+ All Categories
Home > Documents > REFERENCES - Shodhgangashodhganga.inflibnet.ac.in/bitstream/10603/9970/12/12... · 2015-12-04 ·...

REFERENCES - Shodhgangashodhganga.inflibnet.ac.in/bitstream/10603/9970/12/12... · 2015-12-04 ·...

Date post: 10-Mar-2020
Category:
Upload: others
View: 3 times
Download: 0 times
Share this document with a friend
27
182 REFERENCES 1. Abe, R., Hara, K., Sayama, K., Domen, K. and Arakawa, H. “Steady hydrogen evolution from water on eosin Y-fixed TiO 2 photocatalyst using a silane-coupling reagent under visible light irradiation”, J. Photochem. Photobiol. A: Chem., Vol. 137, pp. 63-69, 2006. 2. Abe, R., Sayama, K. and Arakawa, H. “Efficient hydrogen evolution from aqueous mixture of I - and acetonitrile using a merocyanine dye- sensitized Pt-TiO 2 photocatalyst under visible light irradiation”, Chem. Phys. Lett., Vol. 362, pp. 441-444, 2002. 3. Abe, R., Sayama, K., Domen, K. and Arakawa, H. “A new type of water splitting system composed of two different TiO 2 photocatalysts (anatase, rutile) and a IO 3 /I - shuttle redox mediator”, Chem. Phys. Lett., Vol. 344, pp. 339-344, 2001. 4. Adish Kumar, S. “Degradation of phenolic wastewaters by coupled solar photocatalytic and biological treatment processes”, Ph.D thesis, pp. 242-249, 2008. 5. Aguado, M.A., Gimenez, J., Simarro, R. and Cervera-March, S. “A new continuous device to perform S-L-G photocatalytic studies”, Solar Energy, Vol. 49, pp. 47-52, 1992. 6. Alam Khan, M., Shaheer Akhtar, M., Woo, S.I. and Yang, O.-B. “Enhanced photoresponse under visible light in Pt ionized TiO 2 nanotube for the photocatalytic splitting of water”, Catal. Comm., Vol. 10, pp. 1-5, 2008. 7. Alfano, O.M., Bahnemann, D., Cassano, A.E., Dillert, R. and Goslich, R. “Photocatalysis in water environments using artificial and solar light”, Catal. Today, Vol. 58, pp. 199-230, 2000. 8. Altas, L. and Buyukgungor, H. “Sulfide removal in petroleum refinery wastewater by chemical precipitation”, J. Hazard. Mater., Vol. 153, pp. 462-469, 2008
Transcript
Page 1: REFERENCES - Shodhgangashodhganga.inflibnet.ac.in/bitstream/10603/9970/12/12... · 2015-12-04 · comparative study of CdS-based semiconductor photocatalysts for solar hydrogen production

182

REFERENCES

1. Abe, R., Hara, K., Sayama, K., Domen, K. and Arakawa, H. “Steady

hydrogen evolution from water on eosin Y-fixed TiO2 photocatalyst

using a silane-coupling reagent under visible light irradiation”, J.

Photochem. Photobiol. A: Chem., Vol. 137, pp. 63-69, 2006.

2. Abe, R., Sayama, K. and Arakawa, H. “Efficient hydrogen evolution

from aqueous mixture of I- and acetonitrile using a merocyanine dye-

sensitized Pt-TiO2 photocatalyst under visible light irradiation”,Chem. Phys. Lett., Vol. 362, pp. 441-444, 2002.

3. Abe, R., Sayama, K., Domen, K. and Arakawa, H. “A new type of

water splitting system composed of two different TiO2 photocatalysts

(anatase, rutile) and a IO3/I- shuttle redox mediator”, Chem. Phys.

Lett., Vol. 344, pp. 339-344, 2001.

4. Adish Kumar, S. “Degradation of phenolic wastewaters by coupled

solar photocatalytic and biological treatment processes”, Ph.D thesis,

pp. 242-249, 2008.

5. Aguado, M.A., Gimenez, J., Simarro, R. and Cervera-March, S. “A

new continuous device to perform S-L-G photocatalytic studies”,Solar Energy, Vol. 49, pp. 47-52, 1992.

6. Alam Khan, M., Shaheer Akhtar, M., Woo, S.I. and Yang, O.-B.

“Enhanced photoresponse under visible light in Pt ionized TiO2

nanotube for the photocatalytic splitting of water”, Catal. Comm.,

Vol. 10, pp. 1-5, 2008.

7. Alfano, O.M., Bahnemann, D., Cassano, A.E., Dillert, R. and

Goslich, R. “Photocatalysis in water environments using artificial andsolar light”, Catal. Today, Vol. 58, pp. 199-230, 2000.

8. Altas, L. and Buyukgungor, H. “Sulfide removal in petroleum

refinery wastewater by chemical precipitation”, J. Hazard. Mater.,

Vol. 153, pp. 462-469, 2008

Page 2: REFERENCES - Shodhgangashodhganga.inflibnet.ac.in/bitstream/10603/9970/12/12... · 2015-12-04 · comparative study of CdS-based semiconductor photocatalysts for solar hydrogen production

183

9. APHA. “Standard methods for the examination of water andwastewater”, 17

thEdition, Washington D.C, 1989.

10. Ashokkumar, M. “An overview on semiconductor particulate

systems for photoproduction of hydrogen”, Int. J. Hydrogen Energy,

Vol. 23, pp. 427-438, 1998.

11. ATSDR, www.atsdr.cdc.gov/toxfaq.html., 2001.

12. Augugliaro, V., Baiocchi, C., Bianco Prevot, A., Garcia-Lopez, E.,

Loddo, V., Malato, S., Marci, G., Palmisano, L., Pazzi, M. and

Pramauro, E. “Azo - dyes photocatalytic degradation in aqueous

suspension of TiO2 under solar irradiation”, Chemosphere, Vol. 49,pp. 1223-1230, 2002.

13. Augugliaro, V., Blanco Prevot, A., Caceres Vazquez, J., Garcia-

Lopez, E., Irico, A., Loddo, V., Malato Rodriguez, S., Marci, G.,

Palmisano, L. and Pramauro, E. “Photocatalytic oxidation of

acetonitrile in aqueous suspension of titanium dioxide irradiated bysunlight”, Adv. Environ. Res., Vol. 8, pp. 329-335, 2004.

14. Badawy, M.I., Ghaly, M.Y. and Ali, M.E.M. “Photocatalytic

hydrogen production over nanostructured mesoporous titania fromolive mill wastewater”, Desalination, Vol. 267, pp. 250-255, 2010.

15. Bagai, R. and Madamwar, D. “Prolonged evolution of photohydrogen

by intermittent supply of nitrogen using a combined system of

phormidium valderianum, halobacterrium halobium, and escherichia

coli”, Int. J. Hydrogen Energy, Vol. 23, pp. 545-550, 1998.

16. Bahnemann, D. “Photocatalytic water treatment: Solar energy

applications”, Solar Energy, Vol. 77, pp. 445-459, 2004.

17. Bai, S., Li, H., Guan, Y. and Jiang, S. “The enhanced photocatalytic

activity of CdS/TiO2 nanocomposites by controlling CdS dispersion

on TiO2 nanotubes”, Appl. Surf. Sci., Vol. 257, pp. 6406-6409,2011a.

18. Bai, X., Cao, Y. and Wu, W. “Photocatalytic decomposition of H2S

to produce H2 over CdS nanoparticles formed in HY-zeolite pore”,

Renewable Energy, Vol. 36, pp. 2589-2592, 2011.

Page 3: REFERENCES - Shodhgangashodhganga.inflibnet.ac.in/bitstream/10603/9970/12/12... · 2015-12-04 · comparative study of CdS-based semiconductor photocatalysts for solar hydrogen production

184

19. Bai, X., Dan, W. and Peng, W. “Photodecomposition of H2S to H2

over CdxZn xS composite photocatalysts”, Rare Metals, Vol. 28,pp. 137-141, 2009.

20. Bandal, E.R., Arancibia-Bulnes, C.A., Orozco, S.L. and Estrada,

C.A. “Solar photoreactors comparison based on oxalic acid

photocatalytic degradation”, Solar Energy, Vol. 77, pp. 503-512,2004.

21. Bangun, J. and Adesina, A.A. “The Photodegradation kinetics of

aqueous sodium oxalate solution using TiO2 catalyst”, Appl. Catal.

A: General, Vol. 175, pp. 221-235, 1998.

22. Bao, N., Shen, L., Takata, T and Domen, K. “Self-Templated

synthesis of nanoporous CdS nanostructures for highly efficient

photocatalytic hydrogen production under visible light”, Chem.Mater., Vol. 20, pp. 110-117, 2008.

23. Behnajady, M.A., Modirshahla, N., Daneshvar, N. and Rabbani, M.

“Photocatalytic degradation of an azo dye in a tubular continuous-

flow photoreactor with immobilized TiO2 on glass plates”, Chem.Eng. J., Vol. 127, pp. 167-176, 2007.

24. Bekbolet, M., Lindner, M., Weichgrebe, D. and Bahnemann, D. W.

“Photocatalytic detoxification with the thin-film fixed-bed reactor

(TFFBR): Clean-up of highly polluted landfill effluents using a novel

TiO2-photo- catalyst”, Solar Energy, Vol. 56, pp. 455-469, 1996.

