x, u) < 0

and

−πj(u)− uTwj ≤ Kj(u, p)− pT∇pKj(u, p)

⇒ ηT (x, u){∇πj(u) +∇pKj(u, p)}+ ρ2jd2(x, u) ≤ 0.

Definition 2.6. ∀ i ∈ K, j ∈M,

Ãφi(.) + (.)

T ziψi(.)− (.)T vi

, πj(.)+(.)Twj

!is higher

order quasi strictly pseudo (V, ρ, d)-type I at u of (MFP) if, ∀ x ∈ Y 0 andp ∈ Rn, such that

φi(x) + xT ziψi(x)− xT vi

≤ φi(u) + uT ziψi(u)− uT vi

+Hi(u, p)− pT∇pHi(u, p)

⇒ ηT (x, u)

(∇Ãφi(u) + uT ziψi(u)− uT vi

!+∇pHi(u, p)

)+ ρ1i d

2(x, u) ≤ 0

and

−πj(u)− uTwj ≤ Kj(u, p)− pT∇pKj(u, p)

⇒ ηT (x, u){∇πj(u) +∇pKj(u, p)}+ ρ2jd2(x, u) < 0.

Theorem 2.1 (K-K-T-type necessary condition)[5]. Let u be efficientsolution of (MFP) at which the Kuhn-Tucker constraint qualification issatisfied on X. Then, ∃ 0 < λ ∈ Rk, 0 ≤ yj ∈ Rm, zi ∈ Rn, vi, wj ∈Rn, i ∈ K, j ∈M such that

kXi=1

λi∇Ãφi(u) + uT ziψi(u)− uT vi

!+

mXj=1

yj∇(πj(u) + uT wj) = 0,(2.1)

mXj=1

yj(πj(u) + uT wj) = 0,(2.2)

Page 6: Ramu Dubey and Vishnu Narayan Mishra - CONICYT · 16 Ramu Dubey and Vishnu Narayan Mishra 1. Introduction The fractional optimization problem with multiple objective functions have

20 Ramu Dubey and Vishnu Narayan Mishra

uT zi = S(u|Ci), uT vi = S(u|Ei), u

T wj = S(u|Dj),(2.3)

zi ∈ Ci, vi ∈ Di, wj ∈ Ej , i ∈ K, j ∈M.(2.4)

In the following section, we consider the following mixed higher-order

dual for (MFP) and derive duality theorems. The notationφ(.) + (.)T z

ψ(.)− (.)T v +

µTJ0

³πjJ0 + (.)

TwJ0´e denotes the vector whose components are

φ1(.) + (.)T z1

ψ1(.)− (.)T v1+X

j∈J0µj³πj + (.)

Twj

´,

φ2(.) + (.)T z2

ψ2(.)− (.)T v2+Xj∈J0

µj³πj + (.)

Twj

´, ...,

φk(.) + (.)T zk

ψk(.)− (.)T vk+Xj∈J0

µj³πj + (.)

Twj

´and {π + (.)Tw}µJβ denotes r-dimensional vector whose components areX

j∈J1{πj + (.)Twj},

Xj∈J2

{πj + (.)Twj}, ...,Xj∈Jr

{πj + (.)Twj}.

3. Unified higher-order duality model:

In this section, we formulate the following unified higher- order dual for(MFP) and establish duality theorems:

(HMDP) : Maximize

Ãφ1(y) + yT z1ψ1(y)− yT v1

+H1(y, p)−pT∇pH1(y, p)+Xj∈J0

µj{πj(y)+

yTwj +Kj(y, p)− pT∇pKj(y, p)}, ...,φk(y) + yT zkψk(y)− yT vk

+Hk(y, p)−pT∇pHk(y, p)+Xj∈J0

µj{πj(y)+yTwj+Kj(y, p)−pT∇pKj(y, p)}!

subject to y ∈ Y ,

kXi=1

λi

(∇Ãφi(y) + yT ziψi(y)− yT vi

!+∇pHi(y, p)

)(3.1)

Page 7: Ramu Dubey and Vishnu Narayan Mishra - CONICYT · 16 Ramu Dubey and Vishnu Narayan Mishra 1. Introduction The fractional optimization problem with multiple objective functions have

Nondifferentiable higher-order duality theorems for new type of ... 21

+mXj=1

µj{∇πj(y) + wj +∇pKj(y, p)} = 0,

Xj∈Jβ

µj{πj(y) + yTwj +Kj(y, p)− pT∇pKj(y, p)} ≥ 0, β = 1, ..., r,(3.2)

λi ≥ 0,kXi=1

λi = 1,(3.3)

µj ≥ 0, zi ∈ Ci, vi ∈ Ei, wj ∈ Dj for i ∈ K, j ∈M,(3.4)

where Jδ ⊆ N , δ = 0, 1, ..., r withSrδ=0 Jδ = N and Jδ1

TJδ2 if δ1 6= δ2.

