+ All Categories
Home > Documents > Research Article Fuzzy Control for Nonlinear Singular Markovian Jump Systems...

Research Article Fuzzy Control for Nonlinear Singular Markovian Jump Systems...

Date post: 13-Aug-2020
Category:
Upload: others
View: 1 times
Download: 0 times
Share this document with a friend
14
Research Article Fuzzy Control for Nonlinear Singular Markovian Jump Systems with Time Delay Li Li, 1,2 Qingling Zhang, 2 Yi Zhang, 3 and Baoyan Zhu 4 1 College of Mathematics and Physics, Bohai University, Jinzhou, Liaoning 121013, China 2 Institute of Systems Science, Northeastern University, Shenyang, Liaoning 110819, China 3 School of Science, Shenyang University of Technology, Shenyang, Liaoning 110870, China 4 College of Science, Shenyang Jianzhu University, Shenyang, Liaoning 110168, China Correspondence should be addressed to Qingling Zhang; [email protected] Received 7 January 2015; Accepted 20 April 2015 Academic Editor: P. Balasubramaniam Copyright © 2015 Li Li et al. is is an open access article distributed under the Creative Commons Attribution License, which permits unrestricted use, distribution, and reproduction in any medium, provided the original work is properly cited. is paper investigates the problem of fuzzy control for a class of nonlinear singular Markovian jump systems with time delay. is class of systems under consideration is described by Takagi-Sugeno (T-S) fuzzy models. Firstly, sufficient condition of the stochastic stabilization by the method of the augmented matrix is obtained by the state feedback. And a designed algorithm for the state feedback controller is provided to guarantee that the closed-loop system not only is regular, impulse-free, and stochastically stable but also satisfies a prescribed performance for all delays not larger than a given upper bound in terms of linear matrix inequalities. en fuzzy control for this kind of systems is also discussed by the static output feedback. Finally, numerical examples are given to illustrate the validity of the developed methodology. 1. Introduction Singular systems, also known as descriptor systems, have been widely studied in the past several decades. ey have broad applications and can be found in many practical systems, such as electrical circuits, power systems, network, economics, and other systems [1, 2]. Due to their extensive applications, many research topics on singular systems have been extensively investigated such as the stability and sta- bilization [3, 4] and control problem [5, 6]. A lot of attention has been paid to the investigation of Markovian jump systems (MJSs) over the past decades. Applications of such class of systems can be found representing many physical systems with random changes in their structures and parameters. Many important issues have been studied for this kind of physical systems, such as the stability analysis, stabilization, and control [710]. When singular systems experience abrupt changes in their structures, it is natural to model them as singular Markovian jump systems (SMJSs) [1113]. Time delay is one of the instability sources for dynamical systems and is a common phenomenon in many industrial and engineering systems such as those in communication networks, manufacturing, and biology [14]. So the study of SMJSs with time delay is of theoretical and practical importance [15, 16]. e fuzzy control has been proved to be a powerful method for the control problem of complex nonlinear sys- tems. Specially, the Takagi-Sugeno (T-S) fuzzy model has attracted much attention due to the fact that it provides an efficient approach to take full advantage of the linear control theory to the nonlinear control. In recent years, this fuzzy-model-based technique has been used to deal with nonlinear time delay systems [17, 18] and nonlinear MJSs [19, 20]. But singular Markovian jump fuzzy systems (SMJFSs) are not fully studied [21, 22], which motivates the main purpose of our study. In this paper, a new method using the augmented matrix will be given to the control of SMJFSs. By this method the number of LMIs will be decreased, so the complexity of the calculation will be greatly reduced when the number of fuzzy rulers is relatively large. And, at the same time, some new relaxation matrices added will reduce the conservation of control conditions compared with Hindawi Publishing Corporation Mathematical Problems in Engineering Volume 2015, Article ID 896515, 13 pages http://dx.doi.org/10.1155/2015/896515
Transcript
Page 1: Research Article Fuzzy Control for Nonlinear Singular Markovian Jump Systems …downloads.hindawi.com/journals/mpe/2015/896515.pdf · 2019-07-31 · Singular systems, also known as

Research Article119867infin

Fuzzy Control for Nonlinear Singular Markovian JumpSystems with Time Delay

Li Li12 Qingling Zhang2 Yi Zhang3 and Baoyan Zhu4

1College of Mathematics and Physics Bohai University Jinzhou Liaoning 121013 China2Institute of Systems Science Northeastern University Shenyang Liaoning 110819 China3School of Science Shenyang University of Technology Shenyang Liaoning 110870 China4College of Science Shenyang Jianzhu University Shenyang Liaoning 110168 China

Correspondence should be addressed to Qingling Zhang qlzhangmailneueducn

Received 7 January 2015 Accepted 20 April 2015

Academic Editor P Balasubramaniam

Copyright copy 2015 Li Li et al This is an open access article distributed under the Creative Commons Attribution License whichpermits unrestricted use distribution and reproduction in any medium provided the original work is properly cited

This paper investigates the problem of119867infinfuzzy control for a class of nonlinear singular Markovian jump systems with time delay

This class of systems under consideration is described by Takagi-Sugeno (T-S) fuzzy models Firstly sufficient condition of thestochastic stabilization by the method of the augmented matrix is obtained by the state feedback And a designed algorithm for thestate feedback controller is provided to guarantee that the closed-loop system not only is regular impulse-free and stochasticallystable but also satisfies a prescribed 119867

infinperformance for all delays not larger than a given upper bound in terms of linear matrix

inequalities Then 119867infin

fuzzy control for this kind of systems is also discussed by the static output feedback Finally numericalexamples are given to illustrate the validity of the developed methodology

1 Introduction

Singular systems also known as descriptor systems havebeen widely studied in the past several decades They havebroad applications and can be found in many practicalsystems such as electrical circuits power systems networkeconomics and other systems [1 2] Due to their extensiveapplications many research topics on singular systems havebeen extensively investigated such as the stability and sta-bilization [3 4] and 119867

infincontrol problem [5 6] A lot of

attention has been paid to the investigation of Markovianjump systems (MJSs) over the past decades Applicationsof such class of systems can be found representing manyphysical systems with random changes in their structuresand parameters Many important issues have been studiedfor this kind of physical systems such as the stabilityanalysis stabilization and119867

infincontrol [7ndash10]When singular

systems experience abrupt changes in their structures it isnatural to model them as singular Markovian jump systems(SMJSs) [11ndash13] Time delay is one of the instability sourcesfor dynamical systems and is a common phenomenon in

many industrial and engineering systems such as those incommunication networks manufacturing and biology [14]So the study of SMJSs with time delay is of theoretical andpractical importance [15 16]

The fuzzy control has been proved to be a powerfulmethod for the control problem of complex nonlinear sys-tems Specially the Takagi-Sugeno (T-S) fuzzy model hasattracted much attention due to the fact that it providesan efficient approach to take full advantage of the linearcontrol theory to the nonlinear control In recent years thisfuzzy-model-based technique has been used to deal withnonlinear time delay systems [17 18] and nonlinear MJSs [1920] But singular Markovian jump fuzzy systems (SMJFSs)are not fully studied [21 22] which motivates the mainpurpose of our study In this paper a new method using theaugmented matrix will be given to the control of SMJFSsBy this method the number of LMIs will be decreased sothe complexity of the calculation will be greatly reducedwhen the number of fuzzy rulers is relatively large Andat the same time some new relaxation matrices added willreduce the conservation of control conditions compared with

Hindawi Publishing CorporationMathematical Problems in EngineeringVolume 2015 Article ID 896515 13 pageshttpdxdoiorg1011552015896515

2 Mathematical Problems in Engineering

previous literatures And when using the augmented matrixto design the static output feedback control there are notany crossing terms between system matrices and controllergains so assumptions for the output matrix [23] the equalityconstraint for the output matrix [24] and the boundingtechnique for crossing terms are not necessary therefore theconservatism brought by them will not exist

In this paper the119867infinfuzzy control problem for a class of

nonlinear SMJSs with time delay which can be representedby T-S fuzzy models is considered Our aim is to designfuzzy state feedback controllers and static output feedbackcontrollers for SMJFSs with time delay such that closed-loopsystems are stochastically admissible (regular impulse-freeand stochastically stable) with a prescribed119867

infinperformance

120574 Sufficient criterions are presented in forms of LMIs whichare simple and easy to implement compared with previousliteratures Finally numerical examples are given to illustratethemerit andusability of the approach proposed in this paper

Notations Throughout this paper notations used are fairlystandard for real symmetric matrices 119860 and 119861 the notation119860 ge 119861 (119860 gt 119861) means that the matrix 119860 minus 119861 is positivesemidefinite (positive definite) 119860119879 represents the transposeof the matrix 119860 and 119860minus1 represents the inverse of the matrix119860 120582max119861 (120582min119861) is themaximal (minimal) eigenvalue of thematrix 119861 diagsdot stands for a block-diagonal matrix 119868 is theunit matrix with appropriate dimensions and in a matrixthe term of symmetry is stated by the asterisk ldquolowastrdquo Let R119899

stand for the 119899-dimensional Euclidean space R119899times119898 is the setof all 119899 times 119898 real matrices and sdot denotes the Euclideannorm of vectors Esdot denotes the mathematics expectationof the stochastic process or vector 119871119899

2[0infin) stands for the

space of 119899-dimensional square integrable functions on [0infin)119862119899119889

= 119862([minus119889 0]R119899

) denotes Banach space of continuousvector functions mapping the interval [minus119889 0] into R119899 withthe norm 120601

119889= sup

minus119889le119904le0120601(119904)

2 Basic Definitions and Lemmas

Consider a SMJFS its 119894th fuzzy rule is given by

119877119894 if 1205851(119905) is1198721198941 1205852(119905) is1198721198942 and 120585119897(119905) is119872119894119897

then

119864 (119905) = 119860119894(119903

119905) 119909 (119905) + 119860

119889119894(119903

119905) 119909 (119905 minus 119889) + 119861

119894(119903

119905) 119906 (119905)

+ 119861119908119894(119903

119905) 119908 (119905)

119911 (119905) = 119862119894(119903

119905) 119909 (119905) + 119862

119889119894(119903

119905) 119909 (119905 minus 119889) + 119863

119894(119903

119905) 119906 (119905)

+ 119862119908119894(119903

119905) 119908 (119905)

119909 (119905) = 120601 (119905)

forall119905 isin [minus119889 0] 119894 isin T ≜ 1 2 119896

(1)

where 119909(119905) isin R119899 is the state vector 119906(119905) isin R119898 is the controlinput119908(119905) isin RV is the exogenous disturbance which belongsto 119871V

2[0infin) and 119911(119905) isin R119901 is the controlled output 120601(119905) isin

119862119899119889

is a compatible vector-valued initial function and 119889 is anunknown but constant delay satisfying 119889 isin [0 119889] The scalar

119896 is the number of If-Then rules119872119894119895(119894 isin T 119895 = 1 2 119897)

are fuzzy sets 1205851(119905) minus 120585

119897(119905) are premise variables 119864 isin R119899times119899

may be a singular matrix with rank119864 = 119903 le 119899 119860119894(119903

119905)

119860119889119894(119903

119905) 119861

119894(119903

119905) 119861

119908119894(119903

119905) 119862

119894(119903

119905) 119862

119889119894(119903

119905) 119863

119894(119903

119905) and 119862

119908119894(119903

119905)

are known constant matrices with appropriate dimensions119903

119905 119905 ge 0 is a continuous-time Markovian process with right

continuous trajectories taking values in a finite set given byS = 1 2 119873 with the transition rate matrix Π ≜ 120587

119901119902

satisfying

Pr 119903119905+ℎ= 119902 | 119903

119905= 119901 =

120587119901119902ℎ + 119900 (ℎ) 119901 = 119902

1 + 120587119901119901ℎ + 119900 (ℎ) 119901 = 119902

(2)

where ℎ gt 0 limℎrarr0

119900(ℎ)ℎ = 0 and 120587119901119902ge 0 for 119902 = 119901 is

the transition rate frommode 119901 at time 119905 to 119902 at time 119905+ℎ and120587119901119901= minussum

119873

119902=1119902 =119901120587119901119902

By fuzzy blending the overall fuzzy model is inferred asfollows

119864 (119905) =

119896

sum

119894=1

120582119894(120585 (119905)) (119860

119894(119903

119905) 119909 (119905) + 119860

119889119894(119903

119905) 119909 (119905 minus 119889)

+ 119861119894(119903

119905) 119906 (119905) + 119861

119908119894(119903

119905) 119908 (119905))

119911 (119905) =

119896

sum

119894=1

120582119894(120585 (119905)) (119862

119894(119903

119905) 119909 (119905) + 119862

119889119894(119903

119905) 119909 (119905 minus 119889)

+ 119863119894(119903

119905) 119906 (119905) + 119862

119908119894(119903

119905) 119908 (119905))

119909 (119905) = 120601 (119905)

forall119905 isin [minus119889 0] 119894 isin T ≜ 1 2 119896

(3)

where 120585(119905) = [1205851(119905) 120585

2(119905) sdot sdot sdot 120585

119897(119905)]

119879 120573119894(120585(119905)) =

prod119897

119895=1119872

119894119895(120585

119895(119905)) Letting 120582

119894(120585(119905)) = 120573

119894(120585(119905))sum

119896

119894=1120573119894(120585(119905)) it

follows that 120582119894(120585(119905)) ge 0 sum119896

119894=1120582119894(120585(119905)) = 1

For the notational simplicity in the sequel for eachpossible 119903

119905= 119901 isin S 119860

119894(119903

119905) ≜ 119860

119901119894 119861

119889119894(119903

119905) ≜ 119861

119889119901119894 119862

119889119894(119903

119905) ≜

119862119889119901119894

120582119894(120585(119905)) ≜ 120582

119894 and so on

Definition 1 (see [15 25]) (i) For a given scalar 119889 gt 0 theSMJS with time delay

119864 (119905) = 119860 (119903119905) 119909 (119905) + 119860

119889(119903

119905) 119909 (119905 minus 119889)

119909 (119905) = 120601 (119905)

119905 isin [minus119889 0]

(4)

is said to be regular and impulse-free for any constant timedelay satisfying 119889 isin [0 119889] if pairs (119864 119860(119903

119905)) and (119864 119860(119903

119905) +

119860119889(119903

119905)) are regular and impulse-free

(ii) System (4) is said to be stochastically stable if thereexists a finite number 119872(120601(119905) 119903

0) such that the following

inequality holds

lim119905rarrinfin

Eint119905

0

119909 (119904)2 d119904 | 119903

0 119909 (119904) = 120601 (119904) 119904 isin [minus119889 0]

lt 119872(120601 (119905) 1199030)

(5)

Mathematical Problems in Engineering 3

(iii) System (4) is said to be stochastically admissible if itis regular impulse-free and stochastically stable

Lemma 2 (see [26]) Given matrices 119864119883 gt 0 119884 if 119864119879119883 +

119884Λ119879 is nonsingular there exist matrices 119878 gt 0 119871 such that

119864119878+119871Θ119879

= (119864119879

119883+119884Λ119879

)minus1 where ΛΘ isin R119899times(119899minus119903) such that

119864119879

Λ = 0 119864Θ = 0 rankΛ = rankΘ = 119899 minus 119903119883 119878 isin R119899times119899 and119884 119871 isin R119899times(119899minus119903)

Lemma 3 (see [27]) For matrices 119876 gt 0 119875 and 119877 withappropriate dimensions the following inequality holds

119875119877119879

+ 119877119875119879

le 119877119876119877119879

+ 119875119876minus1

119875119879

(6)

Lemma 4 (see [28]) For any constant matrix 119883 isin R119899times119899 119883 =119883

119879

gt 0 scalar 119903 gt 0 and vector function [minus119903 0] rarr R119899

such that the following integration is well defined then

minus 119903int

0

minus119903

119879

(119905 + 119904)119883 (119905 + 119904) 119889119904

le [119909119879

(119905) 119909119879

(119905 minus 119903)] [

minus119883 119883

119883 minus119883

][

119909 (119905)

119909 (119905 minus 119903)

]

(7)

Lemma 5 (see [29]) Suppose there are piecewise continuousreal square matrices 119860(119905) 119883 and 119876 gt 0 satisfying 119860119879

(119905)119883 +

119883119879

119860(119905) lt 0 for all 119905 Then the following conditions hold(i) 119860(119905) and 119883 are nonsingular(ii) 119860minus1

(119905) le 120575 for some 120575 gt 0

Lemma 6 (see [30]) If the following conditions hold

119872119894119894lt 0 1 le 119894 le 119903

1

119903 minus 1

119872119894119894+

1

2

(119872119894119895+119872

119895119894) lt 0 1 le 119894 = 119895 le 119903

(8)

then the following parameterized matrix inequality holds119903

sum

119894=1

119903

sum

119895=1

120572119894(119905) 120572

119895(119905)119872

119894119895lt 0 (9)

where 120572119894(119905) ge 0 and sum119903

119894=1120572119894(119905) = 1

Based on the parallel distributed compensation thefollowing state feedback controller will be considered here

119906119901(119905) =

119896

sum

119894=1

120582119894119870

119901119894119909 (119905) (10)

where119870119901119894(119901 isin S 119894 isin T) are local controller gains such that

the closed-loop system

119864 (119905) =

119896

sum

119894=1

119896

sum

119895=1

120582119894120582119895((119860

119901119894+ 119861

119901119894119870

119901119895) 119909 (119905)

+ 119860119889119901119894119909 (119905 minus 119889) + 119861

119908119901119894119908 (119905))

119911 (119905) =

119896

sum

119894=1

119896

sum

119895=1

120582119894120582119895((119862

119901119894+ 119863

119901119894119870

119901119895) 119909 (119905)

+ 119862119889119901119894119909 (119905 minus 119889) + 119862

119908119901119894119908 (119905))

119909 (119905) = 120601 (119905)

119905 isin [minus119889 0]

(11)

is stochastically admissible

3 The Design of the StateFeedback 119867

infinController

Firstly the sufficient condition will be given such thatsystem (11) is stochastically admissible Combining (4) and(10) fuzzy closed-loop system (11) can be rewritten in thefollowing form

119864 (119905)

=

119896

sum

119894=1

120582119894(119860

119901119894119909 (119905) + 119860

119889119901119894119909 (119905 minus 119889) + 119861

119908119901119894119908 (119905))

119911 (119905) =

119896

sum

119894=1

120582119894(119862

119901119894119909 (119905) + 119862

119889119901119894119909 (119905 minus 119889) + 119862

119908119901119894119908 (119905))

119909 (119905) =120601 (119905)

119905 isin [minus119889 0]

(12)

where

119864 = [

119864 0

0 0

] isin R(119899+119898)times(119899+119898)

119860119901119894= [

119860119901119894

119861119901119894

119870119901119894minus119868

119898

] isin R(119899+119898)times(119899+119898)

119909 (119905) = [

119909 (119905)

119906 (119905)

] isin R119899+119898

119860119889119901119894

= [

119860119889119901119894

0

0 0

] isin R(119899+119898)times(119899+119898)

119861119908119901119894

= [

119861119908119901119894

0

] isin R(119899+119898)timesV

119862119901119894= [119862

119901119894119863

119901119894] isin R

119901times(119899+119898)

119862119889119901119894

= [119862119889119901119894

0] isin R119901times(119899+119898)

120601 (119905) =

119896

sum

119894=1

120582119894[

120601 (119905)

119870119901119894120601 (119905)

]

(13)

4 Mathematical Problems in Engineering

Remark 7 For systems (11) and (12) it can be seen that

det(119904119864 minus119896

sum

119894=1

119896

sum

119895=1

120582119894120582119895(119860

119901119894+ 119861

119901119894119870

119901119895))

= det(119904[119864 0

0 0

] minus

119896

sum

119894=1

119896

sum

119895=1

120582119894120582119895[

119860119901119894

119861119901119894

119870119901119895minus119868

119898

])

= det(119904[119864 0

0 0

] minus

119896

sum

119894=1

120582119894[

119860119901119894

119861119901119894

119870119901119894minus119868

119898

])

= det(119904119864 minus119896

sum

119894=1

120582119894119860

119901119894)

det(119904119864 minus119896

sum

119894=1

119896

sum

119895=1

120582119894120582119895(119860

119901119894+ 119861

119901119894119870

119901119895+ 119860

119889119901119894))

= det(119904[119864 0

0 0

] minus

119896

sum

119894=1

120582119894[

119860119901119894+ 119860

119889119901119894119861119901119894

119870119901119894

minus119868119898

])

= det(119904119864 minus119896

sum

119894=1

120582119894(119860

119901119894+ 119860

119889119901119894))

(14)

By rank119864 = rank119864 and Definition 1 it can be obtained thatthe regularity and nonimpulse of system (11) are equal to theregularity and nonimpulse of system (12) So the stochasticadmissibility of system (11) can be studied by system (12)

Theorem 8 For a prescribed scalar 119889 gt 0 there exists a statefeedback controller (10) with 119906

119901(119905) = sum

119896

119894=1120582119894119871119901119894119884minus1

119901119909(119905) such

that system (11) when 119908(119905) = 0 is stochastically admissible forany constant time delay 119889 satisfying 119889 isin [0 119889] if there existmatrices 119875

119901gt 0 119876

119901gt 0 119876 gt 0 119885 gt 0 119871

119901119894 119878

119901 119884

1199012 and 119884

1199013

119894 isin T 119901 isin S such that

[

[

[

[

[

[

[

[

[

[

[

[

[

[

[

[

[

[

[

Γ1119901119894

lowast lowast lowast lowast lowast lowast

119871119901119894+ 119884

119879

1199013119861119879

119901119894+ 119884

1199012minus119884

119879

1199013minus 119884

1199013lowast lowast lowast lowast lowast

(

119884119879

119901119860119879

119889119901119894+ 119864119884

119901

+119884119879

119901119864119879

minus 119885

) 0 (

minus119884119879

119901minus 119884

119901+ 119876

119901

minus119884119879

119901119864119879

minus 119864119884119901+ 119885

) lowast lowast lowast lowast

119889119860119901119894119884119901minus 119889119861

1199011198941198841199012

1198891198611199011198941198841199013

119889119860119889119901119894119884119901

minus119885 lowast lowast lowast

119884119901

0 0 0 minus119876119901

lowast lowast

119889119884119901

0 0 0 0 minus119889119876 lowast

[1198681199030]119867

minus1

119872119879

1199010 0 0 0 0 minus119869

119901

]

]

]

]

]

]

]

]

]

]

]

]

]

]

]

]

]

]

]

lt 0 (15)

[

[

(120587119901119901minus 1)119884

119901+ (120587

119901119901minus 1)119884

119879

119901+ 119876 minus 120587

119901119901119876

119901lowast

119872119879

119901minus119879

119901

]

]

lt 0 (16)

where Γ1119901119894

= 120587119901119901119884119879

119901119864119879

+ 119860119901119894119884119901+ 119884

119879

119901119860119879

119901119894minus

119884119879

1199012119861119879

119901119894minus 119861

1199011198941198841199012minus 119884

119879

119901119864119879

minus 119864119884119901+ 119885 119884

119901= (119864119875

119901+

119878119901119877

119879

)119879 119871

119901119894= 119870

119901119894119884119901 119884

1199012= 119884

11990131199012119884119901 119872

119901=

[radic1205871199011119884119879

119901sdot sdot sdot radic120587119901119901minus1

119884119879

119901 radic120587119901119901+1119884119879

119901sdot sdot sdot radic120587119901119873

119884119879

119901] 119879

119901=

diag1198761 119876

119901minus1 119876

119901+1 119876

119873 119869

119901= diagΦ

1 Φ

119901minus1

Φ119901+1 Φ

119873 Φ

119905= [119868

1199030] 119866119864119884

119905119866119879

[119868119903

0] 119877 isin R119899times(119899minus119903) is any

matrix with full column rank and satisfies 119864119877 = 0 and 119866119867are nonsingular matrices that make 119866119864119867 = [

1198681199030

0 0]

Proof From it can be concluded that 119884119901and 119884

1199013are

nonsingular matrices Because 119884119901= (119864119875

119901+ 119878

119901119877

119879

)119879

119884119879

119901119864119879

= 119864119884119901= 119864119875

119901119864119879

ge 0 (17)

Denote119867minus1

119884119901119866119879

= [

11988411990111

11988411990112

11988411990121

11988411990122

] from (17) it is easy to obtainthat 119884

11990112= 0 and 119884

11990111is symmetric then 119867minus1

119884119901119866119879

=

[

11988411990111

0

11988411990121

11988411990122

] So it can be concluded that 11988411990111

and 11988411990122

are non-

singular furthermore 119866minus119879

119884minus1

119901119867 = [

119884minus1

119901110

minus119884minus1

1199012211988411990121

119884minus1

11990111119884minus1

11990122

] Let

119901= [

119884119901

0

minus1198841199012

1198841199013

] So [1198681199030] diag119866 119868

119898119864

119902diag119866119879

119868119898 [

119868119903

0] =

11988411990211

is nonsingular By Lemma 2 119883119901= 119884

minus1

119901= (119864

119879

119875119901+

119878119901119877119879

)119879 where 119875

119901gt 0 119878

119901isin R119899times(119899minus119903) and 119877 isin R119899times(119899minus119903) is a

matrix with full column rank and satisfies 119864119879119877 = 0 Denote119883

1199013≜ 119884

minus1

1199013 119883

1199012≜

1199012= 119884

minus1

11990131198841199012119884minus1

119901 and 119883

119901≜

minus1

119901=

[

119883119901

0

1198831199012

1198831199013

] So

[

[

[

119867minus119879

[

119868119903

0

]

0119898times119903

]

]

]

([1198681199030] 119866119864119884

119902119866119879

[

119868119903

0

])

minus1

sdot [[1198681199030]119867

minus1

0119903times119898] = diag 119867minus119879

119868119898

Mathematical Problems in Engineering 5

sdot[

[

[

[

119884minus1

119902110

0 0

] 0

0 0119898

]

]

]

diag 119867minus1

119868119898 = 119864

119879

minus1

119902

= 119864119879

119883119902

(18)

Denote 119876119901≜ 119876

minus1

119901 119876 ≜ 119876

minus1 and 119885 ≜ 119885

minus1

By Lemma 3 itcan be obtained that

[

minus119864119879

119885119864 119864119879

119885119864

119864119879

119885119864 minus119864119879

119885119864

]

= [

119868119899

minus119868119899

] (minus119864119879

119885119864) [119868119899minus119868

119899]

le [

119868119899

minus119868119899

] (minus119864119879

119883119901minus 119883

119879

119901119864 + 119883

119879

119901119885119883

119901) [119868

119899minus119868

119899]

(19)

Now pre- and postmultiplying by diag119883119879

119901 119883

119879

119901 119885 119868

119899

119868119899 119868

119903 119868

119903⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟

119873minus1

and its transpose by Schur complement lemma

and (18)-(19) it is easy to see that

[

[

[

[

Γ1119901119894

lowast lowast

119864119879

[119885 0] 119864 + [119860119879

1198891199011198940]119883

119901minus119864

119879

119885119864 minus 119876119901lowast

119889119885 [119860119901119894119861119901119894] 119889119885119860

119889119901119894minus119885

]

]

]

]

lt 0

(20)

where Γ1119901119894= sum

119873

119902=1120587119901119902119864119879

119883119901+119883

119879

119901119860

119901119894+119860

119879

119901119894119883

119901119894+diag119876

119901 0+

119889 diag119876 0 minus 119864119879 diag119885 0119864 Pre- and postmultiplying bydiag119883119879

119901 119868

119903 119868

119903⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟

119873minus1

and its transposition by Schur comple-

ment lemma it can be seen that

119873

sum

119902=1

120587119901119902119876

119902lt 119876 (21)

From (20) it can be concluded that

119896

sum

119894=1

120582119894(120587

119901119901119864119879

119883119901+ 119860

119879

119901119894119883

119901+ 119883

119879

119901119860

119901119894

minus 119864119879 diag 119885 0 119864) lt 0

(22)

On the other hand diag119866 119868119898119864 diag119867 119868

119898 = [

[1198681199030

0 0

] 0

0 0119898

]Then

119864119879

119883119901= 119883

119879

119901119864 = [

119864119879

0

0 0

][

119883119901

0

1198831199012119883

1199013

] = [

119864119879

1198831199010

0 0

]

= [

119864119879

119875119901119864 0

0 0

] ge 0

(23)

Denote 119860119901(119905) ≜ (sum

119896

119894=1120582119894119860

119901119894) = [

1198601199011(119905)

1198601199012(119905)

1198601199013(119905)

1198601199014(119905)

] from (22) itcan be obtained that

119883119879

1199013119860

1199014(119905) + 119860

119879

1199014(119905) 119883

1199013lt 0 (24)

for every 119901 isin S which implies that 1198601199014(119905) is nonsingular

Thus the pair (119864 sum119896

119894=1120582119894119860

119901119894) is regular and impulse-free for

every 119901 isin S By (20) it is easy to see that

[

Γ1119901119894

lowast

119864119879

[119885 0] 119864 + [119860119879

1198891199011198940]119883

119901minus119864

119879

119885119864 minus 119876119901

] lt 0 (25)

Pre- and postmultiplying (25) by [ 119868119899+119898

[119868119899

0

]

0 119868119899

] and its trans-pose it can be obtained that

119873

sum

119902=1

120587119901119902119864119879

119883119901+ 119883

119879

119901(119860

119901119894+ 119860

119889119901119894)

+ (119860119901119894+ 119860

119889119901119894)

119879

119883119901lt 0

(26)

Hence

119896

sum

119894=1

120582119894(120587

119901119901119864119879

119883119901+ 119883

119879

119901(119860

119901119894+ 119860

119889119901119894)

+ (119860119901119894+ 119860

119889119901119894)

119879

119883119901) lt 0

(27)

Equation (27) implies that the pair (119864 sum119896

119894=1120582119894(119860

119901119894+ 119860

119889119901119894))

is regular and impulse-free for every 119901 isin S Thus byDefinition 1 system (12) is regular and impulse-free ByRemark 7 this implies that system (11) is regular and impulse-free

Now it will be shown that system (11) is stochasticallystable Define a new process (119909

119905 119903

119905) 119905 ge 0 by 119909

119905= 119909(119905 +

120579) minus2119889 le 120579 le 0 then (119909119905 119903

119905) 119905 ge 119889 is a Markovian process

with the initial state (120601(sdot) 1199030) Now for 119905 ge 119889 choose the

following stochastic Lyapunov-Krasovskii candidate for thissystem

119881 (119909119905 119901 119905) =

4

sum

119898=1

119881119898(119909

119905 119901 119905) (28)

where

1198811(119909

119905 119901 119905) = 119909

119879

(119905) 119864119879

119875119901119864119909 (119905) = 119909

119879

(119905) 119864119879

119883119901119909 (119905)

= 119909119879

(119905) 119864119879

119883119901119909 (119905)

1198812(119909

119905 119901 119905) = int

119905

119905minus119889

119909119879

(119904) 119876119901119909 (119904) d119904

1198813(119909

119905 119901 119905) = 119889int

0

minus119889

int

119905

119905+120579

119879

(119904) 119864119879

119885119864 (119904) d119904 d120579

1198814(119909

119905 119901 119905) = int

0

minus119889

int

119905

119905+120579

119909119879

(119904) 119876119909 (119904) d119904 d120579

(29)

6 Mathematical Problems in Engineering

Let L be the weak infinitesimal generator of the randomprocess (119909

119905 119901) 119905 ge 0 Then for each 119901 isin S

L119881 (119909119905 119901 119905) le 2119909

119879

(119905) 119883119879

119901119864 (119905)

+ 119909119879

(119905) (

119873

sum

119902=1

120587119901119902119864119879

119883119902)119909 (119905)

+ 119909119879

(119905) 119876119901119909 (119905)

minus 119909119879

(119905 minus 119889)119876119901119909 (119905 minus 119889)

+ int

119905

119905minus119889

119909119879

(119904) (

119873

sum

119902=1

120587119901119902119876

119902)119909 (119904) d119904

+ 119889119909119879

(119905) 119876119909 (119905)

minus int

119905

119905minus119889

119909119879

(119904) 119876119909 (119904) d119904

+ 119889

2

119879

(119905) 119864119879

119885119864 (119905)

minus 119889int

119905

119905minus119889

119879

(119904) 119864119879

119885119864 (119904) d119904

(30)

From (21) it is clear that

int

119905

119905minus119889

119909119879

(119904) (

119873

sum

119902=1

120587119901119902119876

119902)119909 (119904) d119904

lt int

119905

119905minus119889

119909119879

(119904) 119876119909 (119904) d119904

(31)

From Lemma 4 it follows that

minus 119889int

119905

119905minus119889

119879

(119904) 119864119879

119885119864 (119904) d119904

le [

119909 (119905)

119909 (119905 minus 119889)

]

119879

[

minus119864119879

119885119864 119864119879

119885119864

119864119879

119885119864 minus119864119879

119885119864

][

119909 (119905)

119909 (119905 minus 119889)

]

(32)

So it can be concluded that

L119881 (119909119905 119901 119905) le

119896

sum

119894=1

120578119879

(119905) Φ119901119894120578 (119905) (33)

where

120578119879

(119905) = [119909119879

(119905) 119909119879

(119905 minus 119889)]

Φ119901119894= [

Υ1119901119894

lowast

Υ2119901119894

Υ3119901119894

]

Υ1119901119894= Γ

1119901119894+ [

119860119879

119901119894

119861119879

119901119894

]119889

2

119885 [119860119901119894119861119901119894]

Υ3119901119894= minus119876

119901minus 119864

119879

119885119864 + 119860119879

119889119901119894119889

2

119885119860119889119901119894

Υ2119901119894= 119864

119879

[119885 0] 119864 + [119860119879

1198891199011198940]119883

119901

+ 119860119879

119889119901119894119889

2

119885 [119860119901119894119861119901119894]

(34)

Using (20) it is easy to see that there exists a scalar 120581 gt 0

such that for every 119901 isin S L119881(119909119905 119901 119905) le minus120581119909(119905)

2 where120581 = min

119894isinT119901isinS(120582min(minusΦ119901119894))

So for 119905 ge 119889 by Dynkinrsquos formula it can be obtained that

E 119881 (119909119905 119901 119905) minusE 119881 (119909

119889 119903

119889 119889)

le minus120581Eint119905

119889

119909 (119904)2 d119904

(35)

which yields

Eint119905

119889

119909 (119904)2 d119904 le 120581minus1E 119881 (119909

119889 119903

119889 119889) (36)

Because 119866119864119867 = [1198681199030

0 0] denote

119860119901(119905) ≜

119896

sum

119894=1

119896

sum

119895=1

120582119894120582119895(119860

119901119894+ 119861

119901119894119870

119901119895)

= [

1198601199011(119905) 119860

1199012(119905)