25. Bessekhouad, Y., Mohammed, M. and Trari, M. “Hydrogen

photoproduction from hydrogen sulfide on Bi2S3 catalyst”, Vol. 73,pp. 339-350, 2002.

26. Bhattacharya, R.G., Mandal, D.P., Bera, S.C. and Rohatgi-

Mukherjee. “Photoelectrosynthesis of dihydrogen via water-splitting

using Sx2-

(X= 1,2,3 …) as an analyte: A first step for a viable solar

rechargeable Battery”, Int. J. Hydrogen. Energy, Vol. 21,pp. 343-347, 1996.

27. Blanco-Galvez, J., Fernandez-Ibanez, D. and Malato - Rodriguez, S.

“Solar photocatalytic detoxification and disinfection of water: recent

overview”, Trans. ASME, Vol. 129, pp. 4-15, 2007.

Page 4: REFERENCES - Shodhgangashodhganga.inflibnet.ac.in/bitstream/10603/9970/12/12... · 2015-12-04 · comparative study of CdS-based semiconductor photocatalysts for solar hydrogen production

185

28. Borgarello, E. and Serpone, N. “Photodecomposition of H2S in

aqueous alkaline media catalysed by RuO2-loaded alumina in the

presence of cadmium sulfide. Application of the inter-particle

electron transfer mechanism”, Inorganica Chimica Acta, Vol. 112,pp. 197-201, 1986.

29. Borgarello, E., Kalyanasundaram, K. and Gratzel, M. “Visible light

induced generation of hydrogen from H2S in CdS-Dispersions, hole

transfer catalysis by RuO2”, Helvetica Chimica Acta, Vol. 65,

pp. 243-248, 1982.

30. Borrell, L., Cervera - March, S., Gimenez, J. and Simarro, R. “A

comparative study of CdS-based semiconductor photocatalysts for

solar hydrogen production from sulphide+sulphite substrates”, SolarEnergy Materials and Solar Cells, Vol. 25, pp. 25-39, 1992.

31. Boulinguiez, B., Bouzaza, A., Merabet, S. and Wolbert, D.

“Photocatalytic degradation of ammonia and butyric acid in plug-

flow reactor: Degradation kinetic modeling with contribution of mass

transfer”, J. Photochem. Photobiol. A: Chem., Vol. 200, pp. 254-261,2008.

32. Bouzaza, C. V. and Laplanche, A. “Photocatalytic degradation of

some VOCs in the gas phase using an annular flow reactor.

Determination of the contribution of mass transfer and chemical

reaction steps in the photodegradation process”, J. Photochem.Photobiol. A: Chem., Vol. 177, pp. 212-217, 2006.

33. Braham, R.J. and Harris, A.T. “Review of major design and scale-up

considerations for solar photocatalytic reactors”, Ind. Eng. Chem.Res., Vol. 48, pp 8890-8905, 2009.

34. Brandi, R.J., Rintoul, G. and Alfano, O.M. “Photocatalytic reactors

reaction kinetics in a flat plate solar simulator”, Catal. Today,Vol. 76, pp. 161-175, 2002.

35. Buhler, N., Meier, K. and Reber, J. “Photochemical hydrogen

production with cadmium sulfide suspensions”, J. Phy. Chem.,

Vol. 88, pp. 3261-3268, 1984.

36. Cassano, A.E. and Alfano, O.M. “Reaction engineering of suspended

solid heterogeneous photocatalytic reactors”, Catal. Today, Vol. 58,pp. 167-197, 2000.

Page 5: REFERENCES - Shodhgangashodhganga.inflibnet.ac.in/bitstream/10603/9970/12/12... · 2015-12-04 · comparative study of CdS-based semiconductor photocatalysts for solar hydrogen production

186

37. Chan, A.H.C., Chan, C.K., Barford, J.P. and Porter, J.F. “Solar

photocatalytic thin film cascade reactor for treatment of benzoic acid

containing wastewater”, Water Research, Vol. 37, pp. 1125-1135,

2003.

38. Chen, X., Shen, S., Guo, L. and Mao, S.S. “Semiconductor-based

photocatalytic hydrogen generation”, Chem. Rev., Vol. 110,

pp. 6503-6570, 2010.

39. Clair, N. S., Mccarty, P.L. and Parkin, G.F. “Chemistry for

environmental engineering”, 4th

Edition, McGraw-Hill, International

Editions, 1994.

40. Cui, W., Feng, L., Xu, C., Lu, S. and Qiu, F. “Hydrogen production

by photocatalytic decomposition of methanol gas on Pt/TiO2 nano-

film”, Catal. Commun., Vol. 5, pp. 533-536, 2004.

41. Cullity, B. “Elements of X-ray diffraction”, Addision -Wesley,

Readin, Massachusetts, pp. 294, 1987.

42. Damodar, R.A. and Swaminathan, T. “Performance evaluation of a

continuous flow immobilized rotating tube photocatalytic reactor

(IRTPR) immobilized with TiO2 catalyst for azo dye degradation”,

Chem. Eng. J., Vol. 144, pp. 59-66, 2008.

43. Daneshvar, N., Rabbani, M., Modirshahla, N. and Behnajady, M.A.

“Photooxidative degradation of acid Red 27 in a tubular continuous-

flow photoreactor: Influence of operational parameters and

mineralization products”, J. Hazard. Mater., Vol. 118, pp. 155-160,

2005.

44. Darwent, J.R. and Porter, G. “Photochemical hydrogen production

using cadmium sulphide suspensions in aerated water”, J. Chem. Soc.

Chem. Commun., pp.145-146, 1981.

45. Das, D. and Verziroglu, T.N. “Hydrogen production by biological

processes: a survey of literature”, Int. J. Hydrogen Energy, Vol. 26,

pp. 13-28, 2001.

46. Daskalaki, V.M., Antoniadou, M., Li Puma, G., Kondarides, D.I. and

Lianos, P. “Solar light-responsive Pt/CdS/TiO2 photocatalysts for

hydrogen production and simultaneous degradation of inorganic or

organic sacrificial agents in wastewater”, Environ. Sci. Technol.,

Vol. 44, pp. 7200-7205, 2010.

Page 6: REFERENCES - Shodhgangashodhganga.inflibnet.ac.in/bitstream/10603/9970/12/12... · 2015-12-04 · comparative study of CdS-based semiconductor photocatalysts for solar hydrogen production

187

47. De, G.C., Roy, A.M. and Bhattacharya, S.S. “Effect on the

photocatalytic production of hydrogen by Pt-loaded CdS andCdS/ZnS catalyst”, Int. J. Hydrogen Energy, Vol. 22, pp. 19-3, 1996.

48. De, G.C., Roy, A.M. and Bhattacharya, S.S. “Photocatalytic

production of hydrogen and concomitant cleavage of industrial waste

hydrogen sulfide”, Int. J. Hydrogen Energy, Vol. 20, pp. 127-131,1995.

49. Deshpande, A., Shah, P., Gholap, R.S. and Gupta, N.M. “Interfacial

and physico-chemical properties of polymer-supported CdS·ZnS

nanocomposites and their role in the visible-light mediated

photocatalytic splitting of water”, J. Colloid and Interface Sci.,Vol. 333, pp. 263-268, 2009.

50. Dijkstra, M.F.J., Buwalda, H., De Jong, A.W.F., Michorius, A.,

Winkelman, J.G.M. and Beenackers, A.A.C.M. “Experimental

comparison of three reactor designs for photocatalytic waterpurification”, Chem. Eng. Sci., Vol. 56, pp. 547-555, 2001.

51. Dijkstra, M.F.J., Michorius, A., Buwalda, H., Panneman, H.J.,

Winkelman, J.G.M. and Beenackers, A.A.C.M. “Comparison of the

efficiency of immobilized and suspended systems in photocatalytic

degradation”, Catal. Today, Vol. 66, pp. 487-494, 2001a.

52. Dionysiou, D.D., Suidan, M.T., Baudin, I. and La né, J.M.

“Oxidation of organic contaminants in a rotating disk photocatalytic

reactor: reaction kinetics in the liquid phase and the role of mass

transfer based on the dimensionless Damköhler number”,

Appl. Catal. B: Envi., Vol. 38, pp. 1-16, 2002.

53. Doede, C.M. and Walker, C.A. “Photochemical engineering”, Chem.

Eng., Vol. 62, pp. 159-178, 1955.

54. Douglus, C.M. “Design and analysis of experiments”, 5th

edition,John Wiley and Sons, Singapore, pp. 150 - 164, 2004.

55. Enea, O. and Bard, A.J. “Photoredox reactions at semiconductor

particles incorporated into clays. CdS and ZnS + CdS mixtures in

colloidal montmorillonite suspensions”, J. Phy. Chem., Vol. 90,

pp. 301-306, 1986.

Page 7: REFERENCES - Shodhgangashodhganga.inflibnet.ac.in/bitstream/10603/9970/12/12... · 2015-12-04 · comparative study of CdS-based semiconductor photocatalysts for solar hydrogen production

188

56. Escudero, J.C., Cervera - March, S., Gimenez, J. and Simarro, R.

“Preparation and characterization of Pt(RuO2)/TiO2 catalysts: Test in

a continuous water photolysis system”, J. Catal., Vol. 123,

pp. 319-332, 1990.

