+ All Categories
Home > Documents > Research Article Application of Extended Homotopy Analysis ...e extended homotopy analysis method...

Research Article Application of Extended Homotopy Analysis ...e extended homotopy analysis method...

Date post: 23-Jan-2021
Category:
Upload: others
View: 4 times
Download: 0 times
Share this document with a friend
8
Research Article Application of Extended Homotopy Analysis Method to the Two-Degree-of-Freedom Coupled van der Pol-Duffing Oscillator Y. H. Qian, S. M. Chen, and L. Shen College of Mathematics, Physics and Information Engineering, Zhejiang Normal University, Jinhua, Zhejiang 321004, China Correspondence should be addressed to Y. H. Qian; [email protected] Received 19 January 2014; Accepted 21 February 2014; Published 30 March 2014 Academic Editor: Jinlu Li Copyright © 2014 Y. H. Qian et al. is is an open access article distributed under the Creative Commons Attribution License, which permits unrestricted use, distribution, and reproduction in any medium, provided the original work is properly cited. e extended homotopy analysis method (EHAM) is presented to establish the analytical approximate solutions for two-degree- of-freedom (2-DOF) coupled van der Pol-Duffing oscillator. Meanwhile, the comparisons between the results of the EHAM and standard Runge-Kutta numerical method are also presented. e results demonstrate that the analytical approximate solutions of the EHAM agree well with the numerical integration solutions. For EHAM as an analytical approximation method, we are not sure whether it can apply to all of the nonlinear systems; we can only verify its effectiveness through specific cases. As a result of the existence of nonlinear terms, we must study different types of systems, no matter from the complication of calculation and physical significance. 1. Introduction Mathematical methods for the natural and engineering sciences problems have drawn considerable attention in recent years. In normal circumstances, most of the nonlinear dynamical models can be governed by a set of differential equations and auxiliary conditions from modeling processes [1]. Numerous analytical methods have been developed to deal with the nonlinear differential equations, such as the modified perturbation methods [25], improved harmonic balance methods [6, 7], energy balance method [8, 9], and the frequency-amplitude formulation [10, 11]. Enlightening from the basic concepts of the homotopy in topology [12, 13], Liao developed the homotopy analysis method (HAM) [1416] which does not require small parameters as one of the efficient analytical techniques in solving a variety of nonlinear vibration problems. Recently, great attention is paid to the discussion of coupled oscillators of nonlinear dynamical systems because most of practical engineering problems can be governed by such coupled systems [1719]. e extended homotopy analysis method (EHAM) is one method based on the HAM envisioned first by Liao [16]. More recently, Qian et al. [20] extended the HAM to deal with strongly nonlinear coupled van der Pol oscillators. For EHAM as an analytical approximation method, we are not sure whether it can apply to all of the nonlinear systems; we can only verify its effectiveness through specific cases. As a result of the existence of nonlinear terms, we must study different types of systems, no matter from the complication of calculation and physical significance. By solving such example, it is illustrated that the present techniques are not an adhoc approach; it can be generalized to investigate more complicated nonlinear multi-degree-of-freedom (MDOF) dynamical systems. In the present work, the exact analytical series solutions of the two-degree-of-freedom (2-DOF) coupled van der Pol- Duffing system are obtained by using the EHAM, and we also establish the comparisons between the results of the EHAM and standard Runge-Kutta numerical method. It is shown that the periodic solutions of the EHAM are in excellent agreement with the numerical integration ones, even if time progresses to a certain large domain. In what follows, Section 2 presents the EHAM of the MDOF dynamical system. Moreover, the EHAM is presented to establish the analytical approximate solutions for 2-DOF coupled van der Pol-Duffing oscillator in the next section. In Section 4, numerical comparisons are carried out to authenticate the Hindawi Publishing Corporation Abstract and Applied Analysis Volume 2014, Article ID 729184, 7 pages http://dx.doi.org/10.1155/2014/729184
Transcript
Page 1: Research Article Application of Extended Homotopy Analysis ...e extended homotopy analysis method (EHAM) is presented to est ablish the analytical approximate solutions for two-degree-of-freedom

Research ArticleApplication of Extended Homotopy Analysis Method to theTwo-Degree-of-Freedom Coupled van der Pol-Duffing Oscillator

Y H Qian S M Chen and L Shen

College of Mathematics Physics and Information Engineering Zhejiang Normal University Jinhua Zhejiang 321004 China

Correspondence should be addressed to Y H Qian qyh2004zjnucn

Received 19 January 2014 Accepted 21 February 2014 Published 30 March 2014

Academic Editor Jinlu Li

Copyright copy 2014 Y H Qian et al This is an open access article distributed under the Creative Commons Attribution Licensewhich permits unrestricted use distribution and reproduction in any medium provided the original work is properly cited

The extended homotopy analysis method (EHAM) is presented to establish the analytical approximate solutions for two-degree-of-freedom (2-DOF) coupled van der Pol-Duffing oscillator Meanwhile the comparisons between the results of the EHAM andstandard Runge-Kutta numerical method are also presented The results demonstrate that the analytical approximate solutions ofthe EHAM agree well with the numerical integration solutions For EHAM as an analytical approximation method we are not surewhether it can apply to all of the nonlinear systems we can only verify its effectiveness through specific cases As a result of theexistence of nonlinear terms we must study different types of systems no matter from the complication of calculation and physicalsignificance

1 Introduction

Mathematical methods for the natural and engineeringsciences problems have drawn considerable attention inrecent years In normal circumstances most of the nonlineardynamical models can be governed by a set of differentialequations and auxiliary conditions from modeling processes[1] Numerous analytical methods have been developed todeal with the nonlinear differential equations such as themodified perturbation methods [2ndash5] improved harmonicbalance methods [6 7] energy balance method [8 9] andthe frequency-amplitude formulation [10 11] Enlighteningfrom the basic concepts of the homotopy in topology [12 13]Liao developed the homotopy analysis method (HAM) [14ndash16] which does not require small parameters as one of theefficient analytical techniques in solving a variety of nonlinearvibration problems

Recently great attention is paid to the discussion ofcoupled oscillators of nonlinear dynamical systems becausemost of practical engineering problems can be governedby such coupled systems [17ndash19] The extended homotopyanalysis method (EHAM) is one method based on the HAMenvisioned first by Liao [16] More recently Qian et al[20] extended the HAM to deal with strongly nonlinear

coupled van der Pol oscillators For EHAM as an analyticalapproximation method we are not sure whether it canapply to all of the nonlinear systems we can only verifyits effectiveness through specific cases As a result of theexistence of nonlinear terms wemust study different types ofsystems no matter from the complication of calculation andphysical significance By solving such example it is illustratedthat the present techniques are not an adhoc approach itcan be generalized to investigate more complicated nonlinearmulti-degree-of-freedom (MDOF) dynamical systems

In the present work the exact analytical series solutionsof the two-degree-of-freedom (2-DOF) coupled van der Pol-Duffing system are obtained by using the EHAM and we alsoestablish the comparisons between the results of the EHAMand standard Runge-Kutta numerical method It is shownthat the periodic solutions of the EHAM are in excellentagreement with the numerical integration ones even if time119905 progresses to a certain large domain In what followsSection 2 presents the EHAM of the MDOF dynamicalsystem Moreover the EHAM is presented to establish theanalytical approximate solutions for 2-DOF coupled vander Pol-Duffing oscillator in the next section In Section 4numerical comparisons are carried out to authenticate the

Hindawi Publishing CorporationAbstract and Applied AnalysisVolume 2014 Article ID 729184 7 pageshttpdxdoiorg1011552014729184

2 Abstract and Applied Analysis

correctness and accuracy of the present method Finally thepaper ends with concluding remarks in Section 5

2 The Extended Homotopy Analysis Method

TheMDOF dynamical system is considered by the followingequation

119872 119902 + 119866 119902 + 119870119902 = 119865 ( 119902 119902 119905) (1)

where 119902 is an 119899-dimensional unknown vector a dot denotesthe derivative with respect to time 119905 119872 119866 and 119870 arerespectively 119899times 119899mass damping and stiffness matrixes and119865 is the vector function of 119902 119902 and 119905 Let 119865( 119902 119902 119905) equiv 0 then(1) is an autonomous dynamical system

From (1) we define a nonlinear operator as

119873[119906 (119903 119905)] = 1198721205972119906 (119903 119905)

1205971199052

+ 119866120597119906 (119903 119905)

120597119905

+ 119870119906 (119903 119905) minus 119865(120597119906

120597119905 119906 119905)

(2)

where 119906(119903 119905) is an unknown vector value function and 119903 and119905 are spatial and temporal variables respectively

In (2) the unknown vector functions of 119906(119903 119905)120597119906(119903 119905)120597119905 and 1205972119906(119903 119905)1205971199052 are respectively

119906 (119903 119905) = (1199091(119905) 119909

119899(119905))119879

120597119906 (119903 119905)

120597119905= (1198891199091

119889119905

119889119909119899

119889119905)

119879

1205972119906 (119903 119905)

1205971199052

= (11988921199091

1198891199052

1198892119909119899

1198891199052)

119879

(3)

According to the fundamental concepts and workingprocedures of the HAM [1 2] the zeroth-order deformationequation can be constructed as follows

(1 minus 119901) 119871 [Φ (119903 119905 119901) minus 1199060(119903 119905)]

= 119901ℎ11198671(119905)119873 [Φ (119903 119905 119901)] + ℎ

21198672(119905) Π [Φ (119903 119905 119901)]

(4)

where 119901 isin [0 1] is an embedding parameter 1199060(119903 119905) is the

solution of initial guess 119871 is an auxiliary linear operator andℎ119894and 119867

119894(119905) are the auxiliary parameters and the functions

respectivelyThe operator Π[Φ(119903 119905 119901)] has the following property

Π [Φ (119903 119905 0)] = Π [Φ (119903 119905 1)] = 0 (5)

When 119901 = 0 and 119901 = 1 the zeroth-order deformationequation (4) is Φ(119903 119905 0) = 119906

0(119903 119905) and Φ(119903 119905 1) = 119906(119903 119905)

respectively Hence as 119901 increases from 0 to 1 the solution

Φ(119903 119905 119901) varies from the initial guess solution 1199060(119903 119905) to the

exact solution 119906(119903 119905) In this paper

Π = (1 minus 119901)

times [(119860 (119901) cos 120591 + 119861 (119901) sin 120591

119862 (119901) cos 120591 )

+((Ω2(119901) minus 120596

2

0) (cos 120591 + sin 120591)

(Ω2(119901) minus 120596

2

0) sin 120591

)]

(6)

where

119860 (119901) =

infin

sum

119894=1

119886119894119901119894 119861 (119901) =

infin

sum

119894=1

119887119894119901119894

119862 (119901) =

infin

sum

119894=1

119888119894119901119894

(7)

with the initial conditions

Φ1(0 119901) = 119886

0+ 119860 (119901)

120597Φ1(120591 119901)

120597120591

100381610038161003816100381610038161003816100381610038161003816120591=0

= 1198870+ 119861 (119901)

Φ2(0 119901) = 119888

0+ 119862 (119901)

120597Φ2(120591 119901)

120597120591

100381610038161003816100381610038161003816100381610038161003816120591=0

= 1198890

(8)

Setting

119906119898(119903 119905) =

1

119898

120597119898Φ(119903 119905 119901)

120597119901119898

100381610038161003816100381610038161003816100381610038161003816119901=0

(9)

and expandingΦ(119903 119905 119901) into the Taylor series expansionwithrespect to 119901 in accordance with the theorem of vector-valuedfunction we obtain

Φ(119903 119905 119901) = 1199060(119903 119905) +

+infin

sum

119898=1

119906119898(119903 119905) 119901

119898 (10)

If the auxiliary linear operator initial guess solutionauxiliary parameters ℎ

119894 and auxiliary functions 119867

119894(119905) are

properly chosen the series equation (10) converges at 119901 = 1and we arrive at

119906 (119903 119905) = 1199060(119903 119905) +

+infin

sum

119898=1

119906119898(119903 119905) (11)

For brevity the vector of u119898is defined as

u119898= 1199060(119903 119905) 119906

1(119903 119905) 119906

119898(119903 119905) (12)

Differentiating the zeroth-order deformation equation(4) 119898 times with respect to 119901 then dividing the equation by119898 and setting 119901 = 0 yield

119871 [119906119898(119903 119905) minus 120594

119898119906119898minus1(119903 119905)]

= ℎ11198671(119905) 119877119898(u119898minus1 119903 119905) + ℎ

21198672(119905) Δ119898(119903 119905)

(13)

Abstract and Applied Analysis 3

where

120594119898= 0 119898 le 1

1 119898 gt 1

119877119898(u119898minus1 119903 119905) =

1

(119898 minus 1)

120597119898minus1119873(Φ (119903 119905 119901))

120597119901119898minus1

100381610038161003816100381610038161003816100381610038161003816119901=0

Δ119898(119903 119905) =

1

119898

120597119898Π(Φ (119903 119905 119901))

120597119901119898

100381610038161003816100381610038161003816100381610038161003816119901=0

(14)

The119898th-order deformation equation (13) is a linear equa-tion which can be readily solved by the symbolic softwaresuch as Mathematica

3 Application of the EHAM

In this section we apply the EHAM for analysis of the twocoupled van der Pol-Duffing oscillators

1+ 1205761205781(1199092

1minus 1)

1+ 1199091+ 12057612057211199093

1+ 120576120575111990911199092

2= 0 (15a)

2+ 1205761205782(1199092

2minus 1)

2+ 1199092+ 12057612057221199093

2+ 120576120575211990921199092

1= 0 (15b)

where the superscript denotes the differentiation with respectto time 119905 119909

1(119905) and 119909

2(119905) are the unknown real functions and

120576 1205721 1205722 1205781 1205782 1205751 and 120575

2are parameters

We introduce a new variable 120591 and substitute 120591 = 120596 1199051199091(119905) = 119906

1(120591) and 119909

2(119905) = 119906

2(120591) into (15a) and (15b)

Therefore we have

120596211990610158401015840

1+ 120596120576120578

1(1199062

1minus 1) 119906

1015840

1+ 1199061+ 12057612057211199063

1+ 120576120575111990611199062

2= 0 (16a)

120596211990610158401015840

2+ 120596120576120578

2(1199062

2minus 1) 119906

1015840

2+ 1199062+ 12057612057221199063

2+ 120576120575211990621199062

1= 0

(16b)

subject to the initial conditions

1199061(0) = 119886 119906

1015840

1(0) = 119887 119906

2(0) = 119888 119906

1015840

2(0) = 0 (17)

where a prime denotes the derivative with respect to variable120591 Provided that the periodic solutions in (16a) and (16b) canbe expressed by a set of base functions

cos (119896120591) sin (119896120591) | 119896 = 0 1 2 (18)

one obtains

1199061(120591) =

+infin

sum

119896=0

(1198861119896

cos 119896120591 + 1198871119896

sin 119896120591) (19a)

1199062(120591) =

+infin

sum

119896=0

(1198862119896

cos 119896120591 + 1198872119896

sin 119896120591) (19b)

For the initial approximation 11990610(120591) and 119906

20(120591) are

assumed as

11990610(120591) = 119886

0cos 120591 + 119887

0sin 120591 119906

20(120591) = 119888

0cos 120591 (20)

and the linear operator is defined as

119871(Φ1(120591 119901)

Φ2(120591 119901)

) = 1205962

0(

1205972Φ1(120591 119901)

1205971205912

+ Φ1(120591 119901)

1205972Φ2(120591 119901)

1205971205912

+ Φ2(120591 119901)

) (21)

We can define a nonlinear operator as the following byEHAM

119873(Φ1(120591 119901)

Φ2(120591 119901)

) =

(((

(

Ω2(119901)1205972Φ1(120591 119901)

1205971205912

+ 1205761205781Ω(119901) [Φ

1

2(120591 119901) minus 1]

120597Φ1(120591 119901)

120597120591

+Φ1(120591 119901) + 120576120572

1Φ1

3(120591 119901) + 120576120575

1Φ1(120591 119901)Φ

2

2(120591 119901)

Ω2(119901)1205972Φ2(120591 119901)

1205971205912

+ 1205761205782Ω(119901) [Φ

2

2(120591 119901) minus 1]

120597Φ2(120591 119901)

120597120591

+Φ2(120591 119901) + 120576120572

2Φ2

3(120591 119901) + 120576120575

2Φ1

2(120591 119901)Φ

2(120591 119901)

)))

)

(22)

and the nonlinear operator Π is

Π(Φ1(120591 119901)

Φ2(120591 119901)

) = (1 minus 119901)

times [(119860 (119901) cos 120591 + 119861 (119901) sin 120591

119862 (119901) cos 120591 )

+((Ω2(119901) minus 120596

2

0) (cos 120591 + sin 120591)

(Ω2(119901) minus 120596

2

0) sin 120591

)]

(23)

In terms of the principle of solution expression we selectthe auxiliary functions as 119867