1198601199013(119905) 119860

1199014(119905)

]

=

[

[

[

[

[

[

119896

sum

119894=1

119896

sum

119895=1

120582119894120582119895119860

1199011198941198951

119896

sum

119894=1

119896

sum

119895=1

120582119894120582119895119860

1199011198941198952

119896

sum

119894=1

119896

sum

119895=1

120582119894120582119895119860

1199011198941198953

119896

sum

119894=1

119896

sum

119895=1

120582119894120582119895119860

1199011198941198954

]

]

]

]

]

]

119860119889119901(119905) ≜

119896

sum

119894=1

120582119894119860

119889119901119894= [

1198601198891199011

(119905) 1198601198891199012

(119905)

1198601198891199013

(119905) 1198601198891199014

(119905)

]

=

[

[

[

[

[

[

119896

sum

119894=1

120582119894119860

1198891199011198941

119896

sum

119894=1

120582119894119860

1198891199011198942

119896

sum

119894=1

120582119894119860

1198891199011198943

119896

sum

119894=1

120582119894119860

1198891199011198944

]

]

]

]

]

]

(37)

By the regularity and nonimpulse of system (11) 1198601199014(119905) is

nonsingular for each 119901 isin S set 119866119901= [

119868119903minus1198601199012(119905)119860minus1

1199014(119905)

0 119860minus1

1199014(119905)

]119866It is easy to obtain

119866119901119864119867 = [

1198681199030

0 0

]

119866119901119860

119901(119905)119867 = [

1198601199011(119905) 0

1198601199013(119905) 119868

119899minus119903

]

119866119901119860

119901(119905)119867 = [

1198601199011(119905) 0

1198601199013(119905) 119868

119899minus119903

]

(38)

Mathematical Problems in Engineering 7

where

1198601199011(119905) = 119860

1199011(119905) minus 119860

1199012(119905) 119860

minus1

1199014(119905) 119860

1199013(119905)

1198601199013(119905) = 119860

minus1

1199014(119905) 119860

1199013(119905)

1198601198891199011

(119905) = 1198601198891199011

(119905) minus 1198601199012(119905) 119860

minus1

1199014(119905) 119860

1198891199013(119905)

1198601198891199012

(119905) = 1198601198891199012

(119905) minus 1198601199012(119905) 119860

minus1

1199014(119905) 119860

1198891199014(119905)

1198601198891199013

(119905) = 119860minus1

1199014(119905) 119860

1198891199013(119905)

1198601198891199014

(119905) = 119860minus1

1199014(119905) 119860

1198891199014(119905)

(39)

Then for each 119901 isin S system (11) is equal to

1(119905) = 119860

1199011(119905) 120595

1(119905) + 119860

1198891199011(119905) 120595

1(119905 minus 119889)

+ 1198601198891199012

(119905) 1205952(119905 minus 119889)

minus1205952(119905) = 119860

1199013(119905) 120595

1(119905) + 119860

1198891199013(119905) 120595

1(119905 minus 119889)

+ 1198601198891199014

(119905) 1205952(119905 minus 119889)

120595 (119905) = 120593 (119905) = 119867minus1

119909 (119905)

119905 isin [minus119889 0]

(40)

where 120595(119905) = [ 1205951(119905)1205952(119905)] = 119867

minus1

119909(119905)For any 119905 ge 0 using Lemma 5 there exists a scalar 120575

119901gt 0

such that 1198601199014(119905) lt 120575

119901 and 120582

119894(120585(119905)) ge 0 andsum119896

119894=1120582119894(120585(119905)) =

1 it follows from (40) that10038171003817100381710038171205951(119905)1003817100381710038171003817

le10038171003817100381710038171205951(0)1003817100381710038171003817

+ 1198961int

119905

0

[10038171003817100381710038171205951(119904)1003817100381710038171003817+10038171003817100381710038171205951(119904 minus 119889)

1003817100381710038171003817+10038171003817100381710038171205952(119904 minus 119889)

1003817100381710038171003817] d119904

(41)

where

1198961= max

119901isinSmax119894119895isinT

10038171003817100381710038171003817119860

1199011198941198951

10038171003817100381710038171003817

+ 120575119901max119894119895isinT

10038171003817100381710038171003817119860

1199011198941198952

10038171003817100381710038171003817max119894119895isinT

10038171003817100381710038171003817119860

1199011198941198953

10038171003817100381710038171003817max119894isinT

10038171003817100381710038171003817119860

1198891199011198941

10038171003817100381710038171003817

+ 120575119901max119894119895isinT

10038171003817100381710038171003817119860

1199011198941198952

10038171003817100381710038171003817max119894119895isinT

10038171003817100381710038171003817119860

1198891199011198943

10038171003817100381710038171003817max119894isinT

10038171003817100381710038171003817119860

1198891199011198942

10038171003817100381710038171003817

+ 120575119901max119894119895isinT

10038171003817100381710038171003817119860

1199011198941198952

10038171003817100381710038171003817max119894119895isinT

10038171003817100381710038171003817119860

1198891199011198944

10038171003817100381710038171003817

(42)

Then for any 0 le 119905 le 119889

10038171003817100381710038171205951(119905)1003817100381710038171003817le (2119896

1119889 + 1)

10038171003817100381710038171205931003817100381710038171003817119889+ 119896

1int

119905

0

10038171003817100381710038171205951(119904)1003817100381710038171003817d119904 (43)

Applying the Gronwall-Bellman lemma it can be obtainedfor any 0 le 119905 le 119889 that

10038171003817100381710038171205951(119905)1003817100381710038171003817le (2119896

1119889 + 1)

100381710038171003817100381712059310038171003817100381710038171198891198901198961119889

(44)

Thus

sup0le119904le119889

10038171003817100381710038171205951(119904)1003817100381710038171003817

2

le (21198961119889 + 1)

2 10038171003817100381710038171205931003817100381710038171003817

2

11988911989021198961119889

(45)

It can be seen from (40) that

sup0le119904le119889

10038171003817100381710038171205952(119904)1003817100381710038171003817

2

le 1198962

2[(2119896

1119889 + 1) 119890

1198961119889

+ 2]

210038171003817100381710038171205931003817100381710038171003817

2

119889 (46)

where 1198962= max

119901isinS120575119901max119894119895isinT1198601199011198941198953

120575119901max

119894isinT1198601198891199011198943

120575119901max

119894isinT1198601198891199011198944 Hence

sup0le119904le119889

1003817100381710038171003817120595 (119904)

1003817100381710038171003817

2

le sup0le119904le119889

10038171003817100381710038171205951(119904)1003817100381710038171003817

2

+ sup0le119904le119889

10038171003817100381710038171205952(119904)1003817100381710038171003817

2

le 1198963

10038171003817100381710038171205931003817100381710038171003817

2

119889

(47)

where 1198963= (2119896

1119889+1)

2

11989021198961119889

+1198962

2[(2119896

1119889+1)119890

1198961119889

+2]2Therefore

sup0le119904le119889

119909 (119904)2

le 1198963119867

210038171003817100381710038171003817119867

minus110038171003817100381710038171003817

2 10038171003817100381710038171206011003817100381710038171003817

2

119889 (48)

Note that

int

0

minus119889

int

119905

119905+120579

119909119879

(119904) 119876119909 (119904) d119904 d120579 le 119889int119905

119905minus119889

119909119879

(119904) 119876119909 (119904) d119904

int

0

minus119889

int

119905

119905+120579

119879

(119904) 119864119879

119885119864 (119904) d119904 d120579

le 119889int

119905

119905minus119896119889

119879

(119904) 119864119879

119885119864 (119904) d119904

(49)

Then from (48) and (28) it can be obtained that there existsa scalar 120588 such that

119881 (119909119889 119903

119889 119889) le 120588

10038171003817100381710038171206011003817100381710038171003817

2

119889 (50)

This together with (36) and (48) implies that there exists ascalar ] such that

Eint119905

0

119909 (119904)2 d119904 = Eint

119889

0

119909 (119904)2 d119904

+Eint119905

119889

119909 (119904)2 d119904

le ]E 10038171003817100381710038171206011003817100381710038171003817

2

119889

(51)

Considering this andDefinition 1 system (11) is stochasticallystable for any constant delay 119889 satisfying 119889 isin [0 119889]Thereforesystem (11) is stochastically admissible This completes theproof

In the following a set of sufficient conditions will bedeveloped under which the considered system is guaranteedto be stochastically admissible with an119867

infinperformance

Definition 9 System (11) is said to be stochastically admissiblewith an 119867

infinperformance 120574 if it is stochastically admissible

when 119908(119905) = 0 and under zero initial condition for nonzero119908(119905) isin 119871

V2[0infin)

Eintinfin

0

119911119879

(119905) 119911 (119905) d119905 le 1205742 intinfin

0

119908119879

(119905) 119908 (119905) d119905 (52)

The following result can be presented

8 Mathematical Problems in Engineering

Theorem 10 For a prescribed scalar 119889 gt 0 there exists astate feedback controller (10) with 119906

119901(119905) = sum

119896

119894=1120582119894119871119901119894119884minus1

119901119909(119905)

such that system (11) is stochastically admissible with an 119867infin

performance 120574 for any constant time delay 119889 satisfying 119889 isin

[0 119889] if there exist matrices 119875119901gt 0 119876

119901gt 0 119876 gt 0 119885 gt 0

119871119901119894 119878

119901 119884

1199012 and 119884

1199013 119894 isin T 119901 isin S such that and

[

Ξ1199011198941

lowast

Ξ1199011198942

Ξ1199013

] lt 0 (53)

where

Ξ1199011198941=

[

[

[

[

[

[

[

[

[

[

[

[

[

[

[

Γ1119901119894

lowast lowast lowast lowast lowast

119871119901119894+ 119884

119879

1199013119861119879

119901119894+ 119884

1199012minus119884

119879

1199013minus 119884

1199013lowast lowast lowast lowast

(

119884119879

119901119860119879

119889119901119894+ 119864119884

119901

+119884119879

119901119864119879

minus 119885

) 0 (

minus119884119879

119901minus 119884

119901+ 119876

119901

minus119884119879

119901119864119879

minus 119864119884119901+ 119885

) lowast lowast lowast

119889119860119901119894119884119901minus 119889119861

1199011198941198841199012

1198891198611199011198941198841199013

119889119860119889119901119894119884119901

minus119885 lowast lowast

119861119879

1199081199011198940 0 0 minus120574

2

119868 lowast

119862119901119894119884119901minus 119863

1199011198941198841199012

1198631199011198941198841199013

119862119889119901119894119884119901

0 119862119908119901119894

minus119868

]

]

]

]

]

]

]

]

]

]

]

]

]

]

]

Ξ1199012=

[

[

[

[

119884119901

0 0 0 0 0

119889119884119901

0 0 0 0 0

[1198681199030]119867

minus1

119872119879

1199010 0 0 0 0

]

]

]

]

Ξ1199013= diag minus119876

119901 minus119889119876 minus119869

119901

(54)

and the other notations are the same as in Theorem 8

Proof FromTheorem 8 when119908(119905) = 0 system (11) is stochas-tically admissible Let

119869119911119908(119905) = Eint

119905

0

[119911119879

(119904) 119911 (119904) minus 1205742

119908119879

(119904) 119908 (119904)] d119904 (55)

Under zero initial condition it is easy to see that

119869119911119908(119905) le Eint

119905

0

[119911119879

(119904) 119911 (119904) minus 1205742

119908119879

(119904) 119908 (119904)

+L119881 (119909119904 119901 119904)] d119904

le Eint119905

0

119896

sum

119894=1

120582119894[120589

119879

(119904) (Ω119901119894+ Θ

119879

119901119894Θ

119901119894) 120589 (119904)] d119904

(56)

where

120589119879

(119905) = [119909119879

(119905) 119909119879

(119905 minus 119889) 119908119879

(119905)]

Ω119901119894=

[

[

[

[

Υ1119901119894

lowast lowast

Υ2119901119894

Υ3119901119894

lowast

[119861119879

1199081199011198940]119883

1199010 minus120574

2

119868

]

]

]

]

Θ119901119894= [119862

119901119894119862119889119901119894

119862119908119901119894]

(57)

and notations of Υ1119901119894

Υ2119901119894

and Υ3119901119894

are the same as inTheorem 8 Hence by Schur complement lemma and using

the similar method in the proof of Theorem 8 from and(53) it can be obtained that 119869

119911119908(119905) lt 0 for all 119905 gt 0

Therefore for any nonzero 119908(119905) isin 119871V2[0infin) (52) holds

Hence according to Definition 9 the system is stochasticallyadmissible with an 119867

infinperformance 120574 This completes the

proof

Remark 11 Compared with methods in [21 22] because ofthe method of the augmented matrix adopted in Theorems8 and 10 the number of LMIs needed to solve is relativelysmall in this paper When the value of 119896 is relatively largethe quality of the computation is greatly reduced some newrelaxation matrices added will reduce the conservatism ofcontrol conditions compared with previous literatures whichcan be seen from Example 2

4 The Design of the Static OutputFeedback Controller

When 119903119905= 119901 isin S consider the overall SMJFS as follows

119864 (119905) =

119896

sum

119894=1

120582119894(119860

119901119894119909 (119905) + 119860

119889119901119894119909 (119905 minus 119889) + 119861

119901119894119906 (119905)

+ 119861119908119901119894119908 (119905))

119910 (119905) =

119896

sum

119894=1

120582119894119862119910119901119894119909 (119905)

Mathematical Problems in Engineering 9

119911 (119905) =

119896

sum

119894=1

120582119894(119862

119901119894119909 (119905) + 119862

119889119901119894119909 (119905 minus 119889) + 119863

119901119894119906 (119905)

+ 119862119908119901119894119908 (119905))

119909 (119905) = 120601 (119905)

forall119905 isin [minus119889 0] 119894 isin T ≜ 1 2 119896

(58)

where 119910(119905) isin R1199011 is the system output 119862

119889119901119894(119894 isin S) are

known constant matrices with appropriate dimensions andthe other notations are the same as in (3)

The following static output feedback controller will beconsidered here

119906119901(119905) =

119896

sum

119894=1

120582119894119870

119901119894119910 (119905) (59)

where119870119901119894(119901 isin S 119894 isin T) are local controller gains such that

the closed-loop system is

119864 (119905) =

119896

sum

119894=1

119896

sum

119895=1

119896

sum

119904=1

120582119894120582119895120582119904((119860

119901119894+ 119861

119901119894119870

119901119895119862119910119901119904) 119909 (119905) + 119860

119889119901119894119909 (119905 minus 119889) + 119861

119908119901119894119908 (119905))

119911 (119905) =

119896

sum

119894=1

119896

sum

119895=1

119896

sum

119904=1

120582119894120582119895120582119904((119862

119901119894+ 119863

119901119894119870

119901119895119862119910119901119904) 119909 (119905) + 119862

119889119901119894119909 (119905 minus 119889) + 119862

119908119901119894119908 (119905))

(60)

It is difficult to drive LMI-based conditions of the stochas-tic stabilization by employing the static output feedbackcontrol approach due to the appearance of crossing termsbetween system matrices and control gains And system (60)can be rewritten in the following form

119864119909 (119905) =

119896

sum

119894=1

119896

sum

119895=1

120582119894120582119895(Λ

119901119894119895119909 (119905) + 119861

119908119901119894119908 (119905))

119911 (119905) =

119896

sum

119894=1

119896

sum

119895=1

120582119894120582119895(119862

119901119894119895119909 (119905) + 119862

119908119901119894119908 (119905))

(61)

where

119864 = [

119864 0

0 0

] isin R(119899+1199011)times(119899+119901

1)

119862119901119894119895= [119862

119901119894119863

119901119894119870

119901119895]

119860119889119901119894

= [

119860119889119901119894

0

0 0

] isin R(119899+1199011)times(119899+119901

1)

119909 (119905) = [

119909 (119905)

119910 (119905)

]

119861119908119901119894

= [

119861119908119901119894

0

] isin R(119899+1199011)timesV

Λ119901119894119895= [

119860119901119894

119861119901119894119870

119901119895

119862119910119901119894

minus119868

]

(62)

Remark 12 For systems (60) and (61) it can be seen that

det(119904119864 minus119896

sum

119894=1

119896

sum

119895=1

119896

sum

119904=1

120582119894120582119895120582119904(119860

119901119894+ 119861

119901119894119870

119901119895119862119910119901119904))

= det(119904119864 minus119896

sum

119894=1

119896

sum

119895=1

120582119894120582119895Λ

119901119894119895)

det(119904119864

minus

119896

sum

119894=1

119896

sum

119895=1

119896

sum

119904=1

120582119894120582119895120582119904(119860

119901119894+ 119861

119901119894119870

119901119895119862119910119901119904

+ 119860119889119901119894))

= det(119904119864 minus119896

sum

119894=1

119896

sum

119895=1

120582119894120582119895(Λ

119901119894119895+ 119860

119889119901119894))

(63)

As the discussion in Remark 7 the stochastic admissibility ofsystem (60) can be studied by means of system (61)

Theorem 13 There exists an output feedback controller (59)with controller gains 119870

119901119894= 119871

119901119894119884minus1

1199012(119901 isin S 119894 isin T) such that

system (60) with 119908(119905) = 0 is stochastically admissible if thereexist matrices 119875

119901gt 0 119876

119901gt 0 119876 gt 0 119885 gt 0 119871

119901119894 119878

119901 and 119884

1199012

119901 isin S 1 le 119894 = 119895 le 119896 such that and

Θ119901119894119894lt 0

1

119896 minus 1

Θ119901119894119894+

1

2

(Θ119901119894119895+ Θ

119901119895119894) lt 0

(64)

where

10 Mathematical Problems in Engineering

Θ119901119894119895=

[

[

[

[

[

[

[

[

[

[

[

[

[

[

[

[

[

[

[

Γ119901119894119895

lowast lowast lowast lowast lowast lowast

119871119879

119901119895119861119879

119901119894+ 119862

119910119901119894119884119901

minus119884119879

1199012minus 119884

1199012lowast lowast lowast lowast lowast

(

119884119879

119901119860119879

119889119901119894+ 119864119884

119901

119884119879

119901119864119879

minus 119885

) 0 Σ119901

lowast lowast lowast lowast

119889119860119901119894119884119901

119889119861119901119894119871119901119895

119889119860119889119901119894119884119901minus119885 lowast lowast lowast

119884119901

0 0 0 minus119876119901

lowast lowast

119889119884119901

0 0 0 0 minus119889119876 lowast

[1198681199030]119867

minus1

119872119879

1199010 0 0 0 0 minus119869

119901

]

]

]

]

]

]

]

]

]

]

]

]

]

]

]

]

]

]

]

(65)

Γ119901119894119895

= 120587119901119901119884119879

119901119864119879

+ 119860119901119894119884119901+ 119884

119879

119901119860119879

119901119894minus 119884

119879

119901119864119879

minus 119864119884119901+ 119885

Σ119901= minus119884

119879

119901minus 119884

119901+ 119876

119901minus 119884

119879

119901119864119879

minus 119864119884119901+ 119885 119871

119901119894= 119870

1199011198941198841199012

119884119901= (119864119875

119901+ 119878

119901119877

119879

)119879 119877 isin R119899times(119899minus119903) is any matrix with

full column rank and satisfies 119864119877 = 0 119866119867 are nonsingularmatrices that make 119866119864119867 = [

1198681199030

0 0] and the other notations are

the same as in Theorem 8

Proof Let 119901= [

119884119901

0

0 1198841199012

] Using Lemma 6 the proof processis similar to Theorem 8

Theorem 14 For a prescribed scalar 119889 gt 0 there exists anoutput feedback controller (59) with controller gains 119870

119901119894=

119871119901119894119884minus1

1199012(119901 isin S 119894 isin T) such that system (60) is stochastically

admissible with an 119867infin

performance 120574 for any constant timedelay 119889 satisfying 119889 isin [0 119889] if there exist matrices 119875

119901gt 0

119876119901gt 0 119876 gt 0 119885 gt 0 119871

119901119894 119878

119901 and 119884

1199012 119901 isin S 1 le 119894 = 119895 le 119896

such that and

Δ119901119894119894lt 0

1

119896 minus 1

Δ119901119894119894+

1

2

(Δ119901119894119895+ Δ

119901119895119894) lt 0

(66)

where

Δ119901119894119895=

[

[

[

[

[

[

[

[

[

[

[

[

[

[

[

[

[

[

[

[

[

[

[

[

Γ119901119894119895

lowast lowast lowast lowast lowast lowast lowast lowast

119871119879

119901119861119879

119901119894+ 119862

119910119901119894119884119901

minus119884119879

1199012minus 119884

1199012lowast lowast lowast lowast lowast lowast lowast

(

119884119879

119901119860119879

119889119901119894+ 119864119884

119901

+119884119879

119901119864119879

minus 119885

) 0 Σ119901

lowast lowast lowast lowast lowast lowast

119889119860119901119894119884119901

119889119861119901119894119871119901119895

119889119860119889119901119894119884119901minus119885 lowast lowast lowast lowast lowast

119861119879

1199081199011198940 0 0 minus120574

2

119868 lowast lowast lowast lowast

119862119901119894119884119901

119863119901119894119871119901119895

119862119889119901119894119884119901

0 119862119908119901119894

minus119868 lowast lowast lowast

119884119901

0 0 0 0 0 minus119876119901

lowast lowast

119889119884119901

0 0 0 0 0 0 minus119889119876 lowast

[1198681199030]119867

minus1

119872119879

1199010 0 0 0 0 0 0 minus119869

119901

]

]

]

]

]

]

]

]

]

]

]

]

]

]

]

]

]

]

]

]

]

]

]

]

(67)

and the other notations are the same as in Theorem 13

Remark 15 Compared with the method in [31 32] becauseof the augmented matrix adopted in Theorems 13 and 14 thenumber of LMIs needed to solve is greatly decreased Whenthe value of 119896 is relatively large the computational complexitywill be reduced On the other hand by the augmentedmatrixthere are not any crossing terms between system matricesand controller gains so assumptions for the output matrix

[23] the equality constraint for the output matrix [24] andthe bounding technique for crossing terms are not necessaryhere therefore the conservatism brought by them will nothappen

5 Numerical Examples

Two examples will be given to illustrate the validity ofdeveloped methods

Mathematical Problems in Engineering 11

Example 1 To illustrate the 119867infin

controller synthesis thefollowing nonlinear time delay system is considered

(1 + 119886 cos 120579 (119905)) 120579 (119905) = minus119887 1205793 (119905) + 119888120579 (119905) + 119888119889(119905 minus 119889)

+ 120575 (119903119905) 119890119906 (119905) + 119891119908 (119905)

(68)

The range of 120579(119905) is assumed to satisfy | 120579(119905)| lt 120595 120595 = 2

119886 = 119887 = 119890 = 119891 = 1 119888 = minus1 119888119889= 08 119889 isin [0 119889] 119889 = 03

and 119906(119905) is the control input 119908(119905) = cos(05119905)119890minus001119905 is thedisturbance input 119903

119905is a Markovian process taking values in

a finite set 1 2 3 120575(1) = 1 120575(2) = 08 120575(3) = 05 and theoutput vector 119911(119905) = 120579(119905)

Choose the vector 119909(119905) = [1199091(119905) 119909

2(119905) 119909

3(119905)]

119879 with1199091(119905) = 120579(119905) 119909

2(119905) =

120579(119905) and 119909

3(119905) =

120579(119905) Then the system

is described by

[

[

[

1 0 0

0 1 0

0 0 0

]

]

]

(119905)

=

[

[

[

[

0 1 0

0 0 1

119888 minus1198871199092

2(119905) minus1 minus 119886 cos119909

1(119905)

]

]

]

]

119909 (119905)

+[

[

[

0 0 0

0 0 0

1198881198890 0

]

]

]

119909 (119905 minus 119889) +[

[

[

0

0

120575 (119903119905) 119890

]

]

]

119906 (119905)

+[

[

[

0

0

119891

]

]

]

119908 (119905)

(69)

It can be expressed exactly by the following fuzzy singularMarkovian jump form

119864 (119905) =

3

sum

119894=1

120582119894(119860

119901119894119909 (119905) + 119860

119889119901119894119909 (119905 minus 119889) + 119861

119901119894119906 (119905)

+ 119861119908119901119894119908 (119905))

119911 (119905) =

3

sum

119894=1

120582119894119862119901119894119909 (119905)

119909 (119905) = 120601 (119905)

119905 isin [minus119889 0] 119901 isin 1 2 3

(70)

where

119864 =[

[

[

1 0 0

0 1 0

0 0 0

]

]

]

1198601199011=

[

[

[

[

0 1 0

0 0 1

119888 minus119887 (1205952

+ 2) 119886 minus 1

]

]

]

]

1198601199012=

[

[

[

[

0 1 0

0 0 1

119888 0 minus119886 minus 1 minus 1198861205952

]

]

]

]

1198601199013=[

[

[

0 1 0

0 0 1

119888 0 119886 minus 1

]

]

]

1198601198891199011

= 1198601198891199012

= 1198601198891199013

=[

[

[

0 0 0

0 0 0

1198881198890 0

]

]

]

11986111= 119861

12= 119861

13=[

[

[

0

0

119890

]

]

]

11986121= 119861

22= 119861

23=[

[

[

0

0

08119890

]

]

]

11986131= 119861

32= 119861

33=[

[

[

0

0

05119890

]

]

]

1198611199081199011

= 1198611199081199012

= 1198611199081199013

=[

[

[

0

0

119891

]

]

]

1198621199011= 119862

1199012= 119862

1199013= [1 0 0]

1205821=

1199092

2(119905)

1205952+ 2

1205822=

1 + cos1199091(119905)

1205952+ 2

1205823=

1205952

minus 1199092

2(119905) + 1 minus cos119909

1(119905)

1205952+ 2

(71)

It is seen that 0 le 120582119894le 1sum3

119894=1120582119894= 1 Let Π = [ minus02 02 0

01 minus03 02

02 03 minus05

]120574 = 1 by solving and (53) in Theorem 10 controller gainsare given by

11987011= [minus142939 minus140620 minus36426]

11987012= [minus142911 minus144082 minus32860]

12 Mathematical Problems in Engineering

0 1 2 3 4 5 6 7 8minus20

minus15

minus10

minus5

0

5

0 2 4 86minus1

0123

Time

Time

Ope

n-lo

op st

ate r

espo

nse

Mar

kov

chai

n

x1

x2

x3

Figure 1 State responses of the open-loop system

11987013= [minus142988 minus144111 minus36425]

11987021= [minus179535 minus177012 minus44471]

11987022= [minus179509 minus179806 minus41585]

11987023= [minus179578 minus179828 minus44470]

11987031= [minus286360 minus283641 minus69941]

11987032= [minus286344 minus285420 minus68118]

11987033= [minus286377 minus285436 minus69941]

(72)

To demonstrate the effectiveness assuming the initialcondition 120601(119905) = [minus12 08 minus05]

119879 Figures 1 and 2 showstate responses of the open-loop system and the closed-loopsystem controlled by (10) respectively From Figure 1 it canbe seen that the open-loop system is not stochastically admis-sible and Figure 2 shows that when the controller obtainedby Theorem 10 is exerted to this system it is stochasticallyadmissible

Example 2 Consider the example without uncertainties in[6]

Mode 1 1198601= [

15 14

minus35 minus45] 119860

1198891= [

02 119886

minus024 minus04] 119861

1= [

1

1]

1198611199081= [

15

14] 119862

1= [05 1] 119862

1198891= [minus02 02] 119863

1= 02 and

1198621199081= 02Mode 2 119860

2= [

17 15

minus13 minus25] 119860

1198892= [

119887 11

minus021 minus03] 119861

2= [

09

09]

1198611199082= [

14

15] 119862

2= [04 03] 119862

1198892= [minus01 02]119863

2= 03 and

1198621199082= 03Π = [

minus1 1

1 minus1] 119864 = [

1 0

0 0] 119889 = 03 120574 = 26 and in [6]

119886 = minus05 119887 = 21 but in this paper minus24 le 119886 le 2 minus2 le 119887 le 48are taken

In Figure 3 ldquoordquo represents the range of the feasiblesolutions using Theorem 10 in this paper and ldquolowastrdquo representsthe range of the feasible solutions using Theorem 3 in [6]

minus15minus1

minus050

051

152

253

354

Mar

kov

chai

n

0 1 2 3 4 5 6 7 8

0 2 4 6 8minus1

0123

Time

Time

Clos

ed-lo

op st

ate r

espo

nse

x1

x2

x3

Figure 2 State responses of the closed-loop system

minus2 minus15 minus1 minus05 0 05 1 15 2minus2

minus1

0

1

2

3

4

a

b

Figure 3 Comparison of the feasible regions

This illustrates that themethod obtained in this paper has lessconservatism

6 Conclusions

In this paper the problem of mode-dependent 119867infin

controlfor singular Markovian jump fuzzy systems with time delayis considered This class of systems under considerationis described by T-S fuzzy models The main contributionof this paper is to design state feedback controllers andstatic output feedback controllers which can guarantee thatresulting closed-loop systems are stochastically admissiblewith an119867

infinperformance 120574 by the method of the augmented

matrix Finally two examples are given to demonstrate theeffectiveness of main results obtained here

Conflict of Interests

The authors declare that there is no conflict of interestsregarding the publication of this paper

Mathematical Problems in Engineering 13

Acknowledgments

This work was supported by The National Natural ScienceFoundation of China under Grants nos 61304054 61273003and 61273008 respectively and Science and TechnologyResearch Fund of Liaoning Education Department underGrant no L2013051

References

[1] L Dai Singular Control Systems vol 118 of Lecture Notes inControl and Information Sciences Springer Berlin Germany1989

[2] F L Lewis ldquoA survey of linear singular systemsrdquo CircuitsSystems and Signal Processing vol 5 no 1 pp 3ndash36 1986

[3] S Xu and J Lam ldquoRobust stability and stabilization of discretesingular systems an equivalent characterizationrdquo IEEE Trans-actions on Automatic Control vol 49 no 4 pp 568ndash574 2004

[4] Z Wu and W Zhou ldquoDelay-dependent robust stabilization foruncertain singular systemswith discrete and distributed delaysrdquoJournal of ControlTheory and Applications vol 6 no 2 pp 171ndash176 2008

[5] Y Xia P Shi G Liu and D Rees ldquoRobust mixed 119867infin119867

2

state-feedback control for continuous-time descriptor systemswith parameter uncertaintiesrdquo Circuits Systems and SignalProcessing vol 24 no 4 pp 431ndash443 2005

[6] H Lu W Zhou C Duan and X Qi ldquoDelay-dependent robust119867

infincontrol for uncertain singular time-delay system with

Markovian jumping parametersrdquo Optimal Control Applicationsamp Methods vol 34 no 3 pp 296ndash307 2013

[7] Y Fang and K A Loparo ldquoStochastic stability of jump linearsystemsrdquo IEEE Transactions on Automatic Control vol 47 no 7pp 1204ndash1208 2002

[8] D Yue and Q-L Han ldquoDelay-dependent exponential stabilityof stochastic systems with time-varying delay nonlinearity andMarkovian switchingrdquo IEEETransactions onAutomatic Controlvol 50 no 2 pp 217ndash222 2005

[9] J Xiong and J Lam ldquoStabilization of discrete-time Markovianjump linear systems via time-delayed controllersrdquo Automaticavol 42 no 5 pp 747ndash753 2006

[10] W-H Chen Z-H Guan and P Yu ldquoDelay-dependent stabilityand 119867

infincontrol of uncertain discrete-time Markovian jump

systems with mode-dependent time delaysrdquo Systems amp ControlLetters vol 52 no 5 pp 361ndash376 2004

[11] E-K Boukas Control of Singular Systems with Random AbruptChanges Communications and Control Engineering SpringerBerlin Germany 2008

[12] J Zhang Y Xia and E K Boukas ldquoNew approach to Hinfin

control for Markovian jump singular systemsrdquo IET ControlTheory amp Applications vol 4 no 11 pp 2273ndash2284 2010

[13] J Lam S Zhu S Xu and E-K Boukas ldquoRobust 119867infin

controlof descriptor discrete-time Markovian jump systemsrdquo Interna-tional Journal of Control vol 80 no 3 pp 374ndash385 2007

[14] K Gu V L Kharitonov and J Chen Stability of Time-DelaySystems Birkhauser Basel Switzerland 2003

[15] G Wang Q Zhang and C Yang ldquoDissipative control forsingular Markovian jump systems with time delayrdquo OptimalControl ApplicationsampMethods vol 33 no 4 pp 415ndash432 2012

[16] Z Wu H Su and J Chu ldquoDelay-dependent 119867infin

control forsingular Markovian jump systems with time delayrdquo Optimal

Control Applications and Methods vol 30 no 5 pp 443ndash4612009

[17] C K Ahn ldquoT-S fuzzy119867infinsynchronization for chaotic systems

via delayed output feedback controlrdquo Nonlinear Dynamics vol59 no 4 pp 535ndash543 2010

[18] C K Ahn ldquoFuzzy delayed output feedback synchronizationfor time-delayed chaotic systemsrdquo Nonlinear Analysis HybridSystems vol 4 no 1 pp 16ndash24 2010

[19] H-N Wu and K-Y Cai ldquoMode-independent robust stabiliza-tion for uncertain Markovian jump nonlinear systems via fuzzycontrolrdquo IEEE Transactions on Systems Man and CyberneticsPart B Cybernetics vol 36 no 3 pp 509ndash519 2006

[20] Y Zhang S Xu Y Zou and J Lu ldquoDelay-dependent robuststabilization for uncertain discrete-time fuzzy Markovian jumpsystems with mode-dependent time delaysrdquo Fuzzy Sets andSystems vol 164 pp 66ndash81 2011

[21] A Zhang and H Fang ldquoRobustHinfinfuzzy control for uncertain

Markovian jump nonlinear singular systems with Wiener pro-cessrdquo Journal of Control Theory and Applications vol 8 no 2pp 205ndash210 2010

[22] L Li Q Zhang and B Zhu ldquo119867infin

fuzzy control for nonlin-ear time-delay singular Markovian jump systems with partlyunknown transition ratesrdquo Fuzzy Sets and Systems vol 254 pp106ndash125 2014

[23] J Dong and G-H Yang ldquoStatic output feedback 119867infin

controlof a class of nonlinear discrete-time systemsrdquo Fuzzy Sets andSystems vol 160 no 19 pp 2844ndash2859 2009

[24] Y Zhang C Liu and X Mu ldquoRobust finite-time119867infincontrol of

singular stochastic systems via static output feedbackrdquo AppliedMathematics and Computation vol 218 no 9 pp 5629ndash56402012

[25] J Wang H Wang A Xie and R Lu ldquoDelay-dependent 119867infin

control for singular Markovian jump systems with time delayrdquoNonlinear Analysis Hybrid Systems vol 8 pp 1ndash12 2012