57. Escudero, J.C., Simarro, R., Cervera - March, S. and Gimenez, J.

“Rate-controlling steps in a three-phase (solid-liquid-gas)

photoreactor: A phenomenological approach applied to hydrogen

photoproduction using Pt-TiO2 aqueous suspensions”, Chem. Eng.

Sci., Vol. 44, pp. 583-593, 1989.

58. Faramarzpour, M., Vossoughi, M. and Borghei, M. “Photocatalytic

degradation of furfural by titania nanoparticles in a floating-bedphotoreactor”, Chem. Eng. J., Vol. 146, pp. 79-85, 2009.

59. Fernandez, J., Kiwi, J., Lizama, C. and Freer, J. “Factorial

experimental design of orange ll photocatalytic discolouration”, J.

Photochem. Photobiol. A: Chem., Vol. 151, pp. 213-219, 2002.

60. Fogler H.S. ‘Elements of chemical reaction engineering’, Prentice:Upper saddle, 1999.

61. Fox, M.A. and Dulay, M. “Heterogeneous photocatalysis”, Chem.Rev., Vol. 93, pp. 341- 357, 1993.

62. Fu, J., Zhao, Y. and Wu, Q. “Optimisimg photoelectrocatalytic

oxidation of fulvic acid using response surface methodology”,J. Hazad. Mater., Vol. 144, pp. 499-505, 2007.

63. Fujishima, A. and Honda, K. “Electrochemical photolysis of water ata semiconductor electrode”, Nature, Vol. 238, pp. 37-38, 1972.

64. Furlong, D.N., Grieser, F., Hayes, D., Sasse, W. and Wells, D.

“Kinetics of hydrogen production from illuminated CdS/Pt/Na2Sdispersions”, J. Phy. Chem., Vol. 90, pp. 2388-2396, 1986.

65. Ginkel, S.V., Sung, S. and Lay, J.J. “Biohydrogen production as a

function of pH and substrate concentration”, Environ. Sci. Technol.,Vol. 35, pp. 4726-4730, 2001.

66. Goslich, R., Dillert, R. and Bahnemann, D. “Solar water treatment:

principles and reactors”, Water Sci.Technol., Vol. 35, pp.137-148,

1997.

Page 8: REFERENCES - Shodhgangashodhganga.inflibnet.ac.in/bitstream/10603/9970/12/12... · 2015-12-04 · comparative study of CdS-based semiconductor photocatalysts for solar hydrogen production

189

67. Goswami, D.Y. “A Review of engineering developments of aqueous

phase solar photocatalytic detoxification and disinfection process”,J. Solar Energy Eng., Vol. 119, pp. 101-107, 1997.

68. Green, M. and Elofson, R.M. “Visible light induced splitting of

hydrogen sulphide and thiol formation in CdS suspensions”,

J. Chem. Soc., Chem. Commun., No. 12, pp. 830 - 832, 1985.

69. Grzyll, L.R., Thomas, J.J. and Barile, R.G. “Photo electrochemical

conversion of hydrogen sulfide to hydrogen using artificial light and

solar radiation”, Int. J. Hydrogen Energy, Vol. 14, pp. 647-651, 1989.

70. Guillard, C., Baldassare, D., Duchamp, C., Ghazzal, M.N. and

Daniele, S. “Photocatalytic degradation and mineralization of a

malodorous compound (dimethyldisulfide) using a continuous flow

reactor”, Catal. Today, Vol. 122, pp. 160-167, 2007.

71. Gurunathan, K., Baeg, J., Lee, S., Subramanian, E., Moon, S. and

Kong, K. “Visible light assisted highly efficient hydrogen production

from H2S decomposition by CuGaO2 and CuGa1-xInxO2 delafossite

oxides bearing nanostructured co-catalysts”, Catal. Comm., Vol. 9,

pp. 395-402, 2008.

72. Gurunathan, K., Maruthamuthu, P., and Sastri, M.V.C.

“Photocatalytic hydrogen production by dye-Sensitized Pt/SnO2 and

Pt/SnO2/RuO2 in aqueous methyl viologen solution”,

Int. J. Hydrogen. Energy, Vol. 22, pp. 57-62, 1997.

73. Hara, K., Sayama, K. and Arakawa, H. “Photocatalytic hydrogen and

oxygen formation over SiO2-supported RuS2 in the presence of

sacrificial donor and acceptor”, Applied Catal. A: Gen., Vol. 189,

pp. 127-137, 1999a.

74. Hara, K., Sayama, K. and Arakawa, H. “UV photoinduced reduction

of water to hydrogen in Na2S, Na2SO3 and Na2S2O4 aqueous

solutions”, J. Photochem. Photobiol. A: Chem., Vol. 128, pp. 27-31,

1999.

75. Harry, M.W., Thewissen Etty, A., Zouwen-Assink, V., Timmer, K.,

Tinnemans, A.H.A. and Mackor, A. “Improvement of the

photoelectrochemical change of H2S over CdS suspensions using

RuS2 as a catalyst”, J. Chem. Soc., Chem. Commun., pp. 941-942,

1984.

Page 9: REFERENCES - Shodhgangashodhganga.inflibnet.ac.in/bitstream/10603/9970/12/12... · 2015-12-04 · comparative study of CdS-based semiconductor photocatalysts for solar hydrogen production

190

76. Herrmann, J.M. “Heterogeneous photocatalysis: fundamentals and

applications to the removal of various types of aqueous pollutants”,

Catal. Today, Vol. 53, pp. 115-129, 1999.

77. Hirai, T., Bando, Y. and Komasawa, I. “Immobilization of CdS

nanoparticles formed in reverse micelles onto alumina particles and

their photocatalytic properties”, J. Phys. Chem., Vol. 106,pp. 8967-8970, 2002.

78. Hoffmann, M.R., Martin, S.T., Choi, W.Y. and Bahnmann, D.W.

“Environmental applications of semiconductor photocatalysis”,Chem. Rev., Vol. 95, pp. 69-96, 1995.

79. http://www.acgih.org/TLV.

80. http://www.eyesolarlux.com/Solar-simulation-energy.htm.

81. http://www.hc-sc.gc.ca

82. Huang, C., Yao, W., T-Raissi, A. and Muradov, N. “Development of

efficient photoreactors for solar hydrogen production”, Solar Energy,Vol. 85, pp. 19-27, 2011.

83. Huang, L.H., Sun, C. and Liu, Y.L. “Pt/N-codoped TiO2 nanotubes

and its photocatalytic activity under visible light”, Appl. Surf. Sci.,Vol. 253, pp. 7029-7035, 2007.

84. Ibhadon, A.O., Arabatzis, I.M., Falaras, P. and Tsoukleris, D. “The

design and photoreaction kinetic modeling of a gas-phase titania

foam packed bed reactor”, Chem. Eng, J., Vol. 133, pp. 317-323,2007.

85. Ibrahim, H. and Lasa, H. “Novel photocatalytic reactor for the

destruction of airborne pollutants reaction kinetics and quantumyields”, Ind. Eng. Chem. Res., Vol. 38, pp. 3211- 3217, 1999.

86. Ignasi, S.E., David, M.H. and Li Puma, G. “Evaluation of the

intrinsic photocatalytic oxidation kinetics of indoor air pollutants”,Environ.Sci.Technol., Vol. 41, pp. 2028-2035, 2007.

87. Ikeda, M., Kusumoto. Y., Somekawa, S., Ngweniform, P. and

Ahmmad, B. “Effect of graphite silica on TiO2 photocatalysis in

Page 10: REFERENCES - Shodhgangashodhganga.inflibnet.ac.in/bitstream/10603/9970/12/12... · 2015-12-04 · comparative study of CdS-based semiconductor photocatalysts for solar hydrogen production

191

hydrogen production from water-methanol solution”, J. Photochem.Photobiol. A: Chem., Vol. 184, pp. 306 - 312, 2006.

88. Jang, A. and Kim. S. “Solidification and stabilization of Pb, Zn, Cd

and Cu in tailing wastes using cement and fly ash”, Minerals Engg.,

Vol. 13, pp. 1659-1662, 2000.

89. Jang, J.S., Choi, S.H., Kim, H.G. and Lee, J.S. “Location and state of

Pt in platinized CdS/TiO2 photocatalysts for hydrogen production

from water under visible light”, J. Phys. Chem., Vol. 112,

pp.17200-17205, 2008.

90. Jang, J.S., Hwang, D.W. and Lee, J.S. “CdS-AgGaS2 photocatalytic

diodes for hydrogen production from aqueous Na2S/Na2SO3

electrolyte solution under visible light ( 420 nm)”, Catal. Today,

Vol.120, pp.174-181, 2007.

91. Jang, J.S., Kim, H.G., Borse, P.H. and Lee, J.S. “Simultaneous

hydrogen production and decomposition of H2S dissolved in alkaline

water over CdS-TiO2 composite photocatalysts under visible light

irradiation”, Int. J. Hydrogen Energy, Vol. 32, pp. 4786-4791, 2007a.

92. Jang, J.S., Li, W., Oh, S.H. and Lee, J.S. “Fabrication of CdS/TiO2

nano- bulk composite photocatalysts for hydrogen production from

aqueous H2S solution under visible light”, Chem. Phy. Lett.,

Vol. 425, pp. 278-282, 2006.