1(119905) = 1 and 119867

2(119905) = 1 thus the

zeroth-order deformation equation is given by

(1 minus 119901) 119871(

Φ1(120591 119901) minus 119906

10(120591)

Φ2(120591 119901) minus 119906

20(120591)

)

= 119901ℎ1119873(

Φ1(120591 119901)

Φ2(120591 119901)

) + (1 minus 119901)

4 Abstract and Applied Analysis

times ℎ2[(119860 (119901) cos 120591 + 119861 (119901) sin 120591

119862 (119901) cos 120591 )

+((Ω2(119901) minus 120596

2

0) (cos 120591 + sin 120591)

(Ω2(119901) minus 120596

2

0) sin 120591

)]

(24)

where

119860 (119901) =

infin

sum

119894=1

119886119894119901119894 119861 (119901) =

infin

sum

119894=1

119887119894119901119894 119862 (119901) =

infin

sum

119894=1

119888119894119901119894 (25)

with the initial conditions

Φ1(0 119901) = 119886

0+ 119860 (119901)

120597Φ1(120591 119901)

120597120591

100381610038161003816100381610038161003816100381610038161003816120591=0

= 1198870+ 119861 (119901)

(26a)

Φ2(0 119901) = 119888

0+ 119862 (119901)

120597Φ2(120591 119901)

120597120591

100381610038161003816100381610038161003816100381610038161003816120591=0

= 0 (26b)

For 119901 = 0 the solutions of (24)ndash((26a) (26b)) are

Φ1(120591 0) = 119906

10(120591) Φ

2(120591 0) = 119906

20(120591) Ω (0) = 120596

0

(27)

While 119901 = 1 the zeroth-order deformation equations(24)ndash((26a) (26b)) are equivalent to the original equations(16a) (16b) and (17) Thus we get

Φ1(120591 1) = 119906

1(120591) Φ

2(120591 1) = 119906

2(120591) Ω (1) = 120596 (28)

Obviously as the embedding parameter 119901 varies from 0to 1Φ

119894(120591 119901) changes from the initial guess 119906

1198940(120591) to the exact

solutions 119906119894(120591) (119894 = 1 2) In additionΩ(119901) changes from the

initial guess frequency1205960to the nonlinear physical frequency

120596With the help of the Taylor series expansion and (13) we

obtain

Φ1(120591 119901) = 119906

10(120591) +

+infin

sum

119898=1

1199061119898(120591) 119901119898 (29a)

Φ2(120591 119901) = 119906

20(120591) +

+infin

sum

119898=1

1199062119898(120591) 119901119898 (29b)

Ω(119901) = 1205960+

+infin

sum

119898=1

120596119898119901119898 (29c)

where

1199061119898(120591) =

1

119898

120597119898Φ1(120591 119901)

120597119901119898

100381610038161003816100381610038161003816100381610038161003816119901=0

1199062119898(120591) =

1

119898

120597119898Φ2(120591 119901)

120597119901119898

100381610038161003816100381610038161003816100381610038161003816119901=0

120596119898=1

119898

120597119898Ω(119901)

120597119901119898

100381610038161003816100381610038161003816100381610038161003816119901=0

(30)

If the auxiliary parameters ℎ1and ℎ2are properly chosen

the power series solutions in (29a) (29b) and (29c) areconverged at 119901 = 1 Then from (28) we get

1199061(120591) = 119906

10(120591) +

+infin

sum

119898=1

1199061119898(120591)

1199062(120591) = 119906

20(120591) +

+infin

sum

119898=1

1199062119898(120591)

120596 = 1205960+

+infin

sum

119898=1

120596119898

(31)

For simplicity the following vectors are defined as

rarr

1199061119899= 11990610(120591) 119906

11(120591) 119906

1119899(120591) (32a)

rarr

1199062119899= 11990620(120591) 119906

21(120591) 119906

2119899(120591) (32b)

rarr

120596119899= 1205960 1205961 120596

119899 (32c)

By differentiating the zeroth-order deformation equation(24)119898 times with respect to 119901 then dividing the equation by119898 and setting 119901 = 0 the119898th-order deformation equation isformulated as follows

119871(1199061119898(120591) minus 120594

1198981199061119898minus1

(120591)

1199062119898(120591) minus 120594

1198981199062119898minus1

(120591)) = ℎ

1(

1198771119898(rarr

1199061119898minus1

rarr

120596119898minus1)

1198772119898(rarr

1199062119898minus1

rarr

120596119898minus1)

)

+ ℎ2(

1198781119898(120591rarr

120596119898)

1198782119898(120591rarr

120596119898)

)

(33)

with the initial conditions

1199061119898(0) = 119886

119898 119906

1015840

1119898(0) = 119887

119898

1199062119898(0) = 119888

119898 119906

1015840

2119898(0) = 0

(119898 ge 1)

(34)

in which

(

1198771119898(rarr

1199061 119898minus1

rarr

120596119898minus1)

1198772119898(rarr

1199062 119898minus1

rarr

120596119898minus1)

)

=1

(119898 minus 1)

120597119898minus1

120597119901119898minus1119873(Φ1(120591 119901)

Φ2(120591 119901)

)

100381610038161003816100381610038161003816100381610038161003816119901=0

Abstract and Applied Analysis 5

0

Approximation solutionNumerical solution

1 2

0

1

2x998400 1

x1

minus1

minus1

minus2

minus2

(a)

0

Approximation solutionNumerical solution

1 2

0

1

2

x998400 2

x2

minus1

minus1

minus2

minus2

(b)

Figure 1 Comparison of the phase portrait curves of the forth-order approximation with the numerical integration method

(

1198781119898(120591rarr

120596119898)

1198782119898(120591rarr

120596119898)

)

=(

(

119898

sum

119894=0

120596119894120596119898minus119894minus 120594119898

119898minus1

sum

119894=0

120596119894120596119898minus1minus119894

) (cos 120591 + sin 120591)

(

119898

sum

119894=0

120596119894120596119898minus119894minus 120594119898

119898minus1

sum

119894=0

120596119894120596119898minus1minus119894

) sin 120591)

+ (119876119898(

rarr

120575 119898) minus 120594119898 (

rarr

120575 119898minus1))

119876119898(

rarr

120575 119898) = (119886119898cos 120591 + 119887

119898sin 120591

119888119898cos 120591 )

(35)

Because of the principle of solution expression and thelinear operator 119871 the right side of (33) should not containthe terms of sin 120591 and cos 120591 or the secular terms 120591 sin 120591 and120591 cos 120591 The coefficients are set to be zero to yield

1

120587int

2120587

0

[ℎ11198771119898(rarr

1199061 119898minus1

rarr

120596119898minus1)

+ℎ21198781119898(120591rarr

120596119898)] cos 120591119889120591 = 0

(36a)

1

120587int

2120587

0

[ℎ11198771 119898(rarr

1199061 119898minus1

rarr

120596119898minus1)

+ℎ21198781119898(120591rarr

120596119898)] sin 120591119889120591 = 0

(36b)

1

120587int

2120587

0

[ℎ11198772 119898(rarr

1199062 119898minus1

rarr

120596119898minus1)

+ℎ21198782119898(120591rarr

120596119898)] cos 120591119889120591 = 0

(36c)

1

120587int

2120587

0

[ℎ11198772 119898(rarr

1199062 119898minus1

rarr

120596119898minus1)

+ℎ21198782119898(120591rarr

120596119898)] sin 120591119889120591 = 0

(36d)

The solutions of 120596119896 119886119896 119887119896 and 119888

119896(119896 = 0 1 2 )

from (33) and (36a) (36b) (36c) and (36d) can be computedsuccessively To achieve more accurate results we modify thesolution of 120596 as follows

120596 = 120596 + 120592 (37)

where 120592 is a small parameter

4 Numerical Simulation and Discussion

In this section numerical experiment is conducted to verifythe accuracy of the present approach

Taking 120576 = 1100 1205781= 1 120578

2= 2 120572

1= 12 120572

2= 13

1205751= 210 120575

2= 310 and the initial approximations of 119886 119887

119888 and 120596 are 1198860= 2 119887

0= 0 119888

0= 2 and 120596

0= 10871000

respectivelyFor simplicity and accuracy we set ℎ

1= minus01 ℎ

2= 300

and 120592 = minus01 then the comparison of the phase curves ofthe fifth-order approximation with the numerical integrationsolution is shown in Figure 1

6 Abstract and Applied Analysis

0

Approximation solutionNumerical solution

1 2

0

1

2x998400 1

x1

minus1

minus1

minus2

minus2

(a)

0

Approximation solutionNumerical solution

1 2

0

1

2

x998400 2

x2

minus1

minus1

minus2

minus2

(b)

Figure 2 Comparison between the phase curves of the fifth-order approximation and the numerical integration out-of-phase solution

The initial conditions of the numerical integrationmethod are 119909

1(0) = 1999538 1199091015840

1(0) = 0000037 119909

2(0) =

1999458 and 11990910158402(0) = 0

Moreover the fifth-order analytical solutions (1199091(119905)

1199092(119905) and 120596) are given as

1199091(119905) = 199884944 cos120596119905 + 000321365 sin120596119905

+ 000068916 cos 3120596119905 minus 000106812 sin 3120596119905

1199092(119905) = 199883406 cos120596119905 + 000641377 sin120596119905

+ 000062615 cos 3120596119905 minus 000213651 sin 3120596119905

120596 = 108696631

(38)

in which

120596 = 120596 + 120592 = 098696631 (39)

The above results demonstrate that the system has an in-phase solution While giving the initial approximations of1198860= 2 119887

0= 0 119888

0= minus2 and 120596

0= 10871000 we can get

an out-of-phase solution to the systemIn this case the comparison between the phase curves of

the fifth-order approximation and the numerical integrationsolution is portrayed in Figure 2

The initial conditions of the numerical integrationmethod are 119909

1(0) = 1999392 1199091015840

1(0) = 0000110 119909

2(0) =

minus1999458 and 11990910158402(0) = 0 and the fifth-order analytical

solutions are written as

1199091(119905) = 199870293 cos120596119905 + 000309709 sin120596119905

+ 000068900 cos 3120596119905 minus 000106809 sin 3120596119905

1199092(119905) = minus199883388 cos120596119905 minus 000641395 sin120596119905

minus 000062613 cos 3120596t minus 000213658 sin 3120596119905

120596 = 108703369

(40)

in which

120596 = 120596 + 120592 = 098703369 (41)

5 Conclusions

In the present paper the EHAM approach is applied to getasymptotic analytical series solutions of 2-DOF van der Pol-Duffing oscillators with a nonlinear coupling The basic ideadescribed in this paper is expected to be more employedin solving other dynamical systems in engineering andphysical sciences Comparisons with the numerical resultsare presented to demonstrate the validity of this method Insummary compared with some other methods the EHAMhas the following advantages

(1) The EHAM provides an ingenious avenue for con-trolling the convergences of approximation seriesNumerical comparisons demonstrate that the EHAMis an effective and robust analytical method of 2-DOFvan der Pol-Duffing oscillators

Abstract and Applied Analysis 7

(2) Because of its flexibility the present techniques canalso be further generalized to analyze more compli-cated nonlinear MDOF dynamical systems that canonly be analyzed by numerical methods

Conflict of Interests

The authors declare that there is no conflict of interestsregarding the publication of this paper

Authorsrsquo Contribution

All the authors contributed equally and significantly to thewriting of this paper All the authors read and approved thefinal paper

Acknowledgments

The author Y H Qian gratefully acknowledges the sup-port of the National Natural Science Foundations of China(NNSFC) throughGrants nos 11202189 and 11304286 and theNatural Science Foundation of Zhejiang Province of Chinathrough Grant no LY12A02002 The author S M Chengratefully appreciates the financial support from the NNSFCthrough Grants no 11371326 The author L Shen gratefullyacknowledges the support from open experiment project ofZhejiang Normal University The authors are also grateful tothe anonymous reviewers for their constructive commentsand suggestions

References

[1] R E Mickens Mathematical Methods for the Natural andEngineering Sciences World Scientific Singapore 2004

[2] Y K Cheung S H Chen and S L Lau ldquoAmodified Lindstedt-Poincare method for certain strongly nonlinear oscillatorsrdquoInternational Journal of Non-Linear Mechanics vol 26 no 3-4pp 367ndash378 1991

[3] M Senator and C N Bapat ldquoA perturbation technique thatworks evenwhen the nonlinearity is not smallrdquo Journal of Soundand Vibration vol 164 no 1 pp 1ndash27 1993

[4] P Amore and A Aranda ldquoImproved Lindstedt-Poincaremethod for the solution of nonlinear problemsrdquo Journal ofSound and Vibration vol 283 no 3ndash5 pp 1115ndash1136 2005

[5] R R Pusenjak ldquoExtended Lindstedt-Poincare method fornon-stationary resonances of dynamical systems with cubicnonlinearitiesrdquo Journal of Sound and Vibration vol 314 no 1-2 pp 194ndash216 2008

[6] J L Summers and M D Savage ldquoTwo timescale harmonicbalance I Application to autonomous one-dimensional non-linear oscillatorsrdquo Proceedings of the Royal Society of London AMathematical Physical and Engineering Sciences vol 340 no1659 pp 473ndash501 1992

[7] B Wu and P Li ldquoA method for obtaining approximate analyticperiods for a class of nonlinear oscillatorsrdquo Meccanica vol 36no 2 pp 167ndash176 2001

[8] S S Ganji D D Ganji Z Z Ganji and S Karimpour ldquoPeriodicsolution for strongly nonlinear vibration systems byHersquos energybalance methodrdquo Acta Applicandae Mathematicae vol 106 no1 pp 79ndash92 2009

[9] I Mehdipour D D Ganji and M Mozaffari ldquoApplication ofthe energy balance method to nonlinear vibrating equationsrdquoCurrent Applied Physics vol 10 no 1 pp 104ndash112 2010

[10] L Zhao ldquoHersquos frequency-amplitude formulation for nonlinearoscillators with an irrational forcerdquo Computers amp Mathematicswith Applications vol 58 no 11-12 pp 2477ndash2479 2009

[11] J Fan ldquoHersquos frequency-amplitude formulation for the Duffingharmonic oscillatorrdquo Computers amp Mathematics with Applica-tions vol 58 no 11-12 pp 2473ndash2476 2009

[12] P J Hilton An Introduction to Homotopy Theory CambridgeUniversity Press Cambridge UK 1953

[13] C Nash and S Sen Topology and Geometry for PhysicistsAcademic Press London UK 1983

[14] S J Liao The proposed homotopy analysis techniques for thesolution of nonlinear problems [PhD thesis] Shanghai Jiao TongUniversity Shanghai China 1992

[15] S J Liao ldquoA kind of approximate solution technique which doesnot depend upon small parameters II An application in fluidmechanicsrdquo International Journal of Non-Linear Mechanics vol32 no 5 pp 815ndash822 1997

[16] S Liao Beyond Perturbation Introduction to the HomotopyAnalysisMethod ChapmanampHall Boca Raton Fla USA 2004

[17] S Rajasekar and K Murali ldquoResonance behaviour and jumpphenomenon in a two coupled Duffing-van der Pol oscillatorsrdquoChaos Solitons and Fractals vol 19 no 4 pp 925ndash934 2004

[18] B T Nohara and A Arimoto ldquoNon-existence theorem exceptthe out-of-phase and in-phase solutions in the coupled van derPol equation systemrdquo Ukrainian Mathematical Journal vol 61no 8 pp 1311ndash1337 2009

[19] Y J Li B T Nohara and S J Liao ldquoSeries solutions of coupledvan der Pol equation by means of homotopy analysis methodrdquoJournal of Mathematical Physics vol 51 no 6 pp 1ndash12 2010

[20] YHQian CMDuan SM Chen and S P Chen ldquoAsymptoticanalytical solutions of the two-degree-of-freedom stronglynonlinear van der Pol oscillators with cubic couple terms usingextended homotopy analysismethodrdquoActaMechanica vol 223no 2 pp 237ndash255 2012

Submit your manuscripts athttpwwwhindawicom

Hindawi Publishing Corporationhttpwwwhindawicom Volume 2014

MathematicsJournal of

Hindawi Publishing Corporationhttpwwwhindawicom Volume 2014

Mathematical Problems in Engineering

Hindawi Publishing Corporationhttpwwwhindawicom

Differential EquationsInternational Journal of

Volume 2014

Applied MathematicsJournal of

Hindawi Publishing Corporationhttpwwwhindawicom Volume 2014

Probability and StatisticsHindawi Publishing Corporationhttpwwwhindawicom Volume 2014

Journal of

Hindawi Publishing Corporationhttpwwwhindawicom Volume 2014

Mathematical PhysicsAdvances in

Complex AnalysisJournal of

Hindawi Publishing Corporationhttpwwwhindawicom Volume 2014

OptimizationJournal of

Hindawi Publishing Corporationhttpwwwhindawicom Volume 2014

CombinatoricsHindawi Publishing Corporationhttpwwwhindawicom Volume 2014

International Journal of

Hindawi Publishing Corporationhttpwwwhindawicom Volume 2014

Operations ResearchAdvances in

Journal of

Hindawi Publishing Corporationhttpwwwhindawicom Volume 2014

Function Spaces

Abstract and Applied AnalysisHindawi Publishing Corporationhttpwwwhindawicom Volume 2014

