+ All Categories
Home > Documents > Real Number Representationcomarc/slides/lect3-1.pdf · Terminology • All digits in a number...

Real Number Representationcomarc/slides/lect3-1.pdf · Terminology • All digits in a number...

Date post: 05-Aug-2020
Category:
Upload: others
View: 3 times
Download: 0 times
Share this document with a friend
99
Real Number Representation
Transcript
Page 1: Real Number Representationcomarc/slides/lect3-1.pdf · Terminology • All digits in a number following any leading zeros are significant digits : 12.345-0.12345 0.00012345

1Real Number Representation

Page 2: Real Number Representationcomarc/slides/lect3-1.pdf · Terminology • All digits in a number following any leading zeros are significant digits : 12.345-0.12345 0.00012345

2

Topics

• Terminology

• IEEE standard for floating-pointrepresentation

• Floating point arithmetic

• Limitations

Page 3: Real Number Representationcomarc/slides/lect3-1.pdf · Terminology • All digits in a number following any leading zeros are significant digits : 12.345-0.12345 0.00012345

3

Terminology

• All digits in a number following any leading zeros are significant digits:

12.345-0.123450.00012345

Page 4: Real Number Representationcomarc/slides/lect3-1.pdf · Terminology • All digits in a number following any leading zeros are significant digits : 12.345-0.12345 0.00012345

4

Terminology (cont)

• The scientific notation for real numbers is:

mantissa× baseexponent

In C, the expression: 12.456e-2

means: 12.456 × 10-2

Page 5: Real Number Representationcomarc/slides/lect3-1.pdf · Terminology • All digits in a number following any leading zeros are significant digits : 12.345-0.12345 0.00012345

5

Terminology (cont)

• The mantissa is always normalizedbetween 1 and the base (i.e., exactly one significant digitbefore the point)

Unnormalized Normalized

2997.9 × 105 2.9979 × 108

B1.39FC × 1611 B.139FC × 1612

0.010110110101 × 2-1 1.0110110101 × 2-3

Page 6: Real Number Representationcomarc/slides/lect3-1.pdf · Terminology • All digits in a number following any leading zeros are significant digits : 12.345-0.12345 0.00012345

6

Terminology (cont)

• The precision of a number is how many digits (or bits) we use to represent it

• For example:33.143.14159263.1415926535897932384626433832795028

Page 7: Real Number Representationcomarc/slides/lect3-1.pdf · Terminology • All digits in a number following any leading zeros are significant digits : 12.345-0.12345 0.00012345

7

Representing Numbers

• A real number n is represented by a floating-point approximation n*

• The computer uses 32 bits (or more) to store each approximation

• It needs to store

– the mantissa

– the sign of the mantissa

– the exponent (with its sign)

Page 8: Real Number Representationcomarc/slides/lect3-1.pdf · Terminology • All digits in a number following any leading zeros are significant digits : 12.345-0.12345 0.00012345

831 30 02223

Representing Numbers (cont)

• The standard way to allocate 32 bits (specified by IEEE Standard 754) is:

– 23 bits for the mantissa

– 1 bit for the mantissa's sign

– 8 bits for the exponent

Page 9: Real Number Representationcomarc/slides/lect3-1.pdf · Terminology • All digits in a number following any leading zeros are significant digits : 12.345-0.12345 0.00012345

931 30 02223

Representing Numbers (cont)

– 23 bits for the mantissa

– 1 bit for the mantissa's sign

– 8 bits for the exponent

Page 10: Real Number Representationcomarc/slides/lect3-1.pdf · Terminology • All digits in a number following any leading zeros are significant digits : 12.345-0.12345 0.00012345

1031 30 02223

Representing Numbers (cont)

– 23 bits for the mantissa

– 1 bit for the mantissa's sign

– 8 bits for the exponent

Page 11: Real Number Representationcomarc/slides/lect3-1.pdf · Terminology • All digits in a number following any leading zeros are significant digits : 12.345-0.12345 0.00012345

1131 30 02223

Representing Numbers (cont)

– 23 bits for the mantissa

– 1 bit for the mantissa's sign

– 8 bits for the exponent

Page 12: Real Number Representationcomarc/slides/lect3-1.pdf · Terminology • All digits in a number following any leading zeros are significant digits : 12.345-0.12345 0.00012345

12

• The mantissahas to be in the range 1 ≤ mantissa < base

• Therefore

– If we use base 2, the digit before the point mustbe a 1

– So we don't have to worry about storing itWe get 24 bits of precision using 23 bits

Representing the Mantissa

Page 13: Real Number Representationcomarc/slides/lect3-1.pdf · Terminology • All digits in a number following any leading zeros are significant digits : 12.345-0.12345 0.00012345

13

Representing the Mantissa (cont)

• 24 bits of precision are equivalent to a little over 7 decimal digits:

24

log210≈ 7.2

Page 14: Real Number Representationcomarc/slides/lect3-1.pdf · Terminology • All digits in a number following any leading zeros are significant digits : 12.345-0.12345 0.00012345

14

Representing the Mantissa (cont)

• Suppose we want to represent π:3.1415926535897932384626433832795.....

• That means that we can only represent it as:3.141592 (if we truncate)3.141593 (if we round)

Page 15: Real Number Representationcomarc/slides/lect3-1.pdf · Terminology • All digits in a number following any leading zeros are significant digits : 12.345-0.12345 0.00012345

15

Representing the Exponent• The exponent is represented asexcess-127. E.g.,

Actual Exponent Stored Value-127 ↔ 00000000-126 ↔ 00000001

. . .0 ↔ 01111111

+1 ↔ 10000000. . .

i ↔ (i+127)2. . .

+128 ↔ 11111111

Page 16: Real Number Representationcomarc/slides/lect3-1.pdf · Terminology • All digits in a number following any leading zeros are significant digits : 12.345-0.12345 0.00012345

16

Representing the Exponent (cont)

• The IEEE standard restricts exponents to the range:

–126 ≤ exponent≤ +127

• The exponents –127 and +128 have special meanings:

– If exponent = –127, the stored value is 0

– If exponent = 128, the stored value is ∞

Page 17: Real Number Representationcomarc/slides/lect3-1.pdf · Terminology • All digits in a number following any leading zeros are significant digits : 12.345-0.12345 0.00012345

17

Representing Numbers -- Example 1What is 01011011 (8-bit machine) ?