[26] D B Xu Q L Zhang and Y B Hu ldquoReduced-order Hinfin

controller design for uncertain descriptor systemsrdquo Acta Auto-matica Sinica vol 33 no 1 pp 44ndash47 2007

[27] L Xie and C E de Souza ldquoRobust 119867infin

control for linearsystems with norm bounder time-varying uncertaintiesrdquo IEEETransactions on Automatic Control vol 37 no 8 pp 1188ndash11911992

[28] Q-L Han ldquoAbsolute stability of time-delay systemswith sector-bounded nonlinearityrdquo Automatica vol 41 no 12 pp 2171ndash2176 2005

[29] D Yue J Lam and D W C Ho ldquoReliable 119867infin

control ofuncertain descriptor systems with multiple time delaysrdquo IEEProceedings ControlTheory and Applications vol 150 no 6 pp557ndash564 2003

[30] H D Tuan P Apkarian T Narikiyo and Y YamamotoldquoParameterized linear matrix inequality techniques in fuzzycontrol systemdesignrdquo IEEETransactions on Fuzzy Systems vol9 no 2 pp 324ndash332 2001

[31] S-W Kau H-J Lee C-M Yang C-H Lee L Hong and C-HFang ldquoRobust H

infinfuzzy static output feedback control of T-

S fuzzy systems with parametric uncertaintiesrdquo Fuzzy Sets andSystems vol 158 no 2 pp 135ndash146 2007

[32] D Saifia M Chadli S Labiod and T M Guerra ldquoRobust119867

infinstatic output feedback stabilization of T-S fuzzy systems

subject to actuator saturationrdquo International Journal of ControlAutomation and Systems vol 10 no 3 pp 613ndash622 2012

Submit your manuscripts athttpwwwhindawicom

Hindawi Publishing Corporationhttpwwwhindawicom Volume 2014

MathematicsJournal of

Hindawi Publishing Corporationhttpwwwhindawicom Volume 2014

Mathematical Problems in Engineering

Hindawi Publishing Corporationhttpwwwhindawicom

Differential EquationsInternational Journal of

Volume 2014

Applied MathematicsJournal of

Hindawi Publishing Corporationhttpwwwhindawicom Volume 2014

Probability and StatisticsHindawi Publishing Corporationhttpwwwhindawicom Volume 2014

Journal of

Hindawi Publishing Corporationhttpwwwhindawicom Volume 2014

Mathematical PhysicsAdvances in

Complex AnalysisJournal of

Hindawi Publishing Corporationhttpwwwhindawicom Volume 2014

OptimizationJournal of

Hindawi Publishing Corporationhttpwwwhindawicom Volume 2014

CombinatoricsHindawi Publishing Corporationhttpwwwhindawicom Volume 2014

International Journal of

Hindawi Publishing Corporationhttpwwwhindawicom Volume 2014

Operations ResearchAdvances in

Journal of

Hindawi Publishing Corporationhttpwwwhindawicom Volume 2014

Function Spaces

Abstract and Applied AnalysisHindawi Publishing Corporationhttpwwwhindawicom Volume 2014

International Journal of Mathematics and Mathematical Sciences

Hindawi Publishing Corporationhttpwwwhindawicom Volume 2014

The Scientific World JournalHindawi Publishing Corporation httpwwwhindawicom Volume 2014

Hindawi Publishing Corporationhttpwwwhindawicom Volume 2014

Algebra

Discrete Dynamics in Nature and Society

Hindawi Publishing Corporationhttpwwwhindawicom Volume 2014

Hindawi Publishing Corporationhttpwwwhindawicom Volume 2014

Decision SciencesAdvances in

Discrete MathematicsJournal of

Hindawi Publishing Corporationhttpwwwhindawicom

Volume 2014 Hindawi Publishing Corporationhttpwwwhindawicom Volume 2014

Stochastic AnalysisInternational Journal of

Page 2: Research Article Fuzzy Control for Nonlinear Singular Markovian Jump Systems …downloads.hindawi.com/journals/mpe/2015/896515.pdf · 2019-07-31 · Singular systems, also known as

2 Mathematical Problems in Engineering

previous literatures And when using the augmented matrixto design the static output feedback control there are notany crossing terms between system matrices and controllergains so assumptions for the output matrix [23] the equalityconstraint for the output matrix [24] and the boundingtechnique for crossing terms are not necessary therefore theconservatism brought by them will not exist

In this paper the119867infinfuzzy control problem for a class of

nonlinear SMJSs with time delay which can be representedby T-S fuzzy models is considered Our aim is to designfuzzy state feedback controllers and static output feedbackcontrollers for SMJFSs with time delay such that closed-loopsystems are stochastically admissible (regular impulse-freeand stochastically stable) with a prescribed119867

infinperformance

120574 Sufficient criterions are presented in forms of LMIs whichare simple and easy to implement compared with previousliteratures Finally numerical examples are given to illustratethemerit andusability of the approach proposed in this paper

Notations Throughout this paper notations used are fairlystandard for real symmetric matrices 119860 and 119861 the notation119860 ge 119861 (119860 gt 119861) means that the matrix 119860 minus 119861 is positivesemidefinite (positive definite) 119860119879 represents the transposeof the matrix 119860 and 119860minus1 represents the inverse of the matrix119860 120582max119861 (120582min119861) is themaximal (minimal) eigenvalue of thematrix 119861 diagsdot stands for a block-diagonal matrix 119868 is theunit matrix with appropriate dimensions and in a matrixthe term of symmetry is stated by the asterisk ldquolowastrdquo Let R119899

stand for the 119899-dimensional Euclidean space R119899times119898 is the setof all 119899 times 119898 real matrices and sdot denotes the Euclideannorm of vectors Esdot denotes the mathematics expectationof the stochastic process or vector 119871119899

2[0infin) stands for the

space of 119899-dimensional square integrable functions on [0infin)119862119899119889

= 119862([minus119889 0]R119899

) denotes Banach space of continuousvector functions mapping the interval [minus119889 0] into R119899 withthe norm 120601

119889= sup

minus119889le119904le0120601(119904)

2 Basic Definitions and Lemmas

Consider a SMJFS its 119894th fuzzy rule is given by

119877119894 if 1205851(119905) is1198721198941 1205852(119905) is1198721198942 and 120585119897(119905) is119872119894119897

then

119864 (119905) = 119860119894(119903

119905) 119909 (119905) + 119860

119889119894(119903

119905) 119909 (119905 minus 119889) + 119861

119894(119903

119905) 119906 (119905)

+ 119861119908119894(119903

119905) 119908 (119905)

119911 (119905) = 119862119894(119903

119905) 119909 (119905) + 119862

119889119894(119903

119905) 119909 (119905 minus 119889) + 119863

119894(119903

119905) 119906 (119905)

+ 119862119908119894(119903

119905) 119908 (119905)

119909 (119905) = 120601 (119905)

forall119905 isin [minus119889 0] 119894 isin T ≜ 1 2 119896

(1)

where 119909(119905) isin R119899 is the state vector 119906(119905) isin R119898 is the controlinput119908(119905) isin RV is the exogenous disturbance which belongsto 119871V

2[0infin) and 119911(119905) isin R119901 is the controlled output 120601(119905) isin

119862119899119889

is a compatible vector-valued initial function and 119889 is anunknown but constant delay satisfying 119889 isin [0 119889] The scalar

119896 is the number of If-Then rules119872119894119895(119894 isin T 119895 = 1 2 119897)

are fuzzy sets 1205851(119905) minus 120585

119897(119905) are premise variables 119864 isin R119899times119899

may be a singular matrix with rank119864 = 119903 le 119899 119860119894(119903

119905)

119860119889119894(119903

119905) 119861

119894(119903

119905) 119861

119908119894(119903

119905) 119862

119894(119903

119905) 119862

119889119894(119903

119905) 119863

119894(119903

119905) and 119862

119908119894(119903

119905)

are known constant matrices with appropriate dimensions119903

119905 119905 ge 0 is a continuous-time Markovian process with right

continuous trajectories taking values in a finite set given byS = 1 2 119873 with the transition rate matrix Π ≜ 120587

119901119902

satisfying

Pr 119903119905+ℎ= 119902 | 119903

119905= 119901 =

120587119901119902ℎ + 119900 (ℎ) 119901 = 119902

1 + 120587119901119901ℎ + 119900 (ℎ) 119901 = 119902

(2)

where ℎ gt 0 limℎrarr0

119900(ℎ)ℎ = 0 and 120587119901119902ge 0 for 119902 = 119901 is

the transition rate frommode 119901 at time 119905 to 119902 at time 119905+ℎ and120587119901119901= minussum

119873

119902=1119902 =119901120587119901119902

By fuzzy blending the overall fuzzy model is inferred asfollows

119864 (119905) =

119896

sum

119894=1

120582119894(120585 (119905)) (119860

119894(119903

119905) 119909 (119905) + 119860

119889119894(119903

119905) 119909 (119905 minus 119889)

+ 119861119894(119903

119905) 119906 (119905) + 119861

119908119894(119903

119905) 119908 (119905))

119911 (119905) =

119896

sum

119894=1

120582119894(120585 (119905)) (119862

119894(119903

119905) 119909 (119905) + 119862

119889119894(119903

119905) 119909 (119905 minus 119889)

+ 119863119894(119903

119905) 119906 (119905) + 119862

119908119894(119903

119905) 119908 (119905))

119909 (119905) = 120601 (119905)

forall119905 isin [minus119889 0] 119894 isin T ≜ 1 2 119896

(3)

where 120585(119905) = [1205851(119905) 120585

2(119905) sdot sdot sdot 120585

119897(119905)]

119879 120573119894(120585(119905)) =

prod119897

119895=1119872

119894119895(120585

119895(119905)) Letting 120582

119894(120585(119905)) = 120573

119894(120585(119905))sum

119896

119894=1120573119894(120585(119905)) it

follows that 120582119894(120585(119905)) ge 0 sum119896

119894=1120582119894(120585(119905)) = 1

For the notational simplicity in the sequel for eachpossible 119903

119905= 119901 isin S 119860

119894(119903

119905) ≜ 119860

119901119894 119861

119889119894(119903

119905) ≜ 119861

119889119901119894 119862

119889119894(119903

119905) ≜

119862119889119901119894

120582119894(120585(119905)) ≜ 120582

119894 and so on

Definition 1 (see [15 25]) (i) For a given scalar 119889 gt 0 theSMJS with time delay

119864 (119905) = 119860 (119903119905) 119909 (119905) + 119860

119889(119903

119905) 119909 (119905 minus 119889)

119909 (119905) = 120601 (119905)

119905 isin [minus119889 0]

(4)

is said to be regular and impulse-free for any constant timedelay satisfying 119889 isin [0 119889] if pairs (119864 119860(119903

119905)) and (119864 119860(119903

119905) +

119860119889(119903

119905)) are regular and impulse-free

(ii) System (4) is said to be stochastically stable if thereexists a finite number 119872(120601(119905) 119903

0) such that the following

inequality holds

lim119905rarrinfin

Eint119905

0

119909 (119904)2 d119904 | 119903

0 119909 (119904) = 120601 (119904) 119904 isin [minus119889 0]

lt 119872(120601 (119905) 1199030)

(5)

Mathematical Problems in Engineering 3

(iii) System (4) is said to be stochastically admissible if itis regular impulse-free and stochastically stable

Lemma 2 (see [26]) Given matrices 119864119883 gt 0 119884 if 119864119879119883 +

119884Λ119879 is nonsingular there exist matrices 119878 gt 0 119871 such that

119864119878+119871Θ119879

= (119864119879

119883+119884Λ119879

)minus1 where ΛΘ isin R119899times(119899minus119903) such that

119864119879

Λ = 0 119864Θ = 0 rankΛ = rankΘ = 119899 minus 119903119883 119878 isin R119899times119899 and119884 119871 isin R119899times(119899minus119903)

Lemma 3 (see [27]) For matrices 119876 gt 0 119875 and 119877 withappropriate dimensions the following inequality holds

119875119877119879

+ 119877119875119879

le 119877119876119877119879

+ 119875119876minus1

119875119879

(6)

Lemma 4 (see [28]) For any constant matrix 119883 isin R119899times119899 119883 =119883

119879

gt 0 scalar 119903 gt 0 and vector function [minus119903 0] rarr R119899

such that the following integration is well defined then

minus 119903int

0

minus119903

119879

(119905 + 119904)119883 (119905 + 119904) 119889119904

le [119909119879

(119905) 119909119879

(119905 minus 119903)] [

minus119883 119883

119883 minus119883

][

119909 (119905)

119909 (119905 minus 119903)

]

(7)

Lemma 5 (see [29]) Suppose there are piecewise continuousreal square matrices 119860(119905) 119883 and 119876 gt 0 satisfying 119860119879

(119905)119883 +

119883119879

119860(119905) lt 0 for all 119905 Then the following conditions hold(i) 119860(119905) and 119883 are nonsingular(ii) 119860minus1

(119905) le 120575 for some 120575 gt 0

Lemma 6 (see [30]) If the following conditions hold

119872119894119894lt 0 1 le 119894 le 119903

1

119903 minus 1

119872119894119894+

1

2

(119872119894119895+119872

119895119894) lt 0 1 le 119894 = 119895 le 119903

(8)

then the following parameterized matrix inequality holds119903

sum

119894=1

119903

sum

119895=1

120572119894(119905) 120572

119895(119905)119872

119894119895lt 0 (9)

where 120572119894(119905) ge 0 and sum119903

119894=1120572119894(119905) = 1

Based on the parallel distributed compensation thefollowing state feedback controller will be considered here

119906119901(119905) =

119896

sum

119894=1

120582119894119870

119901119894119909 (119905) (10)

where119870119901119894(119901 isin S 119894 isin T) are local controller gains such that

the closed-loop system

119864 (119905) =

119896

sum

119894=1

119896

sum

119895=1

120582119894120582119895((119860

119901119894+ 119861

119901119894119870

119901119895) 119909 (119905)

+ 119860119889119901119894119909 (119905 minus 119889) + 119861

119908119901119894119908 (119905))

119911 (119905) =

119896

sum

119894=1

119896

sum

119895=1

120582119894120582119895((119862

119901119894+ 119863

119901119894119870

119901119895) 119909 (119905)

+ 119862119889119901119894119909 (119905 minus 119889) + 119862

119908119901119894119908 (119905))

119909 (119905) = 120601 (119905)

119905 isin [minus119889 0]

(11)

is stochastically admissible

3 The Design of the StateFeedback 119867

infinController

Firstly the sufficient condition will be given such thatsystem (11) is stochastically admissible Combining (4) and(10) fuzzy closed-loop system (11) can be rewritten in thefollowing form

119864 (119905)

=

119896

sum

119894=1

120582119894(119860

119901119894119909 (119905) + 119860

119889119901119894119909 (119905 minus 119889) + 119861

119908119901119894119908 (119905))

119911 (119905) =

119896

sum

119894=1

120582119894(119862

119901119894119909 (119905) + 119862

119889119901119894119909 (119905 minus 119889) + 119862

119908119901119894119908 (119905))

119909 (119905) =120601 (119905)

119905 isin [minus119889 0]

(12)

where

119864 = [

119864 0

0 0

] isin R(119899+119898)times(119899+119898)

119860119901119894= [

119860119901119894

119861119901119894

119870119901119894minus119868

119898

] isin R(119899+119898)times(119899+119898)

119909 (119905) = [

119909 (119905)

119906 (119905)

] isin R119899+119898

119860119889119901119894

= [

119860119889119901119894

0

0 0

] isin R(119899+119898)times(119899+119898)

119861119908119901119894

= [

119861119908119901119894

0

] isin R(119899+119898)timesV

119862119901119894= [119862

119901119894119863

119901119894] isin R

119901times(119899+119898)

119862119889119901119894

= [119862119889119901119894

0] isin R119901times(119899+119898)

120601 (119905) =

119896

sum

119894=1

120582119894[

120601 (119905)

119870119901119894120601 (119905)

]

(13)

4 Mathematical Problems in Engineering

Remark 7 For systems (11) and (12) it can be seen that

det(119904119864 minus119896

sum

119894=1

119896

sum

119895=1

120582119894120582119895(119860

119901119894+ 119861

119901119894119870

119901119895))

= det(119904[119864 0

0 0

] minus

119896

sum

119894=1

119896

sum

119895=1

120582119894120582119895[

119860119901119894

119861119901119894

119870119901119895minus119868

119898

])

= det(119904[119864 0

0 0

] minus

119896

sum

119894=1

120582119894[

119860119901119894

119861119901119894

119870119901119894minus119868

119898

])

= det(119904119864 minus119896

sum

119894=1

120582119894119860

119901119894)

det(119904119864 minus119896

sum

119894=1

119896

sum

119895=1

120582119894120582119895(119860

119901119894+ 119861

119901119894119870

119901119895+ 119860

119889119901119894))

= det(119904[119864 0

0 0

] minus

119896

sum

119894=1

120582119894[

119860119901119894+ 119860

119889119901119894119861119901119894

119870119901119894

minus119868119898

])

= det(119904119864 minus119896

sum

119894=1

120582119894(119860

119901119894+ 119860

119889119901119894))

(14)

By rank119864 = rank119864 and Definition 1 it can be obtained thatthe regularity and nonimpulse of system (11) are equal to theregularity and nonimpulse of system (12) So the stochasticadmissibility of system (11) can be studied by system (12)

Theorem 8 For a prescribed scalar 119889 gt 0 there exists a statefeedback controller (10) with 119906

119901(119905) = sum

119896

119894=1120582119894119871119901119894119884minus1

119901119909(119905) such

that system (11) when 119908(119905) = 0 is stochastically admissible forany constant time delay 119889 satisfying 119889 isin [0 119889] if there existmatrices 119875

119901gt 0 119876

119901gt 0 119876 gt 0 119885 gt 0 119871

119901119894 119878

119901 119884

1199012 and 119884

1199013

119894 isin T 119901 isin S such that

[

[

[

[

[

[

[

[

[

[

[

[

[

[

[

[

[

[

[

Γ1119901119894

lowast lowast lowast lowast lowast lowast

119871119901119894+ 119884

119879

1199013119861119879

119901119894+ 119884

1199012minus119884

119879

1199013minus 119884

1199013lowast lowast lowast lowast lowast

(

119884119879

119901119860119879

119889119901119894+ 119864119884

119901

+119884119879

119901119864119879

minus 119885

) 0 (

minus119884119879

119901minus 119884

119901+ 119876

119901

minus119884119879

119901119864119879

minus 119864119884119901+ 119885

) lowast lowast lowast lowast

119889119860119901119894119884119901minus 119889119861

1199011198941198841199012

1198891198611199011198941198841199013

119889119860119889119901119894119884119901

minus119885 lowast lowast lowast

119884119901

0 0 0 minus119876119901

lowast lowast

119889119884119901

0 0 0 0 minus119889119876 lowast

[1198681199030]119867

minus1

119872119879

1199010 0 0 0 0 minus119869

119901

]

]

]

]

]

]

]

]

]

]

]

]

]

]

]

]

]

]

]

lt 0 (15)

[

[

(120587119901119901minus 1)119884

119901+ (120587

119901119901minus 1)119884

119879

119901+ 119876 minus 120587

119901119901119876

119901lowast

119872119879

119901minus119879

119901

]

]

lt 0 (16)

where Γ1119901119894

= 120587119901119901119884119879

119901119864119879

+ 119860119901119894119884119901+ 119884

119879

119901119860119879

119901119894minus

119884119879

1199012119861119879

119901119894minus 119861

1199011198941198841199012minus 119884

119879

119901119864119879

minus 119864119884119901+ 119885 119884

119901= (119864119875

119901+

119878119901119877

119879

)119879 119871

119901119894= 119870

119901119894119884119901 119884

1199012= 119884

11990131199012119884119901 119872

119901=

[radic1205871199011119884119879

119901sdot sdot sdot radic120587119901119901minus1

119884119879

119901 radic120587119901119901+1119884119879

119901sdot sdot sdot radic120587119901119873

119884119879

119901] 119879

119901=

diag1198761 119876

119901minus1 119876

119901+1 119876

119873 119869

119901= diagΦ

1 Φ

119901minus1

Φ119901+1 Φ

119873 Φ

119905= [119868

1199030] 119866119864119884

119905119866119879

[119868119903

0] 119877 isin R119899times(119899minus119903) is any

matrix with full column rank and satisfies 119864119877 = 0 and 119866119867are nonsingular matrices that make 119866119864119867 = [

1198681199030

0 0]

Proof From it can be concluded that 119884119901and 119884

1199013are

nonsingular matrices Because 119884119901= (119864119875

119901+ 119878

119901119877

119879

)119879

119884119879

119901119864119879

= 119864119884119901= 119864119875

119901119864119879

ge 0 (17)

Denote119867minus1

119884119901119866119879

= [

11988411990111

11988411990112

11988411990121

11988411990122

] from (17) it is easy to obtainthat 119884

11990112= 0 and 119884

11990111is symmetric then 119867minus1

119884119901119866119879

=

[

11988411990111

0

11988411990121

11988411990122

] So it can be concluded that 11988411990111

and 11988411990122

are non-

singular furthermore 119866minus119879

119884minus1

119901119867 = [

119884minus1

119901110

minus119884minus1

1199012211988411990121

119884minus1

11990111119884minus1

11990122

] Let

119901= [

119884119901

0

minus1198841199012

1198841199013

] So [1198681199030] diag119866 119868

119898119864

119902diag119866119879

119868119898 [

119868119903

0] =

11988411990211

is nonsingular By Lemma 2 119883119901= 119884

minus1

119901= (119864

119879

119875119901+

119878119901119877119879

)119879 where 119875

119901gt 0 119878

119901isin R119899times(119899minus119903) and 119877 isin R119899times(119899minus119903) is a

matrix with full column rank and satisfies 119864119879119877 = 0 Denote119883

1199013≜ 119884

minus1

1199013 119883

1199012≜

1199012= 119884

minus1

11990131198841199012119884minus1

119901 and 119883

119901≜

minus1

119901=

[

119883119901

0

1198831199012

1198831199013

] So

[

[

[

119867minus119879

[

119868119903

0

]

0119898times119903

]

]

]

([1198681199030] 119866119864119884

119902119866119879

[

119868119903

0

])

minus1

sdot [[1198681199030]119867

minus1

0119903times119898] = diag 119867minus119879

119868119898

Mathematical Problems in Engineering 5

sdot[

[

[

[

119884minus1

119902110

0 0

] 0

0 0119898

]

]

]

diag 119867minus1

119868119898 = 119864

119879

minus1

119902

= 119864119879

119883119902

(18)

Denote 119876119901≜ 119876

minus1

119901 119876 ≜ 119876

minus1 and 119885 ≜ 119885

minus1

By Lemma 3 itcan be obtained that

[

minus119864119879

119885119864 119864119879

119885119864

119864119879

119885119864 minus119864119879

119885119864

]

= [

119868119899

minus119868119899

] (minus119864119879

119885119864) [119868119899minus119868

119899]

le [

119868119899

minus119868119899

] (minus119864119879

119883119901minus 119883

119879

119901119864 + 119883

119879

119901119885119883

119901) [119868

119899minus119868

119899]

(19)

Now pre- and postmultiplying by diag119883119879

119901 119883

119879

119901 119885 119868

119899

119868119899 119868

119903 119868

119903⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟

119873minus1

and its transpose by Schur complement lemma

and (18)-(19) it is easy to see that

[

[

[

[

Γ1119901119894

lowast lowast

119864119879

[119885 0] 119864 + [119860119879

1198891199011198940]119883

119901minus119864

119879

119885119864 minus 119876119901lowast

119889119885 [119860119901119894119861119901119894] 119889119885119860

119889119901119894minus119885

]

]

]

]

lt 0

(20)

where Γ1119901119894= sum

119873

119902=1120587119901119902119864119879

119883119901+119883

119879

119901119860

119901119894+119860

119879

119901119894119883

119901119894+diag119876

119901 0+

119889 diag119876 0 minus 119864119879 diag119885 0119864 Pre- and postmultiplying bydiag119883119879

119901 119868

119903 119868

119903⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟

119873minus1

and its transposition by Schur comple-

ment lemma it can be seen that

119873

sum

119902=1

120587119901119902119876

119902lt 119876 (21)

From (20) it can be concluded that

119896

sum

119894=1

120582119894(120587

119901119901119864119879

119883119901+ 119860

119879

119901119894119883

119901+ 119883

119879

119901119860

119901119894

minus 119864119879 diag 119885 0 119864) lt 0

(22)

On the other hand diag119866 119868119898119864 diag119867 119868

119898 = [

[1198681199030

0 0

] 0

0 0119898

]Then

119864119879

119883119901= 119883

119879

119901119864 = [

119864119879

0

0 0

][

119883119901

0

1198831199012119883

1199013

] = [

119864119879

1198831199010

0 0

]

= [

119864119879

119875119901119864 0

0 0

] ge 0

(23)

Denote 119860119901(119905) ≜ (sum

119896

119894=1120582119894119860

119901119894) = [

1198601199011(119905)

1198601199012(119905)

1198601199013(119905)

1198601199014(119905)

] from (22) itcan be obtained that

119883119879

1199013119860

1199014(119905) + 119860

119879

1199014(119905) 119883

1199013lt 0 (24)

for every 119901 isin S which implies that 1198601199014(119905) is nonsingular

Thus the pair (119864 sum119896

119894=1120582119894119860

119901119894) is regular and impulse-free for

every 119901 isin S By (20) it is easy to see that

[

Γ1119901119894

lowast

119864119879

[119885 0] 119864 + [119860119879

1198891199011198940]119883

119901minus119864

119879

119885119864 minus 119876119901

] lt 0 (25)

Pre- and postmultiplying (25) by [ 119868119899+119898

[119868119899

0

]

0 119868119899

] and its trans-pose it can be obtained that

119873

sum

119902=1

120587119901119902119864119879

119883119901+ 119883

119879

119901(119860

119901119894+ 119860

119889119901119894)

+ (119860119901119894+ 119860

119889119901119894)

119879

119883119901lt 0

(26)

Hence

119896

sum

119894=1

120582119894(120587

119901119901119864119879

119883119901+ 119883

119879

119901(119860

119901119894+ 119860

119889119901119894)

+ (119860119901119894+ 119860

119889119901119894)

119879

119883119901) lt 0

(27)

Equation (27) implies that the pair (119864 sum119896

119894=1120582119894(119860

119901119894+ 119860

119889119901119894))

is regular and impulse-free for every 119901 isin S Thus byDefinition 1 system (12) is regular and impulse-free ByRemark 7 this implies that system (11) is regular and impulse-free

Now it will be shown that system (11) is stochasticallystable Define a new process (119909

119905 119903

119905) 119905 ge 0 by 119909

119905= 119909(119905 +

120579) minus2119889 le 120579 le 0 then (119909119905 119903

119905) 119905 ge 119889 is a Markovian process

with the initial state (120601(sdot) 1199030) Now for 119905 ge 119889 choose the

following stochastic Lyapunov-Krasovskii candidate for thissystem

119881 (119909119905 119901 119905) =

4

sum

119898=1

119881119898(119909

119905 119901 119905) (28)

where

1198811(119909

119905 119901 119905) = 119909

119879

(119905) 119864119879

119875119901119864119909 (119905) = 119909

119879

(119905) 119864119879

119883119901119909 (119905)

= 119909119879

(119905) 119864119879

119883119901119909 (119905)

1198812(119909

119905 119901 119905) = int

119905

119905minus119889

119909119879

(119904) 119876119901119909 (119904) d119904

1198813(119909

119905 119901 119905) = 119889int

0

minus119889

int

119905

119905+120579

119879

(119904) 119864119879

119885119864 (119904) d119904 d120579

1198814(119909

119905 119901 119905) = int

0

minus119889

int

119905

119905+120579

119909119879

(119904) 119876119909 (119904) d119904 d120579

(29)

6 Mathematical Problems in Engineering

Let L be the weak infinitesimal generator of the randomprocess (119909

119905 119901) 119905 ge 0 Then for each 119901 isin S

L119881 (119909119905 119901 119905) le 2119909

119879

(119905) 119883119879

119901119864 (119905)

+ 119909119879

(119905) (

119873

sum

119902=1

120587119901119902119864119879

119883119902)119909 (119905)

+ 119909119879

(119905) 119876119901119909 (119905)

minus 119909119879

(119905 minus 119889)119876119901119909 (119905 minus 119889)

+ int

119905

119905minus119889

119909119879

(119904) (

119873

sum

119902=1

120587119901119902119876

119902)119909 (119904) d119904

+ 119889119909119879

(119905) 119876119909 (119905)

minus int

119905

119905minus119889

119909119879

(119904) 119876119909 (119904) d119904

+ 119889

2

119879

(119905) 119864119879

119885119864 (119905)

minus 119889int

119905

119905minus119889

119879

(119904) 119864119879

119885119864 (119904) d119904

(30)

From (21) it is clear that

int

119905

119905minus119889

119909119879

(119904) (

119873

sum

119902=1

120587119901119902119876

119902)119909 (119904) d119904

lt int

119905

119905minus119889

119909119879

(119904) 119876119909 (119904) d119904

(31)

From Lemma 4 it follows that

minus 119889int

119905

119905minus119889

119879

(119904) 119864119879

119885119864 (119904) d119904

le [

119909 (119905)

119909 (119905 minus 119889)

]

119879

[

minus119864119879

119885119864 119864119879

119885119864

119864119879

119885119864 minus119864119879

119885119864

][

119909 (119905)

119909 (119905 minus 119889)

]

(32)

So it can be concluded that

L119881 (119909119905 119901 119905) le

119896

sum

119894=1

120578119879

(119905) Φ119901119894120578 (119905) (33)

where

120578119879

(119905) = [119909119879

(119905) 119909119879

(119905 minus 119889)]

Φ119901119894= [

Υ1119901119894

lowast

Υ2119901119894

Υ3119901119894

]

Υ1119901119894= Γ

1119901119894+ [

119860119879

119901119894

119861119879

119901119894

]119889

2

119885 [119860119901119894119861119901119894]

Υ3119901119894= minus119876

119901minus 119864

119879

119885119864 + 119860119879

119889119901119894119889

2

119885119860119889119901119894

Υ2119901119894= 119864

119879

[119885 0] 119864 + [119860119879

1198891199011198940]119883

119901

+ 119860119879

119889119901119894119889

2

119885 [119860119901119894119861119901119894]

(34)

Using (20) it is easy to see that there exists a scalar 120581 gt 0

such that for every 119901 isin S L119881(119909119905 119901 119905) le minus120581119909(119905)

2 where120581 = min

119894isinT119901isinS(120582min(minusΦ119901119894))

So for 119905 ge 119889 by Dynkinrsquos formula it can be obtained that

E 119881 (119909119905 119901 119905) minusE 119881 (119909

119889 119903

119889 119889)

le minus120581Eint119905

119889

119909 (119904)2 d119904

(35)

which yields

Eint119905

119889

119909 (119904)2 d119904 le 120581minus1E 119881 (119909

119889 119903

119889 119889) (36)

Because 119866119864119867 = [1198681199030

0 0] denote

119860119901(119905) ≜

119896

sum

119894=1

119896

sum

119895=1

120582119894120582119895(119860

119901119894+ 119861

119901119894119870

119901119895)

= [

1198601199011(119905) 119860

1199012(119905)

1198601199013(119905) 119860

1199014(119905)

]

=

[

[

[

[

[

[

119896

sum

119894=1

119896

sum

119895=1

120582119894120582119895119860

1199011198941198951

119896

sum

119894=1

119896

sum

119895=1

120582119894120582119895119860

1199011198941198952

119896

sum

119894=1

119896

sum

119895=1

120582119894120582119895119860

1199011198941198953

119896

sum

119894=1

119896

sum

119895=1

120582119894120582119895119860

1199011198941198954

]

]

]

]

]

]

119860119889119901(119905) ≜

119896

sum

119894=1

120582119894119860

119889119901119894= [

1198601198891199011

(119905) 1198601198891199012

(119905)

1198601198891199013

(119905) 1198601198891199014

(119905)

]

=

[

[

[

[

[

[

119896

sum

119894=1

120582119894119860

1198891199011198941

119896

sum

119894=1

120582119894119860

1198891199011198942

119896

sum

119894=1

120582119894119860

1198891199011198943

119896

sum

119894=1

120582119894119860

1198891199011198944

]

]

]

]

]

]

(37)

By the regularity and nonimpulse of system (11) 1198601199014(119905) is

nonsingular for each 119901 isin S set 119866119901= [

119868119903minus1198601199012(119905)119860minus1

1199014(119905)

0 119860minus1

1199014(119905)

]119866It is easy to obtain

119866119901119864119867 = [

1198681199030

0 0

]

119866119901119860

119901(119905)119867 = [

1198601199011(119905) 0

1198601199013(119905) 119868

119899minus119903

]

119866119901119860

119901(119905)119867 = [

1198601199011(119905) 0

1198601199013(119905) 119868

119899minus119903

]

(38)

Mathematical Problems in Engineering 7

where

1198601199011(119905) = 119860

1199011(119905) minus 119860

1199012(119905) 119860

minus1

1199014(119905) 119860

1199013(119905)

1198601199013(119905) = 119860

minus1

1199014(119905) 119860

1199013(119905)

1198601198891199011

(119905) = 1198601198891199011

(119905) minus 1198601199012(119905) 119860

minus1

1199014(119905) 119860

1198891199013(119905)

1198601198891199012

(119905) = 1198601198891199012

(119905) minus 1198601199012(119905) 119860

minus1

1199014(119905) 119860

1198891199014(119905)

1198601198891199013

(119905) = 119860minus1

1199014(119905) 119860

1198891199013(119905)

1198601198891199014

(119905) = 119860minus1

1199014(119905) 119860

1198891199014(119905)

(39)

Then for each 119901 isin S system (11) is equal to

1(119905) = 119860

1199011(119905) 120595

1(119905) + 119860

1198891199011(119905) 120595

1(119905 minus 119889)

+ 1198601198891199012

(119905) 1205952(119905 minus 119889)

minus1205952(119905) = 119860

1199013(119905) 120595

1(119905) + 119860

1198891199013(119905) 120595

1(119905 minus 119889)

+ 1198601198891199014

(119905) 1205952(119905 minus 119889)

120595 (119905) = 120593 (119905) = 119867minus1

119909 (119905)

119905 isin [minus119889 0]

(40)

where 120595(119905) = [ 1205951(119905)1205952(119905)] = 119867

minus1

119909(119905)For any 119905 ge 0 using Lemma 5 there exists a scalar 120575

119901gt 0

such that 1198601199014(119905) lt 120575

119901 and 120582

119894(120585(119905)) ge 0 andsum119896

119894=1120582119894(120585(119905)) =

1 it follows from (40) that10038171003817100381710038171205951(119905)1003817100381710038171003817

le10038171003817100381710038171205951(0)1003817100381710038171003817

+ 1198961int

119905

0

[10038171003817100381710038171205951(119904)1003817100381710038171003817+10038171003817100381710038171205951(119904 minus 119889)