It may be noted that J0 = N and Jβ = φ(1 ≤ β ≤ r), we obtain Wolfe typedual. If J0 = φ, J1 = N and Jβ = φ (2 ≤ β ≤ r), then (HMDP) reducesto Mond-Weir Type dual.

Let W 0 be feasible solution of (HMDP).

Theorem 3.1 (Weak Duality Theorem). Let x ∈ Y 0 and (y, λ, v, µ, z, w, p) ∈W 0. Let

(i)

Ãφi(.) + (.)

T ziψi(.)− (.)T vi

+ µTJ0

³πjJ0 + (.)

TwjJ0´e, {πj(.) + (.)Twj}µJβ

!be higher-

order weak strictly pseudo quasi (V, ρ, d)-type I at y,

(ii)kXi=1

λiρ1i +

rXj=1

µjρ2j ≥ 0.

Then, the following cannot hold

φi(x) + s(x|Ci)

ψi(x)− s(x|Ei)≤ φi(y) + yT zi

ψi(y)− yT vi+Hi(y, p)− pT∇pHi(y, p)

+Xj∈J0

µj{πj(y) + yTwj +Kj(y, p)− pT∇pKj(y, p)},∀ i ∈ K(3.5)

Page 8: Ramu Dubey and Vishnu Narayan Mishra - CONICYT · 16 Ramu Dubey and Vishnu Narayan Mishra 1. Introduction The fractional optimization problem with multiple objective functions have

22 Ramu Dubey and Vishnu Narayan Mishra

and

φj(x) + s(x|Cj)

ψj(x)− s(x|Ej)<

φj(y) + yT zjψj(x)− yT vj

+Hj(y, p)− pT∇pHj(y, p)

+Xj∈J0

µj{πj(y) + yTwj +Kj(y, p)− pT∇pKj(y, p)}, forsomej ∈ K

. (3.6)

Proof: If possible, then suppose inequalities (3.5) and (3.6) hold. AsxT zi ≤ s(x|Ci), xT vi ≤ s(x|Ei), ∀i ∈ K and

Xj∈J0

µj(πj(x) + xTwj) ≤ 0,

using the inequalities and the dual constraint (3.2), hypothesis (i) gives

ηT (x, y)

(∇Ãφi(y) + yT ziψi(y)− yT vi

!+∇pHi(y, p) +

Xj∈J0

µj{∇πj(y) + wj +∇pKj(y, p)}e)

< −ρ1d2(x, y)

and

ηT (x, y)Xj∈Jβ

µj{∇πj(y) + wj +∇pKj(y, p)}+ ρ2βd2(x, y) ≤ 0, β = 1, ..., r.

Since λ ≥ 0, λT e = 1, it follows that

ηT (x, y)

ÃkXi=1

λi

(∇Ãφi(y) + yT ziψi(y)− yT vi

!+∇pHi(y, p)

)

+Xj∈J0

µj{∇πj(y) + wj +∇pKj(y, p)}!< −

kXi=1

λiρ1i d2(x, y)

and

ηT (x, y)

à Xj∈Jβ

µj{∇πj(y) + wj +∇pKj(y, p)}!≤ −ρ2βd2(x, y), β = 1, ..., r.

Page 9: Ramu Dubey and Vishnu Narayan Mishra - CONICYT · 16 Ramu Dubey and Vishnu Narayan Mishra 1. Introduction The fractional optimization problem with multiple objective functions have

Nondifferentiable higher-order duality theorems for new type of ... 23

Above inequalities follows that

ηT (x, y)

ÃkXi=1

λi

(∇Ãφi(y) + yT ziψi(y)− yT vi

!+∇pHi(y, p)

)+

mXj=1

µj{∇πj(y)+wj

+∇pKj(y, p)}!= ηT (x, y)

ÃkXi=1

λi

(∇Ãφi(y) + yT ziψi(y)− yT vi

!+∇pHi(y, p)

)

+Xj∈J0

µj{∇πj(y) + wj +∇pKj(y, p)}+Xj∈J1

µj{∇πj(y) + wj +∇pKj(y, p)}

+...+Xj∈Jr

µj{∇πj(y) + wj +∇pKj(y, p)}!