93. Jing, D., Guo, L., Zhao, L., Zhang, X., Liu, H., Li, M., Shen, S., Liu,

G., Hu, X., Zhang, X., Zhang, K., Ma, L. and Guo, P. “Efficient solar

hydrogen production by photocatalytic water splitting: From

fundamental study to pilot demonstration”, Int. J. Hydrogen Energy,

Vol. 35, pp. 7087-7097, 2010.

94. Jing, D., Liu, H., Zhang, X., Zhao, L. and Guo, L. “Photocatalytic

hydrogen production under direct solar light in a CPC based solar

reactor: Reactor design and preliminary results”,

Energy Conversion and Management, Vol. 50, pp. 2919-2926, 2009.

95. Joo, H., Jeong, H., Jeon, M. and II Moon. “The use of plastic optical

fibers in photocatalysis of trichloroethylene”, Solar Energy Materials

and Solar Cells, Vol. 79, pp. 93-101, 2003.

96. Kakuta, N., Park, K.H., Finlayson, M.F., Ueno, A., Bard, A.J.,

Campion, A., Fox, M.A., Webber, S.E. and White, J.M.

“Photoassisted hydrogen production using visible light and

Page 11: REFERENCES - Shodhgangashodhganga.inflibnet.ac.in/bitstream/10603/9970/12/12... · 2015-12-04 · comparative study of CdS-based semiconductor photocatalysts for solar hydrogen production

192

coprecipitated ZnS.CdS without a noble metal”, J. Phys. Chem.,

Vol. 89, pp. 132-134, 1985.

97. Kalyasundaram, K., Borgarello, E. and Gratzel, M. “Visible induced

water cleavage in CdS dispersions loaded with Pt and RuO2, hole

scavenging by RuO2”, Helvetica Chimica Acta, Vol.64, pp. 362-366,

1981.

98. Kamble, S.P., Deosarkar, S.P., Sawant, S.B., Moulijn, J.A. and

Pangarkar, V.G. “Photocatalytic degradation of 2,4-

dichlorophenoxyacetic acid using concentrated solar radiation: Batch

and continuous operation”, Ind. Eng. Chem. Res., Vol. 43,pp. 8178 - 8187, 2004.

99. Kanade, K.G., Baeg, J-O., Mulik, U.P., Amalnerkar, D.P. and Kale,

B.B. “Nano-CdS by polymer-inorganic solid-state reaction: Visible

light pristine photocatalyst for hydrogen generation”, MaterialsResearch Bulletin, Vol. 41, pp. 2219-2225, 2006.

100. Kanade, K.G., Kale, B.B., Baeg, J.O., Lee, S, M., Lee, C.W., Moon,

S-J. and Chang, H. “Self-assembled aligned Cu doped ZnO

nanoparticles for photocatalytic hydrogen production under visible

light irradiation”, Mater. Chem. Phys., Vol. 102, pp. 98-104, 2007.

101. Kanmani, S. “Development and performance studies of solar

photocatalytic reactors for decolourisation of textile dyeingwastewaters”, Ph.D. thesis, pp. 204-205, 2001.

102. Kato, H., Asakura, K. and Kudo, A. “Highly efficient water splitting

into H2 and O2 over lanthanum-doped NaTaO3 photocatalysts with

high Crystallinity and surface nanostructure”, J. Am. Chem. Soc.,Vol.125, pp. 3082-3089, 2003.

103. Khomane, R.B., Manna, A., Mandale, A.B. and Kulkarni, B.D.

“Synthesis and characterization of dodecanethiol-capped cadmium

sulfide nanoparticles in a winsor II microemulsion of diethyl

ether/AOT/water”, Langmuir, Vol. 18, pp. 8237-8240, 2002.

104. Khuri, A.I. and Cornell, J.A. “Response surfaces: Designs and

analysis”, Marcel Dekker, ASQA Quality Press, New York, 1996.

Page 12: REFERENCES - Shodhgangashodhganga.inflibnet.ac.in/bitstream/10603/9970/12/12... · 2015-12-04 · comparative study of CdS-based semiconductor photocatalysts for solar hydrogen production

193

105. Kida, T., Guan, G. and Yoshida, A. “LaMnO3/CdS nanocomposite: A

new photocatalyst for hydrogen production from water under visiblelight irradiation”, Chem. Phys. Lett., Vol. 371, pp. 563-567, 2003.

106. Kida, T., Guan, G.Q., Yamada, N., Ma, T., Kimura, K. and Yoshida,

A. “Hydrogen production from sewage sludge solubilized in hot-

compressed water using photocatalyst under light irradiation”,Int. J. Hydrogen Energy, Vol. 29, pp. 269-274, 2004.

107. Kim, H.M., Kim, J.G., Cho, J.D. and Hong, J.W. “Optimization and

characterization of UV-curable adhesives for optical communication

by response surface methodology”, Polym. Test., Vol. 22,pp.899-906, 2003.

108. Kobayakawa, K., Sato, C., Sato, Y. and Fujishima, A. “Continuous

flow Photoreactor packed with titanium dioxide immobilized on large

silica gel beads to decompose oxalic acid in excess water”,

J. Photochem. Photobiol. A: Chem., Vol. 118, pp. 65-69, 1998.

109. Koca, A. and Sahin, M. “Photocatalytic hydrogen production by

direct sunlight from sulfide/sulfite solution”, Int. J. HydrogenEnergy, Vol. 27, pp. 363-367, 2002.

110. Kohtani, S., Kudo, A. and Sakata, T. “Spectral sensitization of a TiO2

semiconductor electrode by CdS microcrystals and its

photoelectrochemical properties”, Chem. Phys. Lett., Vol. 206,

pp. 166-170, 1993.

111. Koriche, N., Bouguelia, A. and Trari, M. “Photocatalytic hydrogen

production over new oxide CuLaO2.62”, Int. J. Hydrogen Energy,Vol. 31, pp. 1196-1203, 2006.

112. Koriche, N., Bouguelia, A., Aider, A. and Trari, M. “Photocatalytic

hydrogen evolution over delafossite CuAlO2”, Int. J. Hydrogen

Energy, Vol. 30, pp. 693-699, 2005.

113. Kosanic, M.M., and Topalov, A.S. “Photochemical hydrogen

production from CdS/RhOx/Na2S dispersions”, Int. J. HydrogenEnergy, Vol. 15, pp. 319-323, 1990.

114. Ku, Y., Ma, C.-M., and Shen, Y.S. “Decomposition of gaseous

trichloroethylene in a photoreactor with TiO2-coated nonwoven fibertextile”, Appl. Catal. B: Environ., Vol. 34, pp. 181-190, 2001.

Page 13: REFERENCES - Shodhgangashodhganga.inflibnet.ac.in/bitstream/10603/9970/12/12... · 2015-12-04 · comparative study of CdS-based semiconductor photocatalysts for solar hydrogen production

194

115. Kudo, A. “Photocatalyst materials for water splitting”, Catal. Surv.Asia, Vol .7, pp.31-38, 2003.

116. Kudo, A. “Recent progress in the development of visible light driven

powdered photocatalysts for water splitting”, Int. J. Hydrogen

Energy, Vol. 32, pp. 2673-2678, 2007.

117. Lama, R.C.W., Leung, M.K.H., Leung, D.Y.C., Vrijmoed, L.L.P.,

Yam, W.C. and Ng, S.P. “Visible-light-assisted photocatalytic

degradation of gaseous formaldehyde by parallel-plate reactor coated

with Cr ion-implanted TiO2 thin film”, Solar Energy Mater. Solar

Cells, Vol. 91, pp. 54-61, 2007.

118. Lee, K., Nam, W. and Han. G. Y. “Photocatalytic water splitting in

alkaline solution using redox mediator-1: Parameter study”,Int. J. Hydrogen Energy, Vol. 29, pp.1343-1347, 2004.

119. Lee, S.G., Lee, S.W. and Lee, H.I. “Photocatalytic production of

hydrogen from aqueous solution containing CN- as a hole

scavenger”, Appl. Catal. A: Gen., Vol. 207, 173-181, 2001.

120. Levenspeil, O. “Chemical reaction engineering”, 3rd

ed, John Wiley

and Sons, New York, 1999.

121. Li Puma, G. and Yue, P. L. “Modeling and design of thin-film slurry

photocatalytic reactors for water purification”, Chem. Eng. Sci.,Vol. 58, pp. 2269-2281, 2003.

122. Li, C., Yuan, J., Han, B., Jiang, L. and Shangguan, W. “TiO2

nanotubes incorporated with CdS for photocatalytic hydrogen

production from splitting water under visible light irradiation”, Int. J.

Hydrogen Energy, Vol. 35, No. 13, pp. 7073-7079, 2010.

123. Li, C., Yuan, J., Jiang, B.H.L. and Shangguan, W. “ZrW2O8

photocatalyst and its visible-light sensitization via sulfur anion

doping for water splitting”, Int. J. Hydrogen Energy, Vol. 35,pp. 7043-7050, 2005.

124. Li, C-J., Yang, G.J. and Wang, Z. “Formation of nanostructured TiO2

by flame spraying with liquid feedstock”, Materials Lett., Vol. 57,

pp. 2130-2134, 2003a.