International Journal of Mathematics and Mathematical Sciences

Hindawi Publishing Corporationhttpwwwhindawicom Volume 2014

The Scientific World JournalHindawi Publishing Corporation httpwwwhindawicom Volume 2014

Hindawi Publishing Corporationhttpwwwhindawicom Volume 2014

Algebra

Discrete Dynamics in Nature and Society

Hindawi Publishing Corporationhttpwwwhindawicom Volume 2014

Hindawi Publishing Corporationhttpwwwhindawicom Volume 2014

Decision SciencesAdvances in

Discrete MathematicsJournal of

Hindawi Publishing Corporationhttpwwwhindawicom

Volume 2014 Hindawi Publishing Corporationhttpwwwhindawicom Volume 2014

Stochastic AnalysisInternational Journal of

Page 2: Research Article Application of Extended Homotopy Analysis ...e extended homotopy analysis method (EHAM) is presented to est ablish the analytical approximate solutions for two-degree-of-freedom

2 Abstract and Applied Analysis

correctness and accuracy of the present method Finally thepaper ends with concluding remarks in Section 5

2 The Extended Homotopy Analysis Method

TheMDOF dynamical system is considered by the followingequation

119872 119902 + 119866 119902 + 119870119902 = 119865 ( 119902 119902 119905) (1)

where 119902 is an 119899-dimensional unknown vector a dot denotesthe derivative with respect to time 119905 119872 119866 and 119870 arerespectively 119899times 119899mass damping and stiffness matrixes and119865 is the vector function of 119902 119902 and 119905 Let 119865( 119902 119902 119905) equiv 0 then(1) is an autonomous dynamical system

From (1) we define a nonlinear operator as

119873[119906 (119903 119905)] = 1198721205972119906 (119903 119905)

1205971199052

+ 119866120597119906 (119903 119905)

120597119905

+ 119870119906 (119903 119905) minus 119865(120597119906

120597119905 119906 119905)

(2)

where 119906(119903 119905) is an unknown vector value function and 119903 and119905 are spatial and temporal variables respectively

In (2) the unknown vector functions of 119906(119903 119905)120597119906(119903 119905)120597119905 and 1205972119906(119903 119905)1205971199052 are respectively

119906 (119903 119905) = (1199091(119905) 119909

119899(119905))119879

120597119906 (119903 119905)

120597119905= (1198891199091

119889119905

119889119909119899

119889119905)

119879

1205972119906 (119903 119905)

1205971199052

= (11988921199091

1198891199052

1198892119909119899

1198891199052)

119879

(3)

According to the fundamental concepts and workingprocedures of the HAM [1 2] the zeroth-order deformationequation can be constructed as follows

(1 minus 119901) 119871 [Φ (119903 119905 119901) minus 1199060(119903 119905)]

= 119901ℎ11198671(119905)119873 [Φ (119903 119905 119901)] + ℎ

21198672(119905) Π [Φ (119903 119905 119901)]

(4)

where 119901 isin [0 1] is an embedding parameter 1199060(119903 119905) is the

solution of initial guess 119871 is an auxiliary linear operator andℎ119894and 119867

119894(119905) are the auxiliary parameters and the functions

respectivelyThe operator Π[Φ(119903 119905 119901)] has the following property

Π [Φ (119903 119905 0)] = Π [Φ (119903 119905 1)] = 0 (5)

When 119901 = 0 and 119901 = 1 the zeroth-order deformationequation (4) is Φ(119903 119905 0) = 119906

0(119903 119905) and Φ(119903 119905 1) = 119906(119903 119905)

respectively Hence as 119901 increases from 0 to 1 the solution

Φ(119903 119905 119901) varies from the initial guess solution 1199060(119903 119905) to the

exact solution 119906(119903 119905) In this paper

Π = (1 minus 119901)

times [(119860 (119901) cos 120591 + 119861 (119901) sin 120591

119862 (119901) cos 120591 )

+((Ω2(119901) minus 120596

2

0) (cos 120591 + sin 120591)

(Ω2(119901) minus 120596

2

0) sin 120591

)]

(6)

where

119860 (119901) =

infin

sum

119894=1

119886119894119901119894 119861 (119901) =

infin

sum

119894=1

119887119894119901119894

119862 (119901) =

infin

sum

119894=1

119888119894119901119894

(7)

with the initial conditions

Φ1(0 119901) = 119886

0+ 119860 (119901)

120597Φ1(120591 119901)

120597120591

100381610038161003816100381610038161003816100381610038161003816120591=0

= 1198870+ 119861 (119901)

Φ2(0 119901) = 119888

0+ 119862 (119901)

120597Φ2(120591 119901)

120597120591

100381610038161003816100381610038161003816100381610038161003816120591=0

= 1198890

(8)

Setting

119906119898(119903 119905) =

1

119898

120597119898Φ(119903 119905 119901)

120597119901119898

100381610038161003816100381610038161003816100381610038161003816119901=0

(9)

and expandingΦ(119903 119905 119901) into the Taylor series expansionwithrespect to 119901 in accordance with the theorem of vector-valuedfunction we obtain

Φ(119903 119905 119901) = 1199060(119903 119905) +

+infin

sum

119898=1

119906119898(119903 119905) 119901

119898 (10)

If the auxiliary linear operator initial guess solutionauxiliary parameters ℎ

119894 and auxiliary functions 119867

119894(119905) are

properly chosen the series equation (10) converges at 119901 = 1and we arrive at

119906 (119903 119905) = 1199060(119903 119905) +

+infin

sum

119898=1

119906119898(119903 119905) (11)

For brevity the vector of u119898is defined as

u119898= 1199060(119903 119905) 119906

1(119903 119905) 119906

119898(119903 119905) (12)

Differentiating the zeroth-order deformation equation(4) 119898 times with respect to 119901 then dividing the equation by119898 and setting 119901 = 0 yield

119871 [119906119898(119903 119905) minus 120594

119898119906119898minus1(119903 119905)]

= ℎ11198671(119905) 119877119898(u119898minus1 119903 119905) + ℎ

21198672(119905) Δ119898(119903 119905)

(13)

Abstract and Applied Analysis 3

where

120594119898= 0 119898 le 1

1 119898 gt 1

119877119898(u119898minus1 119903 119905) =

1

(119898 minus 1)

120597119898minus1119873(Φ (119903 119905 119901))

120597119901119898minus1

100381610038161003816100381610038161003816100381610038161003816119901=0

Δ119898(119903 119905) =

1

119898

120597119898Π(Φ (119903 119905 119901))

120597119901119898

100381610038161003816100381610038161003816100381610038161003816119901=0

(14)

The119898th-order deformation equation (13) is a linear equa-tion which can be readily solved by the symbolic softwaresuch as Mathematica

3 Application of the EHAM

In this section we apply the EHAM for analysis of the twocoupled van der Pol-Duffing oscillators

1+ 1205761205781(1199092

1minus 1)

1+ 1199091+ 12057612057211199093

1+ 120576120575111990911199092

2= 0 (15a)

2+ 1205761205782(1199092

2minus 1)

2+ 1199092+ 12057612057221199093

2+ 120576120575211990921199092

1= 0 (15b)

where the superscript denotes the differentiation with respectto time 119905 119909

1(119905) and 119909

2(119905) are the unknown real functions and

120576 1205721 1205722 1205781 1205782 1205751 and 120575

2are parameters

We introduce a new variable 120591 and substitute 120591 = 120596 1199051199091(119905) = 119906

1(120591) and 119909

2(119905) = 119906

2(120591) into (15a) and (15b)

Therefore we have

120596211990610158401015840

1+ 120596120576120578

1(1199062

1minus 1) 119906

1015840

1+ 1199061+ 12057612057211199063

1+ 120576120575111990611199062

2= 0 (16a)

120596211990610158401015840

2+ 120596120576120578

2(1199062

2minus 1) 119906

1015840

2+ 1199062+ 12057612057221199063

2+ 120576120575211990621199062

1= 0

(16b)

subject to the initial conditions

1199061(0) = 119886 119906

1015840

1(0) = 119887 119906

2(0) = 119888 119906

1015840

2(0) = 0 (17)

where a prime denotes the derivative with respect to variable120591 Provided that the periodic solutions in (16a) and (16b) canbe expressed by a set of base functions

cos (119896120591) sin (119896120591) | 119896 = 0 1 2 (18)

one obtains

1199061(120591) =

+infin

sum

119896=0

(1198861119896

cos 119896120591 + 1198871119896

sin 119896120591) (19a)

1199062(120591) =

+infin

sum

119896=0

(1198862119896

cos 119896120591 + 1198872119896

sin 119896120591) (19b)

For the initial approximation 11990610(120591) and 119906

20(120591) are

assumed as

11990610(120591) = 119886

0cos 120591 + 119887

0sin 120591 119906

20(120591) = 119888

0cos 120591 (20)

and the linear operator is defined as

119871(Φ1(120591 119901)

Φ2(120591 119901)

) = 1205962

0(

1205972Φ1(120591 119901)

1205971205912

+ Φ1(120591 119901)

1205972Φ2(120591 119901)

1205971205912

+ Φ2(120591 119901)

) (21)

We can define a nonlinear operator as the following byEHAM

119873(Φ1(120591 119901)

Φ2(120591 119901)

) =

(((

(

Ω2(119901)1205972Φ1(120591 119901)

1205971205912

+ 1205761205781Ω(119901) [Φ

1

2(120591 119901) minus 1]

120597Φ1(120591 119901)

120597120591

+Φ1(120591 119901) + 120576120572

1Φ1

3(120591 119901) + 120576120575

1Φ1(120591 119901)Φ

2

2(120591 119901)

Ω2(119901)1205972Φ2(120591 119901)

1205971205912

+ 1205761205782Ω(119901) [Φ

2

2(120591 119901) minus 1]

120597Φ2(120591 119901)

120597120591

+Φ2(120591 119901) + 120576120572

2Φ2

3(120591 119901) + 120576120575

2Φ1

2(120591 119901)Φ

2(120591 119901)

)))

)

(22)

and the nonlinear operator Π is

Π(Φ1(120591 119901)

Φ2(120591 119901)

) = (1 minus 119901)

times [(119860 (119901) cos 120591 + 119861 (119901) sin 120591

119862 (119901) cos 120591 )

+((Ω2(119901) minus 120596

2

0) (cos 120591 + sin 120591)

(Ω2(119901) minus 120596

2

0) sin 120591

)]

(23)

In terms of the principle of solution expression we selectthe auxiliary functions as 119867

1(119905) = 1 and 119867

2(119905) = 1 thus the

zeroth-order deformation equation is given by

(1 minus 119901) 119871(

Φ1(120591 119901) minus 119906

10(120591)

Φ2(120591 119901) minus 119906

20(120591)

)

= 119901ℎ1119873(

Φ1(120591 119901)

Φ2(120591 119901)

) + (1 minus 119901)

4 Abstract and Applied Analysis

times ℎ2[(119860 (119901) cos 120591 + 119861 (119901) sin 120591

119862 (119901) cos 120591 )

+((Ω2(119901) minus 120596

2

0) (cos 120591 + sin 120591)

(Ω2(119901) minus 120596

2

0) sin 120591

)]

(24)

where

119860 (119901) =

infin

sum

119894=1

119886119894119901119894 119861 (119901) =

infin

sum

119894=1

119887119894119901119894 119862 (119901) =

infin

sum

119894=1

119888119894119901119894 (25)

with the initial conditions

Φ1(0 119901) = 119886

0+ 119860 (119901)

120597Φ1(120591 119901)

120597120591

100381610038161003816100381610038161003816100381610038161003816120591=0

= 1198870+ 119861 (119901)

(26a)

Φ2(0 119901) = 119888

0+ 119862 (119901)

120597Φ2(120591 119901)

120597120591

100381610038161003816100381610038161003816100381610038161003816120591=0

= 0 (26b)

For 119901 = 0 the solutions of (24)ndash((26a) (26b)) are

Φ1(120591 0) = 119906

10(120591) Φ

2(120591 0) = 119906

20(120591) Ω (0) = 120596

0

(27)

While 119901 = 1 the zeroth-order deformation equations(24)ndash((26a) (26b)) are equivalent to the original equations(16a) (16b) and (17) Thus we get

Φ1(120591 1) = 119906

1(120591) Φ

2(120591 1) = 119906

2(120591) Ω (1) = 120596 (28)

Obviously as the embedding parameter 119901 varies from 0to 1Φ

119894(120591 119901) changes from the initial guess 119906

1198940(120591) to the exact

solutions 119906119894(120591) (119894 = 1 2) In additionΩ(119901) changes from the

initial guess frequency1205960to the nonlinear physical frequency

120596With the help of the Taylor series expansion and (13) we

obtain

Φ1(120591 119901) = 119906

10(120591) +

+infin

sum

119898=1

1199061119898(120591) 119901119898 (29a)

Φ2(120591 119901) = 119906

20(120591) +

+infin

sum

119898=1

1199062119898(120591) 119901119898 (29b)

Ω(119901) = 1205960+

+infin

sum

119898=1

120596119898119901119898 (29c)

where

1199061119898(120591) =

1

119898

120597119898Φ1(120591 119901)

120597119901119898

100381610038161003816100381610038161003816100381610038161003816119901=0

1199062119898(120591) =

1

119898

120597119898Φ2(120591 119901)

120597119901119898

100381610038161003816100381610038161003816100381610038161003816119901=0

120596119898=1

119898

120597119898Ω(119901)

120597119901119898

100381610038161003816100381610038161003816100381610038161003816119901=0

(30)

If the auxiliary parameters ℎ1and ℎ2are properly chosen

the power series solutions in (29a) (29b) and (29c) areconverged at 119901 = 1 Then from (28) we get

1199061(120591) = 119906

10(120591) +

+infin

sum

119898=1

1199061119898(120591)

1199062(120591) = 119906

20(120591) +

+infin

sum

119898=1

1199062119898(120591)

120596 = 1205960+

+infin

sum

119898=1

120596119898

(31)

For simplicity the following vectors are defined as

rarr

1199061119899= 11990610(120591) 119906

11(120591) 119906

1119899(120591) (32a)

rarr

1199062119899= 11990620(120591) 119906

21(120591) 119906

2119899(120591) (32b)

rarr

120596119899= 1205960 1205961 120596

119899 (32c)

By differentiating the zeroth-order deformation equation(24)119898 times with respect to 119901 then dividing the equation by119898 and setting 119901 = 0 the119898th-order deformation equation isformulated as follows

119871(1199061119898(120591) minus 120594

1198981199061119898minus1

(120591)

1199062119898(120591) minus 120594

1198981199062119898minus1

(120591)) = ℎ

1(

1198771119898(rarr

1199061119898minus1

rarr

120596119898minus1)

1198772119898(rarr

1199062119898minus1

rarr

120596119898minus1)

)

+ ℎ2(

1198781119898(120591rarr

120596119898)

1198782119898(120591rarr

120596119898)

)

(33)

with the initial conditions

1199061119898(0) = 119886

119898 119906

1015840

1119898(0) = 119887

119898

1199062119898(0) = 119888

119898 119906

1015840

2119898(0) = 0

(119898 ge 1)

(34)

in which

(

1198771119898(rarr

1199061 119898minus1

rarr

120596119898minus1)

1198772119898(rarr

1199062 119898minus1

rarr

120596119898minus1)

)

=1

(119898 minus 1)

120597119898minus1

120597119901119898minus1119873(Φ1(120591 119901)

Φ2(120591 119901)

)

100381610038161003816100381610038161003816100381610038161003816119901=0

Abstract and Applied Analysis 5

0

Approximation solutionNumerical solution

1 2

0

1

2x998400 1

x1

minus1

minus1

minus2

minus2

(a)

0

Approximation solutionNumerical solution

1 2

0

1

2

x998400 2

x2

minus1

minus1

minus2

minus2

(b)

Figure 1 Comparison of the phase portrait curves of the forth-order approximation with the numerical integration method

(

1198781119898(120591rarr

120596119898)

1198782119898(120591rarr

120596119898)

)

=(

(

119898

sum

119894=0

120596119894120596119898minus119894minus 120594119898

119898minus1

sum

119894=0

120596119894120596119898minus1minus119894

) (cos 120591 + sin 120591)

(

119898

sum

119894=0

120596119894120596119898minus119894minus 120594119898

119898minus1

sum

119894=0

120596119894120596119898minus1minus119894

) sin 120591)

+ (119876119898(

rarr

120575 119898) minus 120594119898 (

rarr

120575 119898minus1))

119876119898(

rarr

120575 119898) = (119886119898cos 120591 + 119887

119898sin 120591

119888119898cos 120591 )

(35)

Because of the principle of solution expression and thelinear operator 119871 the right side of (33) should not containthe terms of sin 120591 and cos 120591 or the secular terms 120591 sin 120591 and120591 cos 120591 The coefficients are set to be zero to yield