ηT (x, y)

ÃkXi=1

λi

(∇Ãφi(y) + yT ziψi(y)− yT vi

!+∇pHi(y, p)

)+

mXj=1

µj{∇πj(y)+wj

+∇pKj(y, p)}!≤ ηT (x, y)

ÃkXi=1

λi

(∇Ãφi(y) + yT ziψi(y)− yT vi

!+∇pHi(y, p)

)

+Xj∈J0

µj{∇πj(y) + wj +∇pKj(y, p)}+Xj∈J1

µj{∇πj(y) + wj

+∇pKj(y, p)}+ ...+Xj∈Jr

µj{∇πj(y) + wj +∇pKj(y, p)}!

< −

⎛⎝ kXi=1

λiρ1i +

rXj=1

µjρ2j

⎞⎠ d2(x, y).

Further, using hypothesis (ii), we have

ηT (x, y)

ÃkXi=1

λi

(∇Ãφi(y) + yT ziψi(y)− yT vi

!+∇pHi(y, p)

!)

+mXj=1

µj{∇πj(y) + wj +∇pKj(y, p)}!< 0,

which contradicts (3.1). Hence, completes the proof.

Page 10: Ramu Dubey and Vishnu Narayan Mishra - CONICYT · 16 Ramu Dubey and Vishnu Narayan Mishra 1. Introduction The fractional optimization problem with multiple objective functions have

24 Ramu Dubey and Vishnu Narayan Mishra

Theorem 3.2 (Weak Duality Theorem). Let x ∈ Y 0 and (y, λ, v, µ, z, w, p) ∈W 0. Let

(i)

Ãφi(.) + (.)

T ziψi(.) + (.)T vi

+ µTJ0

³πjJ0 + (.)

TwjJ0´e, {πj(.) + (.)Twj}µJβ

!be higher-

order pseudo quasi (V, ρ, d)-type I at y,

(ii)kXi=1

λiρ1i +

rXj=1

µjρ2j ≥ 0.

Then, the following cannot hold

φi(x) + s(x|Ci)

ψi(x)− s(x|Ei)≤ φi(y) + yT zi

ψi(y)− yT vi+Hi(y, p)− pT∇pHi(y, p)

+Xj∈J0

µj{πj(y) + yTwj +Kj(y, p)− pT∇pKj(y, p)}, ∀ i ∈ K(3.7)

and

φj(x) + s(x|Cj)

ψj(x)− s(x|Ej)<

φj(y) + yT zjψj(x)− yT vj

+Hj(y, p)− pT∇pHj(y, p)

+Xj∈J0

µj{πj(y) + yTwj +Kj(y, p)− pT∇pKj(y, p)},for some j ∈ K.

(3.8)

Proof The proof follows on the lines of Theorem 3.1.

Theorem 3.3 (Strong Duality Theorem). If u is an efficient solutionof (MFP) and let the Kuhn-Tucker constraint qualification be satisfied.Then, ∃ λ ∈ Rk, y ∈ Rm, zi ∈ Rn, vi ∈ Rn and wj ∈ Rn, i ∈ K, j ∈ M,such that (u, z, v, y, λ, w, p) ∈ W 0 and the (MFP)and (HMDP) have equalvalues. Also, if

H(u, 0) = 0, ∇pH(u, 0) = 0, K(u, 0) = 0, ∇pK(u, 0) = 0.

Page 11: Ramu Dubey and Vishnu Narayan Mishra - CONICYT · 16 Ramu Dubey and Vishnu Narayan Mishra 1. Introduction The fractional optimization problem with multiple objective functions have

Nondifferentiable higher-order duality theorems for new type of ... 25

Furthermore, if the assumptions of Theorem 3.1 or 3.2 hold for Y 0 andW 0, then (u, z, v, y, λ, w, p = 0) is an efficient solution of (HMDP).

Proof. Since u is an efficient solution for (MFP) and the Slaters con-straint qualification is satisfied, from Theorem 2.1, there exist 0 < λ ∈Rk, 0 ≤ yj ∈ Rm, zi ∈ Rn, vi, wj ∈ Rn, i ∈ K, j ∈M such that

kXi=1

λi∇Ãφi(u) + uT ziψi(u)− uT vi

!+

mXj=1

yj∇(πj(u) + uT wj) = 0,(3.9)

mXj=1

yj(πj(u) + uT wj) = 0,(3.10)

uT zi = S(u|Ci), uT vi = S(u|Ei), u

T wj = S(u|Dj),(3.11)

zi ∈ Ci, vi ∈ Di, wj ∈ Ej , i ∈ K, j ∈M.(3.12)

