+ All Categories
Home > Documents > Realization of the quantum Toffoli gate - qudev.phys.ethz.ch · 6. Dezember 2010 Jakob Buhmann...

Realization of the quantum Toffoli gate - qudev.phys.ethz.ch · 6. Dezember 2010 Jakob Buhmann...

Date post: 04-Sep-2019
Category:
Upload: others
View: 1 times
Download: 0 times
Share this document with a friend
27
Realization of the quantum Toffoli gate Realization of the quantum Toffoli gate Based on: Monz, T; Kim, K; Haensel, W; et al Realization of the quantum Toffoli gate with trapped ions Phys. Rev. Lett. 102, 040501 (2009) Lanyon, BP; Barbieri, M; Almeida, MP; et al. Simplifying quantum logic using higher dimensional Hilbert spaces Nat. Phys. 5, 134 (2009)
Transcript

Realization of the quantum Toffoli gate

Realization of the quantum Toffoligate

Based on:

Monz, T; Kim, K; Haensel, W; et alRealization of the quantum Toffoli gate with trapped ionsPhys. Rev. Lett. 102, 040501 (2009)

Lanyon, BP; Barbieri, M; Almeida, MP; et al.Simplifying quantum logic using higher dimensional Hilbert spacesNat. Phys. 5, 134 (2009)

6. Dezember 2010 Jakob Buhmann Jeffrey Gehrig 1

Realization of the quantum Toffoli gate

Outline

1. Motivation2. Principles of the quantum Toffoli gate3. Implementation with trapped ions4. Implementation with photons5. Comparison and conclusion6. Summary

6. Dezember 2010 Jakob Buhmann Jeffrey Gehrig 2

Realization of the quantum Toffoli gate

1. Motivation

• Universal quantum logic gate sets are neededto implement algorithms

• Implementation of algorithms is difficult due tothe finite fidelity and large amount of gates

• Use of other degrees of freedom to storeinformation

• Reduction of complexity and runtime

6. Dezember 2010 Jakob Buhmann Jeffrey Gehrig 3

Realization of the quantum Toffoli gate

2. Principles of the Toffoli gate

• Three-qubit gate (C1, C2, T)• Logic flip of T depending on (C1 AND C2)

011111111011101101001001110110010010100100000000TC2C1TC2C1

OutputInput

Truth table Matrix form

6. Dezember 2010 Jakob Buhmann Jeffrey Gehrig 4

Realization of the quantum Toffoli gate

2. Principles of the Toffoli gate

• Qubit Implementation

• Qutrit ImplementationQutrit states:

and

6. Dezember 2010 Jakob Buhmann Jeffrey Gehrig 5

Realization of the quantum Toffoli gate

2. Principles of the Toffoli gate

• Higher order Toffoli gates easilyimplementable

• Gates needed: 2n-1, prior 12n-11 plus n-1ancilla qubits

6. Dezember 2010 Jakob Buhmann Jeffrey Gehrig 6

Realization of the quantum Toffoli gate

3. Implementation with trapped ions

6. Dezember 2010 Jakob Buhmann Jeffrey Gehrig 7

Realization of the quantum Toffoli gate

3. Implementation with trapped ions

• String of ions in linear ion trap• Ground state:• Excited state:• Usage of COM vibratinal modes (phonons)

Picture: Linear Paul trap with Ca+ on stringUniversity Innsbruck, 2000: F. Schmidt-Kaler and R. Blatt,

6. Dezember 2010 Jakob Buhmann Jeffrey Gehrig 8

Realization of the quantum Toffoli gate

3. Implementation with trapped ions

Used Transitions• First type of transition:• Second type of transition:

6. Dezember 2010 Jakob Buhmann Jeffrey Gehrig 9

Realization of the quantum Toffoli gate

3. Implementation with trapped ions

Implementation• Three steps

Encoding of the information in thevibrational COM mode

NOT operation, depending on C1 and C2

Reversal encoding and readout

6. Dezember 2010 Jakob Buhmann Jeffrey Gehrig 10

Realization of the quantum Toffoli gate

3. Implementation with trapped ions

• Laser pulses prepare C1 and C2 by type 1 transition• Phonon excitation by type 2 transition

• From state we get the phonon in state 2• After type 2 transition, C1 is always in the D state