1

120587int

2120587

0

[ℎ11198771119898(rarr

1199061 119898minus1

rarr

120596119898minus1)

+ℎ21198781119898(120591rarr

120596119898)] cos 120591119889120591 = 0

(36a)

1

120587int

2120587

0

[ℎ11198771 119898(rarr

1199061 119898minus1

rarr

120596119898minus1)

+ℎ21198781119898(120591rarr

120596119898)] sin 120591119889120591 = 0

(36b)

1

120587int

2120587

0

[ℎ11198772 119898(rarr

1199062 119898minus1

rarr

120596119898minus1)

+ℎ21198782119898(120591rarr

120596119898)] cos 120591119889120591 = 0

(36c)

1

120587int

2120587

0

[ℎ11198772 119898(rarr

1199062 119898minus1

rarr

120596119898minus1)

+ℎ21198782119898(120591rarr

120596119898)] sin 120591119889120591 = 0

(36d)

The solutions of 120596119896 119886119896 119887119896 and 119888

119896(119896 = 0 1 2 )

from (33) and (36a) (36b) (36c) and (36d) can be computedsuccessively To achieve more accurate results we modify thesolution of 120596 as follows

120596 = 120596 + 120592 (37)

where 120592 is a small parameter

4 Numerical Simulation and Discussion

In this section numerical experiment is conducted to verifythe accuracy of the present approach

Taking 120576 = 1100 1205781= 1 120578

2= 2 120572

1= 12 120572

2= 13

1205751= 210 120575

2= 310 and the initial approximations of 119886 119887

119888 and 120596 are 1198860= 2 119887

0= 0 119888

0= 2 and 120596

0= 10871000

respectivelyFor simplicity and accuracy we set ℎ

1= minus01 ℎ

2= 300

and 120592 = minus01 then the comparison of the phase curves ofthe fifth-order approximation with the numerical integrationsolution is shown in Figure 1

6 Abstract and Applied Analysis

0

Approximation solutionNumerical solution

1 2

0

1

2x998400 1

x1

minus1

minus1

minus2

minus2

(a)

0

Approximation solutionNumerical solution

1 2

0

1

2

x998400 2

x2

minus1

minus1

minus2

minus2

(b)

Figure 2 Comparison between the phase curves of the fifth-order approximation and the numerical integration out-of-phase solution

The initial conditions of the numerical integrationmethod are 119909

1(0) = 1999538 1199091015840

1(0) = 0000037 119909

2(0) =

1999458 and 11990910158402(0) = 0

Moreover the fifth-order analytical solutions (1199091(119905)

1199092(119905) and 120596) are given as

1199091(119905) = 199884944 cos120596119905 + 000321365 sin120596119905

+ 000068916 cos 3120596119905 minus 000106812 sin 3120596119905

1199092(119905) = 199883406 cos120596119905 + 000641377 sin120596119905

+ 000062615 cos 3120596119905 minus 000213651 sin 3120596119905

120596 = 108696631

(38)

in which

120596 = 120596 + 120592 = 098696631 (39)

The above results demonstrate that the system has an in-phase solution While giving the initial approximations of1198860= 2 119887

0= 0 119888

0= minus2 and 120596

0= 10871000 we can get

an out-of-phase solution to the systemIn this case the comparison between the phase curves of

the fifth-order approximation and the numerical integrationsolution is portrayed in Figure 2

The initial conditions of the numerical integrationmethod are 119909

1(0) = 1999392 1199091015840

1(0) = 0000110 119909

2(0) =

minus1999458 and 11990910158402(0) = 0 and the fifth-order analytical

solutions are written as

1199091(119905) = 199870293 cos120596119905 + 000309709 sin120596119905

+ 000068900 cos 3120596119905 minus 000106809 sin 3120596119905

1199092(119905) = minus199883388 cos120596119905 minus 000641395 sin120596119905

minus 000062613 cos 3120596t minus 000213658 sin 3120596119905

120596 = 108703369

(40)

in which

120596 = 120596 + 120592 = 098703369 (41)

5 Conclusions

In the present paper the EHAM approach is applied to getasymptotic analytical series solutions of 2-DOF van der Pol-Duffing oscillators with a nonlinear coupling The basic ideadescribed in this paper is expected to be more employedin solving other dynamical systems in engineering andphysical sciences Comparisons with the numerical resultsare presented to demonstrate the validity of this method Insummary compared with some other methods the EHAMhas the following advantages

(1) The EHAM provides an ingenious avenue for con-trolling the convergences of approximation seriesNumerical comparisons demonstrate that the EHAMis an effective and robust analytical method of 2-DOFvan der Pol-Duffing oscillators

Abstract and Applied Analysis 7

(2) Because of its flexibility the present techniques canalso be further generalized to analyze more compli-cated nonlinear MDOF dynamical systems that canonly be analyzed by numerical methods

Conflict of Interests

The authors declare that there is no conflict of interestsregarding the publication of this paper

Authorsrsquo Contribution

All the authors contributed equally and significantly to thewriting of this paper All the authors read and approved thefinal paper

Acknowledgments

The author Y H Qian gratefully acknowledges the sup-port of the National Natural Science Foundations of China(NNSFC) throughGrants nos 11202189 and 11304286 and theNatural Science Foundation of Zhejiang Province of Chinathrough Grant no LY12A02002 The author S M Chengratefully appreciates the financial support from the NNSFCthrough Grants no 11371326 The author L Shen gratefullyacknowledges the support from open experiment project ofZhejiang Normal University The authors are also grateful tothe anonymous reviewers for their constructive commentsand suggestions

References

[1] R E Mickens Mathematical Methods for the Natural andEngineering Sciences World Scientific Singapore 2004

[2] Y K Cheung S H Chen and S L Lau ldquoAmodified Lindstedt-Poincare method for certain strongly nonlinear oscillatorsrdquoInternational Journal of Non-Linear Mechanics vol 26 no 3-4pp 367ndash378 1991

[3] M Senator and C N Bapat ldquoA perturbation technique thatworks evenwhen the nonlinearity is not smallrdquo Journal of Soundand Vibration vol 164 no 1 pp 1ndash27 1993

[4] P Amore and A Aranda ldquoImproved Lindstedt-Poincaremethod for the solution of nonlinear problemsrdquo Journal ofSound and Vibration vol 283 no 3ndash5 pp 1115ndash1136 2005

[5] R R Pusenjak ldquoExtended Lindstedt-Poincare method fornon-stationary resonances of dynamical systems with cubicnonlinearitiesrdquo Journal of Sound and Vibration vol 314 no 1-2 pp 194ndash216 2008

[6] J L Summers and M D Savage ldquoTwo timescale harmonicbalance I Application to autonomous one-dimensional non-linear oscillatorsrdquo Proceedings of the Royal Society of London AMathematical Physical and Engineering Sciences vol 340 no1659 pp 473ndash501 1992

[7] B Wu and P Li ldquoA method for obtaining approximate analyticperiods for a class of nonlinear oscillatorsrdquo Meccanica vol 36no 2 pp 167ndash176 2001

[8] S S Ganji D D Ganji Z Z Ganji and S Karimpour ldquoPeriodicsolution for strongly nonlinear vibration systems byHersquos energybalance methodrdquo Acta Applicandae Mathematicae vol 106 no1 pp 79ndash92 2009

[9] I Mehdipour D D Ganji and M Mozaffari ldquoApplication ofthe energy balance method to nonlinear vibrating equationsrdquoCurrent Applied Physics vol 10 no 1 pp 104ndash112 2010

[10] L Zhao ldquoHersquos frequency-amplitude formulation for nonlinearoscillators with an irrational forcerdquo Computers amp Mathematicswith Applications vol 58 no 11-12 pp 2477ndash2479 2009

[11] J Fan ldquoHersquos frequency-amplitude formulation for the Duffingharmonic oscillatorrdquo Computers amp Mathematics with Applica-tions vol 58 no 11-12 pp 2473ndash2476 2009

[12] P J Hilton An Introduction to Homotopy Theory CambridgeUniversity Press Cambridge UK 1953

[13] C Nash and S Sen Topology and Geometry for PhysicistsAcademic Press London UK 1983

[14] S J Liao The proposed homotopy analysis techniques for thesolution of nonlinear problems [PhD thesis] Shanghai Jiao TongUniversity Shanghai China 1992

[15] S J Liao ldquoA kind of approximate solution technique which doesnot depend upon small parameters II An application in fluidmechanicsrdquo International Journal of Non-Linear Mechanics vol32 no 5 pp 815ndash822 1997

[16] S Liao Beyond Perturbation Introduction to the HomotopyAnalysisMethod ChapmanampHall Boca Raton Fla USA 2004

[17] S Rajasekar and K Murali ldquoResonance behaviour and jumpphenomenon in a two coupled Duffing-van der Pol oscillatorsrdquoChaos Solitons and Fractals vol 19 no 4 pp 925ndash934 2004

[18] B T Nohara and A Arimoto ldquoNon-existence theorem exceptthe out-of-phase and in-phase solutions in the coupled van derPol equation systemrdquo Ukrainian Mathematical Journal vol 61no 8 pp 1311ndash1337 2009

[19] Y J Li B T Nohara and S J Liao ldquoSeries solutions of coupledvan der Pol equation by means of homotopy analysis methodrdquoJournal of Mathematical Physics vol 51 no 6 pp 1ndash12 2010

[20] YHQian CMDuan SM Chen and S P Chen ldquoAsymptoticanalytical solutions of the two-degree-of-freedom stronglynonlinear van der Pol oscillators with cubic couple terms usingextended homotopy analysismethodrdquoActaMechanica vol 223no 2 pp 237ndash255 2012

Submit your manuscripts athttpwwwhindawicom

Hindawi Publishing Corporationhttpwwwhindawicom Volume 2014

MathematicsJournal of

Hindawi Publishing Corporationhttpwwwhindawicom Volume 2014

Mathematical Problems in Engineering

Hindawi Publishing Corporationhttpwwwhindawicom

Differential EquationsInternational Journal of

Volume 2014

Applied MathematicsJournal of

Hindawi Publishing Corporationhttpwwwhindawicom Volume 2014

Probability and StatisticsHindawi Publishing Corporationhttpwwwhindawicom Volume 2014

Journal of

Hindawi Publishing Corporationhttpwwwhindawicom Volume 2014

Mathematical PhysicsAdvances in

Complex AnalysisJournal of

Hindawi Publishing Corporationhttpwwwhindawicom Volume 2014

OptimizationJournal of

Hindawi Publishing Corporationhttpwwwhindawicom Volume 2014

CombinatoricsHindawi Publishing Corporationhttpwwwhindawicom Volume 2014

International Journal of

Hindawi Publishing Corporationhttpwwwhindawicom Volume 2014

Operations ResearchAdvances in

Journal of

Hindawi Publishing Corporationhttpwwwhindawicom Volume 2014

Function Spaces

Abstract and Applied AnalysisHindawi Publishing Corporationhttpwwwhindawicom Volume 2014

International Journal of Mathematics and Mathematical Sciences

Hindawi Publishing Corporationhttpwwwhindawicom Volume 2014

The Scientific World JournalHindawi Publishing Corporation httpwwwhindawicom Volume 2014

Hindawi Publishing Corporationhttpwwwhindawicom Volume 2014

Algebra

Discrete Dynamics in Nature and Society

Hindawi Publishing Corporationhttpwwwhindawicom Volume 2014

Hindawi Publishing Corporationhttpwwwhindawicom Volume 2014

Decision SciencesAdvances in

Discrete MathematicsJournal of

Hindawi Publishing Corporationhttpwwwhindawicom

Volume 2014 Hindawi Publishing Corporationhttpwwwhindawicom Volume 2014

Stochastic AnalysisInternational Journal of

Page 3: Research Article Application of Extended Homotopy Analysis ...e extended homotopy analysis method (EHAM) is presented to est ablish the analytical approximate solutions for two-degree-of-freedom

Abstract and Applied Analysis 3

where

120594119898= 0 119898 le 1

1 119898 gt 1

119877119898(u119898minus1 119903 119905) =

1

(119898 minus 1)

120597119898minus1119873(Φ (119903 119905 119901))

120597119901119898minus1

100381610038161003816100381610038161003816100381610038161003816119901=0

Δ119898(119903 119905) =

1

119898

120597119898Π(Φ (119903 119905 119901))

120597119901119898

100381610038161003816100381610038161003816100381610038161003816119901=0

(14)

The119898th-order deformation equation (13) is a linear equa-tion which can be readily solved by the symbolic softwaresuch as Mathematica

3 Application of the EHAM

In this section we apply the EHAM for analysis of the twocoupled van der Pol-Duffing oscillators

1+ 1205761205781(1199092

1minus 1)

1+ 1199091+ 12057612057211199093

1+ 120576120575111990911199092

2= 0 (15a)

2+ 1205761205782(1199092

2minus 1)

2+ 1199092+ 12057612057221199093

2+ 120576120575211990921199092

1= 0 (15b)

where the superscript denotes the differentiation with respectto time 119905 119909

1(119905) and 119909

2(119905) are the unknown real functions and

120576 1205721 1205722 1205781 1205782 1205751 and 120575

2are parameters

We introduce a new variable 120591 and substitute 120591 = 120596 1199051199091(119905) = 119906

1(120591) and 119909

2(119905) = 119906

2(120591) into (15a) and (15b)

Therefore we have

120596211990610158401015840

1+ 120596120576120578

1(1199062

1minus 1) 119906

1015840

1+ 1199061+ 12057612057211199063

1+ 120576120575111990611199062

2= 0 (16a)

120596211990610158401015840

2+ 120596120576120578

2(1199062

2minus 1) 119906

1015840

2+ 1199062+ 12057612057221199063

2+ 120576120575211990621199062

1= 0

(16b)

subject to the initial conditions

1199061(0) = 119886 119906

1015840

1(0) = 119887 119906

2(0) = 119888 119906

1015840

2(0) = 0 (17)

where a prime denotes the derivative with respect to variable120591 Provided that the periodic solutions in (16a) and (16b) canbe expressed by a set of base functions

cos (119896120591) sin (119896120591) | 119896 = 0 1 2 (18)

one obtains

1199061(120591) =

+infin

sum

119896=0

(1198861119896

cos 119896120591 + 1198871119896

sin 119896120591) (19a)

1199062(120591) =

+infin

sum

119896=0

(1198862119896

cos 119896120591 + 1198872119896

sin 119896120591) (19b)

For the initial approximation 11990610(120591) and 119906

20(120591) are

assumed as

11990610(120591) = 119886

0cos 120591 + 119887

0sin 120591 119906

20(120591) = 119888

0cos 120591 (20)

and the linear operator is defined as

119871(Φ1(120591 119901)

Φ2(120591 119901)

) = 1205962

0(

1205972Φ1(120591 119901)

1205971205912

+ Φ1(120591 119901)

1205972Φ2(120591 119901)

1205971205912

+ Φ2(120591 119901)

) (21)

We can define a nonlinear operator as the following byEHAM

119873(Φ1(120591 119901)

Φ2(120591 119901)

) =

(((

(

Ω2(119901)1205972Φ1(120591 119901)

1205971205912

+ 1205761205781Ω(119901) [Φ

1

2(120591 119901) minus 1]

120597Φ1(120591 119901)

120597120591

+Φ1(120591 119901) + 120576120572

1Φ1

3(120591 119901) + 120576120575

1Φ1(120591 119901)Φ

2

2(120591 119901)

Ω2(119901)1205972Φ2(120591 119901)

1205971205912

+ 1205761205782Ω(119901) [Φ

2

2(120591 119901) minus 1]

120597Φ2(120591 119901)

120597120591

+Φ2(120591 119901) + 120576120572

2Φ2

3(120591 119901) + 120576120575

2Φ1

2(120591 119901)Φ

2(120591 119901)

)))

)

(22)

and the nonlinear operator Π is

Π(Φ1(120591 119901)

Φ2(120591 119901)

) = (1 minus 119901)

times [(119860 (119901) cos 120591 + 119861 (119901) sin 120591

119862 (119901) cos 120591 )

+((Ω2(119901) minus 120596

2

0) (cos 120591 + sin 120591)

(Ω2(119901) minus 120596

2

0) sin 120591

)]

(23)

In terms of the principle of solution expression we selectthe auxiliary functions as 119867

1(119905) = 1 and 119867

2(119905) = 1 thus the

zeroth-order deformation equation is given by

(1 minus 119901) 119871(

Φ1(120591 119901) minus 119906

10(120591)

Φ2(120591 119901) minus 119906

20(120591)

)

= 119901ℎ1119873(

Φ1(120591 119901)

Φ2(120591 119901)

) + (1 minus 119901)

4 Abstract and Applied Analysis

times ℎ2[(119860 (119901) cos 120591 + 119861 (119901) sin 120591

119862 (119901) cos 120591 )

+((Ω2(119901) minus 120596

2

0) (cos 120591 + sin 120591)

(Ω2(119901) minus 120596

2

0) sin 120591

)]

