+ All Categories
Home > Documents > Rapid-Temperature Swing Adsorption Using Polymeric ...

Rapid-Temperature Swing Adsorption Using Polymeric ...

Date post: 01-Jan-2022
Category:
Upload: others
View: 4 times
Download: 0 times
Share this document with a friend
27
Rapid-Temperature Swing Adsorption Using Polymeric/Supported Amine Hollow Fiber Materials EIA, Annual Energy Outlook 2012 Acknowledgements and Funding Ms. Grace Chen Dr. Yanfang Fan Prof. Christopher W. Jones Ms. Jayashree Kalyanaraman Prof. Yoshiaki Kawajiri Prof. William J. Koros Dr. Ying Labreche Prof. Ryan Lively Prof. Matthew Realff Dr. Fateme Rezaei Ms. Katherine Searcy Prof. David S. Sholl Dr. Subramanian Swernath Dr. Simon Pang 1 International Energy Outlook 2013, US Energy Information Administration 2013, DOE/EIA-0484 Georgia Institute of Technology DOE Award #: DE-FE0007804
Transcript
Page 1: Rapid-Temperature Swing Adsorption Using Polymeric ...

Rapid-Temperature Swing Adsorption Using

Polymeric/Supported Amine Hollow Fiber

Materials

EIA

, A

nn

ua

l E

ne

rgy O

utlo

ok 2

01

2

Acknowledgements and FundingMs. Grace Chen

Dr. Yanfang Fan

Prof. Christopher W. Jones

Ms. Jayashree Kalyanaraman

Prof. Yoshiaki Kawajiri

Prof. William J. Koros

Dr. Ying Labreche

Prof. Ryan Lively

Prof. Matthew Realff

Dr. Fateme Rezaei

Ms. Katherine Searcy

Prof. David S. Sholl

Dr. Subramanian Swernath

Dr. Simon Pang1

International Energy Outlook 2013,

US Energy Information

Administration 2013, DOE/EIA-0484

Georgia Institute of Technology DOE Award #: DE-FE0007804

Page 2: Rapid-Temperature Swing Adsorption Using Polymeric ...

Key Idea:

Combine:

(i) state-of-the-art supported amine

adsorbents, with

(ii) a new contactor tuned to

address specific weaknesses of

amine materials,

to yield a novel process strategy2

Page 3: Rapid-Temperature Swing Adsorption Using Polymeric ...
Page 4: Rapid-Temperature Swing Adsorption Using Polymeric ...

Hollow fiber sorbents: a mass producible structured sorbent inspired by

hollow fiber membrane spinning

Ideal temperature swing adsorption

1000 µm

RP Lively et al., Ind. Eng. Chem. Res., 2009, 48, 7314-7324

Bundle of 40 fibers in a

1.5’ module at GT

4

Page 5: Rapid-Temperature Swing Adsorption Using Polymeric ...

Hollow fiber sorbents: a mass producible structured sorbent inspired by

hollow fiber membrane spinning

Ideal temperature swing adsorption

1000 µm

RP Lively et al., Ind. Eng. Chem. Res., 2009, 48, 7314-7324 5

Large CO2/CH4 module

76 cm OD x 1.8 m

Used on 700 MMSCFD offshore platform

Courtesy, E. S. Sanders NAMS 2003

plenary

Page 6: Rapid-Temperature Swing Adsorption Using Polymeric ...

120°C

Rapid temperature swing adsorption (RTSA)

120°C34°C

0.15 psi/ft Δp

3 min

Lively RP, et al., Int. J. Greenhouse Gas Control 2012, 10, 285

Plug of

CO2

66

Page 7: Rapid-Temperature Swing Adsorption Using Polymeric ...

Rapid temperature swing adsorption (RTSA)

Page 8: Rapid-Temperature Swing Adsorption Using Polymeric ...
Page 9: Rapid-Temperature Swing Adsorption Using Polymeric ...
Page 10: Rapid-Temperature Swing Adsorption Using Polymeric ...
Page 11: Rapid-Temperature Swing Adsorption Using Polymeric ...
Page 12: Rapid-Temperature Swing Adsorption Using Polymeric ...
Page 13: Rapid-Temperature Swing Adsorption Using Polymeric ...
Page 14: Rapid-Temperature Swing Adsorption Using Polymeric ...
Page 15: Rapid-Temperature Swing Adsorption Using Polymeric ...
Page 16: Rapid-Temperature Swing Adsorption Using Polymeric ...