0 101 1011

sign exp mantissa

• Mantissa:1.1011

• Exponent (excess-3 format):5-3=2

1.1011 × 22⇒ 110.11

110.112 = 22 + 21 + 2-1 + 2-2

= 4 + 2 + 0.5 + 0.25 = 6.75

Page 18: Real Number Representationcomarc/slides/lect3-1.pdf · Terminology • All digits in a number following any leading zeros are significant digits : 12.345-0.12345 0.00012345

18

Representing Numbers -- Example 2Represent -10.375 (32-bit machine)

10.37510 = 10 + 0.25 + 0.125

= 23 + 21 + 2-2 + 2-3

= 1010.0112 ⇒ 1.0100112 × 23

• Sign: 1• Mantissa:010011• Exponent (excess-127 format):

3+127 = 13010 = 100000102

1 10000010 01001100000000000000000

Page 19: Real Number Representationcomarc/slides/lect3-1.pdf · Terminology • All digits in a number following any leading zeros are significant digits : 12.345-0.12345 0.00012345

19

Floating Point Overflow

• Floating point representations can overflow, e.g.,

1.111111× 2127

+ 1.111111 × 2127

11.111110 × 2127

= ∞1.1111110× 2128

Page 20: Real Number Representationcomarc/slides/lect3-1.pdf · Terminology • All digits in a number following any leading zeros are significant digits : 12.345-0.12345 0.00012345

20

Floating Point Underflow

• Floating point numbers can also get too small, e.g.,

10.010000 × 2-126

÷ 11.000000 × 20

0.110000 × 2-126

= 01.100000× 2-127

Page 21: Real Number Representationcomarc/slides/lect3-1.pdf · Terminology • All digits in a number following any leading zeros are significant digits : 12.345-0.12345 0.00012345

21

“Normalized”“Normalized”• Condition

– exp ≠ 000…0 and exp ≠ 111…1

• Exponent coded as biasedvalueE = Exp – Bias

• Exp : unsigned value denoted by exp

• Bias : Bias value– Single precision: 127 (Exp: 1…254, E: -126…127)– Double precision: 1023 (Exp: 1…2046, E: -1022…1023)– in general: Bias= 2e-1 - 1, where e is number of exponent bits

• Significand coded with implied leading 1M = 1.xxx …x2

• xxx …x : bits of frac

• Minimum when 000…0 (M = 1.0)

• Maximum when 111…1 (M = 2.0 –ε)

• Get extra leading bit for “free”

Page 22: Real Number Representationcomarc/slides/lect3-1.pdf · Terminology • All digits in a number following any leading zeros are significant digits : 12.345-0.12345 0.00012345

22

Denormalized ValuesDenormalized Values• Condition

– exp = 000…0

• Value

– Exponent value E = –Bias+ 1– Significand value M = 0.xxx …x2

• xxx …x : bits of frac

• Cases– exp = 000…0, frac = 000…0

• Represents value 0

• Note that have distinct values +0 and –0

– exp = 000…0, frac ≠ 000…0

• Numbers very close to 0.0

• Lose precision as get smaller

• “Gradual underflow”

Page 23: Real Number Representationcomarc/slides/lect3-1.pdf · Terminology • All digits in a number following any leading zeros are significant digits : 12.345-0.12345 0.00012345

23

Special ValuesSpecial Values• Condition

– exp = 111…1

• Cases– exp = 111…1, frac = 000…0

• Represents value ∞ (infinity)

• Operation that overflows

• Both positive and negative

• E.g., 1.0/0.0 = −1.0/−0.0 = +∞, 1.0/−0.0 = −∞– exp = 111…1, frac ≠ 000…0

• Not-a-Number (NaN)

• Represents case when no numeric value can be determined

• E.g., sqrt(–1), ∞ − ∞

Page 24: Real Number Representationcomarc/slides/lect3-1.pdf · Terminology • All digits in a number following any leading zeros are significant digits : 12.345-0.12345 0.00012345

24

Floating Point RepresentationMost standard floating point representation use:

1 bit for the sign (positive or negative)8 bits for the range (exponent field)

23 bits for the precision (fraction field)

S exponent fraction2381

( )( )

=××−=

≤≤××−=−

0 ,2.01

2541 ,2.11126

127

exponentfractionN

exponentfractionNexponentS

exponentS

Page 25: Real Number Representationcomarc/slides/lect3-1.pdf · Terminology • All digits in a number following any leading zeros are significant digits : 12.345-0.12345 0.00012345

25

Floating Point Representation

S exponent fraction2381

( )( )

=××−=

≤≤××−=−

0 ,2.01

2541 ,2.11126

127

exponentfractionN

exponentfractionNexponentS

exponentS

point? floatingin drepresente 8

56number theis How :Example −

( )( ) ( )2

22

321012

210101.1101.110

212021202121

8

1

2

124

8

1

8

424

8

56

×−=−=

×+×+×+×+×+×−=

+++−= +++−=−

−−−

Thus the exponent is given by:

1292127 =⇒=− exponentexponent1 10000001 10101000000000000000000

Page 26: Real Number Representationcomarc/slides/lect3-1.pdf · Terminology • All digits in a number following any leading zeros are significant digits : 12.345-0.12345 0.00012345

26

Floating Point Representation (example)

S exponent fraction2381

( )( )

=××−=

≤≤××−=−

0 ,2.01

2541 ,2.11126

127

exponentfractionN

exponentfractionNexponentS

exponentS

00111101100000000000000000000000

What is the decimal value of the following floating point number?

exponent

exponent = 64+32+16+8+2+1=(128-8)+3=120+3=123

( )16

120.120.11 41271230 =×=××−= −−N

Page 27: Real Number Representationcomarc/slides/lect3-1.pdf · Terminology • All digits in a number following any leading zeros are significant digits : 12.345-0.12345 0.00012345

27

Floating Point Representation (example)

S exponent fraction2381

( )( )

=××−=

≤≤××−=−

0 ,2.01

2541 ,2.11126

127

exponentfractionN

exponentfractionNexponentS

exponentS

01000001100101000000000000000000

What is the decimal value of the following floating point number?

exponent

exponent =128+2+1=131

( ) 24

2127131

20 1.10010200101.1200101.11 =×=××−= −N

5.182

1216222 114 =++=++= −N

Page 28: Real Number Representationcomarc/slides/lect3-1.pdf · Terminology • All digits in a number following any leading zeros are significant digits : 12.345-0.12345 0.00012345

28

Floating Point Representation (example)

S exponent fraction2381

( )( )

=××−=

≤≤××−=−

0 ,2.01

2541 ,2.11126

127

exponentfractionN

exponentfractionNexponentS

exponentS

11000001000101000000000000000000

What is the decimal value of the following floating point number?

exponent

exponent =128+2=130

( ) 23

2127130

21 01.1001200101.1200101.11 −=×−=××−= −N

( ) 25.94

118222 203 −= ++−=++−= −N

Page 29: Real Number Representationcomarc/slides/lect3-1.pdf · Terminology • All digits in a number following any leading zeros are significant digits : 12.345-0.12345 0.00012345

29

Floating Point

S exponent fraction2381

( )( )

=××−=

≤≤××−=−

0 ,2.01

2541 ,2.11126

127

exponentfractionN

exponentfractionNexponentS

exponentS

What is the largest number that can be represented in 32 bits floatingpoint using the IEEE 754 format above?