(24)

where

119860 (119901) =

infin

sum

119894=1

119886119894119901119894 119861 (119901) =

infin

sum

119894=1

119887119894119901119894 119862 (119901) =

infin

sum

119894=1

119888119894119901119894 (25)

with the initial conditions

Φ1(0 119901) = 119886

0+ 119860 (119901)

120597Φ1(120591 119901)

120597120591

100381610038161003816100381610038161003816100381610038161003816120591=0

= 1198870+ 119861 (119901)

(26a)

Φ2(0 119901) = 119888

0+ 119862 (119901)

120597Φ2(120591 119901)

120597120591

100381610038161003816100381610038161003816100381610038161003816120591=0

= 0 (26b)

For 119901 = 0 the solutions of (24)ndash((26a) (26b)) are

Φ1(120591 0) = 119906

10(120591) Φ

2(120591 0) = 119906

20(120591) Ω (0) = 120596

0

(27)

While 119901 = 1 the zeroth-order deformation equations(24)ndash((26a) (26b)) are equivalent to the original equations(16a) (16b) and (17) Thus we get

Φ1(120591 1) = 119906

1(120591) Φ

2(120591 1) = 119906

2(120591) Ω (1) = 120596 (28)

Obviously as the embedding parameter 119901 varies from 0to 1Φ

119894(120591 119901) changes from the initial guess 119906

1198940(120591) to the exact

solutions 119906119894(120591) (119894 = 1 2) In additionΩ(119901) changes from the

initial guess frequency1205960to the nonlinear physical frequency

120596With the help of the Taylor series expansion and (13) we

obtain

Φ1(120591 119901) = 119906

10(120591) +

+infin

sum

119898=1

1199061119898(120591) 119901119898 (29a)

Φ2(120591 119901) = 119906

20(120591) +

+infin

sum

119898=1

1199062119898(120591) 119901119898 (29b)

Ω(119901) = 1205960+

+infin

sum

119898=1

120596119898119901119898 (29c)

where

1199061119898(120591) =

1

119898

120597119898Φ1(120591 119901)

120597119901119898

100381610038161003816100381610038161003816100381610038161003816119901=0

1199062119898(120591) =

1

119898

120597119898Φ2(120591 119901)

120597119901119898

100381610038161003816100381610038161003816100381610038161003816119901=0

120596119898=1

119898

120597119898Ω(119901)

120597119901119898

100381610038161003816100381610038161003816100381610038161003816119901=0

(30)

If the auxiliary parameters ℎ1and ℎ2are properly chosen

the power series solutions in (29a) (29b) and (29c) areconverged at 119901 = 1 Then from (28) we get

1199061(120591) = 119906

10(120591) +

+infin

sum

119898=1

1199061119898(120591)

1199062(120591) = 119906

20(120591) +

+infin

sum

119898=1

1199062119898(120591)

120596 = 1205960+

+infin

sum

119898=1

120596119898

(31)

For simplicity the following vectors are defined as

rarr

1199061119899= 11990610(120591) 119906

11(120591) 119906

1119899(120591) (32a)

rarr

1199062119899= 11990620(120591) 119906

21(120591) 119906

2119899(120591) (32b)

rarr

120596119899= 1205960 1205961 120596

119899 (32c)

By differentiating the zeroth-order deformation equation(24)119898 times with respect to 119901 then dividing the equation by119898 and setting 119901 = 0 the119898th-order deformation equation isformulated as follows

119871(1199061119898(120591) minus 120594

1198981199061119898minus1

(120591)

1199062119898(120591) minus 120594

1198981199062119898minus1

(120591)) = ℎ

1(

1198771119898(rarr

1199061119898minus1

rarr

120596119898minus1)

1198772119898(rarr

1199062119898minus1

rarr

120596119898minus1)

)

+ ℎ2(

1198781119898(120591rarr

120596119898)

1198782119898(120591rarr

120596119898)

)

(33)

with the initial conditions

1199061119898(0) = 119886

119898 119906

1015840

1119898(0) = 119887

119898

1199062119898(0) = 119888

119898 119906

1015840

2119898(0) = 0

(119898 ge 1)

(34)

in which

(

1198771119898(rarr

1199061 119898minus1

rarr

120596119898minus1)

1198772119898(rarr

1199062 119898minus1

rarr

120596119898minus1)

)

=1

(119898 minus 1)

120597119898minus1

120597119901119898minus1119873(Φ1(120591 119901)

Φ2(120591 119901)

)

100381610038161003816100381610038161003816100381610038161003816119901=0

Abstract and Applied Analysis 5

0

Approximation solutionNumerical solution

1 2

0

1

2x998400 1

x1

minus1

minus1

minus2

minus2

(a)

0

Approximation solutionNumerical solution

1 2

0

1

2

x998400 2

x2

minus1

minus1

minus2

minus2

(b)

Figure 1 Comparison of the phase portrait curves of the forth-order approximation with the numerical integration method

(

1198781119898(120591rarr

120596119898)

1198782119898(120591rarr

120596119898)

)

=(

(

119898

sum

119894=0

120596119894120596119898minus119894minus 120594119898

119898minus1

sum

119894=0

120596119894120596119898minus1minus119894

) (cos 120591 + sin 120591)

(

119898

sum

119894=0

120596119894120596119898minus119894minus 120594119898

119898minus1

sum

119894=0

120596119894120596119898minus1minus119894

) sin 120591)

+ (119876119898(

rarr

120575 119898) minus 120594119898 (

rarr

120575 119898minus1))

119876119898(

rarr

120575 119898) = (119886119898cos 120591 + 119887

119898sin 120591

119888119898cos 120591 )

(35)

Because of the principle of solution expression and thelinear operator 119871 the right side of (33) should not containthe terms of sin 120591 and cos 120591 or the secular terms 120591 sin 120591 and120591 cos 120591 The coefficients are set to be zero to yield

1

120587int

2120587

0

[ℎ11198771119898(rarr

1199061 119898minus1

rarr

120596119898minus1)

+ℎ21198781119898(120591rarr

120596119898)] cos 120591119889120591 = 0

(36a)

1

120587int

2120587

0

[ℎ11198771 119898(rarr

1199061 119898minus1

rarr

120596119898minus1)

+ℎ21198781119898(120591rarr

120596119898)] sin 120591119889120591 = 0

(36b)

1

120587int

2120587

0

[ℎ11198772 119898(rarr

1199062 119898minus1

rarr

120596119898minus1)

+ℎ21198782119898(120591rarr

120596119898)] cos 120591119889120591 = 0

(36c)

1

120587int

2120587

0

[ℎ11198772 119898(rarr

1199062 119898minus1

rarr

120596119898minus1)

+ℎ21198782119898(120591rarr

120596119898)] sin 120591119889120591 = 0

(36d)

The solutions of 120596119896 119886119896 119887119896 and 119888

119896(119896 = 0 1 2 )

from (33) and (36a) (36b) (36c) and (36d) can be computedsuccessively To achieve more accurate results we modify thesolution of 120596 as follows

120596 = 120596 + 120592 (37)

where 120592 is a small parameter

4 Numerical Simulation and Discussion

In this section numerical experiment is conducted to verifythe accuracy of the present approach

Taking 120576 = 1100 1205781= 1 120578

2= 2 120572

1= 12 120572

2= 13

1205751= 210 120575

2= 310 and the initial approximations of 119886 119887

119888 and 120596 are 1198860= 2 119887

0= 0 119888

0= 2 and 120596

0= 10871000

respectivelyFor simplicity and accuracy we set ℎ

1= minus01 ℎ

2= 300

and 120592 = minus01 then the comparison of the phase curves ofthe fifth-order approximation with the numerical integrationsolution is shown in Figure 1

6 Abstract and Applied Analysis

0

Approximation solutionNumerical solution

1 2

0

1

2x998400 1

x1

minus1

minus1

minus2

minus2

(a)

0

Approximation solutionNumerical solution

1 2

0

1

2

x998400 2

x2

minus1

minus1

minus2

minus2

(b)

Figure 2 Comparison between the phase curves of the fifth-order approximation and the numerical integration out-of-phase solution

The initial conditions of the numerical integrationmethod are 119909

1(0) = 1999538 1199091015840

1(0) = 0000037 119909

2(0) =

1999458 and 11990910158402(0) = 0

Moreover the fifth-order analytical solutions (1199091(119905)

1199092(119905) and 120596) are given as

1199091(119905) = 199884944 cos120596119905 + 000321365 sin120596119905

+ 000068916 cos 3120596119905 minus 000106812 sin 3120596119905

1199092(119905) = 199883406 cos120596119905 + 000641377 sin120596119905

+ 000062615 cos 3120596119905 minus 000213651 sin 3120596119905

120596 = 108696631

(38)

in which

120596 = 120596 + 120592 = 098696631 (39)

The above results demonstrate that the system has an in-phase solution While giving the initial approximations of1198860= 2 119887

0= 0 119888

0= minus2 and 120596

0= 10871000 we can get

an out-of-phase solution to the systemIn this case the comparison between the phase curves of

the fifth-order approximation and the numerical integrationsolution is portrayed in Figure 2

The initial conditions of the numerical integrationmethod are 119909

1(0) = 1999392 1199091015840

1(0) = 0000110 119909

2(0) =

minus1999458 and 11990910158402(0) = 0 and the fifth-order analytical

solutions are written as

1199091(119905) = 199870293 cos120596119905 + 000309709 sin120596119905

+ 000068900 cos 3120596119905 minus 000106809 sin 3120596119905

1199092(119905) = minus199883388 cos120596119905 minus 000641395 sin120596119905

minus 000062613 cos 3120596t minus 000213658 sin 3120596119905

120596 = 108703369

(40)

in which

120596 = 120596 + 120592 = 098703369 (41)

5 Conclusions

In the present paper the EHAM approach is applied to getasymptotic analytical series solutions of 2-DOF van der Pol-Duffing oscillators with a nonlinear coupling The basic ideadescribed in this paper is expected to be more employedin solving other dynamical systems in engineering andphysical sciences Comparisons with the numerical resultsare presented to demonstrate the validity of this method Insummary compared with some other methods the EHAMhas the following advantages

(1) The EHAM provides an ingenious avenue for con-trolling the convergences of approximation seriesNumerical comparisons demonstrate that the EHAMis an effective and robust analytical method of 2-DOFvan der Pol-Duffing oscillators

Abstract and Applied Analysis 7

(2) Because of its flexibility the present techniques canalso be further generalized to analyze more compli-cated nonlinear MDOF dynamical systems that canonly be analyzed by numerical methods

Conflict of Interests

The authors declare that there is no conflict of interestsregarding the publication of this paper

Authorsrsquo Contribution

All the authors contributed equally and significantly to thewriting of this paper All the authors read and approved thefinal paper

Acknowledgments

The author Y H Qian gratefully acknowledges the sup-port of the National Natural Science Foundations of China(NNSFC) throughGrants nos 11202189 and 11304286 and theNatural Science Foundation of Zhejiang Province of Chinathrough Grant no LY12A02002 The author S M Chengratefully appreciates the financial support from the NNSFCthrough Grants no 11371326 The author L Shen gratefullyacknowledges the support from open experiment project ofZhejiang Normal University The authors are also grateful tothe anonymous reviewers for their constructive commentsand suggestions

References

[1] R E Mickens Mathematical Methods for the Natural andEngineering Sciences World Scientific Singapore 2004

[2] Y K Cheung S H Chen and S L Lau ldquoAmodified Lindstedt-Poincare method for certain strongly nonlinear oscillatorsrdquoInternational Journal of Non-Linear Mechanics vol 26 no 3-4pp 367ndash378 1991

[3] M Senator and C N Bapat ldquoA perturbation technique thatworks evenwhen the nonlinearity is not smallrdquo Journal of Soundand Vibration vol 164 no 1 pp 1ndash27 1993

[4] P Amore and A Aranda ldquoImproved Lindstedt-Poincaremethod for the solution of nonlinear problemsrdquo Journal ofSound and Vibration vol 283 no 3ndash5 pp 1115ndash1136 2005

[5] R R Pusenjak ldquoExtended Lindstedt-Poincare method fornon-stationary resonances of dynamical systems with cubicnonlinearitiesrdquo Journal of Sound and Vibration vol 314 no 1-2 pp 194ndash216 2008

[6] J L Summers and M D Savage ldquoTwo timescale harmonicbalance I Application to autonomous one-dimensional non-linear oscillatorsrdquo Proceedings of the Royal Society of London AMathematical Physical and Engineering Sciences vol 340 no1659 pp 473ndash501 1992

[7] B Wu and P Li ldquoA method for obtaining approximate analyticperiods for a class of nonlinear oscillatorsrdquo Meccanica vol 36no 2 pp 167ndash176 2001

[8] S S Ganji D D Ganji Z Z Ganji and S Karimpour ldquoPeriodicsolution for strongly nonlinear vibration systems byHersquos energybalance methodrdquo Acta Applicandae Mathematicae vol 106 no1 pp 79ndash92 2009

[9] I Mehdipour D D Ganji and M Mozaffari ldquoApplication ofthe energy balance method to nonlinear vibrating equationsrdquoCurrent Applied Physics vol 10 no 1 pp 104ndash112 2010

[10] L Zhao ldquoHersquos frequency-amplitude formulation for nonlinearoscillators with an irrational forcerdquo Computers amp Mathematicswith Applications vol 58 no 11-12 pp 2477ndash2479 2009

[11] J Fan ldquoHersquos frequency-amplitude formulation for the Duffingharmonic oscillatorrdquo Computers amp Mathematics with Applica-tions vol 58 no 11-12 pp 2473ndash2476 2009

[12] P J Hilton An Introduction to Homotopy Theory CambridgeUniversity Press Cambridge UK 1953

[13] C Nash and S Sen Topology and Geometry for PhysicistsAcademic Press London UK 1983

[14] S J Liao The proposed homotopy analysis techniques for thesolution of nonlinear problems [PhD thesis] Shanghai Jiao TongUniversity Shanghai China 1992

[15] S J Liao ldquoA kind of approximate solution technique which doesnot depend upon small parameters II An application in fluidmechanicsrdquo International Journal of Non-Linear Mechanics vol32 no 5 pp 815ndash822 1997

[16] S Liao Beyond Perturbation Introduction to the HomotopyAnalysisMethod ChapmanampHall Boca Raton Fla USA 2004

[17] S Rajasekar and K Murali ldquoResonance behaviour and jumpphenomenon in a two coupled Duffing-van der Pol oscillatorsrdquoChaos Solitons and Fractals vol 19 no 4 pp 925ndash934 2004

[18] B T Nohara and A Arimoto ldquoNon-existence theorem exceptthe out-of-phase and in-phase solutions in the coupled van derPol equation systemrdquo Ukrainian Mathematical Journal vol 61no 8 pp 1311ndash1337 2009

[19] Y J Li B T Nohara and S J Liao ldquoSeries solutions of coupledvan der Pol equation by means of homotopy analysis methodrdquoJournal of Mathematical Physics vol 51 no 6 pp 1ndash12 2010

[20] YHQian CMDuan SM Chen and S P Chen ldquoAsymptoticanalytical solutions of the two-degree-of-freedom stronglynonlinear van der Pol oscillators with cubic couple terms usingextended homotopy analysismethodrdquoActaMechanica vol 223no 2 pp 237ndash255 2012

Submit your manuscripts athttpwwwhindawicom

Hindawi Publishing Corporationhttpwwwhindawicom Volume 2014

MathematicsJournal of

Hindawi Publishing Corporationhttpwwwhindawicom Volume 2014

Mathematical Problems in Engineering

Hindawi Publishing Corporationhttpwwwhindawicom

Differential EquationsInternational Journal of

Volume 2014

Applied MathematicsJournal of

Hindawi Publishing Corporationhttpwwwhindawicom Volume 2014

Probability and StatisticsHindawi Publishing Corporationhttpwwwhindawicom Volume 2014

Journal of

Hindawi Publishing Corporationhttpwwwhindawicom Volume 2014

Mathematical PhysicsAdvances in

Complex AnalysisJournal of

Hindawi Publishing Corporationhttpwwwhindawicom Volume 2014

OptimizationJournal of

Hindawi Publishing Corporationhttpwwwhindawicom Volume 2014

CombinatoricsHindawi Publishing Corporationhttpwwwhindawicom Volume 2014

International Journal of

Hindawi Publishing Corporationhttpwwwhindawicom Volume 2014

Operations ResearchAdvances in

Journal of

Hindawi Publishing Corporationhttpwwwhindawicom Volume 2014

Function Spaces

Abstract and Applied AnalysisHindawi Publishing Corporationhttpwwwhindawicom Volume 2014

International Journal of Mathematics and Mathematical Sciences

Hindawi Publishing Corporationhttpwwwhindawicom Volume 2014

The Scientific World JournalHindawi Publishing Corporation httpwwwhindawicom Volume 2014