Using the assumptionH(u, 0) = 0, ∇pH(u, 0) = 0, K(u, 0) = 0, ∇pK(u, 0) =0, we find that (u, z, v, y, λ, w, p = 0) ∈ W 0 and the two objective valuesare same. With the help of contradiction, we can prove efficiency results.Hence, the results. 2

Theorem 3.4 (Strict Converse Duality Theorem). Let u ∈ Y 0 and(y, λ, µ, v, z, w, p) ∈W 0 such that

(i)kXi=1

λi

(φi(u) + uT ziψi(u)− uT vi

)≤

kXi=1

λi

(φi(y) + yT ziψi(y)− yT vi

+∇ρHi(y, p)− pT∇pHi(y, p)

+Xj∈J0

µj{πj(y) + yT wj +Kj(y, p)− pT∇pKj(y, p)

),

Page 12: Ramu Dubey and Vishnu Narayan Mishra - CONICYT · 16 Ramu Dubey and Vishnu Narayan Mishra 1. Introduction The fractional optimization problem with multiple objective functions have

26 Ramu Dubey and Vishnu Narayan Mishra

(ii) ρ1i +rX

j=1

ρ2j ≥ 0, ∀ i, j,

(iii)

ÃkXi=1

λi

(φi(.) + (.)

T ziψi(.)− (.)T vi

)+Xj∈J0

µj {πj + (.)T wj}, {πj(.) + (.)T wj}µJβ

!

is higher order strictly pseudoquasi (V, ρ, d)− typeIat y.Then, u = y.

Proof. Suppose u 6= y. The dual constraint (3.2) and the hypothesis (iii),for β = 1, ..., r yield

ηT (u, y)Xj∈Jβ

µj{∇πj(y) +∇ρKj(y, p) + wj} ≤ −ρ2βd2(u, y)(3.13)

By the dual constraint (3.1), we have

ηT (u, y)

ÃkXi=1

λi

(∇Ãφi(u) + uT ziψi(u)− uT vi

!+∇pHi(y, p)

)

+mXj=1

µj

(∇πj(y) +∇pKj(y, p) + wj

)!= 0,

above inequalities with (3.13) give

ηT (u, y)

ÃkXi=1

λi

(∇Ãφi(u) + uT ziψi(u)− uT vi

!+∇pHi(y, p)

)+Xj∈J0

µj

(∇πj(y)

+∇pKj(y, p) + wj

)!≥ −ηT (u, y)

à Xj∈J1

µj{∇πj(y) +∇pKj(y, p) + wj}!

−...− ηT (u, y)(Xj∈Jr

µj{∇πj(y) +∇pKj(y, p) + wj}!

or

Page 13: Ramu Dubey and Vishnu Narayan Mishra - CONICYT · 16 Ramu Dubey and Vishnu Narayan Mishra 1. Introduction The fractional optimization problem with multiple objective functions have

Nondifferentiable higher-order duality theorems for new type of ... 27

ηT (u, y)

ÃkXi=1

λi

(∇Ãφi(u) + uT ziψi(u)− uT vi

!+∇pHi(y, p)

!)

+Xj∈J0

µj

(∇πj(y) +∇pKj(y, p) + wj

)!≥

rXj=1

ρ2jd2(u, y),

by hypothesis (ii),

ηT (u, y)

ÃkXi=1

λi

(∇Ãφi(u) + uT ziψi(u)− uT vi

!+∇pHi(y, p)

)

+Xj∈J0

µj

(∇πj(y) +∇pKj(y, p) + wj

)!≥ −ρ1i d2(u, y).

Therefore, hypothesis (iii) in view ofXj∈J0

µj{πj(u) + uT wj} ≤ 0 yields

kXi=1

λi

(φi(u) + uT ziψi(u)− uT vi

)>

kXi=1

λi

(φi(y) + yT ziψi(y)− yT vi

+∇pHi(y, p)− pT∇pHi(y, p)

)

+Xj∈J0

µj{πj(y) + yT wj +Kj(y, p)− pT∇pKj(y, p)},

which contradicts hypothesis (i). Hence, the result.

Theorem 3.5 (Strict Converse Duality Theorem). Let u ∈ Y 0 and(y, λ, µ, v, z, w, p) ∈W 0 such that

(i)kXi=1

λi

(φi(u) + uT ziψi(u)− uT vi

)≤

kXi=1

λi

(φi(y) + yT ziψi(y)− yT vi

+∇pHi(y, p)− pT∇pHi(y, p)

+Xj∈J0

µj{πj(y) + yT wj +Kj(y, p)− pT∇pKj(y, p)

),

(ii) ρ1i +rX

j=1

ρ2j ≥ 0, ∀ i, j,


Recommended