01111111011111111111111111111111exponent

exponent =254232221 2121....2121 −−−− ×+×++×+×=fraction

99999998807.0810241024

11

2

112121

23230 =

××−=−=×−×= −fraction

Page 30: Real Number Representationcomarc/slides/lect3-1.pdf · Terminology • All digits in a number following any leading zeros are significant digits : 12.345-0.12345 0.00012345

30

Floating Point

S exponent fraction2381

( )( )

=××−=

≤≤××−=−

0 ,2.01

2541 ,2.11126

127

exponentfractionN

exponentfractionNexponentS

exponentS

What is the largest number that can be represented in 32 bits floatingpoint using the IEEE 754 format above?

01111111011111111111111111111111exponent

actual exponent =254-127 = 127 99999998807.0=fraction

( ) 1281270 2299999998807.11 ≈××−=N

Page 31: Real Number Representationcomarc/slides/lect3-1.pdf · Terminology • All digits in a number following any leading zeros are significant digits : 12.345-0.12345 0.00012345

31

Floating Point

S exponent fraction2381

( )( )

=××−=

≤≤××−=−

0 ,2.01

2541 ,2.11126

127

exponentfractionN

exponentfractionNexponentS

exponentS

What is the smallest number (closest to zero) that can be represented in 32 bits floating point using the IEEE 754 format above?

00000000000000000000000000000001exponent

actual exponent =0-126 = -126 2321 −×=fraction

( ) 149126230 2221 −−− ≈××−=N

Page 32: Real Number Representationcomarc/slides/lect3-1.pdf · Terminology • All digits in a number following any leading zeros are significant digits : 12.345-0.12345 0.00012345

32

Special Floating Point Representations

In the 8-bit field of the exponent we can represent numbers from 0 to255. We studied how to read numbers with exponents from 0 to 254.What is the value represented when the exponent is 255 (i.e. 111111112)?

An exponent equal 255 = 111111112 in a floating point representationindicates a special value.

When the exponent is equal 255 = 111111112 and the fraction is 0,the value represented is ± infinity.

When the exponent is equal 255 = 111111112 and the fraction is non-zero, the value represented is Not a Number (NaN).

Page 33: Real Number Representationcomarc/slides/lect3-1.pdf · Terminology • All digits in a number following any leading zeros are significant digits : 12.345-0.12345 0.00012345

33

Double Precision

32-bit floating point representation is usually called single precisionrepresentation.

A double precision floating point representation requires 64 bits. In double precision the following number of bits are used:

1 sign bit11 bits for exponent52 bits for fraction (also called significand)

Page 34: Real Number Representationcomarc/slides/lect3-1.pdf · Terminology • All digits in a number following any leading zeros are significant digits : 12.345-0.12345 0.00012345

34

Summary of Floating Point Real Number Encodings

NaNNaN

+∞−∞

−0

+Denorm +Normalized-Denorm-Normalized

+0

Page 35: Real Number Representationcomarc/slides/lect3-1.pdf · Terminology • All digits in a number following any leading zeros are significant digits : 12.345-0.12345 0.00012345

35

Special Properties of Encoding

Special Properties of Encoding

• FP Zero Same as Integer Zero

– All bits = 0

• Can (Almost) Use Unsigned Integer Comparison

– Must first compare sign bits

– Must consider -0 = 0

– NaNs problematic

• Will be greater than any other values

• What should comparison yield?

– Otherwise OK

• Denorm vs. normalized

• Normalized vs. infinity

Page 36: Real Number Representationcomarc/slides/lect3-1.pdf · Terminology • All digits in a number following any leading zeros are significant digits : 12.345-0.12345 0.00012345

36

Floating Point Addition

Five steps to add two floating point numbers:

1. Express the numbers with the same exponent (denormalize)

2. Add the mantissas

3. Adjust the mantissa to one digit/bit before the point (renormalize)

4. Round or truncate to required precision

5. Check for overflow/underflow

Page 37: Real Number Representationcomarc/slides/lect3-1.pdf · Terminology • All digits in a number following any leading zeros are significant digits : 12.345-0.12345 0.00012345

37

Floating Point Addition -- Example 1(Assume precision 4 decimal digits)

x = 9.876 × 107

y = 1.357 × 106

Page 38: Real Number Representationcomarc/slides/lect3-1.pdf · Terminology • All digits in a number following any leading zeros are significant digits : 12.345-0.12345 0.00012345

38

Floating Point Addition -- Example 1 (cont)(Assume precision 4 decimal digits)

1. Use the same exponents:

x = 9.876 × 107

y = 0.1357 × 107

Page 39: Real Number Representationcomarc/slides/lect3-1.pdf · Terminology • All digits in a number following any leading zeros are significant digits : 12.345-0.12345 0.00012345

39

Floating Point Addition -- Example 1 (cont)(Assume precision 4 decimal digits)

2. Add the mantissas:

x = 9.876 × 107

y = 0.136 × 107

x+y = 10.012× 107

Page 40: Real Number Representationcomarc/slides/lect3-1.pdf · Terminology • All digits in a number following any leading zeros are significant digits : 12.345-0.12345 0.00012345

40

Floating Point Addition -- Example 1 (cont)(Assume precision 4 decimal digits)

3. Renormalize the sum:

x = 9.876 × 107

y = 0.136 × 107

x+y = 1.0012 × 108

Page 41: Real Number Representationcomarc/slides/lect3-1.pdf · Terminology • All digits in a number following any leading zeros are significant digits : 12.345-0.12345 0.00012345

41

Floating Point Addition -- Example 1 (cont)(Assume precision 4 decimal digits)

4. Truncate or round:

x = 9.876 × 107

y = 0.136 × 107

x+y = 1.001 × 108

Page 42: Real Number Representationcomarc/slides/lect3-1.pdf · Terminology • All digits in a number following any leading zeros are significant digits : 12.345-0.12345 0.00012345

42

Floating Point Addition -- Example 1 (cont)(Assume precision 4 decimal digits)

5. Check overflow and underflow:

x = 9.876 × 107

y = 0.136 × 107

x+y = 1.001 × 108

Page 43: Real Number Representationcomarc/slides/lect3-1.pdf · Terminology • All digits in a number following any leading zeros are significant digits : 12.345-0.12345 0.00012345