Page 14: REFERENCES - Shodhgangashodhganga.inflibnet.ac.in/bitstream/10603/9970/12/12... · 2015-12-04 · comparative study of CdS-based semiconductor photocatalysts for solar hydrogen production

195

125. Li, H., Zhu, B., Feng, Y., Wang, S., Zhang, S. and Huang, W.

“Synthesis, characterization of TiO2 nanotubes-supported MS

(TiO2NTs@MS, M ¼ Cd, Zn) and their photocatalytic activity”, J.

Solid State Chem., Vol.180, pp. 2136-2142, 2007.

126. Li, W. H., Lei, L., Yang, N. and Yan, W. “Combined sulphur cycle

based system of hydrogen production and biological treatment ofwastewater”, Environ. Tech., Vol. 30, pp. 1297-1304, 2009.

127. Li, Y., Lu, G. and Li, S. “Photocatalytic hydrogen generation and

decomposition of oxalic acid over platinized TiO2”, Appl. Catal. A:

Gen., Vol. 214, pp. 179-185, 2001.

128. Li, Y., Lu, G. and Li, S. “Photocatalytic transformation of rhodamine

B and its effect on hydrogen evolution over Pt/TiO2 in the presence

of electron donors”, J. Photochem. Photobiol. A: Chem., Vol. 152,pp. 219-228, 2002.

129. Li, Y., Xie, Y., Peng, S., Lu, G. and Li, S. “Photocatalytic hydrogen

generation in the presence of chloroacetic acids over Pt/TiO2”,

Chemosphere, Vol. 63, pp. 1312-1318, 2006.

130. Li, Y.X., Lu, G.X. and Li S.B. “Photocatalytic production of

hydrogen in single component and mixture systems of electron

donors and monitoring adsorption of donors by in situ infrared

spectroscopy”, Chemosphere, Vol. 52, pp. 843-850, 2003.

131. Lim, T.H. and Kim, S.D., “Trichloroethylene degradation by

photocatalysis in annular flow and annulus fluidized bed

photoreactors”, Chemosphere, Vol. 54, pp. 305-312, 2004.

132. Lin, H.F. and Valsaraj, K.T. “A titania thin film annular

photocatalytic reactor for the degradation of polycyclic aromatic

hydrocarbons in dilute water streams”, J. Hazard. Mater., Vol. 99,

pp. 203-219, 2003.

133. Linkous C.A., Muradov N.Z. and Ramser, N. “Consideration of

reactor design for solar hydrogen production from hydrogen sulfide

using semiconductor particulates”, Int. J. Hydrogen. Energy, Vol. 20,

pp. 701-709, 1995.

134. Linkous C.V., Mingo T.M., and Muradov N.Z. “Aspects of solar

hydrogen production from hydrogen sulfide using semiconductor

particulates”, Int. J. Hydrogen Energy, Vol. 19, pp. 203-208, 1994.

Page 15: REFERENCES - Shodhgangashodhganga.inflibnet.ac.in/bitstream/10603/9970/12/12... · 2015-12-04 · comparative study of CdS-based semiconductor photocatalysts for solar hydrogen production

196

135. Linkous, C.A., Huang, C. and Fowler, R. “UV photochemical

oxidation of aqueous sodium sulfide to produce hydrogen and

sulfur”, J. Photochem. Photobiol. A: Chem., Vol. 168, pp. 153-160,

2004.

136. Liu, G.J., Zhao, L., Ma, L.J. and Guo, L.J. “Photocatalytic H2

evolution under visible light irradiation on a novel CdxCuyZn1-x-yScatalyst”, Catal. Commun., Vol. 9, pp.126-130, 2008.

137. Liu, M., Jing, D., Zhao, L. and Guo, L. “Preparation of novel CdS-

incorporated special glass composite as photocatalyst material used

for catalyst-fixed system”, Int. J. Hydrogen Energy, Vol. 35,pp.7058-7064, 2010.

138. Liu, M., Wang, L., Lu, G., Yao, X. and Guo. L., “Twins in Cd1-xZnxS

solid solution: Highly efficient photocatalyst for hydrogen generation

from water”, Energy Environ. Sci., Vol. 4, pp. 1372-1378, 2011.

139. Liu, Y., Guo, L., Yan, W. and Liu, H. “A composite visible light

photocatalyst for hydrogen production” J. Power Sources, Vol. 159,pp. 1300-1304, 2006.

140. Maeda, K. and Domen, K. “New non-oxide photocatalysts designed

for overall water splitting under visible light”, J. Phys. Chem., C,Vol. 111, pp.7851- 61, 2007.

141. Maeda, K., Teramura, K., Saito, N., Inone, Y. and Domen, K.

“Improvement of photocatalytic activity of (Ga1-xZnx)(N1-xOx) solid

solution for overall water splitting by co - loading Cr and anothertransition metal”, J. Catal., Vol. 243, pp. 303- 308, 2006.

142. Malato, S., Blanco, J., Vidal, A. and Richter, C. “Photocatalysis with

solar energy at a pilot-plant scale: An overview”, Appl. Catal. B:

Environ., Vol. 37, pp. 1-15, 2002.

143. Malato, S., Blanco, J., Vidal, A., Alarcon, D., Maldonado, M. I.,

Caceres, J. and Gernjak, W. “Applied studies in solar photocatalytic

detoxification: an overview”, Solar Energy, Vol.75, pp. 329-336,2003.

144. Mance, G., O’Donnell, A.R. and Campbell, J.A. “Proposed

environmental quality standards for List 11substances in water:

sulphide”, Medmenham, Water Research Centre, 1988.

Page 16: REFERENCES - Shodhgangashodhganga.inflibnet.ac.in/bitstream/10603/9970/12/12... · 2015-12-04 · comparative study of CdS-based semiconductor photocatalysts for solar hydrogen production

197

145. Maruthamuthu, P., Ashokkumar, M., Gurunathan, K., Subramanian,

E., and Sastri V.C. “Hydrogen evolution from water with visible

radiation in presence of Cu(II)/WO3 electron relay”, Int. J. Hydrogen.

Energy, Vol. 14, pp. 525-528, 1989.

146. Maruthamuthu, P., Gurunathan, K., Subramanian, E., and Sastri, V.C.

“Visible light - induced hydrogen production from water with

Pt/Bi2O3/RuO2 in presence of electron relay and photosensitizers”,Int. J. Hydrogen Energy, Vol. 19, pp. 889-893, 1994.

147. Maruyuma, T. and Nishimoto, T. “Hydrogen evolution over a

powdered semiconductor photocatalyst”, Ind. Eng. Chem. Res.,Vol. 30, pp. 1634-638, 1991.

148. Matsumura, M., Furukawa, S., Saho, Y. and Tsubomura, H.

“Cadmium sulfide photocatalysed hydrogen production from

aqueous solutions of sulfite. Effect of Crystal structure and

preparation method of the catalyst”, J. Phy. Chem., Vol. 89,

pp. 1327-1329, 1985.

149. Matsumura, M., Saho. Y. and Tsubomura, H. “Photocatalytic

hydrogen production from solutions of sulfite using platinized

cadmium sulfide powder”, J. Phy. Chem., Vol. 87, pp. 3807-3808,

1983.

150. Matsumura, T., Noshiroya, D., Tokumura, M., Tawfeek Znad, H. and

Kawase, H. “Simplified model for the hydrodynamics and reaction

kinetics in a gas-liquid-solid three-phase fluidized-bed photocatalytic

reactor: Degradation of o-cresol with immobilized TiO2”, Ind. Eng.

Chem. Res., Vol. 46, pp. 2637-2647, 2007.

151. Mau, A.W.H., Huang, C., Kakuta, N., Bard, A.J., Campion, A., Fox,

M.A., White, J.M. and Webber, S.E. “H2 photoproduction by nafion /

CdS / Pt films in H2O/S2-

/solutions”, J. Am. Chem. Soc., Vol. 106,

pp. 6537-6542, 1984.

152. Maurya, A. and Chauhan, P. “Structural and optical characterization

of CdS/TiO2 nanocomposite”, Mater. Charac., Vol. 62, pp. 382-390,

2011.

153. McCullagh, C., Robertson, P.K.J. Adams, M. Pollard, P.M. and

Mohammed.A. “Development of a slurry continuous flow reactor for

photocatalytic treatment of industrial waste water”, J. Photochem.

Photobiol. A: Chem., Vol. 211, pp. 42-46, 2010.

Page 17: REFERENCES - Shodhgangashodhganga.inflibnet.ac.in/bitstream/10603/9970/12/12... · 2015-12-04 · comparative study of CdS-based semiconductor photocatalysts for solar hydrogen production

198

154. Merabet, S., Bouzaza, A. and Wolbert, D. “Photocatalytic

degradation of indole in a circulating upflow reactor by UV/TiO2

process-Influence of some operating parameters”, J. Hazard. Mater.,

Vol.166, pp. 1244-1249, 2009.

155. Mills, A. and Hunte, S.L. “An overview of semiconductor

photocatalysis”, J Photochem. Photobiol. A: Chem., Vol. 108,pp. 1-35, 1997.

156. Mizuta, S., Kondo, W. and Fujii, K. “Hydrogen production from

hydrogen sulfide by Fe-Cl hybrid Process”, Ind. Eng. Chem. Res.,Vol.99, pp.1601-1608, 1991.