Spinneret

Dope

Water Quench Bath

Dope

Bore

Fluid

Bore

FluidTake-Up Drum

Air Gap

Fiber module with

lumen layer and PEI

on silica & fiber pore

walls

MeOH+ PEI infuse

Module

makeup,

add lumen

layer

Post-spinning

processing

• First successful spinning of polymer/silica/PEI hollow fiber sorbent

• Simple, scalable procedure—does not appreciably change current solvent

exchange procedure

• Proved the concept with cellulose acetate (CA) - CA/silica/PEI

Creating the hollow fiber sorbents: Post-spinning amine infusion

New method for amine-containing fiber sorbent synthesis

Labreche et al., Chem. Eng. J., 2013, 221, 166-175.17

Page 17: Rapid-Temperature Swing Adsorption Using Polymeric ...

Two approaches:

(i) Post-treatment: Flow of a polymeric, Neoprene ® latex and cross-linker through

fibers

- Disadvantage – fibers can become clogged by latex, requires careful

handling of latex

Hollow Fiber Contactor as Heat Exchanger

Constructing a barrier lumen layer in the fiber bore allows the

fibers to act as an adsorbing shell-in-tube heat exchanger.

Torlon:

18

Labreche et al., J. Appl. Polym. Sci., 2015, 132, 4185.

(ii) Dual layer fiber spinning – spin the lumen layer when initial fiber formed

- Advantage – highly scalable synthesis when poly(amide-imide)

like Torlon® employed

- Main fiber: porous Torlon® containing 50-60 wt% silica;

Lumen layer: dense Torlon®; post-treatment with PDMS gives excellent

barrier properties

Water and gas

permeance: < 3

GPU

Page 18: Rapid-Temperature Swing Adsorption Using Polymeric ...

Two approaches:

(i) Post-treatment: Flow of a polymeric, Neoprene ® latex and cross-linker through

fibers

- Disadvantage – fibers can become clogged by latex, requires careful

handling of latex

Hollow Fiber Contactor as Heat Exchanger

Constructing a barrier lumen layer in the fiber bore allows the

fibers to act as an adsorbing shell-in-tube heat exchanger.

Torlon:

19

Labreche et al., J. Appl. Polym. Sci., 2015, 132, 4185.

Water and gas

permeance: < 3

GPU

Page 19: Rapid-Temperature Swing Adsorption Using Polymeric ...

Flue gas composition: 35 oC, 1 atm

~ 13% CO2, ~13% He (Inert tracer),

6% H2O, balance gas N2

20qb: breakthrough capacity

Lab-scale RTSA design and operation

36 inch

Fiber module

Page 20: Rapid-Temperature Swing Adsorption Using Polymeric ...

0 10 20 30 40 500.00.20.40.60.81.01.21.4

q b (m

mol

/g)

Number of Cycle 1

qb,cooled = 1.33 mmol/gqb,uncooled = 1.10 mmol/g

Reduced 8 oC by flowing CW

Cooled Torlon-C803-PEI Fiber Sorbent Generation 3 Fibers

Lab scale heat capture efficiency during adsorption: ~72%

qb remains ~ 1.1 mmol/g over 50 cycles Gen. 2 fibers

Gen. 3 fibers:qb~1.4 mmol/g

qswing~0.85 mmol/g

Target qS ~1 mmol/g

Page 21: Rapid-Temperature Swing Adsorption Using Polymeric ...

• NO2, SO2 adsorb strongly, but have modest impact at low concentration

• Saturation capacity loss observed

• High concentration of gases (200 ppm) cause significant capacity loss, but a

plateau was observed. Low concentration NO2 had no measurable impact on

capacity for class 1 fibers.

• Deactivated fibers can be stripped of amine and recharged in the field for full

capacity regeneration.

0 20 40 60 80 100 1200.0

0.2

0.4

0.6

0.8

1.0

1.2

no

rma

lize

d q

b

Number of Cycles

36 ppm NO

2 ppm SO2

0 20 40 60 80 100 1200.0

0.2

0.4

0.6

0.8

1.0

1.2

no

rma

lize

d q

b

Number of Cycles

200 ppm NO

200 ppm SO2

recharged fiber

Impact of SOx/NOx on Fiber Module Operation

Fan et al., AIChE J., 2014, 60, 3878-3887.23

Page 22: Rapid-Temperature Swing Adsorption Using Polymeric ...

Overall approach

44 seconds

78

se

co

nd

s

23 seconds

50

se

co

nd

sC

oo

ling

Adsorption

Gas Sweeping

Se

lf-s

we

ep

ing

Cycle Design on Single

Fiber (GT)

Cycle Model Validation

and Scale Up to Module

Level (GT and Trimeric)

Integration with Plant

Design and Escalation for

TEA (Trimeric)

Water Looping for Heat Integration

DOE Metric Calculation. Feedback to

single fiber design and optimization

Flue Gas

Feed Flue Gas

From FGD

Stack

CO2 to

Injection

CO2 Compression

and Dehydration

Treated Flue

Gas to Stack

KEY TO FLOW LINE COLORS:

RED = Tempered Water System

BLACK = Flue Gas

BROWN = Plant CTW, Plant IP Steam,

and other utility systems

S-101

Trim SO2 Removal and

Direct Contact Cooler

Process

Water

Concentrated

Caustic

To FGD and

Wastewater

Treatment

Fiber Modules in

Adsorption Mode

F-112

Draft Fan 2

(Optional)

Fiber Modules in

Self-sweeping Step

Fiber Modules in

N2-sweeping Step

Fiber Modules in

Cooling Mode

Notes:

1.Items not shown include:

- Water filtration of closed loop and cooling water

- Details of compression train and CO2

dehydration

- Details of reagent delivery for trim SO2 removal

2. Configuration of inlet gas cooler and

condensate removal is a function of targeted

sorption temperature.