43

Floating Point Addition -- Example 2(Assume precision 4 decimal digits)

x = 3.506 × 10-5

y = -3.497 × 10-5

Page 44: Real Number Representationcomarc/slides/lect3-1.pdf · Terminology • All digits in a number following any leading zeros are significant digits : 12.345-0.12345 0.00012345

44

Floating Point Addition -- Example 2 (cont)(Assume precision 4 decimal digits)

1. Use the same exponents:

x = 3.506 × 10-5

y = -3.497 × 10-5

Page 45: Real Number Representationcomarc/slides/lect3-1.pdf · Terminology • All digits in a number following any leading zeros are significant digits : 12.345-0.12345 0.00012345

45

Floating Point Addition -- Example 2 (cont)(Assume precision 4 decimal digits)

2. Add the mantissas:

x = 3.506 × 10-5

y = -3.497 × 10-5

x+y = 0.009 × 10-5

Page 46: Real Number Representationcomarc/slides/lect3-1.pdf · Terminology • All digits in a number following any leading zeros are significant digits : 12.345-0.12345 0.00012345

46

Floating Point Addition -- Example 2 (cont)(Assume precision 4 decimal digits)

3. Renormalize the sum:

x = 3.506 × 10-5

y = -3.497 × 10-5

x+y = 9.000× 10-8

Page 47: Real Number Representationcomarc/slides/lect3-1.pdf · Terminology • All digits in a number following any leading zeros are significant digits : 12.345-0.12345 0.00012345

47

Floating Point Addition -- Example 2 (cont)(Assume precision 4 decimal digits)

4. Truncate or round:

x = 3.506 × 10-5

y = -3.497 × 10-5

x+y = 9.000 × 10-8 (no change)

Page 48: Real Number Representationcomarc/slides/lect3-1.pdf · Terminology • All digits in a number following any leading zeros are significant digits : 12.345-0.12345 0.00012345

48

Floating Point Addition -- Example 2 (cont)(Assume precision 4 decimal digits)

5. Check overflow and underflow:

x = 3.506 × 10-5

y = -3.497 × 10-5

x+y = 9.000 × 10-8

Page 49: Real Number Representationcomarc/slides/lect3-1.pdf · Terminology • All digits in a number following any leading zeros are significant digits : 12.345-0.12345 0.00012345

49

Limitations

• Floating-point representations only approximate real numbers

• The normal laws of arithmetic don't always hold, e.g., associativity is notguaranteed

Page 50: Real Number Representationcomarc/slides/lect3-1.pdf · Terminology • All digits in a number following any leading zeros are significant digits : 12.345-0.12345 0.00012345

50

Limitations -- Example(Assume precision 4 decimal digits)

x = 3.002 × 103

y = -3.000 × 103

z = 6.531 × 100

Page 51: Real Number Representationcomarc/slides/lect3-1.pdf · Terminology • All digits in a number following any leading zeros are significant digits : 12.345-0.12345 0.00012345

51

Limitations -- Example (cont) (Assume precision 4 decimal digits)

x = 3.002 × 103

y = -3.000 × 103

z = 6.531 × 100

x+y = 2.000 × 100

Page 52: Real Number Representationcomarc/slides/lect3-1.pdf · Terminology • All digits in a number following any leading zeros are significant digits : 12.345-0.12345 0.00012345

52

Limitations -- Example (cont) (Assume precision 4 decimal digits)

x = 3.002 × 103

x+y = 2.000 × 100

y = -3.000 × 103

z = 6.531 × 100

(x+y)+z = 8.531 × 100

Page 53: Real Number Representationcomarc/slides/lect3-1.pdf · Terminology • All digits in a number following any leading zeros are significant digits : 12.345-0.12345 0.00012345

53

Limitations -- Example (cont) (Assume precision 4 decimal digits)

x = 3.002 × 103

y = -3.000 × 103

z = 6.531 × 100

Page 54: Real Number Representationcomarc/slides/lect3-1.pdf · Terminology • All digits in a number following any leading zeros are significant digits : 12.345-0.12345 0.00012345

54

Limitations -- Example (cont) (Assume precision 4 decimal digits)

x = 3.002 × 103

y = -3.000 × 103

z = 6.531 × 100

y+z = -2.993 × 103

Page 55: Real Number Representationcomarc/slides/lect3-1.pdf · Terminology • All digits in a number following any leading zeros are significant digits : 12.345-0.12345 0.00012345

55

Limitations -- Example (cont) (Assume precision 4 decimal digits)

x = 3.002 × 103

y = -3.000 × 103

y+z = -2.993 × 103

z = 6.531 × 100

x+(y+z) = 0.009 × 103

Page 56: Real Number Representationcomarc/slides/lect3-1.pdf · Terminology • All digits in a number following any leading zeros are significant digits : 12.345-0.12345 0.00012345

56

Limitations -- Example (cont) (Assume precision 4 decimal digits)

x = 3.002 × 103

x+(y+z) = 9.000 × 100

y = -3.000 × 103

y+z = -2.993 × 103

z = 6.531 × 100

Page 57: Real Number Representationcomarc/slides/lect3-1.pdf · Terminology • All digits in a number following any leading zeros are significant digits : 12.345-0.12345 0.00012345

57

Limitations -- Example (cont) (Assume precision 4 decimal digits)

x = 3.002 × 103

x+(y+z) = 9.000 × 100

y = -3.000 × 103

(x+y)+z = 8.531 × 100

z = 6.531 × 100

Page 58: Real Number Representationcomarc/slides/lect3-1.pdf · Terminology • All digits in a number following any leading zeros are significant digits : 12.345-0.12345 0.00012345

58

Mathematical Properties of FP AddMathematical Properties of FP Add

• Compare to those of Abelian Group–Closed under addition? YES

• But may generate infinity or NaN

–Commutative? YES

–Associative? NO• Overflow and inexactness of rounding

–0 is additive identity? YES

–Every element has additive inverseALMOST

• Except for infinities & NaNs

Page 59: Real Number Representationcomarc/slides/lect3-1.pdf · Terminology • All digits in a number following any leading zeros are significant digits : 12.345-0.12345 0.00012345

59

Circuitry for Addition/Subtraction

Page 60: Real Number Representationcomarc/slides/lect3-1.pdf · Terminology • All digits in a number following any leading zeros are significant digits : 12.345-0.12345 0.00012345