157. Montgomery, D.C. “Design and analysis of experiments”, 5th

ed.,John Wiley and Sons, New York, 2001.

158. Moosavi, G.R., Mesdaghinia, A.R., Naddafi, K., Vaezi, F. and

Nabizadeh, R. “Biotechnology advances in treatment of air streamscontaining H2S”, J. Biological Sci., Vol. 5, pp. 170-175, 2005.

159. Muradov, N.Z., Rustamov, M.I., Guseinova, A.D. and Bazhutin,

Yu.V. “Photocatalytic production of hydrogen from H2S solutions

over CdS/Pt colloids”, Reaction Kinetics and Catalysis Letters,Vol. 33, pp. 279-283, 1987.

160. Myers R.H. and Montgomery, D.C. “Response surfacemethodology”, 5

th ed., Wiley, New York, 2002.

161. Nada, A.A., Barakat, M.H., Hamed, A., Mohamed, N.R. and

Veziroglu, T.N. “Studies on the photocatalytic hydrogen production

using suspended modified TiO2 photocatalysts”, Int. J. HydrogenEnergy, Vol. 30, pp. 687-691, 2005.

162. Nam, W., Kim, J. and Han, G. “Photocatalytic oxidation of methyl

orange in a three phase fluidized bed reactor”, Chemosphere, Vol. 47,pp. 1019-1024, 2002.

163. Naman S.A. “Photoproduction of hydrogen from hydrogen sulfide in

vanadium sulfide colloidal suspension - Effect of temperature andpH”, Int. J. Hydrogen Energy, Vol. 22, pp. 783-789, 1997.

Page 18: REFERENCES - Shodhgangashodhganga.inflibnet.ac.in/bitstream/10603/9970/12/12... · 2015-12-04 · comparative study of CdS-based semiconductor photocatalysts for solar hydrogen production

199

164. Nielsen, A.H., Lens, P., Vollertsen, J. and Jacobsen, T.H. “Sulfide-

iron interactions in domestic wastewater from a gravity sewer”,Water Res., Vol.39, pp. 2747-2755, 2005.

165. Nishio, J., Tokumura, M., Znad, H.T. and Kawase,Y. “Photocatalytic

decolorization of azo-dye with zinc oxide powder in an external UV

light irradiation slurry photoreactor”, J. Hazard. Mater. B., Vol.138,

pp. 106-115, 2006.

166. Noorjahan, M., Pratap Reddy, M., Durga Kumari, V., Lavédrine, B.,

Boule, P. and Subrahmanyam, M. “Photocatalytic degradation of H-

acid over a novel TiO2 thin film fixed bed reactor and in aqueous

suspensions”, J. Photochem. Photobiol. A: Chem., Vol. 156,

pp. 179-187, 2003.

167. Parrek, V.K., Brungs, M.P. and Adesina, A.A. “Continuous process

for photodegradation of industrial bayer liquor”, Ind. Eng. Chem.

Res., Vol. 40, pp. 5122-5125, 2001.

168. Pei-Sheng, L., Wei-Ping, C., Li-Xi, W., Ming-da, S., Xiang-dong, L.

and Wei-Ping, J. “Fabrication and characterization of rutile TiO2

nanoparticles induced by laser ablation”, Trans. Nonferrousmet. Soc.

China, Vol. 19, pp. 743-741, 2009.

169. Prieto, O., Fermoso, J. and Irusta, R. “Photocatalytic degradation of

toluene in air using a fluidized bed photoreactor”, Int. J.

Photoenergy, Vol. 2007, pp. 1- 8, 2007.

170. Priya, R. and Kanmani, S. “Batch slurry photocatalytic reactors for

the generation of hydrogen from sulfide and sulfite streams under

solar irradiation”, Solar Energy, Vol. 83, pp. 1802-1805, 2009.

171. Priya, R. and Kanmani, S. “Solar photocatalytic generation of

hydrogen from hydrogen sulphide using CdS-based photocatalysts”,

Current Science, Vol. 94, pp. 102-104, 2008.

172. Priya, R. and Kanmani, S. “Solar photocatalytic generation of

hydrogen under ultraviolet-visible light irradiation on

(CdS/ZnS)/Ag2S + (RuO2/TiO2) photocatalysts”, Bull. Mater. Sci.,

Vol.33, pp. 85-88, 2010.

173. Qin, Ya., Wang, G. and Wang, Y. “Study on the photocatalytic

property of La-doped CoO/SrTiO3 for water decomposition to

hydrogen”, Catal. Comm., Vol. 8, pp. 926 - 930, 2007.

Page 19: REFERENCES - Shodhgangashodhganga.inflibnet.ac.in/bitstream/10603/9970/12/12... · 2015-12-04 · comparative study of CdS-based semiconductor photocatalysts for solar hydrogen production

200

174. Ray, A.K. “A new photocatalytic reactor for destruction of toxic

water pollutants by advanced oxidation process”, Catal. Today,

Vol. 44, pp. 357-368, 1998.

175. Ray, A.K. and Beenackers. A.A.C.M. “Development of new

photocatalytic reactor for water purification”, Catal. Today, Vol. 40,pp.73-83, 1998a.

176. Reber, J. and Meier, K. “Photochemical production of hydrogen with

zinc sulfide suspensions”, J. Phy. Chem., Vol. 88, pp. 5903-5913,

1984.

177. Reber, J.F. and Rusek, M.J. “Photochemical hydrogen production

with platinized suspensions of cadmium sulfide and cadmium zinc

sulfide modified by silver sulfide” J. Phys. Chem., Vol. 90,pp. 824-834,1986.

178. Rita, J. and Sasi Florence, S. “Optical, structural and morphological

studies of bean-like ZnS nanostructures by aqueous chemical

method”, Chalcogenide Letters, Vol. 7, pp. 269-273, 2010.

179. Roy, A.M. and De, G.C. “Immobilization of CdS, ZnS and mixed

ZnS - CdS on filter paper: Effect of hydrogen production from

alkaline Na2S/Na2S2O3 solution”, J. Photochem. Photobiol. A:Chem., Vol. 157, pp. 87-92, 2003.

180. Sabate, J., Cervera - March, S., Simarro, R., and Gimenez, J.

“Photocatalytic production of hydrogen from sulfide and sulfite

streams: A kinetic model for reactions occurring in illuminatedsuspensions of CdS”, Chem. Eng. Sci., Vol. 45, pp. 3089-3096, 1990.

181. Sagawe, G., Brandi, R.J., Bahnemann, D. and Cassano, A.E.

“Photocatalytic reactors for treating water pollution with solar

illumination. I: A simplified analysis for batch reactors”, Chem. Eng.Sci., Vol. 58, pp. 2587-2599, 2003.

182. Sagawe, G., Brandi, R.J., Bahnemann, D. and Cassano, A.E.

“Photocatalytic reactors for treating water pollution with solar

illumination. II: A simplified analysis for flow reactors”, Chem. Eng.

Sci., Vol. 58, pp. 2601-2615, 2003a.

183. Sagawe, G., Brandi, R.J., Bahnemann, D. and Cassano, A.E.

“Photocatalytic reactors for treating water pollution with solar

Page 20: REFERENCES - Shodhgangashodhganga.inflibnet.ac.in/bitstream/10603/9970/12/12... · 2015-12-04 · comparative study of CdS-based semiconductor photocatalysts for solar hydrogen production

201

illumination: A simplified analysis for n-steps flow reactors withrecirculation”, Solar Energy, Vol. 79, pp. 262-269, 2005.

184. Sahu, N., Upadhyay, S. N. and Sinha, A. S. K. “Kinetics of reduction

of water to hydrogen by visible light on alumina supported Pt-CdS

photocatalysts”, Int. J. Hydrogen Energy, Vol. 34, pp. 130-137,2009.

185. Sakthivel, S., Neppolian, B., Banumathi Arabindo., Palanichamy, N.

and Murugesan, V. “TiO2 catalysed photodegradation of leather dye:Acid green 16”, J. Sci. Ind. Res., Vol. 59, pp. 556-562, 2000.

186. Salari, D., Niaei, A., Aber. S. and Rasoulifard, M.H. “The

photooxidative destruction of C.I. Basic Yellow 2 using

UV/S2O8 process in a rectangular continuous photoreactor”,J. Hazard. Mater., Vol.166, pp. 61- 66, 2009.

187. Sano, T., Negishi, K., Uchino, K., Tanaka, M. J. and

Takeuchi, K. “Photocatalytic degradation of gaseous acetaldehyde

on TiO2 with photodeposited metals and metal oxides”,J. Photochem. Photobiol. A: Chem., Vol. 160, pp. 93-98, 2003.

188. Sathish, M., Viswanathan, B. and Viswanath, R.P. “Alternate

synthetic strategy for the preparation of CdS nanoparticles and its

exploitation for water splitting”, Int. J. Hydrogen Energy, Vol. 31,

pp. 891-898, 2006.

189. Savinov, E.N., Gruzdkov, Yu. A., and Parmon, V.N. “Suspensions of

semiconductors with microheterojunctions - a new type of highly

efficient photocatalysts for dihydrogen production from solution of

hydrogen sulfide and sulfide ions”, Int. J. Hydrogen. Energy, Vol. 14,pp. 1-9, 1989.