6. Dezember 2010 Jakob Buhmann Jeffrey Gehrig 11

Realization of the quantum Toffoli gate

3. Implementation with trapped ions

Implementation

6. Dezember 2010 Jakob Buhmann Jeffrey Gehrig 12

Realization of the quantum Toffoli gate

3. Implementation with trapped ions

Implementatin• is the only state with phonon left• C-NOT operation depending on the existance

of phonon• Undo encoding for C1, C2 (control qubits

remain unchanged)• Readout by measuring the

transition

6. Dezember 2010 Jakob Buhmann Jeffrey Gehrig 13

Realization of the quantum Toffoli gate

3. Implementation with trapped ions

Results

6. Dezember 2010 Jakob Buhmann Jeffrey Gehrig 14

Realization of the quantum Toffoli gate

3. Implementation with trapped ions

Measurements

• Enhanced fidelity from 63% to 71%• Errors dominated by Rabi frequency (infidelity

of 12%) and temperature changes plusvoltage fluctuations (7%)

• Runtime 1.5ms vs 4.2 ms• Runtime determined by coupling strength of

the second transition

6. Dezember 2010 Jakob Buhmann Jeffrey Gehrig 15

Realization of the quantum Toffoli gate

4. Implementation with photons

6. Dezember 2010 Jakob Buhmann Jeffrey Gehrig 16

Realization of the quantum Toffoli gate

4. Implementation with photons

Theory• Photons offer fast gate speeds• Photons have a large number of d.o.f.

(polarization, frequency)• Qubit states realized by horizontal and

vertical polarization• Two additional levels by beam splitting

( )

6. Dezember 2010 Jakob Buhmann Jeffrey Gehrig 17

Realization of the quantum Toffoli gate

4. Implementation with photons

• Theoretical Implementation

• Probabilistic / Experimental Implementation

6. Dezember 2010 Jakob Buhmann Jeffrey Gehrig 18

Realization of the quantum Toffoli gate

4. Implementation with photons

Implementation

• Beam splitting (PBS1)• Two-qubit operations on top Qubit• Non-deterministic recombination of T (PBS2) Second C-NOT operation is displaced

6. Dezember 2010 Jakob Buhmann Jeffrey Gehrig 19

Realization of the quantum Toffoli gate

4. Implemenation with photons

Implementation• Photon source• Photons detected by non-number-resolving

photon-counting modules

6. Dezember 2010 Jakob Buhmann Jeffrey Gehrig 20

Realization of the quantum Toffoli gate

4. Implementation with photons

ImplementationSuccessful run on afourfould coincidentmeasurementbetween detectorsD1-D4

6. Dezember 2010 Jakob Buhmann Jeffrey Gehrig 21

Realization of the quantum Toffoli gate

4. Implementation with photons

Measurement

• Target swapped on• 81% overlap with ideal case (wire grid)• Comparable with two qubit fidelity (84%)

Toffoli logical truth tableAbility to apply the correctoperation to all eight logical inputstates.

6. Dezember 2010 Jakob Buhmann Jeffrey Gehrig 22

Realization of the quantum Toffoli gate

4. Implementation with photonsOutput of C1 and T Output of C2 and T Ideal density matrices

Input

Input

6. Dezember 2010 Jakob Buhmann Jeffrey Gehrig 23

Realization of the quantum Toffoli gate

4. Implementation with photons

Results

• Fidelity:i) 0.90 ± 0.04

0.81 ± 0.02ii) 0.75 ± 0.06

0.80 ± 0.03• Entangled states can be observed

6. Dezember 2010 Jakob Buhmann Jeffrey Gehrig 24

Realization of the quantum Toffoli gate

5. Comparison and Conclusion

• Information stored in multilevel qubits• The additional level is used in the target for

the photon procedure and in the controlqubits for the ion procedure

• Significant practical advantages Fidelity Duration

• Method might be used for other gates in thefuture

6. Dezember 2010 Jakob Buhmann Jeffrey Gehrig 25

Realization of the quantum Toffoli gate

6. Summary

• Toffoli gate flips target, depending on C1 andC2

• Reduction of 2-qubit gates with multilevelqubits

• Higher level stores information temporally• Realized with trapped ions• Realized with photons• Reduction of runtime and higher fidelity could

be achieved• Entanglement could be shown

6. Dezember 2010 Jakob Buhmann Jeffrey Gehrig 26

Realization of the quantum Toffoli gate

Questions

?


Recommended