60

Multiplication• Multiply Significands

• Add Exponents

• Normalize

– Shift Significand

– Add or Subtract shift amount to exponent

• Round

– To number of bits for significand

– need to keep extra bits during computation

• Normalize again if necessary

Page 61: Real Number Representationcomarc/slides/lect3-1.pdf · Terminology • All digits in a number following any leading zeros are significant digits : 12.345-0.12345 0.00012345

61

For multiplication of P = X ×××× Y :

1. Compute Exponent: Exp P = ( ExpY + ExpX ) - Bias

2. Compute Product: ( 1 + Sig X ) ×××× ( 1 + SigY )Normalize if necessary; continue until most significant bit i s 1

4. Too small (e.g., 0.001xx... ) →→→→left shift result, decrement result exponent

4'. Too big (e.g., 10.1xx... ) →→→→right shift result, increment result exponent

5. If (result significand is 0) then set exponent to 0

6. if (SgnX == SgnY ) thenSgnP = positive (0)

elseSgnP = negative (1)

Page 62: Real Number Representationcomarc/slides/lect3-1.pdf · Terminology • All digits in a number following any leading zeros are significant digits : 12.345-0.12345 0.00012345

62

FP Multiplication AlgorithmStart

1. Add the biased exponents of the two numbers, subtracting the bias from the sum to get the new biased exponent.

2. Multiply the Significands.

3. Normalize the product if necessary, shifting it right and incrementing the exponent.

4. Round the significant to the appropriate number of bits.

Overflow or underflow?

Still Normalized?

Exception

Doneyes

yes

no

no

5. Set the sign of the product to positive if the signs of the original operands are the same. If they differ, make the sign negative.

Page 63: Real Number Representationcomarc/slides/lect3-1.pdf · Terminology • All digits in a number following any leading zeros are significant digits : 12.345-0.12345 0.00012345

630

10 1 0 1

Control

Small ALU

Big ALU

Sign Exponent Significand Sign Exponent Significand

Exponent difference

Shift right

Shift left or right

Rounding hardware

Sign Exponent Significand

Increment or decrement

0 10 1

Shift smaller number right Compare exponents Add

Normalize

Round

• FP ADD: Exponents are subtracted by small ALU; the difference controls the 3 MUXes;

• Shift smallerexp. to the right until exponents match;

• Significants are added in Big ALU;

• Normalization step shifts result left or right, adjusts exponents;

• Rounding and possible nornalization

Page 64: Real Number Representationcomarc/slides/lect3-1.pdf · Terminology • All digits in a number following any leading zeros are significant digits : 12.345-0.12345 0.00012345

64

Floating Point Multiplication (Decimal)

Assume that we only can store four digits of the significand and two digits of the exponent in a decimal floating point representation.

How would you multiply 1.11010×1010 by 9.20010×10-5 inthis representation?

Step 1: Add the exponents: new exponent = 10 - 5 = 5

Step 2: Multiply the significands: 1.110×9.200

00000000

2220 9990

10.212000

Step 3: Normalize the product:10.21210×105 = 1.021210 ×106

Step 4: Round-off the product:1.021210×106 = 1.02110 ×106

Page 65: Real Number Representationcomarc/slides/lect3-1.pdf · Terminology • All digits in a number following any leading zeros are significant digits : 12.345-0.12345 0.00012345

65

Math. Properties of FP MultMath. Properties of FP Mult• Compare to Commutative Ring

– Closed under multiplication? YES

• But may generate infinity or NaN

– Multiplication Commutative? YES

– Multiplication is Associative? NO

• Possibility of overflow, inexactness of rounding

– 1 is multiplicative identity? YES

– Multiplication distributes over addition? NO

• Possibility of overflow, inexactness of rounding

• Monotonicity

– a ≥ b & c ≥ 0 ⇒ a * c ≥ b * c? ALMOST

• Except for infinities & NaNs

Page 66: Real Number Representationcomarc/slides/lect3-1.pdf · Terminology • All digits in a number following any leading zeros are significant digits : 12.345-0.12345 0.00012345

66

Floating-Point Division• Significands divided - exponents subtracted -

bias added to difference E1-E2

• If resulting exponent out of range - overflow or underflow indication must be generated

• Resultant significand satisfies 1/β ≤ M1/M2 < β

• A single base-β shift right of significand + increase of 1 in exponent may be needed in postnormalization step - may lead to an overflow

Page 67: Real Number Representationcomarc/slides/lect3-1.pdf · Terminology • All digits in a number following any leading zeros are significant digits : 12.345-0.12345 0.00012345

67

Remainder in Floating-Point Division• Fixed-point remainder -R=X-QD (X, Q, D -

dividend, quotient, divisor) -|R| ≤ |D| - generated by division algorithm (restoring or nonrestoring)

• Flp division - algorithm generates quotient but not remainder -F1 REM F2 = F1-F2⋅Int(F1/F2) (Int(F1/F2)- quotient F1/F2converted to integer)

• Conversion to integer - either truncation (removing fractional part) or rounding-to-nearest

• The IEEE standard uses the round-to-nearest-evenmode -|F1 REM F2| ≤ |F2| /2

Emax-Emin

Page 68: Real Number Representationcomarc/slides/lect3-1.pdf · Terminology • All digits in a number following any leading zeros are significant digits : 12.345-0.12345 0.00012345

68

Floating-Point Remainder • Brute-force- continue direct division algorithm for E1-E2steps

• Problem- E1-E2can be much greater than number of steps needed to generate m bits of quotient's significand - may take an arbitrary number of clock cycles

• Solution- calculate remainder in software

• Alternative- Define a REM-stepoperation - X REM F2 -performs a limited number of divide steps (e.g., limited to number of divide steps required in a regular divide operation)

• Initial X=F1, then X=remainder of previous REM-stepoperation

• REM-steprepeated until remainder ≤ F2/2

Page 69: Real Number Representationcomarc/slides/lect3-1.pdf · Terminology • All digits in a number following any leading zeros are significant digits : 12.345-0.12345 0.00012345

69

Floating Point in CFloating Point in C• C Guarantees Two Levels

float single precision

double double precision

• Conversions– Casting between int , float , and double changes numeric values

– Double or float to int

• Truncates fractional part

• Like rounding toward zero

• Not defined when out of range

– Generally saturates to TMin or TMax– int to double

• Exact conversion, as long as int has ≤ 53 bit word size

– int to float

• Will round according to rounding mode

Page 70: Real Number Representationcomarc/slides/lect3-1.pdf · Terminology • All digits in a number following any leading zeros are significant digits : 12.345-0.12345 0.00012345

70

Floating Point PuzzlesFloating Point Puzzles– For each of the following C expressions, either:

• Argue that it is true for all argument values

• Explain why not true• x == (int)(float) x

• x == (int)(double) x

• f == (float)(double) f

• d == (float) d

• f == -(-f);