1003817100381710038171003817+10038171003817100381710038171205952(119904 minus 119889)

1003817100381710038171003817] d119904

(41)

where

1198961= max

119901isinSmax119894119895isinT

10038171003817100381710038171003817119860

1199011198941198951

10038171003817100381710038171003817

+ 120575119901max119894119895isinT

10038171003817100381710038171003817119860

1199011198941198952

10038171003817100381710038171003817max119894119895isinT

10038171003817100381710038171003817119860

1199011198941198953

10038171003817100381710038171003817max119894isinT

10038171003817100381710038171003817119860

1198891199011198941

10038171003817100381710038171003817

+ 120575119901max119894119895isinT

10038171003817100381710038171003817119860

1199011198941198952

10038171003817100381710038171003817max119894119895isinT

10038171003817100381710038171003817119860

1198891199011198943

10038171003817100381710038171003817max119894isinT

10038171003817100381710038171003817119860

1198891199011198942

10038171003817100381710038171003817

+ 120575119901max119894119895isinT

10038171003817100381710038171003817119860

1199011198941198952

10038171003817100381710038171003817max119894119895isinT

10038171003817100381710038171003817119860

1198891199011198944

10038171003817100381710038171003817

(42)

Then for any 0 le 119905 le 119889

10038171003817100381710038171205951(119905)1003817100381710038171003817le (2119896

1119889 + 1)

10038171003817100381710038171205931003817100381710038171003817119889+ 119896

1int

119905

0

10038171003817100381710038171205951(119904)1003817100381710038171003817d119904 (43)

Applying the Gronwall-Bellman lemma it can be obtainedfor any 0 le 119905 le 119889 that

10038171003817100381710038171205951(119905)1003817100381710038171003817le (2119896

1119889 + 1)

100381710038171003817100381712059310038171003817100381710038171198891198901198961119889

(44)

Thus

sup0le119904le119889

10038171003817100381710038171205951(119904)1003817100381710038171003817

2

le (21198961119889 + 1)

2 10038171003817100381710038171205931003817100381710038171003817

2

11988911989021198961119889

(45)

It can be seen from (40) that

sup0le119904le119889

10038171003817100381710038171205952(119904)1003817100381710038171003817

2

le 1198962

2[(2119896

1119889 + 1) 119890

1198961119889

+ 2]

210038171003817100381710038171205931003817100381710038171003817

2

119889 (46)

where 1198962= max

119901isinS120575119901max119894119895isinT1198601199011198941198953

120575119901max

119894isinT1198601198891199011198943

120575119901max

119894isinT1198601198891199011198944 Hence

sup0le119904le119889

1003817100381710038171003817120595 (119904)

1003817100381710038171003817

2

le sup0le119904le119889

10038171003817100381710038171205951(119904)1003817100381710038171003817

2

+ sup0le119904le119889

10038171003817100381710038171205952(119904)1003817100381710038171003817

2

le 1198963

10038171003817100381710038171205931003817100381710038171003817

2

119889

(47)

where 1198963= (2119896

1119889+1)

2

11989021198961119889

+1198962

2[(2119896

1119889+1)119890

1198961119889

+2]2Therefore

sup0le119904le119889

119909 (119904)2

le 1198963119867

210038171003817100381710038171003817119867

minus110038171003817100381710038171003817

2 10038171003817100381710038171206011003817100381710038171003817

2

119889 (48)

Note that

int

0

minus119889

int

119905

119905+120579

119909119879

(119904) 119876119909 (119904) d119904 d120579 le 119889int119905

119905minus119889

119909119879

(119904) 119876119909 (119904) d119904

int

0

minus119889

int

119905

119905+120579

119879

(119904) 119864119879

119885119864 (119904) d119904 d120579

le 119889int

119905

119905minus119896119889

119879

(119904) 119864119879

119885119864 (119904) d119904

(49)

Then from (48) and (28) it can be obtained that there existsa scalar 120588 such that

119881 (119909119889 119903

119889 119889) le 120588

10038171003817100381710038171206011003817100381710038171003817

2

119889 (50)

This together with (36) and (48) implies that there exists ascalar ] such that

Eint119905

0

119909 (119904)2 d119904 = Eint

119889

0

119909 (119904)2 d119904

+Eint119905

119889

119909 (119904)2 d119904

le ]E 10038171003817100381710038171206011003817100381710038171003817

2

119889

(51)

Considering this andDefinition 1 system (11) is stochasticallystable for any constant delay 119889 satisfying 119889 isin [0 119889]Thereforesystem (11) is stochastically admissible This completes theproof

In the following a set of sufficient conditions will bedeveloped under which the considered system is guaranteedto be stochastically admissible with an119867

infinperformance

Definition 9 System (11) is said to be stochastically admissiblewith an 119867

infinperformance 120574 if it is stochastically admissible

when 119908(119905) = 0 and under zero initial condition for nonzero119908(119905) isin 119871

V2[0infin)

Eintinfin

0

119911119879

(119905) 119911 (119905) d119905 le 1205742 intinfin

0

119908119879

(119905) 119908 (119905) d119905 (52)

The following result can be presented

8 Mathematical Problems in Engineering

Theorem 10 For a prescribed scalar 119889 gt 0 there exists astate feedback controller (10) with 119906

119901(119905) = sum

119896

119894=1120582119894119871119901119894119884minus1

119901119909(119905)

such that system (11) is stochastically admissible with an 119867infin

performance 120574 for any constant time delay 119889 satisfying 119889 isin

[0 119889] if there exist matrices 119875119901gt 0 119876

119901gt 0 119876 gt 0 119885 gt 0

119871119901119894 119878

119901 119884

1199012 and 119884

1199013 119894 isin T 119901 isin S such that and

[

Ξ1199011198941

lowast

Ξ1199011198942

Ξ1199013

] lt 0 (53)

where

Ξ1199011198941=

[

[

[

[

[

[

[

[

[

[

[

[

[

[

[

Γ1119901119894

lowast lowast lowast lowast lowast

119871119901119894+ 119884

119879

1199013119861119879

119901119894+ 119884

1199012minus119884

119879

1199013minus 119884

1199013lowast lowast lowast lowast

(

119884119879

119901119860119879

119889119901119894+ 119864119884

119901

+119884119879

119901119864119879

minus 119885

) 0 (

minus119884119879

119901minus 119884

119901+ 119876

119901

minus119884119879

119901119864119879

minus 119864119884119901+ 119885

) lowast lowast lowast

119889119860119901119894119884119901minus 119889119861

1199011198941198841199012

1198891198611199011198941198841199013

119889119860119889119901119894119884119901

minus119885 lowast lowast

119861119879

1199081199011198940 0 0 minus120574

2

119868 lowast

119862119901119894119884119901minus 119863

1199011198941198841199012

1198631199011198941198841199013

119862119889119901119894119884119901

0 119862119908119901119894

minus119868

]

]

]

]

]

]

]

]

]

]

]

]

]

]

]

Ξ1199012=

[

[

[

[

119884119901

0 0 0 0 0

119889119884119901

0 0 0 0 0

[1198681199030]119867

minus1

119872119879

1199010 0 0 0 0

]

]

]

]

Ξ1199013= diag minus119876

119901 minus119889119876 minus119869

119901

(54)

and the other notations are the same as in Theorem 8

Proof FromTheorem 8 when119908(119905) = 0 system (11) is stochas-tically admissible Let

119869119911119908(119905) = Eint

119905

0

[119911119879

(119904) 119911 (119904) minus 1205742

119908119879

(119904) 119908 (119904)] d119904 (55)

Under zero initial condition it is easy to see that

119869119911119908(119905) le Eint

119905

0

[119911119879

(119904) 119911 (119904) minus 1205742

119908119879

(119904) 119908 (119904)

+L119881 (119909119904 119901 119904)] d119904

le Eint119905

0

119896

sum

119894=1

120582119894[120589

119879

(119904) (Ω119901119894+ Θ

119879

119901119894Θ

119901119894) 120589 (119904)] d119904

(56)

where

120589119879

(119905) = [119909119879

(119905) 119909119879

(119905 minus 119889) 119908119879

(119905)]

Ω119901119894=

[

[

[

[

Υ1119901119894

lowast lowast

Υ2119901119894

Υ3119901119894

lowast

[119861119879

1199081199011198940]119883

1199010 minus120574

2

119868

]

]

]

]

Θ119901119894= [119862

119901119894119862119889119901119894

119862119908119901119894]

(57)

and notations of Υ1119901119894

Υ2119901119894

and Υ3119901119894

are the same as inTheorem 8 Hence by Schur complement lemma and using

the similar method in the proof of Theorem 8 from and(53) it can be obtained that 119869

119911119908(119905) lt 0 for all 119905 gt 0

Therefore for any nonzero 119908(119905) isin 119871V2[0infin) (52) holds

Hence according to Definition 9 the system is stochasticallyadmissible with an 119867

infinperformance 120574 This completes the

proof

Remark 11 Compared with methods in [21 22] because ofthe method of the augmented matrix adopted in Theorems8 and 10 the number of LMIs needed to solve is relativelysmall in this paper When the value of 119896 is relatively largethe quality of the computation is greatly reduced some newrelaxation matrices added will reduce the conservatism ofcontrol conditions compared with previous literatures whichcan be seen from Example 2

4 The Design of the Static OutputFeedback Controller

When 119903119905= 119901 isin S consider the overall SMJFS as follows

119864 (119905) =

119896

sum

119894=1

120582119894(119860

119901119894119909 (119905) + 119860

119889119901119894119909 (119905 minus 119889) + 119861

119901119894119906 (119905)

+ 119861119908119901119894119908 (119905))

119910 (119905) =

119896

sum

119894=1

120582119894119862119910119901119894119909 (119905)

Mathematical Problems in Engineering 9

119911 (119905) =

119896

sum

119894=1

120582119894(119862

119901119894119909 (119905) + 119862

119889119901119894119909 (119905 minus 119889) + 119863

119901119894119906 (119905)

+ 119862119908119901119894119908 (119905))

119909 (119905) = 120601 (119905)

forall119905 isin [minus119889 0] 119894 isin T ≜ 1 2 119896

(58)

where 119910(119905) isin R1199011 is the system output 119862

119889119901119894(119894 isin S) are

known constant matrices with appropriate dimensions andthe other notations are the same as in (3)

The following static output feedback controller will beconsidered here

119906119901(119905) =

119896

sum

119894=1

120582119894119870

119901119894119910 (119905) (59)

where119870119901119894(119901 isin S 119894 isin T) are local controller gains such that

the closed-loop system is

119864 (119905) =

119896

sum

119894=1

119896

sum

119895=1

119896

sum

119904=1

120582119894120582119895120582119904((119860

119901119894+ 119861

119901119894119870

119901119895119862119910119901119904) 119909 (119905) + 119860

119889119901119894119909 (119905 minus 119889) + 119861

119908119901119894119908 (119905))

119911 (119905) =

119896

sum

119894=1

119896

sum

119895=1

119896

sum

119904=1

120582119894120582119895120582119904((119862

119901119894+ 119863

119901119894119870

119901119895119862119910119901119904) 119909 (119905) + 119862

119889119901119894119909 (119905 minus 119889) + 119862

119908119901119894119908 (119905))

(60)

It is difficult to drive LMI-based conditions of the stochas-tic stabilization by employing the static output feedbackcontrol approach due to the appearance of crossing termsbetween system matrices and control gains And system (60)can be rewritten in the following form

119864119909 (119905) =

119896

sum

119894=1

119896

sum

119895=1

120582119894120582119895(Λ

119901119894119895119909 (119905) + 119861

119908119901119894119908 (119905))

119911 (119905) =

119896

sum

119894=1

119896

sum

119895=1

120582119894120582119895(119862

119901119894119895119909 (119905) + 119862

119908119901119894119908 (119905))

(61)

where

119864 = [

119864 0

0 0

] isin R(119899+1199011)times(119899+119901

1)

119862119901119894119895= [119862

119901119894119863

119901119894119870

119901119895]

119860119889119901119894

= [

119860119889119901119894

0

0 0

] isin R(119899+1199011)times(119899+119901

1)

119909 (119905) = [

119909 (119905)

119910 (119905)

]

119861119908119901119894

= [

119861119908119901119894

0

] isin R(119899+1199011)timesV

Λ119901119894119895= [

119860119901119894

119861119901119894119870

119901119895

119862119910119901119894

minus119868

]

(62)

Remark 12 For systems (60) and (61) it can be seen that

det(119904119864 minus119896

sum

119894=1

119896

sum

119895=1

119896

sum

119904=1

120582119894120582119895120582119904(119860

119901119894+ 119861

119901119894119870

119901119895119862119910119901119904))

= det(119904119864 minus119896

sum

119894=1

119896

sum

119895=1

120582119894120582119895Λ

119901119894119895)

det(119904119864

minus

119896

sum

119894=1

119896

sum

119895=1

119896

sum

119904=1

120582119894120582119895120582119904(119860

119901119894+ 119861

119901119894119870

119901119895119862119910119901119904

+ 119860119889119901119894))

= det(119904119864 minus119896

sum

119894=1

119896

sum

119895=1

120582119894120582119895(Λ

119901119894119895+ 119860

119889119901119894))

(63)

As the discussion in Remark 7 the stochastic admissibility ofsystem (60) can be studied by means of system (61)

Theorem 13 There exists an output feedback controller (59)with controller gains 119870

119901119894= 119871

119901119894119884minus1

1199012(119901 isin S 119894 isin T) such that

system (60) with 119908(119905) = 0 is stochastically admissible if thereexist matrices 119875

119901gt 0 119876

119901gt 0 119876 gt 0 119885 gt 0 119871

119901119894 119878

119901 and 119884

1199012

119901 isin S 1 le 119894 = 119895 le 119896 such that and

Θ119901119894119894lt 0

1

119896 minus 1

Θ119901119894119894+

1

2

(Θ119901119894119895+ Θ

119901119895119894) lt 0

(64)

where

10 Mathematical Problems in Engineering

Θ119901119894119895=

[

[

[

[

[

[

[

[

[

[

[

[

[

[

[

[

[

[

[

Γ119901119894119895

lowast lowast lowast lowast lowast lowast

119871119879

119901119895119861119879

119901119894+ 119862

119910119901119894119884119901

minus119884119879

1199012minus 119884

1199012lowast lowast lowast lowast lowast

(

119884119879

119901119860119879

119889119901119894+ 119864119884

119901

119884119879

119901119864119879

minus 119885

) 0 Σ119901

lowast lowast lowast lowast

119889119860119901119894119884119901

119889119861119901119894119871119901119895

119889119860119889119901119894119884119901minus119885 lowast lowast lowast

119884119901

0 0 0 minus119876119901

lowast lowast

119889119884119901

0 0 0 0 minus119889119876 lowast

[1198681199030]119867

minus1

119872119879

1199010 0 0 0 0 minus119869

119901

]

]

]

]

]

]

]

]

]

]

]

]

]

]

]

]

]

]

]

(65)

Γ119901119894119895

= 120587119901119901119884119879

119901119864119879

+ 119860119901119894119884119901+ 119884

119879

119901119860119879

119901119894minus 119884

119879

119901119864119879

minus 119864119884119901+ 119885

Σ119901= minus119884

119879

119901minus 119884

119901+ 119876

119901minus 119884

119879

119901119864119879

minus 119864119884119901+ 119885 119871

119901119894= 119870

1199011198941198841199012

119884119901= (119864119875

119901+ 119878

119901119877

119879

)119879 119877 isin R119899times(119899minus119903) is any matrix with

full column rank and satisfies 119864119877 = 0 119866119867 are nonsingularmatrices that make 119866119864119867 = [

1198681199030

0 0] and the other notations are

the same as in Theorem 8

Proof Let 119901= [

119884119901

0

0 1198841199012

] Using Lemma 6 the proof processis similar to Theorem 8

Theorem 14 For a prescribed scalar 119889 gt 0 there exists anoutput feedback controller (59) with controller gains 119870

119901119894=

119871119901119894119884minus1

1199012(119901 isin S 119894 isin T) such that system (60) is stochastically

admissible with an 119867infin

performance 120574 for any constant timedelay 119889 satisfying 119889 isin [0 119889] if there exist matrices 119875

119901gt 0

119876119901gt 0 119876 gt 0 119885 gt 0 119871

119901119894 119878

119901 and 119884

1199012 119901 isin S 1 le 119894 = 119895 le 119896

such that and

Δ119901119894119894lt 0

1

119896 minus 1

Δ119901119894119894+

1

2

(Δ119901119894119895+ Δ

119901119895119894) lt 0

(66)

where

Δ119901119894119895=

[

[

[

[

[

[

[

[

[

[

[

[

[

[

[

[

[

[

[

[

[

[

[

[

Γ119901119894119895

lowast lowast lowast lowast lowast lowast lowast lowast

119871119879

119901119861119879

119901119894+ 119862

119910119901119894119884119901

minus119884119879

1199012minus 119884

1199012lowast lowast lowast lowast lowast lowast lowast

(

119884119879

119901119860119879

119889119901119894+ 119864119884

119901

+119884119879

119901119864119879

minus 119885

) 0 Σ119901

lowast lowast lowast lowast lowast lowast

119889119860119901119894119884119901

119889119861119901119894119871119901119895

119889119860119889119901119894119884119901minus119885 lowast lowast lowast lowast lowast

119861119879

1199081199011198940 0 0 minus120574

2

119868 lowast lowast lowast lowast

119862119901119894119884119901

119863119901119894119871119901119895

119862119889119901119894119884119901

0 119862119908119901119894

minus119868 lowast lowast lowast

119884119901

0 0 0 0 0 minus119876119901

lowast lowast

119889119884119901

0 0 0 0 0 0 minus119889119876 lowast

[1198681199030]119867

minus1

119872119879

1199010 0 0 0 0 0 0 minus119869

119901

]

]

]

]

]

]

]

]

]

]

]

]

]

]

]

]

]

]

]

]

]

]

]

]

(67)

and the other notations are the same as in Theorem 13

Remark 15 Compared with the method in [31 32] becauseof the augmented matrix adopted in Theorems 13 and 14 thenumber of LMIs needed to solve is greatly decreased Whenthe value of 119896 is relatively large the computational complexitywill be reduced On the other hand by the augmentedmatrixthere are not any crossing terms between system matricesand controller gains so assumptions for the output matrix

[23] the equality constraint for the output matrix [24] andthe bounding technique for crossing terms are not necessaryhere therefore the conservatism brought by them will nothappen

5 Numerical Examples

Two examples will be given to illustrate the validity ofdeveloped methods

Mathematical Problems in Engineering 11

Example 1 To illustrate the 119867infin

controller synthesis thefollowing nonlinear time delay system is considered

(1 + 119886 cos 120579 (119905)) 120579 (119905) = minus119887 1205793 (119905) + 119888120579 (119905) + 119888119889(119905 minus 119889)

+ 120575 (119903119905) 119890119906 (119905) + 119891119908 (119905)

(68)

The range of 120579(119905) is assumed to satisfy | 120579(119905)| lt 120595 120595 = 2

119886 = 119887 = 119890 = 119891 = 1 119888 = minus1 119888119889= 08 119889 isin [0 119889] 119889 = 03

and 119906(119905) is the control input 119908(119905) = cos(05119905)119890minus001119905 is thedisturbance input 119903

119905is a Markovian process taking values in

a finite set 1 2 3 120575(1) = 1 120575(2) = 08 120575(3) = 05 and theoutput vector 119911(119905) = 120579(119905)

Choose the vector 119909(119905) = [1199091(119905) 119909

2(119905) 119909

3(119905)]

119879 with1199091(119905) = 120579(119905) 119909

2(119905) =

120579(119905) and 119909

3(119905) =

120579(119905) Then the system

is described by

[

[

[

1 0 0

0 1 0

0 0 0

]

]

]

(119905)

=

[

[

[

[

0 1 0

0 0 1

119888 minus1198871199092

2(119905) minus1 minus 119886 cos119909

1(119905)

]

]

]

]

119909 (119905)

+[

[

[

0 0 0

0 0 0

1198881198890 0

]

]

]

119909 (119905 minus 119889) +[

[

[

0

0

120575 (119903119905) 119890

]

]

]

119906 (119905)

+[

[

[

0

0

119891

]

]

]

119908 (119905)

(69)

It can be expressed exactly by the following fuzzy singularMarkovian jump form

119864 (119905) =

3

sum

119894=1

120582119894(119860

119901119894119909 (119905) + 119860

119889119901119894119909 (119905 minus 119889) + 119861

119901119894119906 (119905)

+ 119861119908119901119894119908 (119905))

119911 (119905) =

3

sum

119894=1

120582119894119862119901119894119909 (119905)

119909 (119905) = 120601 (119905)

119905 isin [minus119889 0] 119901 isin 1 2 3

(70)

where

119864 =[

[

[

1 0 0

0 1 0

0 0 0

]

]

]

1198601199011=

[

[

[

[

0 1 0

0 0 1

119888 minus119887 (1205952

+ 2) 119886 minus 1

]

]

]

]

1198601199012=

[

[

[

[

0 1 0

0 0 1

119888 0 minus119886 minus 1 minus 1198861205952

]

]

]

]

1198601199013=[

[

[

0 1 0

0 0 1

119888 0 119886 minus 1

]

]

]

1198601198891199011

= 1198601198891199012

= 1198601198891199013

=[

[

[

0 0 0

0 0 0

1198881198890 0

]

]

]

11986111= 119861

12= 119861

13=[

[

[

0

0

119890

]

]

]

11986121= 119861

22= 119861

23=[

[

[

0

0

08119890

]

]

]

11986131= 119861

32= 119861

33=[

[

[

0

0

05119890

]

]

]

1198611199081199011

= 1198611199081199012

= 1198611199081199013

=[

[

[

0

0

119891

]

]

]

1198621199011= 119862

1199012= 119862

1199013= [1 0 0]

1205821=

1199092

2(119905)

1205952+ 2

1205822=

1 + cos1199091(119905)

1205952+ 2

1205823=

1205952

minus 1199092

2(119905) + 1 minus cos119909

1(119905)

1205952+ 2

(71)

It is seen that 0 le 120582119894le 1sum3

119894=1120582119894= 1 Let Π = [ minus02 02 0

01 minus03 02

02 03 minus05

]120574 = 1 by solving and (53) in Theorem 10 controller gainsare given by

11987011= [minus142939 minus140620 minus36426]

11987012= [minus142911 minus144082 minus32860]

12 Mathematical Problems in Engineering

0 1 2 3 4 5 6 7 8minus20

minus15

minus10

minus5

0

5

0 2 4 86minus1

0123

Time

Time

Ope

n-lo

op st

ate r

espo

nse

Mar

kov

chai

n

x1

x2

x3

Figure 1 State responses of the open-loop system

11987013= [minus142988 minus144111 minus36425]

11987021= [minus179535 minus177012 minus44471]

11987022= [minus179509 minus179806 minus41585]

11987023= [minus179578 minus179828 minus44470]

11987031= [minus286360 minus283641 minus69941]

11987032= [minus286344 minus285420 minus68118]

11987033= [minus286377 minus285436 minus69941]

(72)

To demonstrate the effectiveness assuming the initialcondition 120601(119905) = [minus12 08 minus05]

119879 Figures 1 and 2 showstate responses of the open-loop system and the closed-loopsystem controlled by (10) respectively From Figure 1 it canbe seen that the open-loop system is not stochastically admis-sible and Figure 2 shows that when the controller obtainedby Theorem 10 is exerted to this system it is stochasticallyadmissible

Example 2 Consider the example without uncertainties in[6]

Mode 1 1198601= [

15 14

minus35 minus45] 119860

1198891= [

02 119886

minus024 minus04] 119861

1= [

1

1]

1198611199081= [

15

14] 119862

1= [05 1] 119862

1198891= [minus02 02] 119863

1= 02 and

1198621199081= 02Mode 2 119860

2= [

17 15

minus13 minus25] 119860

1198892= [

119887 11

minus021 minus03] 119861

2= [

09

09]

1198611199082= [

14

15] 119862

2= [04 03] 119862

1198892= [minus01 02]119863

2= 03 and

1198621199082= 03Π = [

minus1 1

1 minus1] 119864 = [

1 0

0 0] 119889 = 03 120574 = 26 and in [6]

119886 = minus05 119887 = 21 but in this paper minus24 le 119886 le 2 minus2 le 119887 le 48are taken

In Figure 3 ldquoordquo represents the range of the feasiblesolutions using Theorem 10 in this paper and ldquolowastrdquo representsthe range of the feasible solutions using Theorem 3 in [6]

minus15minus1

minus050

051

152

253

354

Mar

kov

chai

n

0 1 2 3 4 5 6 7 8

0 2 4 6 8minus1

0123

Time

Time

Clos

ed-lo

op st

ate r

espo

nse

x1

x2

x3

Figure 2 State responses of the closed-loop system

minus2 minus15 minus1 minus05 0 05 1 15 2minus2

minus1

0

1

2

3

4

a

b

Figure 3 Comparison of the feasible regions

This illustrates that themethod obtained in this paper has lessconservatism

6 Conclusions

In this paper the problem of mode-dependent 119867infin

controlfor singular Markovian jump fuzzy systems with time delayis considered This class of systems under considerationis described by T-S fuzzy models The main contributionof this paper is to design state feedback controllers andstatic output feedback controllers which can guarantee thatresulting closed-loop systems are stochastically admissiblewith an119867

infinperformance 120574 by the method of the augmented

matrix Finally two examples are given to demonstrate theeffectiveness of main results obtained here

Conflict of Interests

The authors declare that there is no conflict of interestsregarding the publication of this paper

Mathematical Problems in Engineering 13

Acknowledgments

This work was supported by The National Natural ScienceFoundation of China under Grants nos 61304054 61273003and 61273008 respectively and Science and TechnologyResearch Fund of Liaoning Education Department underGrant no L2013051

References

[1] L Dai Singular Control Systems vol 118 of Lecture Notes inControl and Information Sciences Springer Berlin Germany1989

[2] F L Lewis ldquoA survey of linear singular systemsrdquo CircuitsSystems and Signal Processing vol 5 no 1 pp 3ndash36 1986

[3] S Xu and J Lam ldquoRobust stability and stabilization of discretesingular systems an equivalent characterizationrdquo IEEE Trans-actions on Automatic Control vol 49 no 4 pp 568ndash574 2004

[4] Z Wu and W Zhou ldquoDelay-dependent robust stabilization foruncertain singular systemswith discrete and distributed delaysrdquoJournal of ControlTheory and Applications vol 6 no 2 pp 171ndash176 2008

[5] Y Xia P Shi G Liu and D Rees ldquoRobust mixed 119867infin119867

2

state-feedback control for continuous-time descriptor systemswith parameter uncertaintiesrdquo Circuits Systems and SignalProcessing vol 24 no 4 pp 431ndash443 2005

[6] H Lu W Zhou C Duan and X Qi ldquoDelay-dependent robust119867

infincontrol for uncertain singular time-delay system with

Markovian jumping parametersrdquo Optimal Control Applicationsamp Methods vol 34 no 3 pp 296ndash307 2013

[7] Y Fang and K A Loparo ldquoStochastic stability of jump linearsystemsrdquo IEEE Transactions on Automatic Control vol 47 no 7pp 1204ndash1208 2002

[8] D Yue and Q-L Han ldquoDelay-dependent exponential stabilityof stochastic systems with time-varying delay nonlinearity andMarkovian switchingrdquo IEEETransactions onAutomatic Controlvol 50 no 2 pp 217ndash222 2005

[9] J Xiong and J Lam ldquoStabilization of discrete-time Markovianjump linear systems via time-delayed controllersrdquo Automaticavol 42 no 5 pp 747ndash753 2006

[10] W-H Chen Z-H Guan and P Yu ldquoDelay-dependent stabilityand 119867

infincontrol of uncertain discrete-time Markovian jump

systems with mode-dependent time delaysrdquo Systems amp ControlLetters vol 52 no 5 pp 361ndash376 2004

[11] E-K Boukas Control of Singular Systems with Random AbruptChanges Communications and Control Engineering SpringerBerlin Germany 2008

[12] J Zhang Y Xia and E K Boukas ldquoNew approach to Hinfin

control for Markovian jump singular systemsrdquo IET ControlTheory amp Applications vol 4 no 11 pp 2273ndash2284 2010

[13] J Lam S Zhu S Xu and E-K Boukas ldquoRobust 119867infin

controlof descriptor discrete-time Markovian jump systemsrdquo Interna-tional Journal of Control vol 80 no 3 pp 374ndash385 2007

[14] K Gu V L Kharitonov and J Chen Stability of Time-DelaySystems Birkhauser Basel Switzerland 2003

[15] G Wang Q Zhang and C Yang ldquoDissipative control forsingular Markovian jump systems with time delayrdquo OptimalControl ApplicationsampMethods vol 33 no 4 pp 415ndash432 2012

[16] Z Wu H Su and J Chu ldquoDelay-dependent 119867infin

control forsingular Markovian jump systems with time delayrdquo Optimal

Control Applications and Methods vol 30 no 5 pp 443ndash4612009

[17] C K Ahn ldquoT-S fuzzy119867infinsynchronization for chaotic systems

via delayed output feedback controlrdquo Nonlinear Dynamics vol59 no 4 pp 535ndash543 2010

[18] C K Ahn ldquoFuzzy delayed output feedback synchronizationfor time-delayed chaotic systemsrdquo Nonlinear Analysis HybridSystems vol 4 no 1 pp 16ndash24 2010

[19] H-N Wu and K-Y Cai ldquoMode-independent robust stabiliza-tion for uncertain Markovian jump nonlinear systems via fuzzycontrolrdquo IEEE Transactions on Systems Man and CyberneticsPart B Cybernetics vol 36 no 3 pp 509ndash519 2006

[20] Y Zhang S Xu Y Zou and J Lu ldquoDelay-dependent robuststabilization for uncertain discrete-time fuzzy Markovian jumpsystems with mode-dependent time delaysrdquo Fuzzy Sets andSystems vol 164 pp 66ndash81 2011

[21] A Zhang and H Fang ldquoRobustHinfinfuzzy control for uncertain

Markovian jump nonlinear singular systems with Wiener pro-cessrdquo Journal of Control Theory and Applications vol 8 no 2pp 205ndash210 2010

[22] L Li Q Zhang and B Zhu ldquo119867infin

fuzzy control for nonlin-ear time-delay singular Markovian jump systems with partlyunknown transition ratesrdquo Fuzzy Sets and Systems vol 254 pp106ndash125 2014

[23] J Dong and G-H Yang ldquoStatic output feedback 119867infin

controlof a class of nonlinear discrete-time systemsrdquo Fuzzy Sets andSystems vol 160 no 19 pp 2844ndash2859 2009

[24] Y Zhang C Liu and X Mu ldquoRobust finite-time119867infincontrol of

singular stochastic systems via static output feedbackrdquo AppliedMathematics and Computation vol 218 no 9 pp 5629ndash56402012

[25] J Wang H Wang A Xie and R Lu ldquoDelay-dependent 119867infin

control for singular Markovian jump systems with time delayrdquoNonlinear Analysis Hybrid Systems vol 8 pp 1ndash12 2012

[26] D B Xu Q L Zhang and Y B Hu ldquoReduced-order Hinfin

controller design for uncertain descriptor systemsrdquo Acta Auto-matica Sinica vol 33 no 1 pp 44ndash47 2007

[27] L Xie and C E de Souza ldquoRobust 119867infin

control for linearsystems with norm bounder time-varying uncertaintiesrdquo IEEETransactions on Automatic Control vol 37 no 8 pp 1188ndash11911992

[28] Q-L Han ldquoAbsolute stability of time-delay systemswith sector-bounded nonlinearityrdquo Automatica vol 41 no 12 pp 2171ndash2176 2005

[29] D Yue J Lam and D W C Ho ldquoReliable 119867infin

control ofuncertain descriptor systems with multiple time delaysrdquo IEEProceedings ControlTheory and Applications vol 150 no 6 pp557ndash564 2003

[30] H D Tuan P Apkarian T Narikiyo and Y YamamotoldquoParameterized linear matrix inequality techniques in fuzzycontrol systemdesignrdquo IEEETransactions on Fuzzy Systems vol9 no 2 pp 324ndash332 2001

[31] S-W Kau H-J Lee C-M Yang C-H Lee L Hong and C-HFang ldquoRobust H

infinfuzzy static output feedback control of T-

S fuzzy systems with parametric uncertaintiesrdquo Fuzzy Sets andSystems vol 158 no 2 pp 135ndash146 2007

[32] D Saifia M Chadli S Labiod and T M Guerra ldquoRobust119867

infinstatic output feedback stabilization of T-S fuzzy systems

subject to actuator saturationrdquo International Journal of ControlAutomation and Systems vol 10 no 3 pp 613ndash622 2012

Submit your manuscripts athttpwwwhindawicom

Hindawi Publishing Corporationhttpwwwhindawicom Volume 2014

MathematicsJournal of

Hindawi Publishing Corporationhttpwwwhindawicom Volume 2014

Mathematical Problems in Engineering

Hindawi Publishing Corporationhttpwwwhindawicom

Differential EquationsInternational Journal of

Volume 2014

Applied MathematicsJournal of

Hindawi Publishing Corporationhttpwwwhindawicom Volume 2014

Probability and StatisticsHindawi Publishing Corporationhttpwwwhindawicom Volume 2014

Journal of

Hindawi Publishing Corporationhttpwwwhindawicom Volume 2014

Mathematical PhysicsAdvances in

Complex AnalysisJournal of

Hindawi Publishing Corporationhttpwwwhindawicom Volume 2014

OptimizationJournal of

Hindawi Publishing Corporationhttpwwwhindawicom Volume 2014

CombinatoricsHindawi Publishing Corporationhttpwwwhindawicom Volume 2014

International Journal of

Hindawi Publishing Corporationhttpwwwhindawicom Volume 2014

Operations ResearchAdvances in

Journal of

Hindawi Publishing Corporationhttpwwwhindawicom Volume 2014

Function Spaces

Abstract and Applied AnalysisHindawi Publishing Corporationhttpwwwhindawicom Volume 2014

International Journal of Mathematics and Mathematical Sciences

Hindawi Publishing Corporationhttpwwwhindawicom Volume 2014

The Scientific World JournalHindawi Publishing Corporation httpwwwhindawicom Volume 2014