190. Serpone, N. and Borgarello, E. “Effect of CdS preparation on the

photo - catalysed decomposition of hydrogen sulfide in alkaline

aqueous media”, Inorganica Chimica Acta, Vol. 99, pp. 191-196,1984.

191. Serpone, N. and Pelizzetti, E. “Photocatalysis: Fundamentals andapplications”, John Wiley and Sons, New York, 1989.

Page 21: REFERENCES - Shodhgangashodhganga.inflibnet.ac.in/bitstream/10603/9970/12/12... · 2015-12-04 · comparative study of CdS-based semiconductor photocatalysts for solar hydrogen production

202

192. Shama, G. and Drott, D.W. “Photocatalytically induced dye

decolourisation in an unsupported thin film reactor”, Chem. Eng.Commun., Vol. 158, pp. 107-122, 1997.

193. Shen, S., Guo, L., Chen, X., Ren, F. and Mao, S.S. “Effect of Ag2S

on solar-driven photocatalytic hydrogen evolution of nanostructured

CdS”, Int. J. Hydrogen energy, Vol. 35, pp. 7110-7115, 2010.

194. Sherif, S.A., Barbir, F. and Veziroglu, T.N. “Principles of hydrogen

energy and production, storage and utilization”, J. Sci. Ind. Res.,

Vol. 62, pp. 46-63, 2003.

195. Shu, H.Y. and Chang, M.C. “Pilot scale annular plug flow

photoreactor by UV/H2O2 for the decolorization of azo dye

wastewater”, J. Hazard. Mater. B., Vol. 125, pp. 244-251, 2005.

196. Silva, L.A., Ryu, S.Y., Choi, J., Choi, W. and Hoffmann, M.R.

“Photocatalytic hydrogen production with visible light over Pt-

Interlinked hybrid composites of cubic-phase and hexagonal-phase

CdS”, J. Phy. Chem. Lett., Vol. 112, pp. 12069-12073, 2008.

197. Sinha, A.S.K., Sahu, N., Arora, M.K. and Upadhyay, S.N.

“Preparation of egg-shell type Al2O3-supported CdS photocatalysts

for reduction of H2O to H2”, Catal. Today, Vol. 69, pp. 297-305,

2001.

198. Smith, J.M. “Chemical engineering kinetics”, McGraw Hill, New

York, 1970.

199. Sreethawong, T. and Yoshikawa, S. “Comparative investigation on

photocatalytic hydrogen evolution over Cu-, Pd-, and Au-loaded

mesoporous TiO2 photocatalysts”, Catalysis Commun., Vol. 6,

pp. 661-668, 2005.

200. Sreethawong, T. and Yoshikawa, S. “Enhanced photocatalytic

hydrogen evolution over Pt supported on mesoporous TiO2 prepared

by single-step sol-gel process with surfactant template”, Int. J.

Hydrogen Energy, Vol. 31, pp. 786-796, 2006.

201. Sreethawong, T., Puangpetch, T., Chavadej, S. and Yoshikawa, S.

“Quantifying influence of operational parameters on photocatalytic

H2 evolution over Pt-loaded nanocrystalline mesoporous TiO2

prepared by single-step sol-gel process with surfactant template”,

J. Power Sources, Vol. 165, pp. 861-869, 2007.

Page 22: REFERENCES - Shodhgangashodhganga.inflibnet.ac.in/bitstream/10603/9970/12/12... · 2015-12-04 · comparative study of CdS-based semiconductor photocatalysts for solar hydrogen production

203

202. Srinivasa Rao, B., Rajesh Kumar, B., Rajagopal Reddy, V. and

Subba Rao, T., “Preparation and characterization of CdS

nanoparticles by chemical coprecipitation technique”, Chalcogenide

Letters, Vol. 8, pp. 177-185, 2011.

203. Strataki, N., Antoniadou, M., Dracopoulos, V. and Lianos, P.,

“Visible-light photocatalytic hydrogen production from ethanol-

water mixtures using a Pt-CdS-TiO2 photocatalyst”, Catal. Today,

Vol.151, pp. 53-57, 2010.

204. Subramanian, E., Baeg, J., Lee, S., Moon, S. and Kong, Ki.

“Dissociation of H2S under visible light irradiation ( < 420 nm) with

FeGaO3 photocatalysts for the production of hydrogen”,Int. J. Hydrogen. Energy, Vol. 33, pp. 6586-6594, 2008.

205. Subramanian, E., Baeg, J-k., Lee, S., Moon, S-J. and Kong, K-j.

“Nanospheres and nanorods structured Fe2O3 and Fe2-xGaxO3

photocatalysts for visible-light mediated (l 420 nm) H2S

decomposition and H2 generation”, Int. J. Hydrogen Energy, Vol.34,pp. 8485-8494, 2009.

206. Subramanian, V., Kamat, P.V. and Wolf, E.E. “Mass-transfer and

kinetic studies during the photocatalytic degradation of an azo dye on

optically transparent electrode thin film”, Ind. Eng. Chem. Res.,Vol. 42, pp. 2131-2138, 2003.

207. Subramanyam, M., Supriya, V.T. and Reddy, R. “Photocatalytic H2

production with CdS based catalysts from a sulphide/sulphite

substrate: An effort to develop MgO-supported catalysts”,Int. J. Hydrogen Energy, Vol. 21, pp. 99-106, 1996.

208. Supriya V. T and Subrahmanyam, M. “Photocatalytic generation of

hydrogen from hydrogen sulfide: An energy bargain”,Int. J. Hydrogen Energy, Vol. 22, pp. 959-965, 1997.

209. Syed, M., Soreanu, G., Falletta, P. and Béland, M. “Removal of

hydrogen sulfide from gas streams using biological processes - A

review”, Canadian Biosys. Eng., Vol.48, pp. 2.1-2.14, 2006.

210. Takahashi, Y., Suto, K., Inoue, C. and Chida, T. “Polysulfide

reduction using sulfate - reducing bacteria in a photocatalytic H2

generation system”, J. Biosci. Bioengg., Vol. 106, pp. 219-225,2008.

Page 23: REFERENCES - Shodhgangashodhganga.inflibnet.ac.in/bitstream/10603/9970/12/12... · 2015-12-04 · comparative study of CdS-based semiconductor photocatalysts for solar hydrogen production

204

211. Tambwekar, S.V., Venugopal, D. and Subrahmanyam, M.

“Hydrogen production of (CdS-ZnS)-TiO2 supported photocatalyticsystem”, Int. J. Hydrogen Energy, Vol. 24, pp. 957 - 963, 1999.

212. Tanaka, A., Tanaka, M., Hara, J., Kondo, N. and Domen, K. “Recent

progress of photocatalysts for overall water splitting”, Catal. Today,Vol. 44, pp. 17-26, 1998.

213. Tang, J.W., Zou, Z.G., Yin, J. and Ye, “Photocatalytic degradation of

methylene blue on CaIn2O4 under visible light irradiation”,J. Chem. Phy. Lett., Vol. 382, pp. 175-179, 2003.

214. Tarasov, B.P. and Lototskii, M.V. “Hydrogen Energetics: Past,

Present, Prospects”, Russian J. General Chem., Vol. 77, pp. 660-675,

2007.

215. Thiruvenkatachari, R., Vigneswaran, S. and Moon, I.S. “A review on

UV/TiO2 photocatalytic oxidation process”, Korean J. Chem. Eng.,Vol. 25, pp. 64-72 2008.

216. Tian, M., Shangguan, W., Yuan, J., Wang, S. and Ouyang, Z.

“Promotion effect of nanosized Pt, RuO2 and NiOx loading on visible

light-driven photocatalysts K4Ce2M10O30 (M ¼ Ta, Nb) for hydrogen

evolution from water decomposition”, Sci. Tech. Adv. Mater., Vol. 8,pp. 82-88, 2007.

217. Torres, J. and Cervera - March, S. “Kinetics of the photoassisted

catalytic oxidation of Pb(II) in TiO2”, Chem. Eng. Sci., Vol. 47,

pp. 3857-3862, 1992.

218. T-Raissi, A., Muradov, N., Huang. C. and Adebiyi, O. “Hydrogen

from solar via light-assisted high-temperature water splitting cycles”,J. Solar Energy Eng., Vol. 129, pp.184-189, 2007.

219. Tsuji, I. and Kudo, A. “H2 evolution from aqueous sulfite solutions

under visible-light irradiation over Pb halogen- codoped ZnS

photocatalysts”, J. Photochem. Photobiol. A: Chem., Vol. 156,

pp. 249 -252, 2003.

220. Tsuji, I., Kato, H., Kobayashi, H. and Kudo, A. “Photocatalytic H2

evolution reaction from aqueous solutions over band structure-

controlled (AgIn)xZn2(1-x)S2 solid solution photocatalysts with

Page 24: REFERENCES - Shodhgangashodhganga.inflibnet.ac.in/bitstream/10603/9970/12/12... · 2015-12-04 · comparative study of CdS-based semiconductor photocatalysts for solar hydrogen production

205

visible-light response and their surface nanostructures”, J. Am.Chem. Soc., Vol. 126, pp.13406-13413, 2004.