• 2/3 == 2/3.0

• d < 0.0 ⇒ ((d*2) < 0.0)

• d > f ⇒ -f > -d

• d * d >= 0.0

• (d+f)-d == f

int x = …;

float f = …;

double d = …;

Assume neitherd nor f is NaN

Page 71: Real Number Representationcomarc/slides/lect3-1.pdf · Terminology • All digits in a number following any leading zeros are significant digits : 12.345-0.12345 0.00012345

71

Answers to Floating Point PuzzlesAnswers to Floating Point Puzzles

• x == (int)(float) x

• x == (int)(double) x

• f == (float)(double) f

• d == (float) d

• f == -(-f);

• 2/3 == 2/3.0

• d < 0.0 ⇒ ((d*2) < 0.0)

• d > f ⇒ -f > -d

• d * d >= 0.0

• (d+f)-d == f

int x = …;

float f = …;

double d = …;

Assume neitherd nor f is NAN

• x == (int)(float) x No: 24 bit significand

• x == (int)(double) x Yes: 53 bit significand

• f == (float)(double) f Yes: increases precision

• d == (float) d No: loses precision

• f == -(-f); Yes: Just change sign bit

• 2/3 == 2/3.0 No: 2/3 == 0

• d < 0.0 ⇒ ((d*2) < 0.0) Yes!

• d > f ⇒ -f > -d Yes!

• d * d >= 0.0 Yes!

• (d+f)-d == f No: Not associative

Page 72: Real Number Representationcomarc/slides/lect3-1.pdf · Terminology • All digits in a number following any leading zeros are significant digits : 12.345-0.12345 0.00012345

72

MIPS Coprocessors

CPU

Registers

$0

$31

Arithmetic unit

Multiply divide

Lo Hi

Coprocessor 1 (FPU)

Registers

$0

$31

Arithmetic unit

Registers

BadVAddr

Coprocessor 0 (traps and memory)

Status

Cause

EPC

Memory

Page 73: Real Number Representationcomarc/slides/lect3-1.pdf · Terminology • All digits in a number following any leading zeros are significant digits : 12.345-0.12345 0.00012345

73

Floating Point in MIPSMIPS Supports the IEEE 754 single-precision and double-precisionformats.

MIPS has a separate set of registers to store floating point operands:$f0, $f1, $f2, ...

In single precision, each individual register $f0, $f1, $f2, … contains one single precision (32-bit) value.

In double precision, each pair of registers $f0-$f1, $f2-$f3, … contains one double precision (64-bit) value.

Page 74: Real Number Representationcomarc/slides/lect3-1.pdf · Terminology • All digits in a number following any leading zeros are significant digits : 12.345-0.12345 0.00012345

74

Floating Point in MIPS

In order to load a value in a floating point register, MIPS offers theload word coprocessor, lwcz, instructions. Because the floating pointcoprocessor is the coprocessor number 1, the instruction is lwc1.

Similarly to store the value of a floating point register into memory,MIPS offers the store word coprocessor, swc1.add.s add.d FP addition single or double sub.s sub.d FP subtraction single or double mul.s mul.d FP multiplication single or double div.s div.d FP division single or double c.x.s c.x.d FP comparison single or double (x = eq, neq. lt, le. gt, or ge) bclt FP branch true bclf FP branch false

Page 75: Real Number Representationcomarc/slides/lect3-1.pdf · Terminology • All digits in a number following any leading zeros are significant digits : 12.345-0.12345 0.00012345

75

Floating Point Instruction in MIPS

What does the following assembly code do?

lwc1 $f4, 4($sp)lwc1 $f6, 8($sp)add.s $f2, $f4, $f6swc1 $f2,12($sp)

Reads two floating point values from the stack, performstheir addition and stores the result in the stack.

Page 76: Real Number Representationcomarc/slides/lect3-1.pdf · Terminology • All digits in a number following any leading zeros are significant digits : 12.345-0.12345 0.00012345

76

Pentium Bug• Pentium FP Divider uses algorithm to generate multiple bits per steps

– FPU uses most significant bits of divisor & dividend/remainder to guess next 2 bits of quotient

– Guess is taken from lookup table: -2, -1,0,+1,+2 (if previous guess too large a reminder, quotient is adjusted in subsequent pass of -2)

– Guess is multiplied by divisor and subtracted from remainder to generate a new remainder

– Called SRT division after 3 people who came up with idea

• Pentium table uses 7 bits of remainder + 4 bits of divisor = 211 entries

• 5 entries of divisors omitted: 1.0001, 1.0100, 1.0111, 1.1010, 1.1101 from PLA (fix is just add 5 entries back into PLA: cost $200,000)

• Self correcting nature of SRT => string of 1s must follow error

– e.g., 1011 1111 1111 1111 1111 1011 1000 0010 0011 0111 1011 0100 (2.99999892918)

• Since indexed also by divisor/remainder bits, sometimes bug doesn’t show even with dangerous divisor value

Page 77: Real Number Representationcomarc/slides/lect3-1.pdf · Terminology • All digits in a number following any leading zeros are significant digits : 12.345-0.12345 0.00012345

77

Pentium bug appearance

• First 11 bits to right of decimal point always correct: bits 12 to 52 where bug can occur (4th to 15th decimal digits)

• FP divisors near integers 3, 9, 15, 21, 27 are dangerous ones:

– 3.0 > d � 3.0 - 36 x 2–22 , 9.0 > d � 9.0 - 36 x 2–20

– 15.0 > d � 15.0 - 36 x 2–20 , 21.0 > d � 21.0 - 36 x 2–19

• 0.333333 x 9 could be problem

• In Microsoft Excel, try (4,195,835 / 3,145,727) * 3,145,727

– = 4,195,835 => not a Pentium with bug

– = 4,195,579 => Pentium with bug(assuming Excel doesn’t have SW bug patch)

– Rarely noticed since error in 5th significant digit

– Success of IEEE standard made discovery possible: - all computers should get same answer

Page 78: Real Number Representationcomarc/slides/lect3-1.pdf · Terminology • All digits in a number following any leading zeros are significant digits : 12.345-0.12345 0.00012345

78

Pentium Bug Time line

• June 1994: Intel discovers bug in Pentium: takes months to make change, reverify, put into production: plans good chips in January 1995 4 to 5 million Pentiums produced with bug

• Scientist suspects errors and posts on Internet in September 1994

• Nov. 22 Intel Press release: “Can make errors in 9th digit ... Most engineers and financial analysts need only 4 of 5 digits. Theoretical mathematician should be concerned. ... So far only heard from one.”