Hindawi Publishing Corporationhttpwwwhindawicom Volume 2014

Algebra

Discrete Dynamics in Nature and Society

Hindawi Publishing Corporationhttpwwwhindawicom Volume 2014

Hindawi Publishing Corporationhttpwwwhindawicom Volume 2014

Decision SciencesAdvances in

Discrete MathematicsJournal of

Hindawi Publishing Corporationhttpwwwhindawicom

Volume 2014 Hindawi Publishing Corporationhttpwwwhindawicom Volume 2014

Stochastic AnalysisInternational Journal of

Page 3: Research Article Fuzzy Control for Nonlinear Singular Markovian Jump Systems …downloads.hindawi.com/journals/mpe/2015/896515.pdf · 2019-07-31 · Singular systems, also known as

Mathematical Problems in Engineering 3

(iii) System (4) is said to be stochastically admissible if itis regular impulse-free and stochastically stable

Lemma 2 (see [26]) Given matrices 119864119883 gt 0 119884 if 119864119879119883 +

119884Λ119879 is nonsingular there exist matrices 119878 gt 0 119871 such that

119864119878+119871Θ119879

= (119864119879

119883+119884Λ119879

)minus1 where ΛΘ isin R119899times(119899minus119903) such that

119864119879

Λ = 0 119864Θ = 0 rankΛ = rankΘ = 119899 minus 119903119883 119878 isin R119899times119899 and119884 119871 isin R119899times(119899minus119903)

Lemma 3 (see [27]) For matrices 119876 gt 0 119875 and 119877 withappropriate dimensions the following inequality holds

119875119877119879

+ 119877119875119879

le 119877119876119877119879

+ 119875119876minus1

119875119879

(6)

Lemma 4 (see [28]) For any constant matrix 119883 isin R119899times119899 119883 =119883

119879

gt 0 scalar 119903 gt 0 and vector function [minus119903 0] rarr R119899

such that the following integration is well defined then

minus 119903int

0

minus119903

119879

(119905 + 119904)119883 (119905 + 119904) 119889119904

le [119909119879

(119905) 119909119879

(119905 minus 119903)] [

minus119883 119883

119883 minus119883

][

119909 (119905)

119909 (119905 minus 119903)

]

(7)

Lemma 5 (see [29]) Suppose there are piecewise continuousreal square matrices 119860(119905) 119883 and 119876 gt 0 satisfying 119860119879

(119905)119883 +

119883119879

119860(119905) lt 0 for all 119905 Then the following conditions hold(i) 119860(119905) and 119883 are nonsingular(ii) 119860minus1

(119905) le 120575 for some 120575 gt 0

Lemma 6 (see [30]) If the following conditions hold

119872119894119894lt 0 1 le 119894 le 119903

1

119903 minus 1

119872119894119894+

1

2

(119872119894119895+119872

119895119894) lt 0 1 le 119894 = 119895 le 119903

(8)

then the following parameterized matrix inequality holds119903

sum

119894=1

119903

sum

119895=1

120572119894(119905) 120572

119895(119905)119872

119894119895lt 0 (9)

where 120572119894(119905) ge 0 and sum119903

119894=1120572119894(119905) = 1

Based on the parallel distributed compensation thefollowing state feedback controller will be considered here

119906119901(119905) =

119896

sum

119894=1

120582119894119870

119901119894119909 (119905) (10)

where119870119901119894(119901 isin S 119894 isin T) are local controller gains such that

the closed-loop system

119864 (119905) =

119896

sum

119894=1

119896

sum

119895=1

120582119894120582119895((119860

119901119894+ 119861

119901119894119870

119901119895) 119909 (119905)

+ 119860119889119901119894119909 (119905 minus 119889) + 119861

119908119901119894119908 (119905))

119911 (119905) =

119896

sum

119894=1

119896

sum

119895=1

120582119894120582119895((119862

119901119894+ 119863

119901119894119870

119901119895) 119909 (119905)

+ 119862119889119901119894119909 (119905 minus 119889) + 119862

119908119901119894119908 (119905))

119909 (119905) = 120601 (119905)

119905 isin [minus119889 0]

(11)

is stochastically admissible

3 The Design of the StateFeedback 119867

infinController

Firstly the sufficient condition will be given such thatsystem (11) is stochastically admissible Combining (4) and(10) fuzzy closed-loop system (11) can be rewritten in thefollowing form

119864 (119905)

=

119896

sum

119894=1

120582119894(119860

119901119894119909 (119905) + 119860

119889119901119894119909 (119905 minus 119889) + 119861

119908119901119894119908 (119905))

119911 (119905) =

119896

sum

119894=1

120582119894(119862

119901119894119909 (119905) + 119862

119889119901119894119909 (119905 minus 119889) + 119862

119908119901119894119908 (119905))

119909 (119905) =120601 (119905)

119905 isin [minus119889 0]

(12)

where

119864 = [

119864 0

0 0

] isin R(119899+119898)times(119899+119898)

119860119901119894= [

119860119901119894

119861119901119894

119870119901119894minus119868

119898

] isin R(119899+119898)times(119899+119898)

119909 (119905) = [

119909 (119905)

119906 (119905)

] isin R119899+119898

119860119889119901119894

= [

119860119889119901119894

0

0 0

] isin R(119899+119898)times(119899+119898)

119861119908119901119894

= [

119861119908119901119894

0

] isin R(119899+119898)timesV

119862119901119894= [119862

119901119894119863

119901119894] isin R

119901times(119899+119898)

119862119889119901119894

= [119862119889119901119894

0] isin R119901times(119899+119898)

120601 (119905) =

119896

sum

119894=1

120582119894[

120601 (119905)

119870119901119894120601 (119905)

]

(13)

4 Mathematical Problems in Engineering

Remark 7 For systems (11) and (12) it can be seen that

det(119904119864 minus119896

sum

119894=1

119896

sum

119895=1

120582119894120582119895(119860

119901119894+ 119861

119901119894119870

119901119895))

= det(119904[119864 0

0 0

] minus

119896

sum

119894=1

119896

sum

119895=1

120582119894120582119895[

119860119901119894

119861119901119894

119870119901119895minus119868

119898

])

= det(119904[119864 0

0 0

] minus

119896

sum

119894=1

120582119894[

119860119901119894

119861119901119894

119870119901119894minus119868

119898

])

= det(119904119864 minus119896

sum

119894=1

120582119894119860

119901119894)

det(119904119864 minus119896

sum

119894=1

119896

sum

119895=1

120582119894120582119895(119860

119901119894+ 119861

119901119894119870

119901119895+ 119860

119889119901119894))

= det(119904[119864 0

0 0

] minus

119896

sum

119894=1

120582119894[

119860119901119894+ 119860

119889119901119894119861119901119894

119870119901119894

minus119868119898

])

= det(119904119864 minus119896

sum

119894=1

120582119894(119860

119901119894+ 119860

119889119901119894))

(14)

By rank119864 = rank119864 and Definition 1 it can be obtained thatthe regularity and nonimpulse of system (11) are equal to theregularity and nonimpulse of system (12) So the stochasticadmissibility of system (11) can be studied by system (12)

Theorem 8 For a prescribed scalar 119889 gt 0 there exists a statefeedback controller (10) with 119906

119901(119905) = sum

119896

119894=1120582119894119871119901119894119884minus1

119901119909(119905) such

that system (11) when 119908(119905) = 0 is stochastically admissible forany constant time delay 119889 satisfying 119889 isin [0 119889] if there existmatrices 119875

119901gt 0 119876

119901gt 0 119876 gt 0 119885 gt 0 119871

119901119894 119878

119901 119884

1199012 and 119884

1199013

119894 isin T 119901 isin S such that

[

[

[

[

[

[

[

[

[

[

[

[

[

[

[

[

[

[

[

Γ1119901119894

lowast lowast lowast lowast lowast lowast

119871119901119894+ 119884

119879

1199013119861119879

119901119894+ 119884

1199012minus119884

119879

1199013minus 119884

1199013lowast lowast lowast lowast lowast

(

119884119879

119901119860119879

119889119901119894+ 119864119884

119901

+119884119879

119901119864119879

minus 119885

) 0 (

minus119884119879

119901minus 119884

119901+ 119876

119901

minus119884119879

119901119864119879

minus 119864119884119901+ 119885

) lowast lowast lowast lowast

119889119860119901119894119884119901minus 119889119861

1199011198941198841199012

1198891198611199011198941198841199013

119889119860119889119901119894119884119901

minus119885 lowast lowast lowast

119884119901

0 0 0 minus119876119901

lowast lowast

119889119884119901

0 0 0 0 minus119889119876 lowast

[1198681199030]119867

minus1

119872119879

1199010 0 0 0 0 minus119869

119901

]

]

]

]

]

]

]

]

]

]

]

]

]

]

]

]

]

]

]

lt 0 (15)

[

[

(120587119901119901minus 1)119884

119901+ (120587

119901119901minus 1)119884

119879

119901+ 119876 minus 120587

119901119901119876

119901lowast

119872119879

119901minus119879

119901

]

]

lt 0 (16)

where Γ1119901119894

= 120587119901119901119884119879

119901119864119879

+ 119860119901119894119884119901+ 119884

119879

119901119860119879

119901119894minus

119884119879

1199012119861119879

119901119894minus 119861

1199011198941198841199012minus 119884

119879

119901119864119879

minus 119864119884119901+ 119885 119884

119901= (119864119875

119901+

119878119901119877

119879

)119879 119871

119901119894= 119870

119901119894119884119901 119884

1199012= 119884

11990131199012119884119901 119872

119901=

[radic1205871199011119884119879

119901sdot sdot sdot radic120587119901119901minus1

119884119879

119901 radic120587119901119901+1119884119879

119901sdot sdot sdot radic120587119901119873

119884119879

119901] 119879

119901=

diag1198761 119876

119901minus1 119876

119901+1 119876

119873 119869

119901= diagΦ

1 Φ

119901minus1

Φ119901+1 Φ

119873 Φ

119905= [119868

1199030] 119866119864119884

119905119866119879

[119868119903

0] 119877 isin R119899times(119899minus119903) is any

matrix with full column rank and satisfies 119864119877 = 0 and 119866119867are nonsingular matrices that make 119866119864119867 = [

1198681199030

0 0]

Proof From it can be concluded that 119884119901and 119884

1199013are

nonsingular matrices Because 119884119901= (119864119875

119901+ 119878

119901119877

119879

)119879

119884119879

119901119864119879

= 119864119884119901= 119864119875

119901119864119879

ge 0 (17)

Denote119867minus1

119884119901119866119879

= [

11988411990111

11988411990112

11988411990121

11988411990122

] from (17) it is easy to obtainthat 119884

11990112= 0 and 119884

11990111is symmetric then 119867minus1

119884119901119866119879

=

[

11988411990111

0

11988411990121

11988411990122

] So it can be concluded that 11988411990111

and 11988411990122

are non-

singular furthermore 119866minus119879

119884minus1

119901119867 = [

119884minus1

119901110

minus119884minus1

1199012211988411990121

119884minus1

11990111119884minus1

11990122

] Let

119901= [

119884119901

0

minus1198841199012

1198841199013

] So [1198681199030] diag119866 119868

119898119864

119902diag119866119879

119868119898 [

119868119903

0] =

11988411990211

is nonsingular By Lemma 2 119883119901= 119884

minus1

119901= (119864

119879

119875119901+

119878119901119877119879

)119879 where 119875

119901gt 0 119878

119901isin R119899times(119899minus119903) and 119877 isin R119899times(119899minus119903) is a

matrix with full column rank and satisfies 119864119879119877 = 0 Denote119883

1199013≜ 119884

minus1

1199013 119883

1199012≜

1199012= 119884

minus1

11990131198841199012119884minus1

119901 and 119883

119901≜

minus1

119901=

[

119883119901

0

1198831199012

1198831199013

] So

[

[

[

119867minus119879

[

119868119903

0

]

0119898times119903

]

]

]

([1198681199030] 119866119864119884

119902119866119879

[

119868119903

0

])

minus1

sdot [[1198681199030]119867

minus1

0119903times119898] = diag 119867minus119879

119868119898

Mathematical Problems in Engineering 5

sdot[

[

[

[

119884minus1

119902110

0 0

] 0

0 0119898

]

]

]

diag 119867minus1

119868119898 = 119864

119879

minus1

119902

= 119864119879

119883119902

(18)

Denote 119876119901≜ 119876

minus1

119901 119876 ≜ 119876

minus1 and 119885 ≜ 119885

minus1

By Lemma 3 itcan be obtained that

[

minus119864119879

119885119864 119864119879

119885119864

119864119879

119885119864 minus119864119879

119885119864

]

= [

119868119899

minus119868119899

] (minus119864119879

119885119864) [119868119899minus119868

119899]

le [

119868119899

minus119868119899

] (minus119864119879

119883119901minus 119883

119879

119901119864 + 119883

119879

119901119885119883

119901) [119868

119899minus119868

119899]

(19)

Now pre- and postmultiplying by diag119883119879

119901 119883

119879

119901 119885 119868

119899

119868119899 119868

119903 119868

119903⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟

119873minus1

and its transpose by Schur complement lemma

and (18)-(19) it is easy to see that

[

[

[

[

Γ1119901119894

lowast lowast

119864119879

[119885 0] 119864 + [119860119879

1198891199011198940]119883

119901minus119864

119879

119885119864 minus 119876119901lowast

119889119885 [119860119901119894119861119901119894] 119889119885119860

119889119901119894minus119885

]

]

]

]

lt 0

(20)

where Γ1119901119894= sum

119873

119902=1120587119901119902119864119879

119883119901+119883

119879

119901119860

119901119894+119860

119879

119901119894119883

119901119894+diag119876

119901 0+

119889 diag119876 0 minus 119864119879 diag119885 0119864 Pre- and postmultiplying bydiag119883119879

119901 119868

119903 119868

119903⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟

119873minus1

and its transposition by Schur comple-

ment lemma it can be seen that

119873

sum

119902=1

120587119901119902119876

119902lt 119876 (21)

From (20) it can be concluded that

119896

sum

119894=1

120582119894(120587

119901119901119864119879

119883119901+ 119860

119879

119901119894119883

119901+ 119883

119879

119901119860

119901119894

minus 119864119879 diag 119885 0 119864) lt 0

(22)

On the other hand diag119866 119868119898119864 diag119867 119868

119898 = [

[1198681199030

0 0

] 0

0 0119898

]Then

119864119879

119883119901= 119883

119879

119901119864 = [

119864119879

0

0 0

][

119883119901

0

1198831199012119883

1199013

] = [

119864119879

1198831199010

0 0

]

= [

119864119879

119875119901119864 0

0 0

] ge 0

(23)

Denote 119860119901(119905) ≜ (sum

119896

119894=1120582119894119860

119901119894) = [

1198601199011(119905)

1198601199012(119905)

1198601199013(119905)

1198601199014(119905)

] from (22) itcan be obtained that

119883119879

1199013119860

1199014(119905) + 119860

119879

1199014(119905) 119883

1199013lt 0 (24)

for every 119901 isin S which implies that 1198601199014(119905) is nonsingular

Thus the pair (119864 sum119896

119894=1120582119894119860

119901119894) is regular and impulse-free for

every 119901 isin S By (20) it is easy to see that

[

Γ1119901119894

lowast

119864119879

[119885 0] 119864 + [119860119879

1198891199011198940]119883

119901minus119864

119879

119885119864 minus 119876119901

] lt 0 (25)

Pre- and postmultiplying (25) by [ 119868119899+119898

[119868119899

0

]

0 119868119899

] and its trans-pose it can be obtained that

119873

sum

119902=1

120587119901119902119864119879

119883119901+ 119883

119879

119901(119860

119901119894+ 119860

119889119901119894)

+ (119860119901119894+ 119860

119889119901119894)

119879

119883119901lt 0

(26)

Hence

119896

sum

119894=1

120582119894(120587

119901119901119864119879

119883119901+ 119883

119879

119901(119860

119901119894+ 119860

119889119901119894)

+ (119860119901119894+ 119860

119889119901119894)

119879

119883119901) lt 0

(27)

Equation (27) implies that the pair (119864 sum119896

119894=1120582119894(119860

119901119894+ 119860

119889119901119894))

is regular and impulse-free for every 119901 isin S Thus byDefinition 1 system (12) is regular and impulse-free ByRemark 7 this implies that system (11) is regular and impulse-free

Now it will be shown that system (11) is stochasticallystable Define a new process (119909

119905 119903

119905) 119905 ge 0 by 119909

119905= 119909(119905 +

120579) minus2119889 le 120579 le 0 then (119909119905 119903

119905) 119905 ge 119889 is a Markovian process

with the initial state (120601(sdot) 1199030) Now for 119905 ge 119889 choose the

following stochastic Lyapunov-Krasovskii candidate for thissystem

119881 (119909119905 119901 119905) =

4

sum

119898=1

119881119898(119909

119905 119901 119905) (28)

where

1198811(119909

119905 119901 119905) = 119909

119879

(119905) 119864119879

119875119901119864119909 (119905) = 119909

119879

(119905) 119864119879

119883119901119909 (119905)

= 119909119879

(119905) 119864119879

119883119901119909 (119905)

1198812(119909

119905 119901 119905) = int

119905

119905minus119889

119909119879

(119904) 119876119901119909 (119904) d119904

1198813(119909

119905 119901 119905) = 119889int

0

minus119889

int

119905

119905+120579

119879

(119904) 119864119879

119885119864 (119904) d119904 d120579

1198814(119909

119905 119901 119905) = int

0

minus119889

int

119905

119905+120579

119909119879

(119904) 119876119909 (119904) d119904 d120579

(29)

6 Mathematical Problems in Engineering

Let L be the weak infinitesimal generator of the randomprocess (119909

119905 119901) 119905 ge 0 Then for each 119901 isin S

L119881 (119909119905 119901 119905) le 2119909

119879

(119905) 119883119879

119901119864 (119905)

+ 119909119879

(119905) (

119873

sum

119902=1

120587119901119902119864119879

119883119902)119909 (119905)

+ 119909119879

(119905) 119876119901119909 (119905)

minus 119909119879

(119905 minus 119889)119876119901119909 (119905 minus 119889)

+ int

119905

119905minus119889

119909119879

(119904) (

119873

sum

119902=1

120587119901119902119876

119902)119909 (119904) d119904

+ 119889119909119879

(119905) 119876119909 (119905)

minus int

119905

119905minus119889

119909119879

(119904) 119876119909 (119904) d119904

+ 119889

2

119879

(119905) 119864119879

119885119864 (119905)

minus 119889int

119905

119905minus119889

119879

(119904) 119864119879

119885119864 (119904) d119904

(30)

From (21) it is clear that

int

119905

119905minus119889

119909119879

(119904) (

119873

sum

119902=1

120587119901119902119876

119902)119909 (119904) d119904

lt int

119905

119905minus119889

119909119879

(119904) 119876119909 (119904) d119904

(31)

From Lemma 4 it follows that

minus 119889int

119905

119905minus119889

119879

(119904) 119864119879

119885119864 (119904) d119904

le [

119909 (119905)

119909 (119905 minus 119889)

]

119879

[

minus119864119879

119885119864 119864119879

119885119864

119864119879

119885119864 minus119864119879

119885119864

][

119909 (119905)

119909 (119905 minus 119889)

]

(32)

So it can be concluded that

L119881 (119909119905 119901 119905) le

119896

sum

119894=1

120578119879

(119905) Φ119901119894120578 (119905) (33)

where

120578119879

(119905) = [119909119879

(119905) 119909119879

(119905 minus 119889)]

Φ119901119894= [

Υ1119901119894

lowast

Υ2119901119894

Υ3119901119894

]

Υ1119901119894= Γ

1119901119894+ [

119860119879

119901119894

119861119879

119901119894

]119889

2

119885 [119860119901119894119861119901119894]

Υ3119901119894= minus119876

119901minus 119864

119879

119885119864 + 119860119879

119889119901119894119889

2

119885119860119889119901119894

Υ2119901119894= 119864

119879

[119885 0] 119864 + [119860119879

1198891199011198940]119883

119901

+ 119860119879

119889119901119894119889

2

119885 [119860119901119894119861119901119894]

(34)

Using (20) it is easy to see that there exists a scalar 120581 gt 0

such that for every 119901 isin S L119881(119909119905 119901 119905) le minus120581119909(119905)

2 where120581 = min

119894isinT119901isinS(120582min(minusΦ119901119894))

So for 119905 ge 119889 by Dynkinrsquos formula it can be obtained that

E 119881 (119909119905 119901 119905) minusE 119881 (119909

119889 119903

119889 119889)

le minus120581Eint119905

119889

119909 (119904)2 d119904

(35)

which yields

Eint119905

119889

119909 (119904)2 d119904 le 120581minus1E 119881 (119909

119889 119903

119889 119889) (36)

Because 119866119864119867 = [1198681199030

0 0] denote

119860119901(119905) ≜

119896

sum

119894=1

119896

sum

119895=1

120582119894120582119895(119860

119901119894+ 119861

119901119894119870

119901119895)

= [

1198601199011(119905) 119860

1199012(119905)

1198601199013(119905) 119860

1199014(119905)

]

=

[

[

[

[

[

[

119896

sum

119894=1

119896

sum

119895=1

120582119894120582119895119860

1199011198941198951

119896

sum

119894=1

119896

sum

119895=1

120582119894120582119895119860

1199011198941198952

119896

sum

119894=1

119896

sum

119895=1

120582119894120582119895119860

1199011198941198953

119896

sum

119894=1

119896

sum

119895=1

120582119894120582119895119860

1199011198941198954

]

]

]

]

]

]

119860119889119901(119905) ≜

119896

sum

119894=1

120582119894119860

119889119901119894= [

1198601198891199011

(119905) 1198601198891199012

(119905)

1198601198891199013

(119905) 1198601198891199014

(119905)

]

=

[

[

[

[

[

[

119896

sum

119894=1

120582119894119860

1198891199011198941

119896

sum

119894=1

120582119894119860

1198891199011198942

119896

sum

119894=1

120582119894119860

1198891199011198943

119896

sum

119894=1

120582119894119860

1198891199011198944

]

]

]

]

]

]

(37)

By the regularity and nonimpulse of system (11) 1198601199014(119905) is

nonsingular for each 119901 isin S set 119866119901= [

119868119903minus1198601199012(119905)119860minus1

1199014(119905)

0 119860minus1

1199014(119905)

]119866It is easy to obtain

119866119901119864119867 = [

1198681199030

0 0

]

119866119901119860

119901(119905)119867 = [

1198601199011(119905) 0

1198601199013(119905) 119868

119899minus119903

]

119866119901119860

119901(119905)119867 = [

1198601199011(119905) 0

1198601199013(119905) 119868

119899minus119903

]

(38)

Mathematical Problems in Engineering 7

where

1198601199011(119905) = 119860

1199011(119905) minus 119860

1199012(119905) 119860

minus1

1199014(119905) 119860

1199013(119905)

1198601199013(119905) = 119860

minus1

1199014(119905) 119860

1199013(119905)

1198601198891199011

(119905) = 1198601198891199011

(119905) minus 1198601199012(119905) 119860

minus1

1199014(119905) 119860

1198891199013(119905)

1198601198891199012

(119905) = 1198601198891199012

(119905) minus 1198601199012(119905) 119860

minus1

1199014(119905) 119860

1198891199014(119905)

1198601198891199013

(119905) = 119860minus1

1199014(119905) 119860

1198891199013(119905)

1198601198891199014

(119905) = 119860minus1

1199014(119905) 119860

1198891199014(119905)

(39)

Then for each 119901 isin S system (11) is equal to

1(119905) = 119860

1199011(119905) 120595

1(119905) + 119860

1198891199011(119905) 120595

1(119905 minus 119889)

+ 1198601198891199012

(119905) 1205952(119905 minus 119889)

minus1205952(119905) = 119860

1199013(119905) 120595

1(119905) + 119860

1198891199013(119905) 120595

1(119905 minus 119889)

+ 1198601198891199014

(119905) 1205952(119905 minus 119889)

120595 (119905) = 120593 (119905) = 119867minus1

119909 (119905)

119905 isin [minus119889 0]

(40)

where 120595(119905) = [ 1205951(119905)1205952(119905)] = 119867

minus1

119909(119905)For any 119905 ge 0 using Lemma 5 there exists a scalar 120575

119901gt 0

such that 1198601199014(119905) lt 120575

119901 and 120582

119894(120585(119905)) ge 0 andsum119896

119894=1120582119894(120585(119905)) =

1 it follows from (40) that10038171003817100381710038171205951(119905)1003817100381710038171003817

le10038171003817100381710038171205951(0)1003817100381710038171003817

+ 1198961int

119905

0

[10038171003817100381710038171205951(119904)1003817100381710038171003817+10038171003817100381710038171205951(119904 minus 119889)

1003817100381710038171003817+10038171003817100381710038171205952(119904 minus 119889)

1003817100381710038171003817] d119904

(41)

where

1198961= max

119901isinSmax119894119895isinT

10038171003817100381710038171003817119860

1199011198941198951

10038171003817100381710038171003817

+ 120575119901max119894119895isinT

10038171003817100381710038171003817119860

1199011198941198952

10038171003817100381710038171003817max119894119895isinT

10038171003817100381710038171003817119860

1199011198941198953

10038171003817100381710038171003817max119894isinT

10038171003817100381710038171003817119860

1198891199011198941

10038171003817100381710038171003817

+ 120575119901max119894119895isinT

10038171003817100381710038171003817119860

1199011198941198952

10038171003817100381710038171003817max119894119895isinT

10038171003817100381710038171003817119860

1198891199011198943

10038171003817100381710038171003817max119894isinT

10038171003817100381710038171003817119860

1198891199011198942

10038171003817100381710038171003817

+ 120575119901max119894119895isinT

10038171003817100381710038171003817119860

1199011198941198952

10038171003817100381710038171003817max119894119895isinT

10038171003817100381710038171003817119860

1198891199011198944

10038171003817100381710038171003817

(42)

Then for any 0 le 119905 le 119889

10038171003817100381710038171205951(119905)1003817100381710038171003817le (2119896

1119889 + 1)

10038171003817100381710038171205931003817100381710038171003817119889+ 119896

1int

119905

0

10038171003817100381710038171205951(119904)1003817100381710038171003817d119904 (43)

Applying the Gronwall-Bellman lemma it can be obtainedfor any 0 le 119905 le 119889 that

10038171003817100381710038171205951(119905)1003817100381710038171003817le (2119896

1119889 + 1)

100381710038171003817100381712059310038171003817100381710038171198891198901198961119889

(44)

Thus

sup0le119904le119889

10038171003817100381710038171205951(119904)1003817100381710038171003817

2

le (21198961119889 + 1)

2 10038171003817100381710038171205931003817100381710038171003817

2

11988911989021198961119889

(45)

It can be seen from (40) that

sup0le119904le119889

10038171003817100381710038171205952(119904)1003817100381710038171003817

2

le 1198962

2[(2119896

1119889 + 1) 119890

1198961119889

+ 2]

210038171003817100381710038171205931003817100381710038171003817

2

119889 (46)

where 1198962= max

119901isinS120575119901max119894119895isinT1198601199011198941198953

120575119901max

119894isinT1198601198891199011198943

120575119901max

119894isinT1198601198891199011198944 Hence

sup0le119904le119889

1003817100381710038171003817120595 (119904)

1003817100381710038171003817

2

le sup0le119904le119889

10038171003817100381710038171205951(119904)1003817100381710038171003817

2

+ sup0le119904le119889

10038171003817100381710038171205952(119904)1003817100381710038171003817

2

le 1198963

10038171003817100381710038171205931003817100381710038171003817

2

119889

(47)

where 1198963= (2119896

1119889+1)

2

11989021198961119889

+1198962

2[(2119896

1119889+1)119890

1198961119889

+2]2Therefore

sup0le119904le119889

119909 (119904)2

le 1198963119867

210038171003817100381710038171003817119867

minus110038171003817100381710038171003817

2 10038171003817100381710038171206011003817100381710038171003817

2

119889 (48)

Note that

int

0

minus119889

int

119905

119905+120579

119909119879

(119904) 119876119909 (119904) d119904 d120579 le 119889int119905

119905minus119889

119909119879

(119904) 119876119909 (119904) d119904

int

0

minus119889

int

119905

119905+120579

119879

(119904) 119864119879

119885119864 (119904) d119904 d120579

le 119889int

119905

119905minus119896119889

119879

(119904) 119864119879

119885119864 (119904) d119904

(49)

Then from (48) and (28) it can be obtained that there existsa scalar 120588 such that

119881 (119909119889 119903

119889 119889) le 120588

10038171003817100381710038171206011003817100381710038171003817

2

119889 (50)

This together with (36) and (48) implies that there exists ascalar ] such that

Eint119905

0

119909 (119904)2 d119904 = Eint

119889

0

119909 (119904)2 d119904

+Eint119905

119889

119909 (119904)2 d119904

le ]E 10038171003817100381710038171206011003817100381710038171003817

2

119889

(51)

Considering this andDefinition 1 system (11) is stochasticallystable for any constant delay 119889 satisfying 119889 isin [0 119889]Thereforesystem (11) is stochastically admissible This completes theproof

In the following a set of sufficient conditions will bedeveloped under which the considered system is guaranteedto be stochastically admissible with an119867

infinperformance

Definition 9 System (11) is said to be stochastically admissiblewith an 119867

infinperformance 120574 if it is stochastically admissible

when 119908(119905) = 0 and under zero initial condition for nonzero119908(119905) isin 119871

V2[0infin)

Eintinfin

0

119911119879

(119905) 119911 (119905) d119905 le 1205742 intinfin

0

119908119879

(119905) 119908 (119905) d119905 (52)

The following result can be presented

8 Mathematical Problems in Engineering

Theorem 10 For a prescribed scalar 119889 gt 0 there exists astate feedback controller (10) with 119906

119901(119905) = sum

119896

119894=1120582119894119871119901119894119884minus1

119901119909(119905)

such that system (11) is stochastically admissible with an 119867infin

performance 120574 for any constant time delay 119889 satisfying 119889 isin

[0 119889] if there exist matrices 119875119901gt 0 119876

119901gt 0 119876 gt 0 119885 gt 0

119871119901119894 119878

119901 119884

1199012 and 119884

1199013 119894 isin T 119901 isin S such that and

[

Ξ1199011198941

lowast

Ξ1199011198942

Ξ1199013

] lt 0 (53)

where

Ξ1199011198941=

[

[

[

[

[

[

[

[

[

[

[

[

[

[

[

Γ1119901119894

lowast lowast lowast lowast lowast

119871119901119894+ 119884

119879

1199013119861119879

119901119894+ 119884

1199012minus119884

119879

1199013minus 119884

1199013lowast lowast lowast lowast

(

119884119879

119901119860119879

119889119901119894+ 119864119884

119901

+119884119879

119901119864119879

minus 119885

) 0 (

minus119884119879

119901minus 119884

119901+ 119876

119901

minus119884119879

119901119864119879

minus 119864119884119901+ 119885

) lowast lowast lowast

119889119860119901119894119884119901minus 119889119861

1199011198941198841199012

1198891198611199011198941198841199013

119889119860119889119901119894119884119901

minus119885 lowast lowast

119861119879

1199081199011198940 0 0 minus120574

2

119868 lowast

119862119901119894119884119901minus 119863

1199011198941198841199012

1198631199011198941198841199013

119862119889119901119894119884119901

0 119862119908119901119894

minus119868

]

]

]

]

]

]

]

]

]

]

]

]

]

]

]

Ξ1199012=

[

[

[

[

119884119901

0 0 0 0 0

119889119884119901

0 0 0 0 0

[1198681199030]119867

minus1

119872119879

1199010 0 0 0 0

]

]

]

]

Ξ1199013= diag minus119876

119901 minus119889119876 minus119869

119901

(54)

and the other notations are the same as in Theorem 8

Proof FromTheorem 8 when119908(119905) = 0 system (11) is stochas-tically admissible Let

119869119911119908(119905) = Eint

119905

0

[119911119879

(119904) 119911 (119904) minus 1205742

119908119879

(119904) 119908 (119904)] d119904 (55)

Under zero initial condition it is easy to see that

119869119911119908(119905) le Eint

119905

0

[119911119879

(119904) 119911 (119904) minus 1205742

119908119879

(119904) 119908 (119904)

+L119881 (119909119904 119901 119904)] d119904

le Eint119905

0

119896

sum

119894=1

120582119894[120589

119879

(119904) (Ω119901119894+ Θ

119879

119901119894Θ

119901119894) 120589 (119904)] d119904

(56)

where

120589119879

(119905) = [119909119879

(119905) 119909119879

(119905 minus 119889) 119908119879

(119905)]

Ω119901119894=

[

[

[

[

Υ1119901119894

lowast lowast

Υ2119901119894

Υ3119901119894

lowast

[119861119879

1199081199011198940]119883

1199010 minus120574

2

119868

]

]

]

]

Θ119901119894= [119862

119901119894119862119889119901119894

119862119908119901119894]

(57)

and notations of Υ1119901119894

Υ2119901119894

and Υ3119901119894

are the same as inTheorem 8 Hence by Schur complement lemma and using

the similar method in the proof of Theorem 8 from and(53) it can be obtained that 119869

119911119908(119905) lt 0 for all 119905 gt 0

Therefore for any nonzero 119908(119905) isin 119871V2[0infin) (52) holds

Hence according to Definition 9 the system is stochasticallyadmissible with an 119867

infinperformance 120574 This completes the

proof

Remark 11 Compared with methods in [21 22] because ofthe method of the augmented matrix adopted in Theorems8 and 10 the number of LMIs needed to solve is relativelysmall in this paper When the value of 119896 is relatively largethe quality of the computation is greatly reduced some newrelaxation matrices added will reduce the conservatism ofcontrol conditions compared with previous literatures whichcan be seen from Example 2

4 The Design of the Static OutputFeedback Controller

When 119903119905= 119901 isin S consider the overall SMJFS as follows

119864 (119905) =

119896

sum

119894=1

120582119894(119860

119901119894119909 (119905) + 119860

119889119901119894119909 (119905 minus 119889) + 119861

119901119894119906 (119905)

+ 119861119908119901119894119908 (119905))

119910 (119905) =

119896

sum

119894=1

120582119894119862119910119901119894119909 (119905)

Mathematical Problems in Engineering 9

119911 (119905) =

119896

sum

119894=1

120582119894(119862

119901119894119909 (119905) + 119862

119889119901119894119909 (119905 minus 119889) + 119863

119901119894119906 (119905)

+ 119862119908119901119894119908 (119905))

119909 (119905) = 120601 (119905)

forall119905 isin [minus119889 0] 119894 isin T ≜ 1 2 119896

(58)

where 119910(119905) isin R1199011 is the system output 119862

119889119901119894(119894 isin S) are

known constant matrices with appropriate dimensions andthe other notations are the same as in (3)