Hindawi Publishing Corporationhttpwwwhindawicom Volume 2014

Algebra

Discrete Dynamics in Nature and Society

Hindawi Publishing Corporationhttpwwwhindawicom Volume 2014

Hindawi Publishing Corporationhttpwwwhindawicom Volume 2014

Decision SciencesAdvances in

Discrete MathematicsJournal of

Hindawi Publishing Corporationhttpwwwhindawicom

Volume 2014 Hindawi Publishing Corporationhttpwwwhindawicom Volume 2014

Stochastic AnalysisInternational Journal of

Page 4: Research Article Application of Extended Homotopy Analysis ...e extended homotopy analysis method (EHAM) is presented to est ablish the analytical approximate solutions for two-degree-of-freedom

4 Abstract and Applied Analysis

times ℎ2[(119860 (119901) cos 120591 + 119861 (119901) sin 120591

119862 (119901) cos 120591 )

+((Ω2(119901) minus 120596

2

0) (cos 120591 + sin 120591)

(Ω2(119901) minus 120596

2

0) sin 120591

)]

(24)

where

119860 (119901) =

infin

sum

119894=1

119886119894119901119894 119861 (119901) =

infin

sum

119894=1

119887119894119901119894 119862 (119901) =

infin

sum

119894=1

119888119894119901119894 (25)

with the initial conditions

Φ1(0 119901) = 119886

0+ 119860 (119901)

120597Φ1(120591 119901)

120597120591

100381610038161003816100381610038161003816100381610038161003816120591=0

= 1198870+ 119861 (119901)

(26a)

Φ2(0 119901) = 119888

0+ 119862 (119901)

120597Φ2(120591 119901)

120597120591

100381610038161003816100381610038161003816100381610038161003816120591=0

= 0 (26b)

For 119901 = 0 the solutions of (24)ndash((26a) (26b)) are

Φ1(120591 0) = 119906

10(120591) Φ

2(120591 0) = 119906

20(120591) Ω (0) = 120596

0

(27)

While 119901 = 1 the zeroth-order deformation equations(24)ndash((26a) (26b)) are equivalent to the original equations(16a) (16b) and (17) Thus we get

Φ1(120591 1) = 119906

1(120591) Φ

2(120591 1) = 119906

2(120591) Ω (1) = 120596 (28)

Obviously as the embedding parameter 119901 varies from 0to 1Φ

119894(120591 119901) changes from the initial guess 119906

1198940(120591) to the exact

solutions 119906119894(120591) (119894 = 1 2) In additionΩ(119901) changes from the

initial guess frequency1205960to the nonlinear physical frequency

120596With the help of the Taylor series expansion and (13) we

obtain

Φ1(120591 119901) = 119906

10(120591) +

+infin

sum

119898=1

1199061119898(120591) 119901119898 (29a)

Φ2(120591 119901) = 119906

20(120591) +

+infin

sum

119898=1

1199062119898(120591) 119901119898 (29b)

Ω(119901) = 1205960+

+infin

sum

119898=1

120596119898119901119898 (29c)

where

1199061119898(120591) =

1

119898

120597119898Φ1(120591 119901)

120597119901119898

100381610038161003816100381610038161003816100381610038161003816119901=0

1199062119898(120591) =

1

119898

120597119898Φ2(120591 119901)

120597119901119898

100381610038161003816100381610038161003816100381610038161003816119901=0

120596119898=1

119898

120597119898Ω(119901)

120597119901119898

100381610038161003816100381610038161003816100381610038161003816119901=0

(30)

If the auxiliary parameters ℎ1and ℎ2are properly chosen

the power series solutions in (29a) (29b) and (29c) areconverged at 119901 = 1 Then from (28) we get

1199061(120591) = 119906

10(120591) +

+infin

sum

119898=1

1199061119898(120591)

1199062(120591) = 119906

20(120591) +

+infin

sum

119898=1

1199062119898(120591)

120596 = 1205960+

+infin

sum

119898=1

120596119898

(31)

For simplicity the following vectors are defined as

rarr

1199061119899= 11990610(120591) 119906

11(120591) 119906

1119899(120591) (32a)

rarr

1199062119899= 11990620(120591) 119906

21(120591) 119906

2119899(120591) (32b)

rarr

120596119899= 1205960 1205961 120596

119899 (32c)

By differentiating the zeroth-order deformation equation(24)119898 times with respect to 119901 then dividing the equation by119898 and setting 119901 = 0 the119898th-order deformation equation isformulated as follows

119871(1199061119898(120591) minus 120594

1198981199061119898minus1

(120591)

1199062119898(120591) minus 120594

1198981199062119898minus1

(120591)) = ℎ

1(

1198771119898(rarr

1199061119898minus1

rarr

120596119898minus1)

1198772119898(rarr

1199062119898minus1

rarr

120596119898minus1)

)

+ ℎ2(

1198781119898(120591rarr

120596119898)

1198782119898(120591rarr

120596119898)

)

(33)

with the initial conditions

1199061119898(0) = 119886

119898 119906

1015840

1119898(0) = 119887

119898

1199062119898(0) = 119888

119898 119906

1015840

2119898(0) = 0

(119898 ge 1)

(34)

in which

(

1198771119898(rarr

1199061 119898minus1

rarr

120596119898minus1)

1198772119898(rarr

1199062 119898minus1

rarr

120596119898minus1)

)

=1

(119898 minus 1)

120597119898minus1

120597119901119898minus1119873(Φ1(120591 119901)

Φ2(120591 119901)

)

100381610038161003816100381610038161003816100381610038161003816119901=0

Abstract and Applied Analysis 5

0

Approximation solutionNumerical solution

1 2

0

1

2x998400 1

x1

minus1

minus1

minus2

minus2

(a)

0

Approximation solutionNumerical solution

1 2

0

1

2

x998400 2

x2

minus1

minus1

minus2

minus2

(b)

Figure 1 Comparison of the phase portrait curves of the forth-order approximation with the numerical integration method

(

1198781119898(120591rarr

120596119898)

1198782119898(120591rarr

120596119898)

)

=(

(

119898

sum

119894=0

120596119894120596119898minus119894minus 120594119898

119898minus1

sum

119894=0

120596119894120596119898minus1minus119894

) (cos 120591 + sin 120591)

(

119898

sum

119894=0

120596119894120596119898minus119894minus 120594119898

119898minus1

sum

119894=0

120596119894120596119898minus1minus119894

) sin 120591)

+ (119876119898(

rarr

120575 119898) minus 120594119898 (

rarr

120575 119898minus1))

119876119898(

rarr

120575 119898) = (119886119898cos 120591 + 119887

119898sin 120591

119888119898cos 120591 )

(35)

Because of the principle of solution expression and thelinear operator 119871 the right side of (33) should not containthe terms of sin 120591 and cos 120591 or the secular terms 120591 sin 120591 and120591 cos 120591 The coefficients are set to be zero to yield

1

120587int

2120587

0

[ℎ11198771119898(rarr

1199061 119898minus1

rarr

120596119898minus1)

+ℎ21198781119898(120591rarr

120596119898)] cos 120591119889120591 = 0

(36a)

1

120587int

2120587

0

[ℎ11198771 119898(rarr

1199061 119898minus1

rarr

120596119898minus1)

+ℎ21198781119898(120591rarr

120596119898)] sin 120591119889120591 = 0

(36b)

1

120587int

2120587

0

[ℎ11198772 119898(rarr

1199062 119898minus1

rarr

120596119898minus1)

+ℎ21198782119898(120591rarr

120596119898)] cos 120591119889120591 = 0

(36c)

1

120587int

2120587

0

[ℎ11198772 119898(rarr

1199062 119898minus1

rarr

120596119898minus1)

+ℎ21198782119898(120591rarr

120596119898)] sin 120591119889120591 = 0

(36d)

The solutions of 120596119896 119886119896 119887119896 and 119888

119896(119896 = 0 1 2 )

from (33) and (36a) (36b) (36c) and (36d) can be computedsuccessively To achieve more accurate results we modify thesolution of 120596 as follows

120596 = 120596 + 120592 (37)

where 120592 is a small parameter

4 Numerical Simulation and Discussion

In this section numerical experiment is conducted to verifythe accuracy of the present approach

Taking 120576 = 1100 1205781= 1 120578

2= 2 120572

1= 12 120572

2= 13

1205751= 210 120575

2= 310 and the initial approximations of 119886 119887

119888 and 120596 are 1198860= 2 119887

0= 0 119888

0= 2 and 120596

0= 10871000

respectivelyFor simplicity and accuracy we set ℎ

1= minus01 ℎ

2= 300

and 120592 = minus01 then the comparison of the phase curves ofthe fifth-order approximation with the numerical integrationsolution is shown in Figure 1

6 Abstract and Applied Analysis

0

Approximation solutionNumerical solution

1 2

0

1

2x998400 1

x1

minus1

minus1

minus2

minus2

(a)

0

Approximation solutionNumerical solution

1 2

0

1

2

x998400 2

x2

minus1

minus1

minus2

minus2

(b)

Figure 2 Comparison between the phase curves of the fifth-order approximation and the numerical integration out-of-phase solution

The initial conditions of the numerical integrationmethod are 119909

1(0) = 1999538 1199091015840

1(0) = 0000037 119909

2(0) =

1999458 and 11990910158402(0) = 0

Moreover the fifth-order analytical solutions (1199091(119905)

1199092(119905) and 120596) are given as

1199091(119905) = 199884944 cos120596119905 + 000321365 sin120596119905

+ 000068916 cos 3120596119905 minus 000106812 sin 3120596119905

1199092(119905) = 199883406 cos120596119905 + 000641377 sin120596119905

+ 000062615 cos 3120596119905 minus 000213651 sin 3120596119905

120596 = 108696631

(38)

in which

120596 = 120596 + 120592 = 098696631 (39)

The above results demonstrate that the system has an in-phase solution While giving the initial approximations of1198860= 2 119887

0= 0 119888

0= minus2 and 120596

0= 10871000 we can get

an out-of-phase solution to the systemIn this case the comparison between the phase curves of

the fifth-order approximation and the numerical integrationsolution is portrayed in Figure 2

The initial conditions of the numerical integrationmethod are 119909

1(0) = 1999392 1199091015840

1(0) = 0000110 119909

2(0) =

minus1999458 and 11990910158402(0) = 0 and the fifth-order analytical

solutions are written as

1199091(119905) = 199870293 cos120596119905 + 000309709 sin120596119905

+ 000068900 cos 3120596119905 minus 000106809 sin 3120596119905

1199092(119905) = minus199883388 cos120596119905 minus 000641395 sin120596119905

minus 000062613 cos 3120596t minus 000213658 sin 3120596119905

120596 = 108703369

(40)

in which

120596 = 120596 + 120592 = 098703369 (41)

5 Conclusions

In the present paper the EHAM approach is applied to getasymptotic analytical series solutions of 2-DOF van der Pol-Duffing oscillators with a nonlinear coupling The basic ideadescribed in this paper is expected to be more employedin solving other dynamical systems in engineering andphysical sciences Comparisons with the numerical resultsare presented to demonstrate the validity of this method Insummary compared with some other methods the EHAMhas the following advantages

(1) The EHAM provides an ingenious avenue for con-trolling the convergences of approximation seriesNumerical comparisons demonstrate that the EHAMis an effective and robust analytical method of 2-DOFvan der Pol-Duffing oscillators

Abstract and Applied Analysis 7

(2) Because of its flexibility the present techniques canalso be further generalized to analyze more compli-cated nonlinear MDOF dynamical systems that canonly be analyzed by numerical methods

Conflict of Interests

The authors declare that there is no conflict of interestsregarding the publication of this paper

Authorsrsquo Contribution

All the authors contributed equally and significantly to thewriting of this paper All the authors read and approved thefinal paper

Acknowledgments

The author Y H Qian gratefully acknowledges the sup-port of the National Natural Science Foundations of China(NNSFC) throughGrants nos 11202189 and 11304286 and theNatural Science Foundation of Zhejiang Province of Chinathrough Grant no LY12A02002 The author S M Chengratefully appreciates the financial support from the NNSFCthrough Grants no 11371326 The author L Shen gratefullyacknowledges the support from open experiment project ofZhejiang Normal University The authors are also grateful tothe anonymous reviewers for their constructive commentsand suggestions

References

[1] R E Mickens Mathematical Methods for the Natural andEngineering Sciences World Scientific Singapore 2004

[2] Y K Cheung S H Chen and S L Lau ldquoAmodified Lindstedt-Poincare method for certain strongly nonlinear oscillatorsrdquoInternational Journal of Non-Linear Mechanics vol 26 no 3-4pp 367ndash378 1991

[3] M Senator and C N Bapat ldquoA perturbation technique thatworks evenwhen the nonlinearity is not smallrdquo Journal of Soundand Vibration vol 164 no 1 pp 1ndash27 1993

[4] P Amore and A Aranda ldquoImproved Lindstedt-Poincaremethod for the solution of nonlinear problemsrdquo Journal ofSound and Vibration vol 283 no 3ndash5 pp 1115ndash1136 2005

[5] R R Pusenjak ldquoExtended Lindstedt-Poincare method fornon-stationary resonances of dynamical systems with cubicnonlinearitiesrdquo Journal of Sound and Vibration vol 314 no 1-2 pp 194ndash216 2008

[6] J L Summers and M D Savage ldquoTwo timescale harmonicbalance I Application to autonomous one-dimensional non-linear oscillatorsrdquo Proceedings of the Royal Society of London AMathematical Physical and Engineering Sciences vol 340 no1659 pp 473ndash501 1992

[7] B Wu and P Li ldquoA method for obtaining approximate analyticperiods for a class of nonlinear oscillatorsrdquo Meccanica vol 36no 2 pp 167ndash176 2001

[8] S S Ganji D D Ganji Z Z Ganji and S Karimpour ldquoPeriodicsolution for strongly nonlinear vibration systems byHersquos energybalance methodrdquo Acta Applicandae Mathematicae vol 106 no1 pp 79ndash92 2009

[9] I Mehdipour D D Ganji and M Mozaffari ldquoApplication ofthe energy balance method to nonlinear vibrating equationsrdquoCurrent Applied Physics vol 10 no 1 pp 104ndash112 2010

[10] L Zhao ldquoHersquos frequency-amplitude formulation for nonlinearoscillators with an irrational forcerdquo Computers amp Mathematicswith Applications vol 58 no 11-12 pp 2477ndash2479 2009

[11] J Fan ldquoHersquos frequency-amplitude formulation for the Duffingharmonic oscillatorrdquo Computers amp Mathematics with Applica-tions vol 58 no 11-12 pp 2473ndash2476 2009

[12] P J Hilton An Introduction to Homotopy Theory CambridgeUniversity Press Cambridge UK 1953

[13] C Nash and S Sen Topology and Geometry for PhysicistsAcademic Press London UK 1983

[14] S J Liao The proposed homotopy analysis techniques for thesolution of nonlinear problems [PhD thesis] Shanghai Jiao TongUniversity Shanghai China 1992

[15] S J Liao ldquoA kind of approximate solution technique which doesnot depend upon small parameters II An application in fluidmechanicsrdquo International Journal of Non-Linear Mechanics vol32 no 5 pp 815ndash822 1997

[16] S Liao Beyond Perturbation Introduction to the HomotopyAnalysisMethod ChapmanampHall Boca Raton Fla USA 2004

[17] S Rajasekar and K Murali ldquoResonance behaviour and jumpphenomenon in a two coupled Duffing-van der Pol oscillatorsrdquoChaos Solitons and Fractals vol 19 no 4 pp 925ndash934 2004

[18] B T Nohara and A Arimoto ldquoNon-existence theorem exceptthe out-of-phase and in-phase solutions in the coupled van derPol equation systemrdquo Ukrainian Mathematical Journal vol 61no 8 pp 1311ndash1337 2009

[19] Y J Li B T Nohara and S J Liao ldquoSeries solutions of coupledvan der Pol equation by means of homotopy analysis methodrdquoJournal of Mathematical Physics vol 51 no 6 pp 1ndash12 2010

[20] YHQian CMDuan SM Chen and S P Chen ldquoAsymptoticanalytical solutions of the two-degree-of-freedom stronglynonlinear van der Pol oscillators with cubic couple terms usingextended homotopy analysismethodrdquoActaMechanica vol 223no 2 pp 237ndash255 2012

Submit your manuscripts athttpwwwhindawicom

Hindawi Publishing Corporationhttpwwwhindawicom Volume 2014

MathematicsJournal of

Hindawi Publishing Corporationhttpwwwhindawicom Volume 2014

Mathematical Problems in Engineering

Hindawi Publishing Corporationhttpwwwhindawicom

Differential EquationsInternational Journal of

Volume 2014

Applied MathematicsJournal of

Hindawi Publishing Corporationhttpwwwhindawicom Volume 2014

Probability and StatisticsHindawi Publishing Corporationhttpwwwhindawicom Volume 2014