221. Turner, J.A. “Sustainable hydrogen production”, Science, Vol. 305,pp. 972-974, 2004.

222. Ueno, A., Kakuta, N., Park, K.H., Finlayson, M.F., Bard, A.J.,

Campion, A., Fox, M.A., Webber, S.E. and White, J.M. “Silica

supported ZnS.CdS mixed semiconductor catalysts for

photogeneration of hydrogen”, J. Phy. Chem., Vol. 89,pp. 3828-3833, 1985.

223. US EIA. www.eia.doe.gov., 2003.

224. Valeika, V., Beleska, K. and Valeikiene, V. “Oxidation of sulphides

in tannery wastewater by use of manganese (IV) oxide”

Polish J. Environ. Stud., Vol. 15, pp. 623-629, 2006.

225. Veziroglu, T.N. and Barbir, F. “Hydrogen: the wonder Fuel”,Int. J. Hydrogen Energy”, Vol.17, pp.391-404, 1992.

226. Vidal, A., D az, A.I., El Hraiki, A., Romero, M., Muguruza, I.,

Senhaji, F. and González, J. “Solar photocatalysis for detoxification

and disinfection of contaminated water: pilot plant studies”,Catal. Today, Vol. 54, pp. 283-290, 1999.

227. Wang, D., Zou, Z., Ye, J. “A new spinel-type photocatalyst BaCr2O4

for H2 evolution under UV and visible light irradiation”,Chem. Phy. Lett., Vol. 373, pp. 191-196, 2003.

228. Wang, L., Wang, W., Shang, M., Yin, W., Sun, S. and Zhang, L.

“Enhanced photocatalytic hydrogen evolution under visible light over

Cd1-xZnxS solid solution with cubic zinc blend phase”,

Int. J. Hydrogen Energy, Vol. 35, pp. 19-25, 2010.

229. Wang, X., Liu, G., Lu, G.Q. and Cheng, H.M. “Stable photocatalytic

hydrogen evolution from water over ZnO-CdS core-shell nanorods”,Int. J. Hydrogen energy, Vol. 35, pp. 8199-8205, 2010a.

230. Wang, X.W. and Chen, Z.G. “Efficient and stable photocatalytic H2

evolution from water splitting by Cd0.8Zn0.2S nanorods”,Electrochem. Commun., Vol. 11, pp.1174-1178, 2009.

Page 25: REFERENCES - Shodhgangashodhganga.inflibnet.ac.in/bitstream/10603/9970/12/12... · 2015-12-04 · comparative study of CdS-based semiconductor photocatalysts for solar hydrogen production

206

231. WHO. www.who.int/environmental_information/Air/guidelines/ann4.htm, 1981.

232. Wu. N.L. and Lee, M.S. “Enhanced TiO2 photocatalysis by Cu in

hydrogen production from aqueous methanol solution”, Vol. 29,

pp. 1601-1605, 2004.

233. Xiao-gang, H., Hong-hui, L., Zhong-lin, Z., Cai-mai, F., Shi-bin, L.

and Yan-ping, S. “Modeling and experimentation of a novel labyrinth

bubble photoreactor for degradation of organic pollutant”,Chem. Eng. Res. Design, Vol. 87, pp. 1604-1611, 2009.

234. Xing, C., Jing, D., Liu, M. and Guo, L. “Photocatalytic hydrogen

production over Na2Ti2O4(OH)2 nanotube sensitized by CdS

nanoparticles”, Mater. Res. Bull., Vol. 44, pp. 442-445, 2009.

235. Xing, C., Zhang, Y., Yan, W. and Guo, L. “Band structure-controlled

solid solution of Cd xZnxS photocatalyst for hydrogen production by

water splitting”, Int. J. Hydrogen Energy, Vol. 31, pp. 2018-2024,2006.

236. Xu, J.F., Ji, W., Lin, J.Y., Tang, S.H. and Du, Y.W. “Preparation of

ZnS nanoparticles by ultrasonic radiation method”,Appl. Phys., Vol. 66, pp. 639-641, 1998.

237. Yan, H., Yang, J., Maa, G., Wu, G., Zong, X., Lei, Z., Shi, J. and

Li, C. “Visible-light-driven hydrogen production with extremely high

quantum efficiency on Pt-PdS/CdS photocatalyst”, J. Catal.,

Vol. 266, pp. 165-168, 2009a.

238. Yan, J., Zhang, Li, Yang, H., Tang, Y., Lu, Z., Guo, S., Dai, Y., Han,

Y. and Yao, M. “CuCr2O4/TiO2 heterojunction for photocatalytic H2

evolution under simulated sunlight irradiation”, Solar Energy,Vol. 83, pp. 1534-1539, 2009.

239. Yao, J., Zhao, G., Han, Gaorong. “Synthesis and characterization of

the thiourea-capped CdS nanoparticles”, Journal of Materials Science

Letters, Vol. 22, pp. 1491-1493, 2003.

240. Youn, H.C., Baral, S. and Janos, H. F. “Dihexadecyl phosphate,

vesicle - stabilized and in situ generated mixed CdS and ZnS

semiconductor particles. Preparation and utilization for

Page 26: REFERENCES - Shodhgangashodhganga.inflibnet.ac.in/bitstream/10603/9970/12/12... · 2015-12-04 · comparative study of CdS-based semiconductor photocatalysts for solar hydrogen production

207

photosensitized charge separation and hydrogen generation”, J. Phy.Chem., Vol. 92, pp. 6320-6327, 1988.

241. Younsi, M., Aider, A., Barguelia A. and Trari .M “Visible light-

induced hydrogen over CuFeO2 via S2O32-

oxidation”, Solar Energy,

Vol. 78, pp. 574-580, 2004.

242. Yu. J., Zhang, J. and Jaroniec, M. “Preparation and enhanced visible-

light photocatalytic H2-production activity of CdS quantum

dots-sensitized Zn1-xCdxS solid solution”, Green Chem., Vol.12,pp. 1611-1614, 2010.

243. Zahra, O., Maire, I.S., Evenou, F., Hachem, C., Pons, M.N.,

Alinsafi, A. and Bouchyl, M. “Treatment of wastewater dyeing agent

by photocatalytic process in solar reactor”, Int. J. Photoenergy,Vol. 2006, pp. 1-9, 2006.

244. Zhang, K., Jing, D.W., Xing, C.J. and Guo, L.J. “Significantly

improved photocatalytic hydrogen production activity over Cd1-xZnxS

photocatalysts prepared by a novel thermal sulfuration method”,Int. J. Hydrogen Energy, Vol. 32, pp. 4685-4691, 2007.

245. Zhang, X., Lei, L., Zhang, J., Chen, Q., Bao, J. and Fang, B. “A

novel CdS/S-TiO2 nanotubes photocatalyst with high visible lightactivity”, Sep. Puri. Tech., Vol. 66, pp. 417-421, 2009a.

246. Zhang, X.H., Jing, D.W., Liu, M.C. and Guo, L.J. “Efficient

photocatalytic H2 production under visible light irradiation over Ni

doped Cd1-xZnxS microsphere photocatalysts”, Catal. Commun.,Vol. 9, pp.1720- 1724, 2008.

247. Zhang, Y., Wu Y., Wang Z. and Hu, Y. “Preparation of

CdS/TiO2NTs nanocomposite and its activity of photocatalytic

hydrogen production”, Rare Metal Mater. Eng., Vol. 38,

pp. 1514-1517, 2009.

248. Zhang, Y.J., Yan, W., Wu, Y.P. and Wang, Z.H. “Synthesis of TiO2

nanotubes coupled with CdS nanoparticles and production of

hydrogen by photocatalytic water decomposition”, Mater. Lett.,Vol. 62, pp. 3846-3848, 2008a.

249. Zheng, X-J.,Wei, L.F., Zhang, Z-H., Jiang, Q-J., Wei, Y-J., Xie, B.

and Wei, M-B. “Research on photocatalytic H2 production from

Page 27: REFERENCES - Shodhgangashodhganga.inflibnet.ac.in/bitstream/10603/9970/12/12... · 2015-12-04 · comparative study of CdS-based semiconductor photocatalysts for solar hydrogen production

208

acetic acid solution by Pt/TiO2 nanoparticles under UV irradiation”,Int. J. Hydrogen Energy, Vol. 34, pp. 9033-9041, 2009.

250. Zhou. S. and Ray. A.K. “Kinetic studies for photocatalytic

degradation of eosin B on a thin film of titanium dioxide”,

Ind. Eng. Chem., Vol.4, pp. 6020-6033, 2003.

251. Zhu, J. and Zach, M. “Nanostructured materials for photocatalytic

hydrogen production”, Current Opinion in Colloid and InterfaceScience, Vol. 14, pp. 260-269, 2009.

252. Zhu, J., Yang, D., Geng, J., Chen, D. and Jiang, Z. “Synthesis and

characterization of bamboo-like CdS/TiO2 nanotubes composites

with enhanced visible-light photocatalytic activity”,J. Nanopart. Res., Vol. 10, pp. 729-736, 2008.

253. Zieliñska, B., Borowiak-Palen, E. and Kalenczuk, R.J.

“Photocatalytic hydrogen generation over alkaline-earth titanates in

the presence of electron donors”, Int. J. Hydrogen Energy, Vol. 33,

pp.1797-1802, 2008.


Recommended