The following static output feedback controller will beconsidered here

119906119901(119905) =

119896

sum

119894=1

120582119894119870

119901119894119910 (119905) (59)

where119870119901119894(119901 isin S 119894 isin T) are local controller gains such that

the closed-loop system is

119864 (119905) =

119896

sum

119894=1

119896

sum

119895=1

119896

sum

119904=1

120582119894120582119895120582119904((119860

119901119894+ 119861

119901119894119870

119901119895119862119910119901119904) 119909 (119905) + 119860

119889119901119894119909 (119905 minus 119889) + 119861

119908119901119894119908 (119905))

119911 (119905) =

119896

sum

119894=1

119896

sum

119895=1

119896

sum

119904=1

120582119894120582119895120582119904((119862

119901119894+ 119863

119901119894119870

119901119895119862119910119901119904) 119909 (119905) + 119862

119889119901119894119909 (119905 minus 119889) + 119862

119908119901119894119908 (119905))

(60)

It is difficult to drive LMI-based conditions of the stochas-tic stabilization by employing the static output feedbackcontrol approach due to the appearance of crossing termsbetween system matrices and control gains And system (60)can be rewritten in the following form

119864119909 (119905) =

119896

sum

119894=1

119896

sum

119895=1

120582119894120582119895(Λ

119901119894119895119909 (119905) + 119861

119908119901119894119908 (119905))

119911 (119905) =

119896

sum

119894=1

119896

sum

119895=1

120582119894120582119895(119862

119901119894119895119909 (119905) + 119862

119908119901119894119908 (119905))

(61)

where

119864 = [

119864 0

0 0

] isin R(119899+1199011)times(119899+119901

1)

119862119901119894119895= [119862

119901119894119863

119901119894119870

119901119895]

119860119889119901119894

= [

119860119889119901119894

0

0 0

] isin R(119899+1199011)times(119899+119901

1)

119909 (119905) = [

119909 (119905)

119910 (119905)

]

119861119908119901119894

= [

119861119908119901119894

0

] isin R(119899+1199011)timesV

Λ119901119894119895= [

119860119901119894

119861119901119894119870

119901119895

119862119910119901119894

minus119868

]

(62)

Remark 12 For systems (60) and (61) it can be seen that

det(119904119864 minus119896

sum

119894=1

119896

sum

119895=1

119896

sum

119904=1

120582119894120582119895120582119904(119860

119901119894+ 119861

119901119894119870

119901119895119862119910119901119904))

= det(119904119864 minus119896

sum

119894=1

119896

sum

119895=1

120582119894120582119895Λ

119901119894119895)

det(119904119864

minus

119896

sum

119894=1

119896

sum

119895=1

119896

sum

119904=1

120582119894120582119895120582119904(119860

119901119894+ 119861

119901119894119870

119901119895119862119910119901119904

+ 119860119889119901119894))

= det(119904119864 minus119896

sum

119894=1

119896

sum

119895=1

120582119894120582119895(Λ

119901119894119895+ 119860

119889119901119894))

(63)

As the discussion in Remark 7 the stochastic admissibility ofsystem (60) can be studied by means of system (61)

Theorem 13 There exists an output feedback controller (59)with controller gains 119870

119901119894= 119871

119901119894119884minus1

1199012(119901 isin S 119894 isin T) such that

system (60) with 119908(119905) = 0 is stochastically admissible if thereexist matrices 119875

119901gt 0 119876

119901gt 0 119876 gt 0 119885 gt 0 119871

119901119894 119878

119901 and 119884

1199012

119901 isin S 1 le 119894 = 119895 le 119896 such that and

Θ119901119894119894lt 0

1

119896 minus 1

Θ119901119894119894+

1

2

(Θ119901119894119895+ Θ

119901119895119894) lt 0

(64)

where

10 Mathematical Problems in Engineering

Θ119901119894119895=

[

[

[

[

[

[

[

[

[

[

[

[

[

[

[

[

[

[

[

Γ119901119894119895

lowast lowast lowast lowast lowast lowast

119871119879

119901119895119861119879

119901119894+ 119862

119910119901119894119884119901

minus119884119879

1199012minus 119884

1199012lowast lowast lowast lowast lowast

(

119884119879

119901119860119879

119889119901119894+ 119864119884

119901

119884119879

119901119864119879

minus 119885

) 0 Σ119901

lowast lowast lowast lowast

119889119860119901119894119884119901

119889119861119901119894119871119901119895

119889119860119889119901119894119884119901minus119885 lowast lowast lowast

119884119901

0 0 0 minus119876119901

lowast lowast

119889119884119901

0 0 0 0 minus119889119876 lowast

[1198681199030]119867

minus1

119872119879

1199010 0 0 0 0 minus119869

119901

]

]

]

]

]

]

]

]

]

]

]

]

]

]

]

]

]

]

]

(65)

Γ119901119894119895

= 120587119901119901119884119879

119901119864119879

+ 119860119901119894119884119901+ 119884

119879

119901119860119879

119901119894minus 119884

119879

119901119864119879

minus 119864119884119901+ 119885

Σ119901= minus119884

119879

119901minus 119884

119901+ 119876

119901minus 119884

119879

119901119864119879

minus 119864119884119901+ 119885 119871

119901119894= 119870

1199011198941198841199012

119884119901= (119864119875

119901+ 119878

119901119877

119879

)119879 119877 isin R119899times(119899minus119903) is any matrix with

full column rank and satisfies 119864119877 = 0 119866119867 are nonsingularmatrices that make 119866119864119867 = [

1198681199030

0 0] and the other notations are

the same as in Theorem 8

Proof Let 119901= [

119884119901

0

0 1198841199012

] Using Lemma 6 the proof processis similar to Theorem 8

Theorem 14 For a prescribed scalar 119889 gt 0 there exists anoutput feedback controller (59) with controller gains 119870

119901119894=

119871119901119894119884minus1

1199012(119901 isin S 119894 isin T) such that system (60) is stochastically

admissible with an 119867infin

performance 120574 for any constant timedelay 119889 satisfying 119889 isin [0 119889] if there exist matrices 119875

119901gt 0

119876119901gt 0 119876 gt 0 119885 gt 0 119871

119901119894 119878

119901 and 119884

1199012 119901 isin S 1 le 119894 = 119895 le 119896

such that and

Δ119901119894119894lt 0

1

119896 minus 1

Δ119901119894119894+

1

2

(Δ119901119894119895+ Δ

119901119895119894) lt 0

(66)

where

Δ119901119894119895=

[

[

[

[

[

[

[

[

[

[

[

[

[

[

[

[

[

[

[

[

[

[

[

[

Γ119901119894119895

lowast lowast lowast lowast lowast lowast lowast lowast

119871119879

119901119861119879

119901119894+ 119862

119910119901119894119884119901

minus119884119879

1199012minus 119884

1199012lowast lowast lowast lowast lowast lowast lowast

(

119884119879

119901119860119879

119889119901119894+ 119864119884

119901

+119884119879

119901119864119879

minus 119885

) 0 Σ119901

lowast lowast lowast lowast lowast lowast

119889119860119901119894119884119901

119889119861119901119894119871119901119895

119889119860119889119901119894119884119901minus119885 lowast lowast lowast lowast lowast

119861119879

1199081199011198940 0 0 minus120574

2

119868 lowast lowast lowast lowast

119862119901119894119884119901

119863119901119894119871119901119895

119862119889119901119894119884119901

0 119862119908119901119894

minus119868 lowast lowast lowast

119884119901

0 0 0 0 0 minus119876119901

lowast lowast

119889119884119901

0 0 0 0 0 0 minus119889119876 lowast

[1198681199030]119867

minus1

119872119879

1199010 0 0 0 0 0 0 minus119869

119901

]

]

]

]

]

]

]

]

]

]

]

]

]

]

]

]

]

]

]

]

]

]

]

]

(67)

and the other notations are the same as in Theorem 13

Remark 15 Compared with the method in [31 32] becauseof the augmented matrix adopted in Theorems 13 and 14 thenumber of LMIs needed to solve is greatly decreased Whenthe value of 119896 is relatively large the computational complexitywill be reduced On the other hand by the augmentedmatrixthere are not any crossing terms between system matricesand controller gains so assumptions for the output matrix

[23] the equality constraint for the output matrix [24] andthe bounding technique for crossing terms are not necessaryhere therefore the conservatism brought by them will nothappen

5 Numerical Examples

Two examples will be given to illustrate the validity ofdeveloped methods

Mathematical Problems in Engineering 11

Example 1 To illustrate the 119867infin

controller synthesis thefollowing nonlinear time delay system is considered

(1 + 119886 cos 120579 (119905)) 120579 (119905) = minus119887 1205793 (119905) + 119888120579 (119905) + 119888119889(119905 minus 119889)

+ 120575 (119903119905) 119890119906 (119905) + 119891119908 (119905)

(68)

The range of 120579(119905) is assumed to satisfy | 120579(119905)| lt 120595 120595 = 2

119886 = 119887 = 119890 = 119891 = 1 119888 = minus1 119888119889= 08 119889 isin [0 119889] 119889 = 03

and 119906(119905) is the control input 119908(119905) = cos(05119905)119890minus001119905 is thedisturbance input 119903

119905is a Markovian process taking values in

a finite set 1 2 3 120575(1) = 1 120575(2) = 08 120575(3) = 05 and theoutput vector 119911(119905) = 120579(119905)

Choose the vector 119909(119905) = [1199091(119905) 119909

2(119905) 119909

3(119905)]

119879 with1199091(119905) = 120579(119905) 119909

2(119905) =

120579(119905) and 119909

3(119905) =

120579(119905) Then the system

is described by

[

[

[

1 0 0

0 1 0

0 0 0

]

]

]

(119905)

=

[

[

[

[

0 1 0

0 0 1

119888 minus1198871199092

2(119905) minus1 minus 119886 cos119909

1(119905)

]

]

]

]

119909 (119905)

+[

[

[

0 0 0

0 0 0

1198881198890 0

]

]

]

119909 (119905 minus 119889) +[

[

[

0

0

120575 (119903119905) 119890

]

]

]

119906 (119905)

+[

[

[

0

0

119891

]

]

]

119908 (119905)

(69)

It can be expressed exactly by the following fuzzy singularMarkovian jump form

119864 (119905) =

3

sum

119894=1

120582119894(119860

119901119894119909 (119905) + 119860

119889119901119894119909 (119905 minus 119889) + 119861

119901119894119906 (119905)

+ 119861119908119901119894119908 (119905))

119911 (119905) =

3

sum

119894=1

120582119894119862119901119894119909 (119905)

119909 (119905) = 120601 (119905)

119905 isin [minus119889 0] 119901 isin 1 2 3

(70)

where

119864 =[

[

[

1 0 0

0 1 0

0 0 0

]

]

]

1198601199011=

[

[

[

[

0 1 0

0 0 1

119888 minus119887 (1205952

+ 2) 119886 minus 1

]

]

]

]

1198601199012=

[

[

[

[

0 1 0

0 0 1

119888 0 minus119886 minus 1 minus 1198861205952

]

]

]

]

1198601199013=[

[

[

0 1 0

0 0 1

119888 0 119886 minus 1

]

]

]

1198601198891199011

= 1198601198891199012

= 1198601198891199013

=[

[

[

0 0 0

0 0 0

1198881198890 0

]

]

]

11986111= 119861

12= 119861

13=[

[

[

0

0

119890

]

]

]

11986121= 119861

22= 119861

23=[

[

[

0

0

08119890

]

]

]

11986131= 119861

32= 119861

33=[

[

[

0

0

05119890

]

]

]

1198611199081199011

= 1198611199081199012

= 1198611199081199013

=[

[

[

0

0

119891

]

]

]

1198621199011= 119862

1199012= 119862

1199013= [1 0 0]

1205821=

1199092

2(119905)

1205952+ 2

1205822=

1 + cos1199091(119905)

1205952+ 2

1205823=

1205952

minus 1199092

2(119905) + 1 minus cos119909

1(119905)

1205952+ 2

(71)

It is seen that 0 le 120582119894le 1sum3

119894=1120582119894= 1 Let Π = [ minus02 02 0

01 minus03 02

02 03 minus05

]120574 = 1 by solving and (53) in Theorem 10 controller gainsare given by

11987011= [minus142939 minus140620 minus36426]

11987012= [minus142911 minus144082 minus32860]

12 Mathematical Problems in Engineering

0 1 2 3 4 5 6 7 8minus20

minus15

minus10

minus5

0

5

0 2 4 86minus1

0123

Time

Time

Ope

n-lo

op st

ate r

espo

nse

Mar

kov

chai

n

x1

x2

x3

Figure 1 State responses of the open-loop system

11987013= [minus142988 minus144111 minus36425]

11987021= [minus179535 minus177012 minus44471]

11987022= [minus179509 minus179806 minus41585]

11987023= [minus179578 minus179828 minus44470]

11987031= [minus286360 minus283641 minus69941]

11987032= [minus286344 minus285420 minus68118]

11987033= [minus286377 minus285436 minus69941]

(72)

To demonstrate the effectiveness assuming the initialcondition 120601(119905) = [minus12 08 minus05]

119879 Figures 1 and 2 showstate responses of the open-loop system and the closed-loopsystem controlled by (10) respectively From Figure 1 it canbe seen that the open-loop system is not stochastically admis-sible and Figure 2 shows that when the controller obtainedby Theorem 10 is exerted to this system it is stochasticallyadmissible

Example 2 Consider the example without uncertainties in[6]

Mode 1 1198601= [

15 14

minus35 minus45] 119860

1198891= [

02 119886

minus024 minus04] 119861

1= [

1

1]

1198611199081= [

15

14] 119862

1= [05 1] 119862

1198891= [minus02 02] 119863

1= 02 and

1198621199081= 02Mode 2 119860

2= [

17 15

minus13 minus25] 119860

1198892= [

119887 11

minus021 minus03] 119861

2= [

09

09]

1198611199082= [

14

15] 119862

2= [04 03] 119862

1198892= [minus01 02]119863

2= 03 and

1198621199082= 03Π = [

minus1 1

1 minus1] 119864 = [

1 0

0 0] 119889 = 03 120574 = 26 and in [6]

119886 = minus05 119887 = 21 but in this paper minus24 le 119886 le 2 minus2 le 119887 le 48are taken

In Figure 3 ldquoordquo represents the range of the feasiblesolutions using Theorem 10 in this paper and ldquolowastrdquo representsthe range of the feasible solutions using Theorem 3 in [6]

minus15minus1

minus050

051

152

253

354

Mar

kov

chai

n

0 1 2 3 4 5 6 7 8

0 2 4 6 8minus1

0123

Time

Time

Clos

ed-lo

op st

ate r

espo

nse

x1

x2

x3

Figure 2 State responses of the closed-loop system

minus2 minus15 minus1 minus05 0 05 1 15 2minus2

minus1

0

1

2

3

4

a

b

Figure 3 Comparison of the feasible regions

This illustrates that themethod obtained in this paper has lessconservatism

6 Conclusions

In this paper the problem of mode-dependent 119867infin

controlfor singular Markovian jump fuzzy systems with time delayis considered This class of systems under considerationis described by T-S fuzzy models The main contributionof this paper is to design state feedback controllers andstatic output feedback controllers which can guarantee thatresulting closed-loop systems are stochastically admissiblewith an119867

infinperformance 120574 by the method of the augmented

matrix Finally two examples are given to demonstrate theeffectiveness of main results obtained here

Conflict of Interests

The authors declare that there is no conflict of interestsregarding the publication of this paper

Mathematical Problems in Engineering 13

Acknowledgments

This work was supported by The National Natural ScienceFoundation of China under Grants nos 61304054 61273003and 61273008 respectively and Science and TechnologyResearch Fund of Liaoning Education Department underGrant no L2013051

References

[1] L Dai Singular Control Systems vol 118 of Lecture Notes inControl and Information Sciences Springer Berlin Germany1989

[2] F L Lewis ldquoA survey of linear singular systemsrdquo CircuitsSystems and Signal Processing vol 5 no 1 pp 3ndash36 1986

[3] S Xu and J Lam ldquoRobust stability and stabilization of discretesingular systems an equivalent characterizationrdquo IEEE Trans-actions on Automatic Control vol 49 no 4 pp 568ndash574 2004

[4] Z Wu and W Zhou ldquoDelay-dependent robust stabilization foruncertain singular systemswith discrete and distributed delaysrdquoJournal of ControlTheory and Applications vol 6 no 2 pp 171ndash176 2008

[5] Y Xia P Shi G Liu and D Rees ldquoRobust mixed 119867infin119867

2

state-feedback control for continuous-time descriptor systemswith parameter uncertaintiesrdquo Circuits Systems and SignalProcessing vol 24 no 4 pp 431ndash443 2005

[6] H Lu W Zhou C Duan and X Qi ldquoDelay-dependent robust119867

infincontrol for uncertain singular time-delay system with

Markovian jumping parametersrdquo Optimal Control Applicationsamp Methods vol 34 no 3 pp 296ndash307 2013

[7] Y Fang and K A Loparo ldquoStochastic stability of jump linearsystemsrdquo IEEE Transactions on Automatic Control vol 47 no 7pp 1204ndash1208 2002

[8] D Yue and Q-L Han ldquoDelay-dependent exponential stabilityof stochastic systems with time-varying delay nonlinearity andMarkovian switchingrdquo IEEETransactions onAutomatic Controlvol 50 no 2 pp 217ndash222 2005

[9] J Xiong and J Lam ldquoStabilization of discrete-time Markovianjump linear systems via time-delayed controllersrdquo Automaticavol 42 no 5 pp 747ndash753 2006

[10] W-H Chen Z-H Guan and P Yu ldquoDelay-dependent stabilityand 119867

infincontrol of uncertain discrete-time Markovian jump

systems with mode-dependent time delaysrdquo Systems amp ControlLetters vol 52 no 5 pp 361ndash376 2004

[11] E-K Boukas Control of Singular Systems with Random AbruptChanges Communications and Control Engineering SpringerBerlin Germany 2008

[12] J Zhang Y Xia and E K Boukas ldquoNew approach to Hinfin

control for Markovian jump singular systemsrdquo IET ControlTheory amp Applications vol 4 no 11 pp 2273ndash2284 2010

[13] J Lam S Zhu S Xu and E-K Boukas ldquoRobust 119867infin

controlof descriptor discrete-time Markovian jump systemsrdquo Interna-tional Journal of Control vol 80 no 3 pp 374ndash385 2007

[14] K Gu V L Kharitonov and J Chen Stability of Time-DelaySystems Birkhauser Basel Switzerland 2003

[15] G Wang Q Zhang and C Yang ldquoDissipative control forsingular Markovian jump systems with time delayrdquo OptimalControl ApplicationsampMethods vol 33 no 4 pp 415ndash432 2012

[16] Z Wu H Su and J Chu ldquoDelay-dependent 119867infin

control forsingular Markovian jump systems with time delayrdquo Optimal

Control Applications and Methods vol 30 no 5 pp 443ndash4612009

[17] C K Ahn ldquoT-S fuzzy119867infinsynchronization for chaotic systems

via delayed output feedback controlrdquo Nonlinear Dynamics vol59 no 4 pp 535ndash543 2010

[18] C K Ahn ldquoFuzzy delayed output feedback synchronizationfor time-delayed chaotic systemsrdquo Nonlinear Analysis HybridSystems vol 4 no 1 pp 16ndash24 2010

[19] H-N Wu and K-Y Cai ldquoMode-independent robust stabiliza-tion for uncertain Markovian jump nonlinear systems via fuzzycontrolrdquo IEEE Transactions on Systems Man and CyberneticsPart B Cybernetics vol 36 no 3 pp 509ndash519 2006

[20] Y Zhang S Xu Y Zou and J Lu ldquoDelay-dependent robuststabilization for uncertain discrete-time fuzzy Markovian jumpsystems with mode-dependent time delaysrdquo Fuzzy Sets andSystems vol 164 pp 66ndash81 2011

[21] A Zhang and H Fang ldquoRobustHinfinfuzzy control for uncertain

Markovian jump nonlinear singular systems with Wiener pro-cessrdquo Journal of Control Theory and Applications vol 8 no 2pp 205ndash210 2010

[22] L Li Q Zhang and B Zhu ldquo119867infin

fuzzy control for nonlin-ear time-delay singular Markovian jump systems with partlyunknown transition ratesrdquo Fuzzy Sets and Systems vol 254 pp106ndash125 2014

[23] J Dong and G-H Yang ldquoStatic output feedback 119867infin

controlof a class of nonlinear discrete-time systemsrdquo Fuzzy Sets andSystems vol 160 no 19 pp 2844ndash2859 2009

[24] Y Zhang C Liu and X Mu ldquoRobust finite-time119867infincontrol of

singular stochastic systems via static output feedbackrdquo AppliedMathematics and Computation vol 218 no 9 pp 5629ndash56402012

[25] J Wang H Wang A Xie and R Lu ldquoDelay-dependent 119867infin

control for singular Markovian jump systems with time delayrdquoNonlinear Analysis Hybrid Systems vol 8 pp 1ndash12 2012

[26] D B Xu Q L Zhang and Y B Hu ldquoReduced-order Hinfin

controller design for uncertain descriptor systemsrdquo Acta Auto-matica Sinica vol 33 no 1 pp 44ndash47 2007

[27] L Xie and C E de Souza ldquoRobust 119867infin

control for linearsystems with norm bounder time-varying uncertaintiesrdquo IEEETransactions on Automatic Control vol 37 no 8 pp 1188ndash11911992

[28] Q-L Han ldquoAbsolute stability of time-delay systemswith sector-bounded nonlinearityrdquo Automatica vol 41 no 12 pp 2171ndash2176 2005

[29] D Yue J Lam and D W C Ho ldquoReliable 119867infin

control ofuncertain descriptor systems with multiple time delaysrdquo IEEProceedings ControlTheory and Applications vol 150 no 6 pp557ndash564 2003

[30] H D Tuan P Apkarian T Narikiyo and Y YamamotoldquoParameterized linear matrix inequality techniques in fuzzycontrol systemdesignrdquo IEEETransactions on Fuzzy Systems vol9 no 2 pp 324ndash332 2001

[31] S-W Kau H-J Lee C-M Yang C-H Lee L Hong and C-HFang ldquoRobust H

infinfuzzy static output feedback control of T-

S fuzzy systems with parametric uncertaintiesrdquo Fuzzy Sets andSystems vol 158 no 2 pp 135ndash146 2007

[32] D Saifia M Chadli S Labiod and T M Guerra ldquoRobust119867

infinstatic output feedback stabilization of T-S fuzzy systems

subject to actuator saturationrdquo International Journal of ControlAutomation and Systems vol 10 no 3 pp 613ndash622 2012

Submit your manuscripts athttpwwwhindawicom

Hindawi Publishing Corporationhttpwwwhindawicom Volume 2014

MathematicsJournal of

Hindawi Publishing Corporationhttpwwwhindawicom Volume 2014

Mathematical Problems in Engineering

Hindawi Publishing Corporationhttpwwwhindawicom

Differential EquationsInternational Journal of

Volume 2014

Applied MathematicsJournal of

Hindawi Publishing Corporationhttpwwwhindawicom Volume 2014

Probability and StatisticsHindawi Publishing Corporationhttpwwwhindawicom Volume 2014

Journal of

Hindawi Publishing Corporationhttpwwwhindawicom Volume 2014

Mathematical PhysicsAdvances in

Complex AnalysisJournal of

Hindawi Publishing Corporationhttpwwwhindawicom Volume 2014

OptimizationJournal of

Hindawi Publishing Corporationhttpwwwhindawicom Volume 2014

CombinatoricsHindawi Publishing Corporationhttpwwwhindawicom Volume 2014

International Journal of

Hindawi Publishing Corporationhttpwwwhindawicom Volume 2014

Operations ResearchAdvances in

Journal of

Hindawi Publishing Corporationhttpwwwhindawicom Volume 2014

Function Spaces

Abstract and Applied AnalysisHindawi Publishing Corporationhttpwwwhindawicom Volume 2014

International Journal of Mathematics and Mathematical Sciences

Hindawi Publishing Corporationhttpwwwhindawicom Volume 2014

The Scientific World JournalHindawi Publishing Corporation httpwwwhindawicom Volume 2014

Hindawi Publishing Corporationhttpwwwhindawicom Volume 2014

Algebra

Discrete Dynamics in Nature and Society

Hindawi Publishing Corporationhttpwwwhindawicom Volume 2014

Hindawi Publishing Corporationhttpwwwhindawicom Volume 2014

Decision SciencesAdvances in

Discrete MathematicsJournal of

Hindawi Publishing Corporationhttpwwwhindawicom

Volume 2014 Hindawi Publishing Corporationhttpwwwhindawicom Volume 2014

Stochastic AnalysisInternational Journal of

Page 4: Research Article Fuzzy Control for Nonlinear Singular Markovian Jump Systems …downloads.hindawi.com/journals/mpe/2015/896515.pdf · 2019-07-31 · Singular systems, also known as

4 Mathematical Problems in Engineering

Remark 7 For systems (11) and (12) it can be seen that

det(119904119864 minus119896

sum

119894=1

119896

sum

119895=1

120582119894120582119895(119860

119901119894+ 119861

119901119894119870

119901119895))

= det(119904[119864 0

0 0

] minus

119896

sum

119894=1

119896

sum

119895=1

120582119894120582119895[

119860119901119894

119861119901119894

119870119901119895minus119868

119898

])

= det(119904[119864 0

0 0

] minus

119896

sum

119894=1

120582119894[

119860119901119894

119861119901119894

119870119901119894minus119868

119898

])

= det(119904119864 minus119896

sum

119894=1

120582119894119860

119901119894)

det(119904119864 minus119896

sum

119894=1

119896

sum

119895=1

120582119894120582119895(119860

119901119894+ 119861

119901119894119870

119901119895+ 119860

119889119901119894))

= det(119904[119864 0

0 0

] minus

119896

sum

119894=1

120582119894[

119860119901119894+ 119860

119889119901119894119861119901119894

119870119901119894

minus119868119898

])

= det(119904119864 minus119896

sum

119894=1

120582119894(119860

119901119894+ 119860

119889119901119894))

(14)

By rank119864 = rank119864 and Definition 1 it can be obtained thatthe regularity and nonimpulse of system (11) are equal to theregularity and nonimpulse of system (12) So the stochasticadmissibility of system (11) can be studied by system (12)

Theorem 8 For a prescribed scalar 119889 gt 0 there exists a statefeedback controller (10) with 119906

119901(119905) = sum

119896

119894=1120582119894119871119901119894119884minus1

119901119909(119905) such

that system (11) when 119908(119905) = 0 is stochastically admissible forany constant time delay 119889 satisfying 119889 isin [0 119889] if there existmatrices 119875

119901gt 0 119876

119901gt 0 119876 gt 0 119885 gt 0 119871

119901119894 119878

119901 119884

1199012 and 119884

1199013

119894 isin T 119901 isin S such that

[

[

[

[

[

[

[

[

[

[

[

[

[

[

[

[

[

[

[

Γ1119901119894

lowast lowast lowast lowast lowast lowast

119871119901119894+ 119884

119879

1199013119861119879

119901119894+ 119884

1199012minus119884

119879

1199013minus 119884

1199013lowast lowast lowast lowast lowast

(

119884119879

119901119860119879

119889119901119894+ 119864119884

119901

+119884119879

119901119864119879

minus 119885

) 0 (

minus119884119879

119901minus 119884

119901+ 119876

119901

minus119884119879

119901119864119879

minus 119864119884119901+ 119885

) lowast lowast lowast lowast

119889119860119901119894119884119901minus 119889119861

1199011198941198841199012

1198891198611199011198941198841199013

119889119860119889119901119894119884119901

minus119885 lowast lowast lowast

119884119901

0 0 0 minus119876119901

lowast lowast

119889119884119901

0 0 0 0 minus119889119876 lowast

[1198681199030]119867

minus1

119872119879

1199010 0 0 0 0 minus119869

119901

]

]

]

]

]

]

]

]

]

]

]

]

]

]

]

]

]

]

]

lt 0 (15)

[

[

(120587119901119901minus 1)119884

119901+ (120587

119901119901minus 1)119884

119879

119901+ 119876 minus 120587

119901119901119876

119901lowast

119872119879

119901minus119879

119901

]

]

lt 0 (16)

where Γ1119901119894

= 120587119901119901119884119879

119901119864119879

+ 119860119901119894119884119901+ 119884

119879

119901119860119879

119901119894minus

119884119879

1199012119861119879

119901119894minus 119861

1199011198941198841199012minus 119884

119879

119901119864119879

minus 119864119884119901+ 119885 119884

119901= (119864119875

119901+

119878119901119877

119879

)119879 119871

119901119894= 119870

119901119894119884119901 119884

1199012= 119884

11990131199012119884119901 119872

119901=

[radic1205871199011119884119879

119901sdot sdot sdot radic120587119901119901minus1

119884119879

119901 radic120587119901119901+1119884119879

119901sdot sdot sdot radic120587119901119873

119884119879

119901] 119879

119901=

diag1198761 119876

119901minus1 119876

119901+1 119876

119873 119869

119901= diagΦ

1 Φ

119901minus1

Φ119901+1 Φ

119873 Φ

119905= [119868

1199030] 119866119864119884

119905119866119879

[119868119903

0] 119877 isin R119899times(119899minus119903) is any

matrix with full column rank and satisfies 119864119877 = 0 and 119866119867are nonsingular matrices that make 119866119864119867 = [

1198681199030

0 0]

Proof From it can be concluded that 119884119901and 119884

1199013are

nonsingular matrices Because 119884119901= (119864119875

119901+ 119878

119901119877

119879

)119879

119884119879

119901119864119879

= 119864119884119901= 119864119875

119901119864119879

ge 0 (17)

Denote119867minus1

119884119901119866119879

= [

11988411990111

11988411990112

11988411990121

11988411990122

] from (17) it is easy to obtainthat 119884

11990112= 0 and 119884

11990111is symmetric then 119867minus1

119884119901119866119879

=

[

11988411990111

0

11988411990121

11988411990122

] So it can be concluded that 11988411990111

and 11988411990122

are non-

singular furthermore 119866minus119879

119884minus1

119901119867 = [

119884minus1

119901110

minus119884minus1

1199012211988411990121

119884minus1

11990111119884minus1

11990122

] Let

119901= [

119884119901

0

minus1198841199012

1198841199013

] So [1198681199030] diag119866 119868

119898119864

119902diag119866119879

119868119898 [

119868119903

0] =

11988411990211

is nonsingular By Lemma 2 119883119901= 119884

minus1

119901= (119864

119879

119875119901+

119878119901119877119879

)119879 where 119875

119901gt 0 119878

119901isin R119899times(119899minus119903) and 119877 isin R119899times(119899minus119903) is a

matrix with full column rank and satisfies 119864119879119877 = 0 Denote119883

1199013≜ 119884

minus1

1199013 119883

1199012≜

1199012= 119884

minus1

11990131198841199012119884minus1

119901 and 119883

119901≜

minus1

119901=

[

119883119901

0

1198831199012

1198831199013

] So

[

[

[

119867minus119879

[

119868119903

0

]

0119898times119903

]

]

]

([1198681199030] 119866119864119884

119902119866119879

[

119868119903

0

])

minus1

sdot [[1198681199030]119867

minus1

0119903times119898] = diag 119867minus119879

119868119898

Mathematical Problems in Engineering 5

sdot[

[

[

[

119884minus1

119902110

0 0

] 0

0 0119898

]

]

]

diag 119867minus1

119868119898 = 119864

119879

minus1

119902

= 119864119879

119883119902

(18)

Denote 119876119901≜ 119876

minus1

119901 119876 ≜ 119876

minus1 and 119885 ≜ 119885

minus1

By Lemma 3 itcan be obtained that

[

minus119864119879

119885119864 119864119879

119885119864

119864119879

119885119864 minus119864119879

119885119864

]

= [

119868119899

minus119868119899

] (minus119864119879

119885119864) [119868119899minus119868

119899]

le [

119868119899

minus119868119899

] (minus119864119879

119883119901minus 119883

119879

119901119864 + 119883

119879

119901119885119883

119901) [119868

119899minus119868

119899]

(19)

Now pre- and postmultiplying by diag119883119879

119901 119883

119879

119901 119885 119868

119899

119868119899 119868

119903 119868

119903⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟

119873minus1

and its transpose by Schur complement lemma

and (18)-(19) it is easy to see that

[

[

[

[

Γ1119901119894

lowast lowast

119864119879

[119885 0] 119864 + [119860119879

1198891199011198940]119883

119901minus119864

119879

119885119864 minus 119876119901lowast

119889119885 [119860119901119894119861119901119894] 119889119885119860

119889119901119894minus119885

]

]

]

]

lt 0

(20)

where Γ1119901119894= sum

119873

119902=1120587119901119902119864119879

119883119901+119883

119879

119901119860

119901119894+119860

119879

119901119894119883

119901119894+diag119876

119901 0+

119889 diag119876 0 minus 119864119879 diag119885 0119864 Pre- and postmultiplying bydiag119883119879

119901 119868

119903 119868

119903⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟

119873minus1

and its transposition by Schur comple-

ment lemma it can be seen that

119873

sum

119902=1

120587119901119902119876

119902lt 119876 (21)

From (20) it can be concluded that

119896

sum

119894=1

120582119894(120587

119901119901119864119879

119883119901+ 119860

119879

119901119894119883

119901+ 119883

119879

119901119860

119901119894

minus 119864119879 diag 119885 0 119864) lt 0

(22)

On the other hand diag119866 119868119898119864 diag119867 119868

119898 = [

[1198681199030

0 0

] 0

0 0119898

]Then

119864119879

119883119901= 119883

119879

119901119864 = [

119864119879

0

0 0

][

119883119901

0

1198831199012119883

1199013

] = [

119864119879

1198831199010

0 0

]

= [

119864119879

119875119901119864 0

0 0

] ge 0

(23)

Denote 119860119901(119905) ≜ (sum

119896

119894=1120582119894119860

119901119894) = [

1198601199011(119905)

1198601199012(119905)

1198601199013(119905)

1198601199014(119905)

] from (22) itcan be obtained that

119883119879

1199013119860

1199014(119905) + 119860

119879

1199014(119905) 119883

1199013lt 0 (24)

for every 119901 isin S which implies that 1198601199014(119905) is nonsingular

Thus the pair (119864 sum119896

119894=1120582119894119860

119901119894) is regular and impulse-free for

every 119901 isin S By (20) it is easy to see that

[

Γ1119901119894

lowast

119864119879

[119885 0] 119864 + [119860119879

1198891199011198940]119883

119901minus119864

119879

119885119864 minus 119876119901

] lt 0 (25)

Pre- and postmultiplying (25) by [ 119868119899+119898

[119868119899

0

]

0 119868119899

] and its trans-pose it can be obtained that

119873

sum

119902=1

120587119901119902119864119879

119883119901+ 119883

119879

119901(119860

119901119894+ 119860

119889119901119894)

+ (119860119901119894+ 119860

119889119901119894)

119879

119883119901lt 0

(26)