Journal of

Hindawi Publishing Corporationhttpwwwhindawicom Volume 2014

Mathematical PhysicsAdvances in

Complex AnalysisJournal of

Hindawi Publishing Corporationhttpwwwhindawicom Volume 2014

OptimizationJournal of

Hindawi Publishing Corporationhttpwwwhindawicom Volume 2014

CombinatoricsHindawi Publishing Corporationhttpwwwhindawicom Volume 2014

International Journal of

Hindawi Publishing Corporationhttpwwwhindawicom Volume 2014

Operations ResearchAdvances in

Journal of

Hindawi Publishing Corporationhttpwwwhindawicom Volume 2014

Function Spaces

Abstract and Applied AnalysisHindawi Publishing Corporationhttpwwwhindawicom Volume 2014

International Journal of Mathematics and Mathematical Sciences

Hindawi Publishing Corporationhttpwwwhindawicom Volume 2014

The Scientific World JournalHindawi Publishing Corporation httpwwwhindawicom Volume 2014

Hindawi Publishing Corporationhttpwwwhindawicom Volume 2014

Algebra

Discrete Dynamics in Nature and Society

Hindawi Publishing Corporationhttpwwwhindawicom Volume 2014

Hindawi Publishing Corporationhttpwwwhindawicom Volume 2014

Decision SciencesAdvances in

Discrete MathematicsJournal of

Hindawi Publishing Corporationhttpwwwhindawicom

Volume 2014 Hindawi Publishing Corporationhttpwwwhindawicom Volume 2014

Stochastic AnalysisInternational Journal of

Page 5: Research Article Application of Extended Homotopy Analysis ...e extended homotopy analysis method (EHAM) is presented to est ablish the analytical approximate solutions for two-degree-of-freedom

Abstract and Applied Analysis 5

0

Approximation solutionNumerical solution

1 2

0

1

2x998400 1

x1

minus1

minus1

minus2

minus2

(a)

0

Approximation solutionNumerical solution

1 2

0

1

2

x998400 2

x2

minus1

minus1

minus2

minus2

(b)

Figure 1 Comparison of the phase portrait curves of the forth-order approximation with the numerical integration method

(

1198781119898(120591rarr

120596119898)

1198782119898(120591rarr

120596119898)

)

=(

(

119898

sum

119894=0

120596119894120596119898minus119894minus 120594119898

119898minus1

sum

119894=0

120596119894120596119898minus1minus119894

) (cos 120591 + sin 120591)

(

119898

sum

119894=0

120596119894120596119898minus119894minus 120594119898

119898minus1

sum

119894=0

120596119894120596119898minus1minus119894

) sin 120591)

+ (119876119898(

rarr

120575 119898) minus 120594119898 (

rarr

120575 119898minus1))

119876119898(

rarr

120575 119898) = (119886119898cos 120591 + 119887

119898sin 120591

119888119898cos 120591 )

(35)

Because of the principle of solution expression and thelinear operator 119871 the right side of (33) should not containthe terms of sin 120591 and cos 120591 or the secular terms 120591 sin 120591 and120591 cos 120591 The coefficients are set to be zero to yield

1

120587int

2120587

0

[ℎ11198771119898(rarr

1199061 119898minus1

rarr

120596119898minus1)

+ℎ21198781119898(120591rarr

120596119898)] cos 120591119889120591 = 0

(36a)

1

120587int

2120587

0

[ℎ11198771 119898(rarr

1199061 119898minus1

rarr

120596119898minus1)

+ℎ21198781119898(120591rarr

120596119898)] sin 120591119889120591 = 0

(36b)

1

120587int

2120587

0

[ℎ11198772 119898(rarr

1199062 119898minus1

rarr

120596119898minus1)

+ℎ21198782119898(120591rarr

120596119898)] cos 120591119889120591 = 0

(36c)

1

120587int

2120587

0

[ℎ11198772 119898(rarr

1199062 119898minus1

rarr

120596119898minus1)

+ℎ21198782119898(120591rarr

120596119898)] sin 120591119889120591 = 0

(36d)

The solutions of 120596119896 119886119896 119887119896 and 119888

119896(119896 = 0 1 2 )

from (33) and (36a) (36b) (36c) and (36d) can be computedsuccessively To achieve more accurate results we modify thesolution of 120596 as follows

120596 = 120596 + 120592 (37)

where 120592 is a small parameter

4 Numerical Simulation and Discussion

In this section numerical experiment is conducted to verifythe accuracy of the present approach

Taking 120576 = 1100 1205781= 1 120578

2= 2 120572

1= 12 120572

2= 13

1205751= 210 120575

2= 310 and the initial approximations of 119886 119887

119888 and 120596 are 1198860= 2 119887

0= 0 119888

0= 2 and 120596

0= 10871000

respectivelyFor simplicity and accuracy we set ℎ

1= minus01 ℎ

2= 300

and 120592 = minus01 then the comparison of the phase curves ofthe fifth-order approximation with the numerical integrationsolution is shown in Figure 1

6 Abstract and Applied Analysis

0

Approximation solutionNumerical solution

1 2

0

1

2x998400 1

x1

minus1

minus1

minus2

minus2

(a)

0

Approximation solutionNumerical solution

1 2

0

1

2

x998400 2

x2

minus1

minus1

minus2

minus2

(b)

Figure 2 Comparison between the phase curves of the fifth-order approximation and the numerical integration out-of-phase solution

The initial conditions of the numerical integrationmethod are 119909

1(0) = 1999538 1199091015840

1(0) = 0000037 119909

2(0) =

1999458 and 11990910158402(0) = 0

Moreover the fifth-order analytical solutions (1199091(119905)

1199092(119905) and 120596) are given as

1199091(119905) = 199884944 cos120596119905 + 000321365 sin120596119905

+ 000068916 cos 3120596119905 minus 000106812 sin 3120596119905

1199092(119905) = 199883406 cos120596119905 + 000641377 sin120596119905

+ 000062615 cos 3120596119905 minus 000213651 sin 3120596119905

120596 = 108696631

(38)

in which

120596 = 120596 + 120592 = 098696631 (39)

The above results demonstrate that the system has an in-phase solution While giving the initial approximations of1198860= 2 119887

0= 0 119888

0= minus2 and 120596

0= 10871000 we can get

an out-of-phase solution to the systemIn this case the comparison between the phase curves of

the fifth-order approximation and the numerical integrationsolution is portrayed in Figure 2

The initial conditions of the numerical integrationmethod are 119909

1(0) = 1999392 1199091015840

1(0) = 0000110 119909

2(0) =

minus1999458 and 11990910158402(0) = 0 and the fifth-order analytical

solutions are written as

1199091(119905) = 199870293 cos120596119905 + 000309709 sin120596119905

+ 000068900 cos 3120596119905 minus 000106809 sin 3120596119905

1199092(119905) = minus199883388 cos120596119905 minus 000641395 sin120596119905

minus 000062613 cos 3120596t minus 000213658 sin 3120596119905

120596 = 108703369

(40)

in which

120596 = 120596 + 120592 = 098703369 (41)

5 Conclusions

In the present paper the EHAM approach is applied to getasymptotic analytical series solutions of 2-DOF van der Pol-Duffing oscillators with a nonlinear coupling The basic ideadescribed in this paper is expected to be more employedin solving other dynamical systems in engineering andphysical sciences Comparisons with the numerical resultsare presented to demonstrate the validity of this method Insummary compared with some other methods the EHAMhas the following advantages

(1) The EHAM provides an ingenious avenue for con-trolling the convergences of approximation seriesNumerical comparisons demonstrate that the EHAMis an effective and robust analytical method of 2-DOFvan der Pol-Duffing oscillators

Abstract and Applied Analysis 7

(2) Because of its flexibility the present techniques canalso be further generalized to analyze more compli-cated nonlinear MDOF dynamical systems that canonly be analyzed by numerical methods

Conflict of Interests

The authors declare that there is no conflict of interestsregarding the publication of this paper

Authorsrsquo Contribution

All the authors contributed equally and significantly to thewriting of this paper All the authors read and approved thefinal paper

Acknowledgments

The author Y H Qian gratefully acknowledges the sup-port of the National Natural Science Foundations of China(NNSFC) throughGrants nos 11202189 and 11304286 and theNatural Science Foundation of Zhejiang Province of Chinathrough Grant no LY12A02002 The author S M Chengratefully appreciates the financial support from the NNSFCthrough Grants no 11371326 The author L Shen gratefullyacknowledges the support from open experiment project ofZhejiang Normal University The authors are also grateful tothe anonymous reviewers for their constructive commentsand suggestions

References

[1] R E Mickens Mathematical Methods for the Natural andEngineering Sciences World Scientific Singapore 2004

[2] Y K Cheung S H Chen and S L Lau ldquoAmodified Lindstedt-Poincare method for certain strongly nonlinear oscillatorsrdquoInternational Journal of Non-Linear Mechanics vol 26 no 3-4pp 367ndash378 1991

[3] M Senator and C N Bapat ldquoA perturbation technique thatworks evenwhen the nonlinearity is not smallrdquo Journal of Soundand Vibration vol 164 no 1 pp 1ndash27 1993

[4] P Amore and A Aranda ldquoImproved Lindstedt-Poincaremethod for the solution of nonlinear problemsrdquo Journal ofSound and Vibration vol 283 no 3ndash5 pp 1115ndash1136 2005

[5] R R Pusenjak ldquoExtended Lindstedt-Poincare method fornon-stationary resonances of dynamical systems with cubicnonlinearitiesrdquo Journal of Sound and Vibration vol 314 no 1-2 pp 194ndash216 2008

[6] J L Summers and M D Savage ldquoTwo timescale harmonicbalance I Application to autonomous one-dimensional non-linear oscillatorsrdquo Proceedings of the Royal Society of London AMathematical Physical and Engineering Sciences vol 340 no1659 pp 473ndash501 1992

[7] B Wu and P Li ldquoA method for obtaining approximate analyticperiods for a class of nonlinear oscillatorsrdquo Meccanica vol 36no 2 pp 167ndash176 2001

[8] S S Ganji D D Ganji Z Z Ganji and S Karimpour ldquoPeriodicsolution for strongly nonlinear vibration systems byHersquos energybalance methodrdquo Acta Applicandae Mathematicae vol 106 no1 pp 79ndash92 2009

[9] I Mehdipour D D Ganji and M Mozaffari ldquoApplication ofthe energy balance method to nonlinear vibrating equationsrdquoCurrent Applied Physics vol 10 no 1 pp 104ndash112 2010

[10] L Zhao ldquoHersquos frequency-amplitude formulation for nonlinearoscillators with an irrational forcerdquo Computers amp Mathematicswith Applications vol 58 no 11-12 pp 2477ndash2479 2009

[11] J Fan ldquoHersquos frequency-amplitude formulation for the Duffingharmonic oscillatorrdquo Computers amp Mathematics with Applica-tions vol 58 no 11-12 pp 2473ndash2476 2009

[12] P J Hilton An Introduction to Homotopy Theory CambridgeUniversity Press Cambridge UK 1953

[13] C Nash and S Sen Topology and Geometry for PhysicistsAcademic Press London UK 1983

[14] S J Liao The proposed homotopy analysis techniques for thesolution of nonlinear problems [PhD thesis] Shanghai Jiao TongUniversity Shanghai China 1992

[15] S J Liao ldquoA kind of approximate solution technique which doesnot depend upon small parameters II An application in fluidmechanicsrdquo International Journal of Non-Linear Mechanics vol32 no 5 pp 815ndash822 1997

[16] S Liao Beyond Perturbation Introduction to the HomotopyAnalysisMethod ChapmanampHall Boca Raton Fla USA 2004

[17] S Rajasekar and K Murali ldquoResonance behaviour and jumpphenomenon in a two coupled Duffing-van der Pol oscillatorsrdquoChaos Solitons and Fractals vol 19 no 4 pp 925ndash934 2004

[18] B T Nohara and A Arimoto ldquoNon-existence theorem exceptthe out-of-phase and in-phase solutions in the coupled van derPol equation systemrdquo Ukrainian Mathematical Journal vol 61no 8 pp 1311ndash1337 2009

[19] Y J Li B T Nohara and S J Liao ldquoSeries solutions of coupledvan der Pol equation by means of homotopy analysis methodrdquoJournal of Mathematical Physics vol 51 no 6 pp 1ndash12 2010

[20] YHQian CMDuan SM Chen and S P Chen ldquoAsymptoticanalytical solutions of the two-degree-of-freedom stronglynonlinear van der Pol oscillators with cubic couple terms usingextended homotopy analysismethodrdquoActaMechanica vol 223no 2 pp 237ndash255 2012

Submit your manuscripts athttpwwwhindawicom

Hindawi Publishing Corporationhttpwwwhindawicom Volume 2014

MathematicsJournal of

Hindawi Publishing Corporationhttpwwwhindawicom Volume 2014

Mathematical Problems in Engineering

Hindawi Publishing Corporationhttpwwwhindawicom

Differential EquationsInternational Journal of

Volume 2014

Applied MathematicsJournal of

Hindawi Publishing Corporationhttpwwwhindawicom Volume 2014

Probability and StatisticsHindawi Publishing Corporationhttpwwwhindawicom Volume 2014

Journal of

Hindawi Publishing Corporationhttpwwwhindawicom Volume 2014

Mathematical PhysicsAdvances in

Complex AnalysisJournal of

Hindawi Publishing Corporationhttpwwwhindawicom Volume 2014

OptimizationJournal of

Hindawi Publishing Corporationhttpwwwhindawicom Volume 2014

CombinatoricsHindawi Publishing Corporationhttpwwwhindawicom Volume 2014

International Journal of

Hindawi Publishing Corporationhttpwwwhindawicom Volume 2014

Operations ResearchAdvances in

Journal of

Hindawi Publishing Corporationhttpwwwhindawicom Volume 2014

Function Spaces

Abstract and Applied AnalysisHindawi Publishing Corporationhttpwwwhindawicom Volume 2014

International Journal of Mathematics and Mathematical Sciences

Hindawi Publishing Corporationhttpwwwhindawicom Volume 2014

The Scientific World JournalHindawi Publishing Corporation httpwwwhindawicom Volume 2014

Hindawi Publishing Corporationhttpwwwhindawicom Volume 2014

Algebra

Discrete Dynamics in Nature and Society

Hindawi Publishing Corporationhttpwwwhindawicom Volume 2014

Hindawi Publishing Corporationhttpwwwhindawicom Volume 2014

Decision SciencesAdvances in

Discrete MathematicsJournal of

Hindawi Publishing Corporationhttpwwwhindawicom

Volume 2014 Hindawi Publishing Corporationhttpwwwhindawicom Volume 2014

Stochastic AnalysisInternational Journal of

Page 6: Research Article Application of Extended Homotopy Analysis ...e extended homotopy analysis method (EHAM) is presented to est ablish the analytical approximate solutions for two-degree-of-freedom

6 Abstract and Applied Analysis

0

Approximation solutionNumerical solution

1 2

0

1

2x998400 1

x1

minus1

minus1

minus2

minus2

(a)

0

Approximation solutionNumerical solution

1 2

0

1

2

x998400 2

x2

minus1

minus1

minus2

minus2

(b)

Figure 2 Comparison between the phase curves of the fifth-order approximation and the numerical integration out-of-phase solution

The initial conditions of the numerical integrationmethod are 119909

1(0) = 1999538 1199091015840

1(0) = 0000037 119909

2(0) =

1999458 and 11990910158402(0) = 0

Moreover the fifth-order analytical solutions (1199091(119905)

1199092(119905) and 120596) are given as

1199091(119905) = 199884944 cos120596119905 + 000321365 sin120596119905

+ 000068916 cos 3120596119905 minus 000106812 sin 3120596119905

1199092(119905) = 199883406 cos120596119905 + 000641377 sin120596119905

+ 000062615 cos 3120596119905 minus 000213651 sin 3120596119905

120596 = 108696631

(38)

in which

120596 = 120596 + 120592 = 098696631 (39)

The above results demonstrate that the system has an in-phase solution While giving the initial approximations of1198860= 2 119887

0= 0 119888

0= minus2 and 120596

0= 10871000 we can get

an out-of-phase solution to the systemIn this case the comparison between the phase curves of

the fifth-order approximation and the numerical integrationsolution is portrayed in Figure 2

The initial conditions of the numerical integrationmethod are 119909

1(0) = 1999392 1199091015840

1(0) = 0000110 119909

2(0) =

minus1999458 and 11990910158402(0) = 0 and the fifth-order analytical

solutions are written as

1199091(119905) = 199870293 cos120596119905 + 000309709 sin120596119905

+ 000068900 cos 3120596119905 minus 000106809 sin 3120596119905

1199092(119905) = minus199883388 cos120596119905 minus 000641395 sin120596119905

minus 000062613 cos 3120596t minus 000213658 sin 3120596119905

120596 = 108703369

(40)

in which

120596 = 120596 + 120592 = 098703369 (41)

5 Conclusions

In the present paper the EHAM approach is applied to getasymptotic analytical series solutions of 2-DOF van der Pol-Duffing oscillators with a nonlinear coupling The basic ideadescribed in this paper is expected to be more employedin solving other dynamical systems in engineering andphysical sciences Comparisons with the numerical resultsare presented to demonstrate the validity of this method Insummary compared with some other methods the EHAMhas the following advantages