• Intel claims happens once in 27,000 years for typical spread sheet user:

– 1000 divides/day x error rate assuming numbers random

• Dec 12: IBM claims happens once per 24 days: Bans Pentium sales

– 5000 divides/second x 15 minutes = 4,200,000divides/day

– Intel said it regards IBM's decision to halt shipments of its Pentium processor-based systems as unwarranted.

Page 79: Real Number Representationcomarc/slides/lect3-1.pdf · Terminology • All digits in a number following any leading zeros are significant digits : 12.345-0.12345 0.00012345

79

Pentium jokes• Q: What's another name for the "Intel Inside" sticker they put on Pentiums?

A: Warning label.

• Q: Have you heard the new name Intel has chosen for the Pentium?

A: the Intel Inacura.

• Q: According to Intel, the Pentium conforms to the IEEE standards for floating point arithmetic. If you fly in aircraft designed using a Pentium, what is the correct pronunciation of "IEEE"?

A: Aaaaaaaiiiiiiiiieeeeeeeeeeeee!

• TWO OF TOP TEN NEW INTEL SLOGANS FOR THE PENTIUM

9.9999973251 It's a FLAW, Dammit, not a Bug

7.9999414610 Nearly 300 Correct Opcodes

Page 80: Real Number Representationcomarc/slides/lect3-1.pdf · Terminology • All digits in a number following any leading zeros are significant digits : 12.345-0.12345 0.00012345

80

Pentium conclusion: Dec. 21, 1994 $500M write-off“To owners of Pentium processor-based computers and the PC community:We at Intel wish to sincerely apologize for our handling of the recently

publicized Pentium processor flaw.The Intel Inside symbol means that your computer has a microprocessor second to none

in quality and performance. Thousands of Intel employees work very hard to ensure that this is true. But no microprocessor is ever perfect.

What Intel continues to believe is technically an extremely minor problem has taken on a life of its own. Although Intel firmly stands behind the quality of the current version of the Pentium processor, we recognize that many users have concerns.

We want to resolve these concerns.

Intel will exchange the current version of the Pentium processor for anupdated version, in which this floating-point divide flaw is corrected, forany owner who requests it, free of charge anytime during the life of theircomputer. Just call 1-800-628-8686.”

Sincerely,Andrew S. Grove Craig R. Barrett Gordon E. MoorePresident /CEO Executive Vice President Chairman of the Board

&COO

Page 81: Real Number Representationcomarc/slides/lect3-1.pdf · Terminology • All digits in a number following any leading zeros are significant digits : 12.345-0.12345 0.00012345

81

• Pentium: Difference between bugs that board designers must know about and bugs that potentially affect all users

–Why not make public complete description of bugs in later category?

–$200,000 cost in June to repair design

–$500,000,000 loss in December in profits to replace bad parts

–How much to repair Intel’s reputation?

• What is technologists responsibility in disclosing bugs?

Page 82: Real Number Representationcomarc/slides/lect3-1.pdf · Terminology • All digits in a number following any leading zeros are significant digits : 12.345-0.12345 0.00012345

82

Rounding• Why is rounding needed?

• Infinity numbers ⇒ Finite representation

• Integers only overflow

• Almost all operations need rounding

• IEEE - specifies algorithms for arithmetic

Page 83: Real Number Representationcomarc/slides/lect3-1.pdf · Terminology • All digits in a number following any leading zeros are significant digits : 12.345-0.12345 0.00012345

83

Numbers need rounding

• Out of range:– x>2•2Emax x<1•2Emin

• Between 2 floats:– 0.110 = 0.00011001100….2 = 1.1001100…. •2-4

– 1.1001 •2-4

Page 84: Real Number Representationcomarc/slides/lect3-1.pdf · Terminology • All digits in a number following any leading zeros are significant digits : 12.345-0.12345 0.00012345

84

Measuring Error

• ULPS (units in last place)– 1.12•10-1 Vs 0.124 : 0.4 ulps

– 1.12•10-1 Vs 0.118 : 0.2 ulps

• Relative Error– Difference/Original

– 1.12•10-1 Vs 0.124 : Err=0.004/0.124=0.032

Page 85: Real Number Representationcomarc/slides/lect3-1.pdf · Terminology • All digits in a number following any leading zeros are significant digits : 12.345-0.12345 0.00012345

85

Calculate Using Rounding

• Benign cancellation– Calculate 10.1-9.93 (= 0.17)

1.01 •101

0.99 •101

0.02 •101 = 2.00 •10-1

– 30 upls!

Page 86: Real Number Representationcomarc/slides/lect3-1.pdf · Terminology • All digits in a number following any leading zeros are significant digits : 12.345-0.12345 0.00012345

86

Rounding problems

• Catastrophic cancellation– b2-4ac

– both b2 and 4ac are rounded

– the (-) exposes the error

– b=3.34 a=1.22 c=2.28

b2=11.2 4ac=11.1 b2-4ac=0.10

correct=0.0292 (70.08 upls)

Page 87: Real Number Representationcomarc/slides/lect3-1.pdf · Terminology • All digits in a number following any leading zeros are significant digits : 12.345-0.12345 0.00012345

87

IEEE Arithmetic• Requirement:

+ - • ÷� should be EXACTLY rounded

remainder should be EXACTLY rounded

Integer conv. should be EXACTLY rounded

• Not all (transcendental, binary to decimal)

• “Tie break” - Round to Even

Page 88: Real Number Representationcomarc/slides/lect3-1.pdf · Terminology • All digits in a number following any leading zeros are significant digits : 12.345-0.12345 0.00012345

88

Rounding and IEEE Rounding Modes• When we perform math on “real” numbers, we have to worry about rounding to

fit the result in the significant field.

• The FP hardware carries two extra bits of precision, and then round to get the proper value

• Rounding also occurs when converting a double to a single precision value, or converting a floating point number to an integer

Round towards +∞• ALWAYS round “up”: 2.001 → 3

• -2.001 → -2

Round towards -∞• ALWAYS round “down”: 1.999 → 1,

• -1.999 → -2

Truncate

• Just drop the last bits (round towards 0)

Round to (nearest) even

• Normal rounding, almost

Page 89: Real Number Representationcomarc/slides/lect3-1.pdf · Terminology • All digits in a number following any leading zeros are significant digits : 12.345-0.12345 0.00012345

89

Round to Even• Round like you learned in grade school

• Except if the value is right on the borderline, in which case weround to the nearest EVEN number

2.5 -> 2

3.5 -> 4

• Insures fairness on calculation

This way, half the time we round up on tie, the other half time we round down

• This is the default rounding mode

Page 90: Real Number Representationcomarc/slides/lect3-1.pdf · Terminology • All digits in a number following any leading zeros are significant digits : 12.345-0.12345 0.00012345

90

Round to Even• How will 1.005 be rounded ?