Hence

119896

sum

119894=1

120582119894(120587

119901119901119864119879

119883119901+ 119883

119879

119901(119860

119901119894+ 119860

119889119901119894)

+ (119860119901119894+ 119860

119889119901119894)

119879

119883119901) lt 0

(27)

Equation (27) implies that the pair (119864 sum119896

119894=1120582119894(119860

119901119894+ 119860

119889119901119894))

is regular and impulse-free for every 119901 isin S Thus byDefinition 1 system (12) is regular and impulse-free ByRemark 7 this implies that system (11) is regular and impulse-free

Now it will be shown that system (11) is stochasticallystable Define a new process (119909

119905 119903

119905) 119905 ge 0 by 119909

119905= 119909(119905 +

120579) minus2119889 le 120579 le 0 then (119909119905 119903

119905) 119905 ge 119889 is a Markovian process

with the initial state (120601(sdot) 1199030) Now for 119905 ge 119889 choose the

following stochastic Lyapunov-Krasovskii candidate for thissystem

119881 (119909119905 119901 119905) =

4

sum

119898=1

119881119898(119909

119905 119901 119905) (28)

where

1198811(119909

119905 119901 119905) = 119909

119879

(119905) 119864119879

119875119901119864119909 (119905) = 119909

119879

(119905) 119864119879

119883119901119909 (119905)

= 119909119879

(119905) 119864119879

119883119901119909 (119905)

1198812(119909

119905 119901 119905) = int

119905

119905minus119889

119909119879

(119904) 119876119901119909 (119904) d119904

1198813(119909

119905 119901 119905) = 119889int

0

minus119889

int

119905

119905+120579

119879

(119904) 119864119879

119885119864 (119904) d119904 d120579

1198814(119909

119905 119901 119905) = int

0

minus119889

int

119905

119905+120579

119909119879

(119904) 119876119909 (119904) d119904 d120579

(29)

6 Mathematical Problems in Engineering

Let L be the weak infinitesimal generator of the randomprocess (119909

119905 119901) 119905 ge 0 Then for each 119901 isin S

L119881 (119909119905 119901 119905) le 2119909

119879

(119905) 119883119879

119901119864 (119905)

+ 119909119879

(119905) (

119873

sum

119902=1

120587119901119902119864119879

119883119902)119909 (119905)

+ 119909119879

(119905) 119876119901119909 (119905)

minus 119909119879

(119905 minus 119889)119876119901119909 (119905 minus 119889)

+ int

119905

119905minus119889

119909119879

(119904) (

119873

sum

119902=1

120587119901119902119876

119902)119909 (119904) d119904

+ 119889119909119879

(119905) 119876119909 (119905)

minus int

119905

119905minus119889

119909119879

(119904) 119876119909 (119904) d119904

+ 119889

2

119879

(119905) 119864119879

119885119864 (119905)

minus 119889int

119905

119905minus119889

119879

(119904) 119864119879

119885119864 (119904) d119904

(30)

From (21) it is clear that

int

119905

119905minus119889

119909119879

(119904) (

119873

sum

119902=1

120587119901119902119876

119902)119909 (119904) d119904

lt int

119905

119905minus119889

119909119879

(119904) 119876119909 (119904) d119904

(31)

From Lemma 4 it follows that

minus 119889int

119905

119905minus119889

119879

(119904) 119864119879

119885119864 (119904) d119904

le [

119909 (119905)

119909 (119905 minus 119889)

]

119879

[

minus119864119879

119885119864 119864119879

119885119864

119864119879

119885119864 minus119864119879

119885119864

][

119909 (119905)

119909 (119905 minus 119889)

]

(32)

So it can be concluded that

L119881 (119909119905 119901 119905) le

119896

sum

119894=1

120578119879

(119905) Φ119901119894120578 (119905) (33)

where

120578119879

(119905) = [119909119879

(119905) 119909119879

(119905 minus 119889)]

Φ119901119894= [

Υ1119901119894

lowast

Υ2119901119894

Υ3119901119894

]

Υ1119901119894= Γ

1119901119894+ [

119860119879

119901119894

119861119879

119901119894

]119889

2

119885 [119860119901119894119861119901119894]

Υ3119901119894= minus119876

119901minus 119864

119879

119885119864 + 119860119879

119889119901119894119889

2

119885119860119889119901119894

Υ2119901119894= 119864

119879

[119885 0] 119864 + [119860119879

1198891199011198940]119883

119901

+ 119860119879

119889119901119894119889

2

119885 [119860119901119894119861119901119894]

(34)

Using (20) it is easy to see that there exists a scalar 120581 gt 0

such that for every 119901 isin S L119881(119909119905 119901 119905) le minus120581119909(119905)

2 where120581 = min

119894isinT119901isinS(120582min(minusΦ119901119894))

So for 119905 ge 119889 by Dynkinrsquos formula it can be obtained that

E 119881 (119909119905 119901 119905) minusE 119881 (119909

119889 119903

119889 119889)

le minus120581Eint119905

119889

119909 (119904)2 d119904

(35)

which yields

Eint119905

119889

119909 (119904)2 d119904 le 120581minus1E 119881 (119909

119889 119903

119889 119889) (36)

Because 119866119864119867 = [1198681199030

0 0] denote

119860119901(119905) ≜

119896

sum

119894=1

119896

sum

119895=1

120582119894120582119895(119860

119901119894+ 119861

119901119894119870

119901119895)

= [

1198601199011(119905) 119860

1199012(119905)

1198601199013(119905) 119860

1199014(119905)

]

=

[

[

[

[

[

[

119896

sum

119894=1

119896

sum

119895=1

120582119894120582119895119860

1199011198941198951

119896

sum

119894=1

119896

sum

119895=1

120582119894120582119895119860

1199011198941198952

119896

sum

119894=1

119896

sum

119895=1

120582119894120582119895119860

1199011198941198953

119896

sum

119894=1

119896

sum

119895=1

120582119894120582119895119860

1199011198941198954

]

]

]

]

]

]

119860119889119901(119905) ≜

119896

sum

119894=1

120582119894119860

119889119901119894= [

1198601198891199011

(119905) 1198601198891199012

(119905)

1198601198891199013

(119905) 1198601198891199014

(119905)

]

=

[

[

[

[

[

[

119896

sum

119894=1

120582119894119860

1198891199011198941

119896

sum

119894=1

120582119894119860

1198891199011198942

119896

sum

119894=1

120582119894119860

1198891199011198943

119896

sum

119894=1

120582119894119860

1198891199011198944

]

]

]

]

]

]

(37)

By the regularity and nonimpulse of system (11) 1198601199014(119905) is

nonsingular for each 119901 isin S set 119866119901= [

119868119903minus1198601199012(119905)119860minus1

1199014(119905)

0 119860minus1

1199014(119905)

]119866It is easy to obtain

119866119901119864119867 = [

1198681199030

0 0

]

119866119901119860

119901(119905)119867 = [

1198601199011(119905) 0

1198601199013(119905) 119868

119899minus119903

]

119866119901119860

119901(119905)119867 = [

1198601199011(119905) 0

1198601199013(119905) 119868

119899minus119903

]

(38)

Mathematical Problems in Engineering 7

where

1198601199011(119905) = 119860

1199011(119905) minus 119860

1199012(119905) 119860

minus1

1199014(119905) 119860

1199013(119905)

1198601199013(119905) = 119860

minus1

1199014(119905) 119860

1199013(119905)

1198601198891199011

(119905) = 1198601198891199011

(119905) minus 1198601199012(119905) 119860

minus1

1199014(119905) 119860

1198891199013(119905)

1198601198891199012

(119905) = 1198601198891199012

(119905) minus 1198601199012(119905) 119860

minus1

1199014(119905) 119860

1198891199014(119905)

1198601198891199013

(119905) = 119860minus1

1199014(119905) 119860

1198891199013(119905)

1198601198891199014

(119905) = 119860minus1

1199014(119905) 119860

1198891199014(119905)

(39)

Then for each 119901 isin S system (11) is equal to

1(119905) = 119860

1199011(119905) 120595

1(119905) + 119860

1198891199011(119905) 120595

1(119905 minus 119889)

+ 1198601198891199012

(119905) 1205952(119905 minus 119889)

minus1205952(119905) = 119860

1199013(119905) 120595

1(119905) + 119860

1198891199013(119905) 120595

1(119905 minus 119889)

+ 1198601198891199014

(119905) 1205952(119905 minus 119889)

120595 (119905) = 120593 (119905) = 119867minus1

119909 (119905)

119905 isin [minus119889 0]

(40)

where 120595(119905) = [ 1205951(119905)1205952(119905)] = 119867

minus1

119909(119905)For any 119905 ge 0 using Lemma 5 there exists a scalar 120575

119901gt 0

such that 1198601199014(119905) lt 120575

119901 and 120582

119894(120585(119905)) ge 0 andsum119896

119894=1120582119894(120585(119905)) =

1 it follows from (40) that10038171003817100381710038171205951(119905)1003817100381710038171003817

le10038171003817100381710038171205951(0)1003817100381710038171003817

+ 1198961int

119905

0

[10038171003817100381710038171205951(119904)1003817100381710038171003817+10038171003817100381710038171205951(119904 minus 119889)

1003817100381710038171003817+10038171003817100381710038171205952(119904 minus 119889)

1003817100381710038171003817] d119904

(41)

where

1198961= max

119901isinSmax119894119895isinT

10038171003817100381710038171003817119860

1199011198941198951

10038171003817100381710038171003817

+ 120575119901max119894119895isinT

10038171003817100381710038171003817119860

1199011198941198952

10038171003817100381710038171003817max119894119895isinT

10038171003817100381710038171003817119860

1199011198941198953

10038171003817100381710038171003817max119894isinT

10038171003817100381710038171003817119860

1198891199011198941

10038171003817100381710038171003817

+ 120575119901max119894119895isinT

10038171003817100381710038171003817119860

1199011198941198952

10038171003817100381710038171003817max119894119895isinT

10038171003817100381710038171003817119860

1198891199011198943

10038171003817100381710038171003817max119894isinT

10038171003817100381710038171003817119860

1198891199011198942

10038171003817100381710038171003817

+ 120575119901max119894119895isinT

10038171003817100381710038171003817119860

1199011198941198952

10038171003817100381710038171003817max119894119895isinT

10038171003817100381710038171003817119860

1198891199011198944

10038171003817100381710038171003817

(42)

Then for any 0 le 119905 le 119889

10038171003817100381710038171205951(119905)1003817100381710038171003817le (2119896

1119889 + 1)

10038171003817100381710038171205931003817100381710038171003817119889+ 119896

1int

119905

0

10038171003817100381710038171205951(119904)1003817100381710038171003817d119904 (43)

Applying the Gronwall-Bellman lemma it can be obtainedfor any 0 le 119905 le 119889 that

10038171003817100381710038171205951(119905)1003817100381710038171003817le (2119896

1119889 + 1)

100381710038171003817100381712059310038171003817100381710038171198891198901198961119889

(44)

Thus

sup0le119904le119889

10038171003817100381710038171205951(119904)1003817100381710038171003817

2

le (21198961119889 + 1)

2 10038171003817100381710038171205931003817100381710038171003817

2

11988911989021198961119889

(45)

It can be seen from (40) that

sup0le119904le119889

10038171003817100381710038171205952(119904)1003817100381710038171003817

2

le 1198962

2[(2119896

1119889 + 1) 119890

1198961119889

+ 2]

210038171003817100381710038171205931003817100381710038171003817

2

119889 (46)

where 1198962= max

119901isinS120575119901max119894119895isinT1198601199011198941198953

120575119901max

119894isinT1198601198891199011198943

120575119901max

119894isinT1198601198891199011198944 Hence

sup0le119904le119889

1003817100381710038171003817120595 (119904)

1003817100381710038171003817

2

le sup0le119904le119889

10038171003817100381710038171205951(119904)1003817100381710038171003817

2

+ sup0le119904le119889

10038171003817100381710038171205952(119904)1003817100381710038171003817

2

le 1198963

10038171003817100381710038171205931003817100381710038171003817

2

119889

(47)

where 1198963= (2119896

1119889+1)

2

11989021198961119889

+1198962

2[(2119896

1119889+1)119890

1198961119889

+2]2Therefore

sup0le119904le119889

119909 (119904)2

le 1198963119867

210038171003817100381710038171003817119867

minus110038171003817100381710038171003817

2 10038171003817100381710038171206011003817100381710038171003817

2

119889 (48)

Note that

int

0

minus119889

int

119905

119905+120579

119909119879

(119904) 119876119909 (119904) d119904 d120579 le 119889int119905

119905minus119889

119909119879

(119904) 119876119909 (119904) d119904

int

0

minus119889

int

119905

119905+120579

119879

(119904) 119864119879

119885119864 (119904) d119904 d120579

le 119889int

119905

119905minus119896119889

119879

(119904) 119864119879

119885119864 (119904) d119904

(49)

Then from (48) and (28) it can be obtained that there existsa scalar 120588 such that

119881 (119909119889 119903

119889 119889) le 120588

10038171003817100381710038171206011003817100381710038171003817

2

119889 (50)

This together with (36) and (48) implies that there exists ascalar ] such that

Eint119905

0

119909 (119904)2 d119904 = Eint

119889

0

119909 (119904)2 d119904

+Eint119905

119889

119909 (119904)2 d119904

le ]E 10038171003817100381710038171206011003817100381710038171003817

2

119889

(51)

Considering this andDefinition 1 system (11) is stochasticallystable for any constant delay 119889 satisfying 119889 isin [0 119889]Thereforesystem (11) is stochastically admissible This completes theproof

In the following a set of sufficient conditions will bedeveloped under which the considered system is guaranteedto be stochastically admissible with an119867

infinperformance

Definition 9 System (11) is said to be stochastically admissiblewith an 119867

infinperformance 120574 if it is stochastically admissible

when 119908(119905) = 0 and under zero initial condition for nonzero119908(119905) isin 119871

V2[0infin)

Eintinfin

0

119911119879

(119905) 119911 (119905) d119905 le 1205742 intinfin

0

119908119879

(119905) 119908 (119905) d119905 (52)

The following result can be presented

8 Mathematical Problems in Engineering

Theorem 10 For a prescribed scalar 119889 gt 0 there exists astate feedback controller (10) with 119906

119901(119905) = sum

119896

119894=1120582119894119871119901119894119884minus1

119901119909(119905)

such that system (11) is stochastically admissible with an 119867infin

performance 120574 for any constant time delay 119889 satisfying 119889 isin

[0 119889] if there exist matrices 119875119901gt 0 119876

119901gt 0 119876 gt 0 119885 gt 0

119871119901119894 119878

119901 119884

1199012 and 119884

1199013 119894 isin T 119901 isin S such that and

[

Ξ1199011198941

lowast

Ξ1199011198942

Ξ1199013

] lt 0 (53)

where

Ξ1199011198941=

[

[

[

[

[

[

[

[

[

[

[

[

[

[

[

Γ1119901119894

lowast lowast lowast lowast lowast

119871119901119894+ 119884

119879

1199013119861119879

119901119894+ 119884

1199012minus119884

119879

1199013minus 119884

1199013lowast lowast lowast lowast

(

119884119879

119901119860119879

119889119901119894+ 119864119884

119901

+119884119879

119901119864119879

minus 119885

) 0 (

minus119884119879

119901minus 119884

119901+ 119876

119901

minus119884119879

119901119864119879

minus 119864119884119901+ 119885

) lowast lowast lowast

119889119860119901119894119884119901minus 119889119861

1199011198941198841199012

1198891198611199011198941198841199013

119889119860119889119901119894119884119901

minus119885 lowast lowast

119861119879

1199081199011198940 0 0 minus120574

2

119868 lowast

119862119901119894119884119901minus 119863

1199011198941198841199012

1198631199011198941198841199013

119862119889119901119894119884119901

0 119862119908119901119894

minus119868

]

]

]

]

]

]

]

]

]

]

]

]

]

]

]

Ξ1199012=

[

[

[

[

119884119901

0 0 0 0 0

119889119884119901

0 0 0 0 0

[1198681199030]119867

minus1

119872119879

1199010 0 0 0 0

]

]

]

]

Ξ1199013= diag minus119876

119901 minus119889119876 minus119869

119901

(54)

and the other notations are the same as in Theorem 8

Proof FromTheorem 8 when119908(119905) = 0 system (11) is stochas-tically admissible Let

119869119911119908(119905) = Eint

119905

0

[119911119879

(119904) 119911 (119904) minus 1205742

119908119879

(119904) 119908 (119904)] d119904 (55)

Under zero initial condition it is easy to see that

119869119911119908(119905) le Eint

119905

0

[119911119879

(119904) 119911 (119904) minus 1205742

119908119879

(119904) 119908 (119904)

+L119881 (119909119904 119901 119904)] d119904

le Eint119905

0

119896

sum

119894=1

120582119894[120589

119879

(119904) (Ω119901119894+ Θ

119879

119901119894Θ

119901119894) 120589 (119904)] d119904

(56)

where

120589119879

(119905) = [119909119879

(119905) 119909119879

(119905 minus 119889) 119908119879

(119905)]

Ω119901119894=

[

[

[

[

Υ1119901119894

lowast lowast

Υ2119901119894

Υ3119901119894

lowast

[119861119879

1199081199011198940]119883

1199010 minus120574

2

119868

]

]

]

]

Θ119901119894= [119862

119901119894119862119889119901119894

119862119908119901119894]

(57)

and notations of Υ1119901119894

Υ2119901119894

and Υ3119901119894

are the same as inTheorem 8 Hence by Schur complement lemma and using

the similar method in the proof of Theorem 8 from and(53) it can be obtained that 119869

119911119908(119905) lt 0 for all 119905 gt 0

Therefore for any nonzero 119908(119905) isin 119871V2[0infin) (52) holds

Hence according to Definition 9 the system is stochasticallyadmissible with an 119867

infinperformance 120574 This completes the

proof

Remark 11 Compared with methods in [21 22] because ofthe method of the augmented matrix adopted in Theorems8 and 10 the number of LMIs needed to solve is relativelysmall in this paper When the value of 119896 is relatively largethe quality of the computation is greatly reduced some newrelaxation matrices added will reduce the conservatism ofcontrol conditions compared with previous literatures whichcan be seen from Example 2

4 The Design of the Static OutputFeedback Controller

When 119903119905= 119901 isin S consider the overall SMJFS as follows

119864 (119905) =

119896

sum

119894=1

120582119894(119860

119901119894119909 (119905) + 119860

119889119901119894119909 (119905 minus 119889) + 119861

119901119894119906 (119905)

+ 119861119908119901119894119908 (119905))

119910 (119905) =

119896

sum

119894=1

120582119894119862119910119901119894119909 (119905)

Mathematical Problems in Engineering 9

119911 (119905) =

119896

sum

119894=1

120582119894(119862

119901119894119909 (119905) + 119862

119889119901119894119909 (119905 minus 119889) + 119863

119901119894119906 (119905)

+ 119862119908119901119894119908 (119905))

119909 (119905) = 120601 (119905)

forall119905 isin [minus119889 0] 119894 isin T ≜ 1 2 119896

(58)

where 119910(119905) isin R1199011 is the system output 119862

119889119901119894(119894 isin S) are

known constant matrices with appropriate dimensions andthe other notations are the same as in (3)

The following static output feedback controller will beconsidered here

119906119901(119905) =

119896

sum

119894=1

120582119894119870

119901119894119910 (119905) (59)

where119870119901119894(119901 isin S 119894 isin T) are local controller gains such that

the closed-loop system is

119864 (119905) =

119896

sum

119894=1

119896

sum

119895=1

119896

sum

119904=1

120582119894120582119895120582119904((119860

119901119894+ 119861

119901119894119870

119901119895119862119910119901119904) 119909 (119905) + 119860

119889119901119894119909 (119905 minus 119889) + 119861

119908119901119894119908 (119905))

119911 (119905) =

119896

sum

119894=1

119896

sum

119895=1

119896

sum

119904=1

120582119894120582119895120582119904((119862

119901119894+ 119863

119901119894119870

119901119895119862119910119901119904) 119909 (119905) + 119862

119889119901119894119909 (119905 minus 119889) + 119862

119908119901119894119908 (119905))

(60)

It is difficult to drive LMI-based conditions of the stochas-tic stabilization by employing the static output feedbackcontrol approach due to the appearance of crossing termsbetween system matrices and control gains And system (60)can be rewritten in the following form

119864119909 (119905) =

119896

sum

119894=1

119896

sum

119895=1

120582119894120582119895(Λ

119901119894119895119909 (119905) + 119861

119908119901119894119908 (119905))

119911 (119905) =

119896

sum

119894=1

119896

sum

119895=1

120582119894120582119895(119862

119901119894119895119909 (119905) + 119862

119908119901119894119908 (119905))

(61)

where

119864 = [

119864 0

0 0

] isin R(119899+1199011)times(119899+119901

1)

119862119901119894119895= [119862

119901119894119863

119901119894119870

119901119895]

119860119889119901119894

= [

119860119889119901119894

0

0 0

] isin R(119899+1199011)times(119899+119901

1)

119909 (119905) = [

119909 (119905)

119910 (119905)

]

119861119908119901119894

= [

119861119908119901119894

0

] isin R(119899+1199011)timesV

Λ119901119894119895= [

119860119901119894

119861119901119894119870

119901119895

119862119910119901119894

minus119868

]

(62)

Remark 12 For systems (60) and (61) it can be seen that

det(119904119864 minus119896

sum

119894=1

119896

sum

119895=1

119896

sum

119904=1

120582119894120582119895120582119904(119860

119901119894+ 119861

119901119894119870

119901119895119862119910119901119904))

= det(119904119864 minus119896

sum

119894=1

119896

sum

119895=1

120582119894120582119895Λ

119901119894119895)

det(119904119864

minus

119896

sum

119894=1

119896

sum

119895=1

119896

sum

119904=1

120582119894120582119895120582119904(119860

119901119894+ 119861

119901119894119870

119901119895119862119910119901119904

+ 119860119889119901119894))

= det(119904119864 minus119896

sum

119894=1

119896

sum

119895=1

120582119894120582119895(Λ

119901119894119895+ 119860

119889119901119894))

(63)

As the discussion in Remark 7 the stochastic admissibility ofsystem (60) can be studied by means of system (61)

Theorem 13 There exists an output feedback controller (59)with controller gains 119870

119901119894= 119871

119901119894119884minus1

1199012(119901 isin S 119894 isin T) such that

system (60) with 119908(119905) = 0 is stochastically admissible if thereexist matrices 119875

119901gt 0 119876

119901gt 0 119876 gt 0 119885 gt 0 119871

119901119894 119878

119901 and 119884

1199012

119901 isin S 1 le 119894 = 119895 le 119896 such that and

Θ119901119894119894lt 0

1

119896 minus 1

Θ119901119894119894+

1

2

(Θ119901119894119895+ Θ

119901119895119894) lt 0

(64)

where

10 Mathematical Problems in Engineering

Θ119901119894119895=

[

[

[

[

[

[

[

[

[

[

[

[

[

[

[

[

[

[

[

Γ119901119894119895

lowast lowast lowast lowast lowast lowast

119871119879

119901119895119861119879

119901119894+ 119862

119910119901119894119884119901

minus119884119879

1199012minus 119884

1199012lowast lowast lowast lowast lowast

(

119884119879

119901119860119879

119889119901119894+ 119864119884

119901

119884119879

119901119864119879

minus 119885

) 0 Σ119901

lowast lowast lowast lowast

119889119860119901119894119884119901

119889119861119901119894119871119901119895

119889119860119889119901119894119884119901minus119885 lowast lowast lowast

119884119901

0 0 0 minus119876119901

lowast lowast

119889119884119901

0 0 0 0 minus119889119876 lowast

[1198681199030]119867

minus1

119872119879

1199010 0 0 0 0 minus119869

119901

]

]

]

]

]

]

]

]

]

]

]

]

]

]

]

]

]

]

]

(65)

Γ119901119894119895

= 120587119901119901119884119879

119901119864119879

+ 119860119901119894119884119901+ 119884

119879

119901119860119879

119901119894minus 119884

119879

119901119864119879

minus 119864119884119901+ 119885

Σ119901= minus119884

119879

119901minus 119884

119901+ 119876

119901minus 119884

119879

119901119864119879

minus 119864119884119901+ 119885 119871

119901119894= 119870

1199011198941198841199012

119884119901= (119864119875

119901+ 119878

119901119877

119879

)119879 119877 isin R119899times(119899minus119903) is any matrix with

full column rank and satisfies 119864119877 = 0 119866119867 are nonsingularmatrices that make 119866119864119867 = [

1198681199030

0 0] and the other notations are

the same as in Theorem 8

Proof Let 119901= [

119884119901

0

0 1198841199012

] Using Lemma 6 the proof processis similar to Theorem 8

Theorem 14 For a prescribed scalar 119889 gt 0 there exists anoutput feedback controller (59) with controller gains 119870

119901119894=

119871119901119894119884minus1

1199012(119901 isin S 119894 isin T) such that system (60) is stochastically

admissible with an 119867infin

performance 120574 for any constant timedelay 119889 satisfying 119889 isin [0 119889] if there exist matrices 119875

119901gt 0

119876119901gt 0 119876 gt 0 119885 gt 0 119871

119901119894 119878

119901 and 119884

1199012 119901 isin S 1 le 119894 = 119895 le 119896

such that and

Δ119901119894119894lt 0

1

119896 minus 1

Δ119901119894119894+

1

2

(Δ119901119894119895+ Δ

119901119895119894) lt 0

(66)

where

Δ119901119894119895=

[

[

[

[

[

[

[

[

[

[

[

[

[

[

[

[

[

[

[

[

[

[

[

[

Γ119901119894119895

lowast lowast lowast lowast lowast lowast lowast lowast

119871119879

119901119861119879

119901119894+ 119862

119910119901119894119884119901

minus119884119879

1199012minus 119884

1199012lowast lowast lowast lowast lowast lowast lowast

(

119884119879

119901119860119879

119889119901119894+ 119864119884

119901

+119884119879

119901119864119879

minus 119885

) 0 Σ119901

lowast lowast lowast lowast lowast lowast

119889119860119901119894119884119901

119889119861119901119894119871119901119895

119889119860119889119901119894119884119901minus119885 lowast lowast lowast lowast lowast

119861119879

1199081199011198940 0 0 minus120574

2

119868 lowast lowast lowast lowast

119862119901119894119884119901

119863119901119894119871119901119895

119862119889119901119894119884119901

0 119862119908119901119894

minus119868 lowast lowast lowast

119884119901

0 0 0 0 0 minus119876119901

lowast lowast

119889119884119901

0 0 0 0 0 0 minus119889119876 lowast

[1198681199030]119867

minus1

119872119879

1199010 0 0 0 0 0 0 minus119869

119901

]

]

]

]

]

]

]

]

]

]

]

]

]

]

]

]

]

]

]

]

]

]

]

]

(67)

and the other notations are the same as in Theorem 13

Remark 15 Compared with the method in [31 32] becauseof the augmented matrix adopted in Theorems 13 and 14 thenumber of LMIs needed to solve is greatly decreased Whenthe value of 119896 is relatively large the computational complexitywill be reduced On the other hand by the augmentedmatrixthere are not any crossing terms between system matricesand controller gains so assumptions for the output matrix

[23] the equality constraint for the output matrix [24] andthe bounding technique for crossing terms are not necessaryhere therefore the conservatism brought by them will nothappen

5 Numerical Examples

Two examples will be given to illustrate the validity ofdeveloped methods

Mathematical Problems in Engineering 11

Example 1 To illustrate the 119867infin

controller synthesis thefollowing nonlinear time delay system is considered

(1 + 119886 cos 120579 (119905)) 120579 (119905) = minus119887 1205793 (119905) + 119888120579 (119905) + 119888119889(119905 minus 119889)

+ 120575 (119903119905) 119890119906 (119905) + 119891119908 (119905)

(68)

The range of 120579(119905) is assumed to satisfy | 120579(119905)| lt 120595 120595 = 2

119886 = 119887 = 119890 = 119891 = 1 119888 = minus1 119888119889= 08 119889 isin [0 119889] 119889 = 03

and 119906(119905) is the control input 119908(119905) = cos(05119905)119890minus001119905 is thedisturbance input 119903

119905is a Markovian process taking values in

a finite set 1 2 3 120575(1) = 1 120575(2) = 08 120575(3) = 05 and theoutput vector 119911(119905) = 120579(119905)

Choose the vector 119909(119905) = [1199091(119905) 119909

2(119905) 119909

3(119905)]

119879 with1199091(119905) = 120579(119905) 119909

2(119905) =

120579(119905) and 119909

3(119905) =

120579(119905) Then the system

is described by

[

[

[

1 0 0

0 1 0

0 0 0

]

]

]

(119905)

=

[

[

[

[

0 1 0

0 0 1

119888 minus1198871199092

2(119905) minus1 minus 119886 cos119909

1(119905)

]

]

]

]

119909 (119905)

+[

[

[

0 0 0

0 0 0

1198881198890 0

]

]

]

119909 (119905 minus 119889) +[

[

[

0

0

120575 (119903119905) 119890

]

]

]

119906 (119905)

+[

[

[

0

0

119891

]

]

]

119908 (119905)

(69)

It can be expressed exactly by the following fuzzy singularMarkovian jump form

119864 (119905) =

3

sum

119894=1

120582119894(119860

119901119894119909 (119905) + 119860

119889119901119894119909 (119905 minus 119889) + 119861

119901119894119906 (119905)

+ 119861119908119901119894119908 (119905))

119911 (119905) =

3

sum

119894=1

120582119894119862119901119894119909 (119905)

119909 (119905) = 120601 (119905)

119905 isin [minus119889 0] 119901 isin 1 2 3

(70)

where

119864 =[

[

[

1 0 0

0 1 0

0 0 0

]

]

]

1198601199011=

[

[

[

[

0 1 0

0 0 1

119888 minus119887 (1205952

+ 2) 119886 minus 1

]

]

]

]

1198601199012=

[

[

[

[

0 1 0

0 0 1

119888 0 minus119886 minus 1 minus 1198861205952

]

]

]

]

1198601199013=[

[

[

0 1 0

0 0 1

119888 0 119886 minus 1

]

]

]

1198601198891199011

= 1198601198891199012

= 1198601198891199013

=[

[

[

0 0 0

0 0 0

1198881198890 0

]

]

]

11986111= 119861

12= 119861

13=[

[

[

0

0

119890

]

]

]

11986121= 119861

22= 119861

23=[

[

[

0

0

08119890

]

]

]

11986131= 119861

32= 119861

33=[

[

[

0

0

05119890

]

]

]

1198611199081199011

= 1198611199081199012

= 1198611199081199013

=[

[

[

0

0

119891

]

]

]

1198621199011= 119862

1199012= 119862

1199013= [1 0 0]

1205821=

1199092

2(119905)

1205952+ 2

1205822=

1 + cos1199091(119905)

1205952+ 2

1205823=

1205952

minus 1199092

2(119905) + 1 minus cos119909

1(119905)

1205952+ 2

(71)

It is seen that 0 le 120582119894le 1sum3

119894=1120582119894= 1 Let Π = [ minus02 02 0

01 minus03 02

02 03 minus05

]120574 = 1 by solving and (53) in Theorem 10 controller gainsare given by

11987011= [minus142939 minus140620 minus36426]

11987012= [minus142911 minus144082 minus32860]

12 Mathematical Problems in Engineering

0 1 2 3 4 5 6 7 8minus20

minus15

minus10

minus5

0

5

0 2 4 86minus1

0123

Time

Time

Ope

n-lo

op st

ate r

espo

nse

Mar

kov

chai

n

x1

x2

x3

Figure 1 State responses of the open-loop system

11987013= [minus142988 minus144111 minus36425]

11987021= [minus179535 minus177012 minus44471]

11987022= [minus179509 minus179806 minus41585]

11987023= [minus179578 minus179828 minus44470]

11987031= [minus286360 minus283641 minus69941]

11987032= [minus286344 minus285420 minus68118]

11987033= [minus286377 minus285436 minus69941]

(72)

To demonstrate the effectiveness assuming the initialcondition 120601(119905) = [minus12 08 minus05]

119879 Figures 1 and 2 showstate responses of the open-loop system and the closed-loopsystem controlled by (10) respectively From Figure 1 it canbe seen that the open-loop system is not stochastically admis-sible and Figure 2 shows that when the controller obtainedby Theorem 10 is exerted to this system it is stochasticallyadmissible

Example 2 Consider the example without uncertainties in[6]

Mode 1 1198601= [

15 14

minus35 minus45] 119860

1198891= [

02 119886

minus024 minus04] 119861

1= [

1

1]

1198611199081= [

15

14] 119862

1= [05 1] 119862

1198891= [minus02 02] 119863

1= 02 and

1198621199081= 02Mode 2 119860

2= [

17 15

minus13 minus25] 119860

1198892= [

119887 11

minus021 minus03] 119861

2= [

09

09]

1198611199082= [

14

15] 119862

2= [04 03] 119862

1198892= [minus01 02]119863

2= 03 and

1198621199082= 03Π = [

minus1 1

1 minus1] 119864 = [

1 0

0 0] 119889 = 03 120574 = 26 and in [6]

119886 = minus05 119887 = 21 but in this paper minus24 le 119886 le 2 minus2 le 119887 le 48are taken

In Figure 3 ldquoordquo represents the range of the feasiblesolutions using Theorem 10 in this paper and ldquolowastrdquo representsthe range of the feasible solutions using Theorem 3 in [6]

minus15minus1

minus050

051

152

253

354

Mar

kov

chai

n

0 1 2 3 4 5 6 7 8

0 2 4 6 8minus1

0123

Time

Time

Clos

ed-lo

op st

ate r

espo

nse

x1

x2

x3

Figure 2 State responses of the closed-loop system

minus2 minus15 minus1 minus05 0 05 1 15 2minus2

minus1

0

1

2

3

4

a

b

Figure 3 Comparison of the feasible regions

This illustrates that themethod obtained in this paper has lessconservatism

6 Conclusions

In this paper the problem of mode-dependent 119867infin

controlfor singular Markovian jump fuzzy systems with time delayis considered This class of systems under considerationis described by T-S fuzzy models The main contributionof this paper is to design state feedback controllers andstatic output feedback controllers which can guarantee thatresulting closed-loop systems are stochastically admissiblewith an119867

infinperformance 120574 by the method of the augmented

matrix Finally two examples are given to demonstrate theeffectiveness of main results obtained here

Conflict of Interests

The authors declare that there is no conflict of interestsregarding the publication of this paper

Mathematical Problems in Engineering 13

Acknowledgments

This work was supported by The National Natural ScienceFoundation of China under Grants nos 61304054 61273003and 61273008 respectively and Science and TechnologyResearch Fund of Liaoning Education Department underGrant no L2013051