(1) The EHAM provides an ingenious avenue for con-trolling the convergences of approximation seriesNumerical comparisons demonstrate that the EHAMis an effective and robust analytical method of 2-DOFvan der Pol-Duffing oscillators

Abstract and Applied Analysis 7

(2) Because of its flexibility the present techniques canalso be further generalized to analyze more compli-cated nonlinear MDOF dynamical systems that canonly be analyzed by numerical methods

Conflict of Interests

The authors declare that there is no conflict of interestsregarding the publication of this paper

Authorsrsquo Contribution

All the authors contributed equally and significantly to thewriting of this paper All the authors read and approved thefinal paper

Acknowledgments

The author Y H Qian gratefully acknowledges the sup-port of the National Natural Science Foundations of China(NNSFC) throughGrants nos 11202189 and 11304286 and theNatural Science Foundation of Zhejiang Province of Chinathrough Grant no LY12A02002 The author S M Chengratefully appreciates the financial support from the NNSFCthrough Grants no 11371326 The author L Shen gratefullyacknowledges the support from open experiment project ofZhejiang Normal University The authors are also grateful tothe anonymous reviewers for their constructive commentsand suggestions

References

[1] R E Mickens Mathematical Methods for the Natural andEngineering Sciences World Scientific Singapore 2004

[2] Y K Cheung S H Chen and S L Lau ldquoAmodified Lindstedt-Poincare method for certain strongly nonlinear oscillatorsrdquoInternational Journal of Non-Linear Mechanics vol 26 no 3-4pp 367ndash378 1991

[3] M Senator and C N Bapat ldquoA perturbation technique thatworks evenwhen the nonlinearity is not smallrdquo Journal of Soundand Vibration vol 164 no 1 pp 1ndash27 1993

[4] P Amore and A Aranda ldquoImproved Lindstedt-Poincaremethod for the solution of nonlinear problemsrdquo Journal ofSound and Vibration vol 283 no 3ndash5 pp 1115ndash1136 2005

[5] R R Pusenjak ldquoExtended Lindstedt-Poincare method fornon-stationary resonances of dynamical systems with cubicnonlinearitiesrdquo Journal of Sound and Vibration vol 314 no 1-2 pp 194ndash216 2008

[6] J L Summers and M D Savage ldquoTwo timescale harmonicbalance I Application to autonomous one-dimensional non-linear oscillatorsrdquo Proceedings of the Royal Society of London AMathematical Physical and Engineering Sciences vol 340 no1659 pp 473ndash501 1992

[7] B Wu and P Li ldquoA method for obtaining approximate analyticperiods for a class of nonlinear oscillatorsrdquo Meccanica vol 36no 2 pp 167ndash176 2001

[8] S S Ganji D D Ganji Z Z Ganji and S Karimpour ldquoPeriodicsolution for strongly nonlinear vibration systems byHersquos energybalance methodrdquo Acta Applicandae Mathematicae vol 106 no1 pp 79ndash92 2009

[9] I Mehdipour D D Ganji and M Mozaffari ldquoApplication ofthe energy balance method to nonlinear vibrating equationsrdquoCurrent Applied Physics vol 10 no 1 pp 104ndash112 2010

[10] L Zhao ldquoHersquos frequency-amplitude formulation for nonlinearoscillators with an irrational forcerdquo Computers amp Mathematicswith Applications vol 58 no 11-12 pp 2477ndash2479 2009

[11] J Fan ldquoHersquos frequency-amplitude formulation for the Duffingharmonic oscillatorrdquo Computers amp Mathematics with Applica-tions vol 58 no 11-12 pp 2473ndash2476 2009

[12] P J Hilton An Introduction to Homotopy Theory CambridgeUniversity Press Cambridge UK 1953

[13] C Nash and S Sen Topology and Geometry for PhysicistsAcademic Press London UK 1983

[14] S J Liao The proposed homotopy analysis techniques for thesolution of nonlinear problems [PhD thesis] Shanghai Jiao TongUniversity Shanghai China 1992

[15] S J Liao ldquoA kind of approximate solution technique which doesnot depend upon small parameters II An application in fluidmechanicsrdquo International Journal of Non-Linear Mechanics vol32 no 5 pp 815ndash822 1997

[16] S Liao Beyond Perturbation Introduction to the HomotopyAnalysisMethod ChapmanampHall Boca Raton Fla USA 2004

[17] S Rajasekar and K Murali ldquoResonance behaviour and jumpphenomenon in a two coupled Duffing-van der Pol oscillatorsrdquoChaos Solitons and Fractals vol 19 no 4 pp 925ndash934 2004

[18] B T Nohara and A Arimoto ldquoNon-existence theorem exceptthe out-of-phase and in-phase solutions in the coupled van derPol equation systemrdquo Ukrainian Mathematical Journal vol 61no 8 pp 1311ndash1337 2009

[19] Y J Li B T Nohara and S J Liao ldquoSeries solutions of coupledvan der Pol equation by means of homotopy analysis methodrdquoJournal of Mathematical Physics vol 51 no 6 pp 1ndash12 2010

[20] YHQian CMDuan SM Chen and S P Chen ldquoAsymptoticanalytical solutions of the two-degree-of-freedom stronglynonlinear van der Pol oscillators with cubic couple terms usingextended homotopy analysismethodrdquoActaMechanica vol 223no 2 pp 237ndash255 2012

Submit your manuscripts athttpwwwhindawicom

Hindawi Publishing Corporationhttpwwwhindawicom Volume 2014

MathematicsJournal of

Hindawi Publishing Corporationhttpwwwhindawicom Volume 2014

Mathematical Problems in Engineering

Hindawi Publishing Corporationhttpwwwhindawicom

Differential EquationsInternational Journal of

Volume 2014

Applied MathematicsJournal of

Hindawi Publishing Corporationhttpwwwhindawicom Volume 2014

Probability and StatisticsHindawi Publishing Corporationhttpwwwhindawicom Volume 2014

Journal of

Hindawi Publishing Corporationhttpwwwhindawicom Volume 2014

Mathematical PhysicsAdvances in

Complex AnalysisJournal of

Hindawi Publishing Corporationhttpwwwhindawicom Volume 2014

OptimizationJournal of

Hindawi Publishing Corporationhttpwwwhindawicom Volume 2014

CombinatoricsHindawi Publishing Corporationhttpwwwhindawicom Volume 2014

International Journal of

Hindawi Publishing Corporationhttpwwwhindawicom Volume 2014

Operations ResearchAdvances in

Journal of

Hindawi Publishing Corporationhttpwwwhindawicom Volume 2014

Function Spaces

Abstract and Applied AnalysisHindawi Publishing Corporationhttpwwwhindawicom Volume 2014

International Journal of Mathematics and Mathematical Sciences

Hindawi Publishing Corporationhttpwwwhindawicom Volume 2014

The Scientific World JournalHindawi Publishing Corporation httpwwwhindawicom Volume 2014

Hindawi Publishing Corporationhttpwwwhindawicom Volume 2014

Algebra

Discrete Dynamics in Nature and Society

Hindawi Publishing Corporationhttpwwwhindawicom Volume 2014

Hindawi Publishing Corporationhttpwwwhindawicom Volume 2014

Decision SciencesAdvances in

Discrete MathematicsJournal of

Hindawi Publishing Corporationhttpwwwhindawicom

Volume 2014 Hindawi Publishing Corporationhttpwwwhindawicom Volume 2014

Stochastic AnalysisInternational Journal of

Page 7: Research Article Application of Extended Homotopy Analysis ...e extended homotopy analysis method (EHAM) is presented to est ablish the analytical approximate solutions for two-degree-of-freedom

Abstract and Applied Analysis 7

(2) Because of its flexibility the present techniques canalso be further generalized to analyze more compli-cated nonlinear MDOF dynamical systems that canonly be analyzed by numerical methods

Conflict of Interests

The authors declare that there is no conflict of interestsregarding the publication of this paper

Authorsrsquo Contribution

All the authors contributed equally and significantly to thewriting of this paper All the authors read and approved thefinal paper

Acknowledgments

The author Y H Qian gratefully acknowledges the sup-port of the National Natural Science Foundations of China(NNSFC) throughGrants nos 11202189 and 11304286 and theNatural Science Foundation of Zhejiang Province of Chinathrough Grant no LY12A02002 The author S M Chengratefully appreciates the financial support from the NNSFCthrough Grants no 11371326 The author L Shen gratefullyacknowledges the support from open experiment project ofZhejiang Normal University The authors are also grateful tothe anonymous reviewers for their constructive commentsand suggestions

References

[1] R E Mickens Mathematical Methods for the Natural andEngineering Sciences World Scientific Singapore 2004

[2] Y K Cheung S H Chen and S L Lau ldquoAmodified Lindstedt-Poincare method for certain strongly nonlinear oscillatorsrdquoInternational Journal of Non-Linear Mechanics vol 26 no 3-4pp 367ndash378 1991

[3] M Senator and C N Bapat ldquoA perturbation technique thatworks evenwhen the nonlinearity is not smallrdquo Journal of Soundand Vibration vol 164 no 1 pp 1ndash27 1993

[4] P Amore and A Aranda ldquoImproved Lindstedt-Poincaremethod for the solution of nonlinear problemsrdquo Journal ofSound and Vibration vol 283 no 3ndash5 pp 1115ndash1136 2005

[5] R R Pusenjak ldquoExtended Lindstedt-Poincare method fornon-stationary resonances of dynamical systems with cubicnonlinearitiesrdquo Journal of Sound and Vibration vol 314 no 1-2 pp 194ndash216 2008

[6] J L Summers and M D Savage ldquoTwo timescale harmonicbalance I Application to autonomous one-dimensional non-linear oscillatorsrdquo Proceedings of the Royal Society of London AMathematical Physical and Engineering Sciences vol 340 no1659 pp 473ndash501 1992

[7] B Wu and P Li ldquoA method for obtaining approximate analyticperiods for a class of nonlinear oscillatorsrdquo Meccanica vol 36no 2 pp 167ndash176 2001

[8] S S Ganji D D Ganji Z Z Ganji and S Karimpour ldquoPeriodicsolution for strongly nonlinear vibration systems byHersquos energybalance methodrdquo Acta Applicandae Mathematicae vol 106 no1 pp 79ndash92 2009

[9] I Mehdipour D D Ganji and M Mozaffari ldquoApplication ofthe energy balance method to nonlinear vibrating equationsrdquoCurrent Applied Physics vol 10 no 1 pp 104ndash112 2010

[10] L Zhao ldquoHersquos frequency-amplitude formulation for nonlinearoscillators with an irrational forcerdquo Computers amp Mathematicswith Applications vol 58 no 11-12 pp 2477ndash2479 2009

[11] J Fan ldquoHersquos frequency-amplitude formulation for the Duffingharmonic oscillatorrdquo Computers amp Mathematics with Applica-tions vol 58 no 11-12 pp 2473ndash2476 2009

[12] P J Hilton An Introduction to Homotopy Theory CambridgeUniversity Press Cambridge UK 1953

[13] C Nash and S Sen Topology and Geometry for PhysicistsAcademic Press London UK 1983

[14] S J Liao The proposed homotopy analysis techniques for thesolution of nonlinear problems [PhD thesis] Shanghai Jiao TongUniversity Shanghai China 1992

[15] S J Liao ldquoA kind of approximate solution technique which doesnot depend upon small parameters II An application in fluidmechanicsrdquo International Journal of Non-Linear Mechanics vol32 no 5 pp 815ndash822 1997

[16] S Liao Beyond Perturbation Introduction to the HomotopyAnalysisMethod ChapmanampHall Boca Raton Fla USA 2004

[17] S Rajasekar and K Murali ldquoResonance behaviour and jumpphenomenon in a two coupled Duffing-van der Pol oscillatorsrdquoChaos Solitons and Fractals vol 19 no 4 pp 925ndash934 2004

[18] B T Nohara and A Arimoto ldquoNon-existence theorem exceptthe out-of-phase and in-phase solutions in the coupled van derPol equation systemrdquo Ukrainian Mathematical Journal vol 61no 8 pp 1311ndash1337 2009

[19] Y J Li B T Nohara and S J Liao ldquoSeries solutions of coupledvan der Pol equation by means of homotopy analysis methodrdquoJournal of Mathematical Physics vol 51 no 6 pp 1ndash12 2010

[20] YHQian CMDuan SM Chen and S P Chen ldquoAsymptoticanalytical solutions of the two-degree-of-freedom stronglynonlinear van der Pol oscillators with cubic couple terms usingextended homotopy analysismethodrdquoActaMechanica vol 223no 2 pp 237ndash255 2012

Submit your manuscripts athttpwwwhindawicom

Hindawi Publishing Corporationhttpwwwhindawicom Volume 2014

MathematicsJournal of

Hindawi Publishing Corporationhttpwwwhindawicom Volume 2014

Mathematical Problems in Engineering

Hindawi Publishing Corporationhttpwwwhindawicom

Differential EquationsInternational Journal of

Volume 2014

Applied MathematicsJournal of

Hindawi Publishing Corporationhttpwwwhindawicom Volume 2014

Probability and StatisticsHindawi Publishing Corporationhttpwwwhindawicom Volume 2014

Journal of

Hindawi Publishing Corporationhttpwwwhindawicom Volume 2014

Mathematical PhysicsAdvances in

Complex AnalysisJournal of

Hindawi Publishing Corporationhttpwwwhindawicom Volume 2014

OptimizationJournal of

Hindawi Publishing Corporationhttpwwwhindawicom Volume 2014

CombinatoricsHindawi Publishing Corporationhttpwwwhindawicom Volume 2014

International Journal of

Hindawi Publishing Corporationhttpwwwhindawicom Volume 2014

Operations ResearchAdvances in

Journal of

Hindawi Publishing Corporationhttpwwwhindawicom Volume 2014

Function Spaces

Abstract and Applied AnalysisHindawi Publishing Corporationhttpwwwhindawicom Volume 2014

International Journal of Mathematics and Mathematical Sciences

Hindawi Publishing Corporationhttpwwwhindawicom Volume 2014

The Scientific World JournalHindawi Publishing Corporation httpwwwhindawicom Volume 2014

Hindawi Publishing Corporationhttpwwwhindawicom Volume 2014

Algebra

Discrete Dynamics in Nature and Society

Hindawi Publishing Corporationhttpwwwhindawicom Volume 2014

Hindawi Publishing Corporationhttpwwwhindawicom Volume 2014

Decision SciencesAdvances in

Discrete MathematicsJournal of

Hindawi Publishing Corporationhttpwwwhindawicom

Volume 2014 Hindawi Publishing Corporationhttpwwwhindawicom Volume 2014

Stochastic AnalysisInternational Journal of

Page 8: Research Article Application of Extended Homotopy Analysis ...e extended homotopy analysis method (EHAM) is presented to est ablish the analytical approximate solutions for two-degree-of-freedom

Submit your manuscripts athttpwwwhindawicom

Hindawi Publishing Corporationhttpwwwhindawicom Volume 2014

MathematicsJournal of

Hindawi Publishing Corporationhttpwwwhindawicom Volume 2014

Mathematical Problems in Engineering

Hindawi Publishing Corporationhttpwwwhindawicom

Differential EquationsInternational Journal of

Volume 2014

Applied MathematicsJournal of

Hindawi Publishing Corporationhttpwwwhindawicom Volume 2014

Probability and StatisticsHindawi Publishing Corporationhttpwwwhindawicom Volume 2014

Journal of

Hindawi Publishing Corporationhttpwwwhindawicom Volume 2014

Mathematical PhysicsAdvances in

Complex AnalysisJournal of

Hindawi Publishing Corporationhttpwwwhindawicom Volume 2014

OptimizationJournal of

Hindawi Publishing Corporationhttpwwwhindawicom Volume 2014

CombinatoricsHindawi Publishing Corporationhttpwwwhindawicom Volume 2014

International Journal of

Hindawi Publishing Corporationhttpwwwhindawicom Volume 2014

Operations ResearchAdvances in

Journal of

Hindawi Publishing Corporationhttpwwwhindawicom Volume 2014

Function Spaces

Abstract and Applied AnalysisHindawi Publishing Corporationhttpwwwhindawicom Volume 2014

International Journal of Mathematics and Mathematical Sciences

Hindawi Publishing Corporationhttpwwwhindawicom Volume 2014

The Scientific World JournalHindawi Publishing Corporation httpwwwhindawicom Volume 2014

Hindawi Publishing Corporationhttpwwwhindawicom Volume 2014

Algebra

Discrete Dynamics in Nature and Society

Hindawi Publishing Corporationhttpwwwhindawicom Volume 2014

Hindawi Publishing Corporationhttpwwwhindawicom Volume 2014

Decision SciencesAdvances in

Discrete MathematicsJournal of

Hindawi Publishing Corporationhttpwwwhindawicom

Volume 2014 Hindawi Publishing Corporationhttpwwwhindawicom Volume 2014

Stochastic AnalysisInternational Journal of


Recommended