– Round Up: 1.01

– Round Even: 1.00

• Why? Example:– xi=xi-1+y-y x0=1.00 y=0.125

– Round up: 1.00, 1.01, 1.02, ….

– Round even: 1.00, 1.00, 1.00, ….

Page 91: Real Number Representationcomarc/slides/lect3-1.pdf · Terminology • All digits in a number following any leading zeros are significant digits : 12.345-0.12345 0.00012345

91

Addition:1.xxxxx 1.xxxxx 1.xxxxx

+ 1.xxxxx 0.001xxxxx 0.01xxxxx

1x.xxxxy 1.xxxxxyyy 1x.xxxxyyypost-normalization pre-normalization pre and post

• Guard Digits: digits to the right of the first p digits of significand to guard against loss of digits – can later be shifted left into first P places during normalization.

• Addition: carry-out shifted in

• Subtraction: borrow digit and guard

• Multiplication: carry and guard, Division requires guard

Page 92: Real Number Representationcomarc/slides/lect3-1.pdf · Terminology • All digits in a number following any leading zeros are significant digits : 12.345-0.12345 0.00012345

92

Normalized result, but some non-zero digits to the right of the significand --> the number should be rounded

E.g., B = 10, p = 3: 0 2 1.69

0 0 7.85

0 2 1.61

= 1.6900 * 10

= - .0785 * 10

= 1.6115 * 10

2-bias

2-bias

2-bias

-

one round digit must be carried to the right of the guard digit so that after a normalizing left shift, the result can be r ounded, accordingto the value of the round digit

IEEE Standard: four rounding modes: round to nearest even (default)round towards plus infinityround towards minus infinityround towards 0

round to nearest:round digit < B/2 then truncate

> B/2 then round up (add 1 to ULP: unit in last pl ace)= B/2 then round to nearest even digit

it can be shown that this strategy minimizes the mean error introduced by rounding

Page 93: Real Number Representationcomarc/slides/lect3-1.pdf · Terminology • All digits in a number following any leading zeros are significant digits : 12.345-0.12345 0.00012345

93

Sticky BitAdditional bit to the right of the round digit to better fine tune rounding

d0 . d1 d2 d3 . . . dp-1 0 0 00 . 0 0 X . . . X X X S

X X S+

Sticky bit: set to 1 if any 1 bits fall offthe end of the round digit

d0 . d1 d2 d3 . . . dp-1 0 0 00 . 0 0 X . . . X X X 0

X X 0-

d0 . d1 d2 d3 . . . dp-1 0 0 00 . 0 0 X . . . X X X 1-

generates a borrow

Rounding Summary

Radix 2 minimizes wobble in precision

Normal operations in +,-,*,/ require one carry /borrow bit + one guard digit

One round digit needed for correct rounding

Sticky bit needed when round digit is B/2 for max accuracy

Rounding to nearest has mean error = 0, if uniform distribution of digits are assumed

Page 94: Real Number Representationcomarc/slides/lect3-1.pdf · Terminology • All digits in a number following any leading zeros are significant digits : 12.345-0.12345 0.00012345

94

Floating-Point Division• Significands divided - exponents subtracted - bias added to

difference E1-E2

• If resulting exponent out of range - overflow or underflow indication must be generated

• Resultant significand satisfies 1/β ≤ M1/M2 < β

• A single base-β shift right of significand + increase of 1 in exponent may be needed in postnormalization step - may lead to an overflow

• If divisor=0 - indication of division by zerogenerated -quotient set to ±∞

• If both divisor and dividend=0 - result undefined - in the IEEE 754standard represented by NaN - not a number - also representing uninitialized variables and the result of 0 ⋅ ∞

Page 95: Real Number Representationcomarc/slides/lect3-1.pdf · Terminology • All digits in a number following any leading zeros are significant digits : 12.345-0.12345 0.00012345

95

Remainder

• Fixed-point remainder -R=X-QD (X, Q, D - dividend, quotient, divisor) -|R| ≤ |D| - generated by division algorithm (restoring or nonrestoring)

• Flp division - algorithm generates quotient but not remainder -F1 REM F2 = F1-F2⋅Int(F1/F2) (Int(F1/F2)- quotient F1/F2converted to integer)

• Conversion to integer - either truncation (removing fractional part) or rounding-to-nearest

• The IEEE standard uses the round-to-nearest-evenmode -|F1 REM F2| ≤ |F2| /2

• Int(F1/F2)as large as β - high complexity

• Floating-point remainder calculated separately - only when required - for example, in argument reduction for periodic functions like sine and cosine

Emax-Emin

Page 96: Real Number Representationcomarc/slides/lect3-1.pdf · Terminology • All digits in a number following any leading zeros are significant digits : 12.345-0.12345 0.00012345

96

Speeding up• Different algorithms may be used

• Result should be exact

• divide SRT algorithm in pentium– 5/2048 entries in a table

– 1/9,000,000 chance

– check:

Page 97: Real Number Representationcomarc/slides/lect3-1.pdf · Terminology • All digits in a number following any leading zeros are significant digits : 12.345-0.12345 0.00012345

97

MIPS R10000 arithmetic units• Integer ALU + shifter

– All instructions take one cycle

• Integer ALU + multiplier

– Booth’s algorithm for multiplication (5-10 cycles)

– Non-restoring division (34-67 cycles)

• Floating point adder

– Carry propagate (2 cycles)

• Floating point multiplier (3 cycles)

– Booth’s algorithm

• Floating point divider (12-19 cycles)

• Floating point square root unit

• Separate unit for EA calculations

• Can start up to 5 instructions in 1 cycle

Page 98: Real Number Representationcomarc/slides/lect3-1.pdf · Terminology • All digits in a number following any leading zeros are significant digits : 12.345-0.12345 0.00012345

98

Effect of Loss of Precision

• According to the General Accounting Office of the U.S. Government, a loss of precision in converting 24-bit integers into 24-bit floating point numbers was responsible for the failure of a Patriot anti-missile battery.

Page 99: Real Number Representationcomarc/slides/lect3-1.pdf · Terminology • All digits in a number following any leading zeros are significant digits : 12.345-0.12345 0.00012345

99

Ariane 5

– Exploded 37 seconds after liftoff

– Cargo worth $500 million

• Why

– Computed horizontal velocity as floating point number

– Converted to 16-bit integer

– Worked OK for Ariane 4

– Overflowed for Ariane 5

• Used same software


Recommended