Compressor

Stages

Compressor

Scrubbers

After-CoolersE-314

Main

Heater

Co

nd

en

sa

te

EXP-351

Power Recovery

TurbineS-351

Desuperheater

P-351

Condensate

Pump

Condensate

Return to

Hot Well

P-506

CO2 Pump

T-303

Hot Water

Tank

P-302

Cool Water

Recirc Pump

Warm Frac

Hot Frac

26.7 C

CWS

E-315

Main

Cooler

CWR

CWR

130 C

120 C

32 C137 C to

150 C

Cool Frac

15.6 C

26.7 C

Cool Frac

Treated

Flue

Gas

Condensate

LP Steam

Low

Pressure

Steam

T-181

Caustic Tank

P-181

Caustic Pump

Condensate

Blowdown

To Wastewater

TreatmentP-511

Condensate Pump

C-50XV-50XE-50X

Dehy

Unit

Warm Frac

P-303

Hot Water

Recirc Pump

T-302

Cool

Water

Tank

CWS

Pre-cooler

15.6 C

32 C

E-500

Optional

Sweep

Gas

F-101

Inlet Gas Blower

E-101

DCC Water Cooler

CWS CWR

P-101

DCC

Recirculation

Pumps

Fiber Modules in

Cooling Mode

Fiber Modules in

Adsorption Mode

Fiber Modules in

Self Sweeping Mode

Fiber Modules in

N2 Sweep Mode

CWS

CWR

Flue Gas

Conditioning

(Cooling, Trim

SO2 Removal)

Flue Gas

From FGD

Cool

Tempered

Water

Steam

Condensate

Warm

Tempered

Water

Inlet Gas

Blower

To CO2

Compression &

Dehydration

To

Stack

24

Trimeric Corp.

Page 23: Rapid-Temperature Swing Adsorption Using Polymeric ...

Performance Evolution during Project and Future Directions

25

Description UnitsYear 2 Q4

(Sept 2013)

Year 3

(July 2014)

Year 3

(Jan 2015)

RTSA RTSARVTSA –

0.2 bar

Escalation Factor 1.67 1.53 1.40

Levelized Costs of Electricity and Steam

Levelized cost of electricity mills/kWh 178 154 126

Levelized cost of steam $/1,000 lb 16.2 14.0 11.5

Cost of CO2 Capture

Total Annual Cost of CO2 Capture MM$/year 277 302 237

Impact of CO2 Capture on Plant Efficiency

Net Plant Efficiency without CO2 Capture (HHV) % 39.3 39.3 39.3

Net Plant Efficiency with CO2 Capture (HHV) % 22.0 25.6 28.8

Change in Net Plant Efficiency % -17.3 -13.7 -10.5

Process

configuration

RVTSA

adsorption

heat recovery

RVTSA

CA polymer and 1

𝛍𝐦 silica sorbent

RVTSA

New polymer and 4

𝛍𝐦 silica sorbent

RVTSA

New polymer and

500 𝐧𝐦 silica

Swing capacity

[mmol/gfiber]0.48 0.65 0.76 0.93

Number of modules 2002 1278 1096 894

Annual cost of CO2

capture [MM$/year]182 201 181 159

CO2recovery [%] 75 90 90 90

CO2purity [%] 95 96 96 95

Escalation factor 1.35 1.35 1.33 1.31

Future directions:

Page 24: Rapid-Temperature Swing Adsorption Using Polymeric ...
Page 25: Rapid-Temperature Swing Adsorption Using Polymeric ...
Page 26: Rapid-Temperature Swing Adsorption Using Polymeric ...
Page 27: Rapid-Temperature Swing Adsorption Using Polymeric ...

Publication and Inventions

Publications

1. Labreche, Ying., Lively, Ryan ; Rezaei, Fateme; Chen, Grace; Jones, Christopher W; Koros, William J., Post-spinning infusion of poly(ethyleneimine) into polymer/silica hollow fiber sorbents for carbon dioxide capture. Chemical Engineering Journal, 2013, 221, 166-175.

2. Rezaei, Fateme; Lively, Ryan; Labreche, Ying; Chen, Grace; Fan,Yanfang; Koros, William; Jones, Christopher, Aminosilane-grafted polymer/silica hollow fiber adsorbents for CO2 capture from flue gas. ACS Applied Materials & Interfaces, 2013, 5, 3921-3931.

3. Rezaei, Fateme; Jones, Christopher, Stability of Supported Amine Adsorbents to SO2 and NOx in Post-Combustion CO2 Capture Process-1. Single Component Adsorption.. Industrial & Engineering Chemistry Research, 2013, 52, 12192-12201.

4. Fan,Yanfang; Lively, Ryan; Labreche, Ying; Rezaei, Fateme; Koros, William; Jones, Christopher, Evaluating CO2 dynamic adsorption performance of polymer/silica supported poly(ethylenimine) hollow fiber sorbents in rapid temperature swing adsorption. International Journal of Greenhouse Gas Control, 2014, 21, 61-71.

5. Labreche, , Ying; Fan, Yanfang; Rezaei, Fateme; Lively, Ryan; Jones, Christopher; Koros, William, Poly (amide-imide)/Silica Supported PEI Hollow Fiber Sorbents for Postcombustion CO2 Capture by RTSA. ACS. Appl. Mater. Interfaces, 2014, 6, 19336-19346.

6. Rezaei, Fateme; Jones, Christopher, Stability of Supported Amine Adsorbents to SO2 and NOx in Post-Combustion CO2 Capture Process-2. Multicomponent Adsorption.. Industrial & Engineering Chemistry Research, 2014, 53, 12103-12110.

7. Fan,Yanfang; Labreche, Ying; Lively, Ryan; Koros, William; Jones, Christopher, Dynamic CO2 Adsorption Performance of Internally Cooled Silica Supported Poly(ethylenimine) Hollow Fiber Sorbents. AIChE J., 2014, 60, 3878-3887.

8. Rezaei, Fateme; Swernath, Subramanian; Kalyanaraman, Jayashree; Lively, Ryan; Kawajiri, Yoshiaki; Realff, Matthew, Modelling of Rapid Temperature Swing Adsorption Using Hollow Fiber Sorbents. Chem. Eng. Sci., 2014, 113, 62-67.

9. Kalyanaraman, Jayashree; Fan, Yanfang; Lively, Ryan; Koros, William; Jones, Christopher; Realff, Matthew; Kawajiri, Yoshiaki, Modelling and Experimental Validation of Carbon Dioxide Sorption on Hollow Fibers Loaded with Silica-Supported Poly(ethylenimine). Chem. Eng. J., 2015, 259, 737-751.

10. Labreche, Ying; Fan, Yanfang; Lively, Ryan; Jones, Christopher; Koros, William, Direct Dual Layer Spinning of Aminosilica/Torlon® Hollow Fiber Sorbents with a Lumen Layer for CO2 Separation by Rapid Temperature Swing Adsorption. J. Appl. Polym. Sci., 2015, 132, 4185.

11. Fan,Yanfang; Kalyanaraman, Jayashree; Labreche, Ying; Rezaei, Fateme; Lively, Ryan; Realff, Matthew; Koros, William; Jones, Christopher; Kawajiri, Yoshiaki, CO2 Sorption Performance of Composite Polymer/Aminosilica Hollow Fiber Sorbents. Ind. Eng. Chem. Res., 2015, 54, 1783-1795.

12. Swernath, Subramanian; Searcy, Kathine; Rezaei, Fateme; Labreche, Ying; Lively, Ryan; Realff, Matthew; Kawajiri, Yoshiaki, Optimization and Techno-Economic Analaysis of Rapid Temperature Swing Adsorption (RTSA) Process for Carbon Capture from Coal-Fired Power Plant. Comput. Aided Chem. Eng., 2015, in press.

13. Add Jayashree’s paper that is submitted.

14. Fan, Yanfang; Rezaei, Fateme; Labreche, Ying; Lively, Ryan P.; Koros, William J.; Jones, Christopher W. Stability of Amine-based Hollow Fiber CO2 Adsorbents to NO and SO2. Fuel, to be submitted 04/15.

Inventions

1. " Dual Layer Spinning with Lumen Layer PAI Polymer/Silica/PEI Hollow Fiber Sorbent for RTSA" submitted on 11/25/ 2013, The internal reference number is GTRC ID 6560. The invention is sponsored by GE and US DOE. Y. Labreche, W.J. Koros, R. P. Lively

2. “Novel Amine Post-Spinning Infused Polymer/Silica Composite Hollow Fiber Sorbents” submitted on 07/18/2012. The internal reference number is GTRC ID 6142. The invention is supported by GE and US DOE. Y. Labreche, W.J. Koros, R. P. Lively, F. Rezaei, G. Chen, C. W. Jones, D. S. Sholl

29


Recommended