References

[1] L Dai Singular Control Systems vol 118 of Lecture Notes inControl and Information Sciences Springer Berlin Germany1989

[2] F L Lewis ldquoA survey of linear singular systemsrdquo CircuitsSystems and Signal Processing vol 5 no 1 pp 3ndash36 1986

[3] S Xu and J Lam ldquoRobust stability and stabilization of discretesingular systems an equivalent characterizationrdquo IEEE Trans-actions on Automatic Control vol 49 no 4 pp 568ndash574 2004

[4] Z Wu and W Zhou ldquoDelay-dependent robust stabilization foruncertain singular systemswith discrete and distributed delaysrdquoJournal of ControlTheory and Applications vol 6 no 2 pp 171ndash176 2008

[5] Y Xia P Shi G Liu and D Rees ldquoRobust mixed 119867infin119867

2

state-feedback control for continuous-time descriptor systemswith parameter uncertaintiesrdquo Circuits Systems and SignalProcessing vol 24 no 4 pp 431ndash443 2005

[6] H Lu W Zhou C Duan and X Qi ldquoDelay-dependent robust119867

infincontrol for uncertain singular time-delay system with

Markovian jumping parametersrdquo Optimal Control Applicationsamp Methods vol 34 no 3 pp 296ndash307 2013

[7] Y Fang and K A Loparo ldquoStochastic stability of jump linearsystemsrdquo IEEE Transactions on Automatic Control vol 47 no 7pp 1204ndash1208 2002

[8] D Yue and Q-L Han ldquoDelay-dependent exponential stabilityof stochastic systems with time-varying delay nonlinearity andMarkovian switchingrdquo IEEETransactions onAutomatic Controlvol 50 no 2 pp 217ndash222 2005

[9] J Xiong and J Lam ldquoStabilization of discrete-time Markovianjump linear systems via time-delayed controllersrdquo Automaticavol 42 no 5 pp 747ndash753 2006

[10] W-H Chen Z-H Guan and P Yu ldquoDelay-dependent stabilityand 119867

infincontrol of uncertain discrete-time Markovian jump

systems with mode-dependent time delaysrdquo Systems amp ControlLetters vol 52 no 5 pp 361ndash376 2004

[11] E-K Boukas Control of Singular Systems with Random AbruptChanges Communications and Control Engineering SpringerBerlin Germany 2008

[12] J Zhang Y Xia and E K Boukas ldquoNew approach to Hinfin

control for Markovian jump singular systemsrdquo IET ControlTheory amp Applications vol 4 no 11 pp 2273ndash2284 2010

[13] J Lam S Zhu S Xu and E-K Boukas ldquoRobust 119867infin

controlof descriptor discrete-time Markovian jump systemsrdquo Interna-tional Journal of Control vol 80 no 3 pp 374ndash385 2007

[14] K Gu V L Kharitonov and J Chen Stability of Time-DelaySystems Birkhauser Basel Switzerland 2003

[15] G Wang Q Zhang and C Yang ldquoDissipative control forsingular Markovian jump systems with time delayrdquo OptimalControl ApplicationsampMethods vol 33 no 4 pp 415ndash432 2012

[16] Z Wu H Su and J Chu ldquoDelay-dependent 119867infin

control forsingular Markovian jump systems with time delayrdquo Optimal

Control Applications and Methods vol 30 no 5 pp 443ndash4612009

[17] C K Ahn ldquoT-S fuzzy119867infinsynchronization for chaotic systems

via delayed output feedback controlrdquo Nonlinear Dynamics vol59 no 4 pp 535ndash543 2010

[18] C K Ahn ldquoFuzzy delayed output feedback synchronizationfor time-delayed chaotic systemsrdquo Nonlinear Analysis HybridSystems vol 4 no 1 pp 16ndash24 2010

[19] H-N Wu and K-Y Cai ldquoMode-independent robust stabiliza-tion for uncertain Markovian jump nonlinear systems via fuzzycontrolrdquo IEEE Transactions on Systems Man and CyberneticsPart B Cybernetics vol 36 no 3 pp 509ndash519 2006

[20] Y Zhang S Xu Y Zou and J Lu ldquoDelay-dependent robuststabilization for uncertain discrete-time fuzzy Markovian jumpsystems with mode-dependent time delaysrdquo Fuzzy Sets andSystems vol 164 pp 66ndash81 2011

[21] A Zhang and H Fang ldquoRobustHinfinfuzzy control for uncertain

Markovian jump nonlinear singular systems with Wiener pro-cessrdquo Journal of Control Theory and Applications vol 8 no 2pp 205ndash210 2010

[22] L Li Q Zhang and B Zhu ldquo119867infin

fuzzy control for nonlin-ear time-delay singular Markovian jump systems with partlyunknown transition ratesrdquo Fuzzy Sets and Systems vol 254 pp106ndash125 2014

[23] J Dong and G-H Yang ldquoStatic output feedback 119867infin

controlof a class of nonlinear discrete-time systemsrdquo Fuzzy Sets andSystems vol 160 no 19 pp 2844ndash2859 2009

[24] Y Zhang C Liu and X Mu ldquoRobust finite-time119867infincontrol of

singular stochastic systems via static output feedbackrdquo AppliedMathematics and Computation vol 218 no 9 pp 5629ndash56402012

[25] J Wang H Wang A Xie and R Lu ldquoDelay-dependent 119867infin

control for singular Markovian jump systems with time delayrdquoNonlinear Analysis Hybrid Systems vol 8 pp 1ndash12 2012

[26] D B Xu Q L Zhang and Y B Hu ldquoReduced-order Hinfin

controller design for uncertain descriptor systemsrdquo Acta Auto-matica Sinica vol 33 no 1 pp 44ndash47 2007

[27] L Xie and C E de Souza ldquoRobust 119867infin

control for linearsystems with norm bounder time-varying uncertaintiesrdquo IEEETransactions on Automatic Control vol 37 no 8 pp 1188ndash11911992

[28] Q-L Han ldquoAbsolute stability of time-delay systemswith sector-bounded nonlinearityrdquo Automatica vol 41 no 12 pp 2171ndash2176 2005

[29] D Yue J Lam and D W C Ho ldquoReliable 119867infin

control ofuncertain descriptor systems with multiple time delaysrdquo IEEProceedings ControlTheory and Applications vol 150 no 6 pp557ndash564 2003

[30] H D Tuan P Apkarian T Narikiyo and Y YamamotoldquoParameterized linear matrix inequality techniques in fuzzycontrol systemdesignrdquo IEEETransactions on Fuzzy Systems vol9 no 2 pp 324ndash332 2001

[31] S-W Kau H-J Lee C-M Yang C-H Lee L Hong and C-HFang ldquoRobust H

infinfuzzy static output feedback control of T-

S fuzzy systems with parametric uncertaintiesrdquo Fuzzy Sets andSystems vol 158 no 2 pp 135ndash146 2007

[32] D Saifia M Chadli S Labiod and T M Guerra ldquoRobust119867

infinstatic output feedback stabilization of T-S fuzzy systems

subject to actuator saturationrdquo International Journal of ControlAutomation and Systems vol 10 no 3 pp 613ndash622 2012

Submit your manuscripts athttpwwwhindawicom

Hindawi Publishing Corporationhttpwwwhindawicom Volume 2014

MathematicsJournal of

Hindawi Publishing Corporationhttpwwwhindawicom Volume 2014

Mathematical Problems in Engineering

Hindawi Publishing Corporationhttpwwwhindawicom

Differential EquationsInternational Journal of

Volume 2014

Applied MathematicsJournal of

Hindawi Publishing Corporationhttpwwwhindawicom Volume 2014

Probability and StatisticsHindawi Publishing Corporationhttpwwwhindawicom Volume 2014

Journal of

Hindawi Publishing Corporationhttpwwwhindawicom Volume 2014

Mathematical PhysicsAdvances in

Complex AnalysisJournal of

Hindawi Publishing Corporationhttpwwwhindawicom Volume 2014

OptimizationJournal of

Hindawi Publishing Corporationhttpwwwhindawicom Volume 2014

CombinatoricsHindawi Publishing Corporationhttpwwwhindawicom Volume 2014

International Journal of

Hindawi Publishing Corporationhttpwwwhindawicom Volume 2014

Operations ResearchAdvances in

Journal of

Hindawi Publishing Corporationhttpwwwhindawicom Volume 2014

Function Spaces

Abstract and Applied AnalysisHindawi Publishing Corporationhttpwwwhindawicom Volume 2014

International Journal of Mathematics and Mathematical Sciences

Hindawi Publishing Corporationhttpwwwhindawicom Volume 2014

The Scientific World JournalHindawi Publishing Corporation httpwwwhindawicom Volume 2014

Hindawi Publishing Corporationhttpwwwhindawicom Volume 2014

Algebra

Discrete Dynamics in Nature and Society

Hindawi Publishing Corporationhttpwwwhindawicom Volume 2014

Hindawi Publishing Corporationhttpwwwhindawicom Volume 2014

Decision SciencesAdvances in

Discrete MathematicsJournal of

Hindawi Publishing Corporationhttpwwwhindawicom

Volume 2014 Hindawi Publishing Corporationhttpwwwhindawicom Volume 2014

Stochastic AnalysisInternational Journal of

Page 5: Research Article Fuzzy Control for Nonlinear Singular Markovian Jump Systems …downloads.hindawi.com/journals/mpe/2015/896515.pdf · 2019-07-31 · Singular systems, also known as

Mathematical Problems in Engineering 5

sdot[

[

[

[

119884minus1

119902110

0 0

] 0

0 0119898

]

]

]

diag 119867minus1

119868119898 = 119864

119879

minus1

119902

= 119864119879

119883119902

(18)

Denote 119876119901≜ 119876

minus1

119901 119876 ≜ 119876

minus1 and 119885 ≜ 119885

minus1

By Lemma 3 itcan be obtained that

[

minus119864119879

119885119864 119864119879

119885119864

119864119879

119885119864 minus119864119879

119885119864

]

= [

119868119899

minus119868119899

] (minus119864119879

119885119864) [119868119899minus119868

119899]

le [

119868119899

minus119868119899

] (minus119864119879

119883119901minus 119883

119879

119901119864 + 119883

119879

119901119885119883

119901) [119868

119899minus119868

119899]

(19)

Now pre- and postmultiplying by diag119883119879

119901 119883

119879

119901 119885 119868

119899

119868119899 119868

119903 119868

119903⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟

119873minus1

and its transpose by Schur complement lemma

and (18)-(19) it is easy to see that

[

[

[

[

Γ1119901119894

lowast lowast

119864119879

[119885 0] 119864 + [119860119879

1198891199011198940]119883

119901minus119864

119879

119885119864 minus 119876119901lowast

119889119885 [119860119901119894119861119901119894] 119889119885119860

119889119901119894minus119885

]

]

]

]

lt 0

(20)

where Γ1119901119894= sum

119873

119902=1120587119901119902119864119879

119883119901+119883

119879

119901119860

119901119894+119860

119879

119901119894119883

119901119894+diag119876

119901 0+

119889 diag119876 0 minus 119864119879 diag119885 0119864 Pre- and postmultiplying bydiag119883119879

119901 119868

119903 119868

119903⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟

119873minus1

and its transposition by Schur comple-

ment lemma it can be seen that

119873

sum

119902=1

120587119901119902119876

119902lt 119876 (21)

From (20) it can be concluded that

119896

sum

119894=1

120582119894(120587

119901119901119864119879

119883119901+ 119860

119879

119901119894119883

119901+ 119883

119879

119901119860

119901119894

minus 119864119879 diag 119885 0 119864) lt 0

(22)

On the other hand diag119866 119868119898119864 diag119867 119868

119898 = [

[1198681199030

0 0

] 0

0 0119898

]Then

119864119879

119883119901= 119883

119879

119901119864 = [

119864119879

0

0 0

][

119883119901

0

1198831199012119883

1199013

] = [

119864119879

1198831199010

0 0

]

= [

119864119879

119875119901119864 0

0 0

] ge 0

(23)

Denote 119860119901(119905) ≜ (sum

119896

119894=1120582119894119860

119901119894) = [

1198601199011(119905)

1198601199012(119905)

1198601199013(119905)

1198601199014(119905)

] from (22) itcan be obtained that

119883119879

1199013119860

1199014(119905) + 119860

119879

1199014(119905) 119883

1199013lt 0 (24)

for every 119901 isin S which implies that 1198601199014(119905) is nonsingular

Thus the pair (119864 sum119896

119894=1120582119894119860

119901119894) is regular and impulse-free for

every 119901 isin S By (20) it is easy to see that

[

Γ1119901119894

lowast

119864119879

[119885 0] 119864 + [119860119879

1198891199011198940]119883

119901minus119864

119879

119885119864 minus 119876119901

] lt 0 (25)

Pre- and postmultiplying (25) by [ 119868119899+119898

[119868119899

0

]

0 119868119899

] and its trans-pose it can be obtained that

119873

sum

119902=1

120587119901119902119864119879

119883119901+ 119883

119879

119901(119860

119901119894+ 119860

119889119901119894)

+ (119860119901119894+ 119860

119889119901119894)

119879

119883119901lt 0

(26)

Hence

119896

sum

119894=1

120582119894(120587

119901119901119864119879

119883119901+ 119883

119879

119901(119860

119901119894+ 119860

119889119901119894)

+ (119860119901119894+ 119860

119889119901119894)

119879

119883119901) lt 0

(27)

Equation (27) implies that the pair (119864 sum119896

119894=1120582119894(119860

119901119894+ 119860

119889119901119894))

is regular and impulse-free for every 119901 isin S Thus byDefinition 1 system (12) is regular and impulse-free ByRemark 7 this implies that system (11) is regular and impulse-free

Now it will be shown that system (11) is stochasticallystable Define a new process (119909

119905 119903

119905) 119905 ge 0 by 119909

119905= 119909(119905 +

120579) minus2119889 le 120579 le 0 then (119909119905 119903

119905) 119905 ge 119889 is a Markovian process

with the initial state (120601(sdot) 1199030) Now for 119905 ge 119889 choose the

following stochastic Lyapunov-Krasovskii candidate for thissystem

119881 (119909119905 119901 119905) =

4

sum

119898=1

119881119898(119909

119905 119901 119905) (28)

where

1198811(119909

119905 119901 119905) = 119909

119879

(119905) 119864119879

119875119901119864119909 (119905) = 119909

119879

(119905) 119864119879

119883119901119909 (119905)

= 119909119879

(119905) 119864119879

119883119901119909 (119905)

1198812(119909

119905 119901 119905) = int

119905

119905minus119889

119909119879

(119904) 119876119901119909 (119904) d119904

1198813(119909

119905 119901 119905) = 119889int

0

minus119889

int

119905

119905+120579

119879

(119904) 119864119879

119885119864 (119904) d119904 d120579

1198814(119909

119905 119901 119905) = int

0

minus119889

int

119905

119905+120579

119909119879

(119904) 119876119909 (119904) d119904 d120579

(29)

6 Mathematical Problems in Engineering

Let L be the weak infinitesimal generator of the randomprocess (119909

119905 119901) 119905 ge 0 Then for each 119901 isin S

L119881 (119909119905 119901 119905) le 2119909

119879

(119905) 119883119879

119901119864 (119905)

+ 119909119879

(119905) (

119873

sum

119902=1

120587119901119902119864119879

119883119902)119909 (119905)

+ 119909119879

(119905) 119876119901119909 (119905)

minus 119909119879

(119905 minus 119889)119876119901119909 (119905 minus 119889)

+ int

119905

119905minus119889

119909119879

(119904) (

119873

sum

119902=1

120587119901119902119876

119902)119909 (119904) d119904

+ 119889119909119879

(119905) 119876119909 (119905)

minus int

119905

119905minus119889

119909119879

(119904) 119876119909 (119904) d119904

+ 119889

2

119879

(119905) 119864119879

119885119864 (119905)

minus 119889int

119905

119905minus119889

119879

(119904) 119864119879

119885119864 (119904) d119904

(30)

From (21) it is clear that

int

119905

119905minus119889

119909119879

(119904) (

119873

sum

119902=1

120587119901119902119876

119902)119909 (119904) d119904

lt int

119905

119905minus119889

119909119879

(119904) 119876119909 (119904) d119904

(31)

From Lemma 4 it follows that

minus 119889int

119905

119905minus119889

119879

(119904) 119864119879

119885119864 (119904) d119904

le [

119909 (119905)

119909 (119905 minus 119889)

]

119879

[

minus119864119879

119885119864 119864119879

119885119864

119864119879

119885119864 minus119864119879

119885119864

][

119909 (119905)

119909 (119905 minus 119889)

]

(32)

So it can be concluded that

L119881 (119909119905 119901 119905) le

119896

sum

119894=1

120578119879

(119905) Φ119901119894120578 (119905) (33)

where

120578119879

(119905) = [119909119879

(119905) 119909119879

(119905 minus 119889)]

Φ119901119894= [

Υ1119901119894

lowast

Υ2119901119894

Υ3119901119894

]

Υ1119901119894= Γ

1119901119894+ [

119860119879

119901119894

119861119879

119901119894

]119889

2

119885 [119860119901119894119861119901119894]

Υ3119901119894= minus119876

119901minus 119864

119879

119885119864 + 119860119879

119889119901119894119889

2

119885119860119889119901119894

Υ2119901119894= 119864

119879

[119885 0] 119864 + [119860119879

1198891199011198940]119883

119901

+ 119860119879

119889119901119894119889

2

119885 [119860119901119894119861119901119894]

(34)

Using (20) it is easy to see that there exists a scalar 120581 gt 0

such that for every 119901 isin S L119881(119909119905 119901 119905) le minus120581119909(119905)

2 where120581 = min

119894isinT119901isinS(120582min(minusΦ119901119894))

So for 119905 ge 119889 by Dynkinrsquos formula it can be obtained that

E 119881 (119909119905 119901 119905) minusE 119881 (119909

119889 119903

119889 119889)

le minus120581Eint119905

119889

119909 (119904)2 d119904

(35)

which yields

Eint119905

119889

119909 (119904)2 d119904 le 120581minus1E 119881 (119909

119889 119903

119889 119889) (36)

Because 119866119864119867 = [1198681199030

0 0] denote

119860119901(119905) ≜

119896

sum

119894=1

119896

sum

119895=1

120582119894120582119895(119860

119901119894+ 119861

119901119894119870

119901119895)

= [

1198601199011(119905) 119860

1199012(119905)

1198601199013(119905) 119860

1199014(119905)

]

=

[

[

[

[

[

[

119896

sum

119894=1

119896

sum

119895=1

120582119894120582119895119860

1199011198941198951

119896

sum

119894=1

119896

sum

119895=1

120582119894120582119895119860

1199011198941198952

119896

sum

119894=1

119896

sum

119895=1

120582119894120582119895119860

1199011198941198953

119896

sum

119894=1

119896

sum

119895=1

120582119894120582119895119860

1199011198941198954

]

]

]

]

]

]

119860119889119901(119905) ≜

119896

sum

119894=1

120582119894119860

119889119901119894= [

1198601198891199011

(119905) 1198601198891199012

(119905)

1198601198891199013

(119905) 1198601198891199014

(119905)

]

=

[

[

[

[

[

[

119896

sum

119894=1

120582119894119860

1198891199011198941

119896

sum

119894=1

120582119894119860

1198891199011198942

119896

sum

119894=1

120582119894119860

1198891199011198943

119896

sum

119894=1

120582119894119860

1198891199011198944

]

]

]

]

]

]

(37)

By the regularity and nonimpulse of system (11) 1198601199014(119905) is

nonsingular for each 119901 isin S set 119866119901= [

119868119903minus1198601199012(119905)119860minus1

1199014(119905)

0 119860minus1

1199014(119905)

]119866It is easy to obtain

119866119901119864119867 = [

1198681199030

0 0

]

119866119901119860

119901(119905)119867 = [

1198601199011(119905) 0

1198601199013(119905) 119868

119899minus119903

]

119866119901119860

119901(119905)119867 = [

1198601199011(119905) 0

1198601199013(119905) 119868

119899minus119903

]

(38)

Mathematical Problems in Engineering 7

where

1198601199011(119905) = 119860

1199011(119905) minus 119860

1199012(119905) 119860

minus1

1199014(119905) 119860

1199013(119905)

1198601199013(119905) = 119860

minus1

1199014(119905) 119860

1199013(119905)

1198601198891199011

(119905) = 1198601198891199011

(119905) minus 1198601199012(119905) 119860

minus1

1199014(119905) 119860

1198891199013(119905)

1198601198891199012

(119905) = 1198601198891199012

(119905) minus 1198601199012(119905) 119860

minus1

1199014(119905) 119860

1198891199014(119905)

1198601198891199013

(119905) = 119860minus1

1199014(119905) 119860

1198891199013(119905)

1198601198891199014

(119905) = 119860minus1

1199014(119905) 119860

1198891199014(119905)

(39)

Then for each 119901 isin S system (11) is equal to

1(119905) = 119860

1199011(119905) 120595

1(119905) + 119860

1198891199011(119905) 120595

1(119905 minus 119889)

+ 1198601198891199012

(119905) 1205952(119905 minus 119889)

minus1205952(119905) = 119860

1199013(119905) 120595

1(119905) + 119860

1198891199013(119905) 120595

1(119905 minus 119889)

+ 1198601198891199014

(119905) 1205952(119905 minus 119889)

120595 (119905) = 120593 (119905) = 119867minus1

119909 (119905)

119905 isin [minus119889 0]

(40)

where 120595(119905) = [ 1205951(119905)1205952(119905)] = 119867

minus1

119909(119905)For any 119905 ge 0 using Lemma 5 there exists a scalar 120575

119901gt 0

such that 1198601199014(119905) lt 120575

119901 and 120582

119894(120585(119905)) ge 0 andsum119896

119894=1120582119894(120585(119905)) =

1 it follows from (40) that10038171003817100381710038171205951(119905)1003817100381710038171003817

le10038171003817100381710038171205951(0)1003817100381710038171003817

+ 1198961int

119905

0

[10038171003817100381710038171205951(119904)1003817100381710038171003817+10038171003817100381710038171205951(119904 minus 119889)

1003817100381710038171003817+10038171003817100381710038171205952(119904 minus 119889)

1003817100381710038171003817] d119904

(41)

where

1198961= max

119901isinSmax119894119895isinT

10038171003817100381710038171003817119860

1199011198941198951

10038171003817100381710038171003817

+ 120575119901max119894119895isinT

10038171003817100381710038171003817119860

1199011198941198952

10038171003817100381710038171003817max119894119895isinT

10038171003817100381710038171003817119860

1199011198941198953

10038171003817100381710038171003817max119894isinT

10038171003817100381710038171003817119860

1198891199011198941

10038171003817100381710038171003817

+ 120575119901max119894119895isinT

10038171003817100381710038171003817119860

1199011198941198952

10038171003817100381710038171003817max119894119895isinT

10038171003817100381710038171003817119860

1198891199011198943

10038171003817100381710038171003817max119894isinT

10038171003817100381710038171003817119860

1198891199011198942

10038171003817100381710038171003817

+ 120575119901max119894119895isinT

10038171003817100381710038171003817119860

1199011198941198952

10038171003817100381710038171003817max119894119895isinT

10038171003817100381710038171003817119860

1198891199011198944

10038171003817100381710038171003817

(42)

Then for any 0 le 119905 le 119889

10038171003817100381710038171205951(119905)1003817100381710038171003817le (2119896

1119889 + 1)

10038171003817100381710038171205931003817100381710038171003817119889+ 119896

1int

119905

0

10038171003817100381710038171205951(119904)1003817100381710038171003817d119904 (43)

Applying the Gronwall-Bellman lemma it can be obtainedfor any 0 le 119905 le 119889 that

10038171003817100381710038171205951(119905)1003817100381710038171003817le (2119896

1119889 + 1)

100381710038171003817100381712059310038171003817100381710038171198891198901198961119889

(44)

Thus

sup0le119904le119889

10038171003817100381710038171205951(119904)1003817100381710038171003817

2

le (21198961119889 + 1)

2 10038171003817100381710038171205931003817100381710038171003817

2

11988911989021198961119889

(45)

It can be seen from (40) that

sup0le119904le119889

10038171003817100381710038171205952(119904)1003817100381710038171003817

2

le 1198962

2[(2119896

1119889 + 1) 119890

1198961119889

+ 2]

210038171003817100381710038171205931003817100381710038171003817

2

119889 (46)

where 1198962= max

119901isinS120575119901max119894119895isinT1198601199011198941198953

120575119901max

119894isinT1198601198891199011198943

120575119901max

119894isinT1198601198891199011198944 Hence

sup0le119904le119889

1003817100381710038171003817120595 (119904)

1003817100381710038171003817

2

le sup0le119904le119889

10038171003817100381710038171205951(119904)1003817100381710038171003817

2

+ sup0le119904le119889

10038171003817100381710038171205952(119904)1003817100381710038171003817

2

le 1198963

10038171003817100381710038171205931003817100381710038171003817

2

119889

(47)

where 1198963= (2119896

1119889+1)

2

11989021198961119889

+1198962

2[(2119896

1119889+1)119890

1198961119889

+2]2Therefore

sup0le119904le119889

119909 (119904)2

le 1198963119867

210038171003817100381710038171003817119867

minus110038171003817100381710038171003817

2 10038171003817100381710038171206011003817100381710038171003817

2

119889 (48)

Note that

int

0

minus119889

int

119905

119905+120579

119909119879

(119904) 119876119909 (119904) d119904 d120579 le 119889int119905

119905minus119889

119909119879

(119904) 119876119909 (119904) d119904

int

0

minus119889

int

119905

119905+120579

119879

(119904) 119864119879

119885119864 (119904) d119904 d120579

le 119889int

119905

119905minus119896119889

119879

(119904) 119864119879

119885119864 (119904) d119904

(49)

Then from (48) and (28) it can be obtained that there existsa scalar 120588 such that

119881 (119909119889 119903

119889 119889) le 120588

10038171003817100381710038171206011003817100381710038171003817

2

119889 (50)

This together with (36) and (48) implies that there exists ascalar ] such that

Eint119905

0

119909 (119904)2 d119904 = Eint

119889

0

119909 (119904)2 d119904

+Eint119905

119889

119909 (119904)2 d119904

le ]E 10038171003817100381710038171206011003817100381710038171003817

2

119889

(51)

Considering this andDefinition 1 system (11) is stochasticallystable for any constant delay 119889 satisfying 119889 isin [0 119889]Thereforesystem (11) is stochastically admissible This completes theproof

In the following a set of sufficient conditions will bedeveloped under which the considered system is guaranteedto be stochastically admissible with an119867

infinperformance

Definition 9 System (11) is said to be stochastically admissiblewith an 119867

infinperformance 120574 if it is stochastically admissible

when 119908(119905) = 0 and under zero initial condition for nonzero119908(119905) isin 119871

V2[0infin)

Eintinfin

0

119911119879

(119905) 119911 (119905) d119905 le 1205742 intinfin

0

119908119879

(119905) 119908 (119905) d119905 (52)

The following result can be presented

8 Mathematical Problems in Engineering

Theorem 10 For a prescribed scalar 119889 gt 0 there exists astate feedback controller (10) with 119906

119901(119905) = sum

119896

119894=1120582119894119871119901119894119884minus1

119901119909(119905)

such that system (11) is stochastically admissible with an 119867infin

performance 120574 for any constant time delay 119889 satisfying 119889 isin

[0 119889] if there exist matrices 119875119901gt 0 119876

119901gt 0 119876 gt 0 119885 gt 0

119871119901119894 119878

119901 119884

1199012 and 119884

1199013 119894 isin T 119901 isin S such that and

[

Ξ1199011198941

lowast

Ξ1199011198942

Ξ1199013

] lt 0 (53)

where

Ξ1199011198941=

[

[

[

[

[

[

[

[

[

[

[

[

[

[

[

Γ1119901119894

lowast lowast lowast lowast lowast

119871119901119894+ 119884

119879

1199013119861119879

119901119894+ 119884

1199012minus119884

119879

1199013minus 119884

1199013lowast lowast lowast lowast

(

119884119879

119901119860119879

119889119901119894+ 119864119884

119901

+119884119879

119901119864119879

minus 119885

) 0 (

minus119884119879

119901minus 119884

119901+ 119876

119901

minus119884119879

119901119864119879

minus 119864119884119901+ 119885

) lowast lowast lowast

119889119860119901119894119884119901minus 119889119861

1199011198941198841199012

1198891198611199011198941198841199013

119889119860119889119901119894119884119901

minus119885 lowast lowast

119861119879

1199081199011198940 0 0 minus120574

2

119868 lowast

119862119901119894119884119901minus 119863

1199011198941198841199012

1198631199011198941198841199013

119862119889119901119894119884119901

0 119862119908119901119894

minus119868

]

]

]

]

]

]

]

]

]

]

]

]

]

]

]

Ξ1199012=

[

[

[

[

119884119901

0 0 0 0 0

119889119884119901

0 0 0 0 0

[1198681199030]119867

minus1

119872119879

1199010 0 0 0 0

]

]

]

]

Ξ1199013= diag minus119876

119901 minus119889119876 minus119869

119901

(54)

and the other notations are the same as in Theorem 8

Proof FromTheorem 8 when119908(119905) = 0 system (11) is stochas-tically admissible Let

119869119911119908(119905) = Eint

119905

0

[119911119879

(119904) 119911 (119904) minus 1205742

119908119879

(119904) 119908 (119904)] d119904 (55)

Under zero initial condition it is easy to see that

119869119911119908(119905) le Eint

119905

0

[119911119879

(119904) 119911 (119904) minus 1205742

119908119879

(119904) 119908 (119904)

+L119881 (119909119904 119901 119904)] d119904

le Eint119905

0

119896

sum

119894=1

120582119894[120589

119879

(119904) (Ω119901119894+ Θ

119879

119901119894Θ

119901119894) 120589 (119904)] d119904

(56)

where

120589119879

(119905) = [119909119879

(119905) 119909119879

(119905 minus 119889) 119908119879

(119905)]

Ω119901119894=

[

[

[

[

Υ1119901119894

lowast lowast

Υ2119901119894

Υ3119901119894

lowast

[119861119879

1199081199011198940]119883

1199010 minus120574

2

119868

]

]

]

]

Θ119901119894= [119862

119901119894119862119889119901119894

119862119908119901119894]

(57)

and notations of Υ1119901119894

Υ2119901119894

and Υ3119901119894

are the same as inTheorem 8 Hence by Schur complement lemma and using

the similar method in the proof of Theorem 8 from and(53) it can be obtained that 119869

119911119908(119905) lt 0 for all 119905 gt 0

Therefore for any nonzero 119908(119905) isin 119871V2[0infin) (52) holds

Hence according to Definition 9 the system is stochasticallyadmissible with an 119867

infinperformance 120574 This completes the

proof

Remark 11 Compared with methods in [21 22] because ofthe method of the augmented matrix adopted in Theorems8 and 10 the number of LMIs needed to solve is relativelysmall in this paper When the value of 119896 is relatively largethe quality of the computation is greatly reduced some newrelaxation matrices added will reduce the conservatism ofcontrol conditions compared with previous literatures whichcan be seen from Example 2

4 The Design of the Static OutputFeedback Controller

When 119903119905= 119901 isin S consider the overall SMJFS as follows

119864 (119905) =

119896

sum

119894=1

120582119894(119860

119901119894119909 (119905) + 119860

119889119901119894119909 (119905 minus 119889) + 119861

119901119894119906 (119905)

+ 119861119908119901119894119908 (119905))

119910 (119905) =

119896

sum

119894=1

120582119894119862119910119901119894119909 (119905)

Mathematical Problems in Engineering 9

119911 (119905) =

119896

sum

119894=1

120582119894(119862

119901119894119909 (119905) + 119862

119889119901119894119909 (119905 minus 119889) + 119863

119901119894119906 (119905)

+ 119862119908119901119894119908 (119905))

119909 (119905) = 120601 (119905)

forall119905 isin [minus119889 0] 119894 isin T ≜ 1 2 119896

(58)

where 119910(119905) isin R1199011 is the system output 119862

119889119901119894(119894 isin S) are

known constant matrices with appropriate dimensions andthe other notations are the same as in (3)

The following static output feedback controller will beconsidered here

119906119901(119905) =

119896

sum

119894=1

120582119894119870

119901119894119910 (119905) (59)

where119870119901119894(119901 isin S 119894 isin T) are local controller gains such that

the closed-loop system is

119864 (119905) =

119896

sum

119894=1

119896

sum

119895=1

119896

sum

119904=1

120582119894120582119895120582119904((119860

119901119894+ 119861

119901119894119870

119901119895119862119910119901119904) 119909 (119905) + 119860

119889119901119894119909 (119905 minus 119889) + 119861

119908119901119894119908 (119905))

119911 (119905) =

119896

sum

119894=1

119896

sum

119895=1

119896

sum

119904=1

120582119894120582119895120582119904((119862

119901119894+ 119863

119901119894119870

119901119895119862119910119901119904) 119909 (119905) + 119862

119889119901119894119909 (119905 minus 119889) + 119862

119908119901119894119908 (119905))

(60)

It is difficult to drive LMI-based conditions of the stochas-tic stabilization by employing the static output feedbackcontrol approach due to the appearance of crossing termsbetween system matrices and control gains And system (60)can be rewritten in the following form

119864119909 (119905) =

119896

sum

119894=1

119896

sum

119895=1

120582119894120582119895(Λ

119901119894119895119909 (119905) + 119861

119908119901119894119908 (119905))

119911 (119905) =

119896

sum

119894=1

119896

sum

119895=1

120582119894120582119895(119862

119901119894119895119909 (119905) + 119862

119908119901119894119908 (119905))

(61)

where

119864 = [

119864 0

0 0

] isin R(119899+1199011)times(119899+119901

1)

119862119901119894119895= [119862

119901119894119863

119901119894119870

119901119895]

119860119889119901119894

= [

119860119889119901119894

0

0 0

] isin R(119899+1199011)times(119899+119901

1)

119909 (119905) = [

119909 (119905)

119910 (119905)

]

119861119908119901119894

= [

119861119908119901119894

0

] isin R(119899+1199011)timesV

Λ119901119894119895= [

119860119901119894

119861119901119894119870

119901119895

119862119910119901119894

minus119868

]

(62)

Remark 12 For systems (60) and (61) it can be seen that

det(119904119864 minus119896

sum

119894=1

119896

sum

119895=1

119896

sum

119904=1

120582119894120582119895120582119904(119860

119901119894+ 119861

119901119894119870

119901119895119862119910119901119904))

= det(119904119864 minus119896

sum

119894=1

119896

sum

119895=1

120582119894120582119895Λ

119901119894119895)

det(119904119864

minus

119896

sum

119894=1

119896

sum

119895=1

119896

sum

119904=1

120582119894120582119895120582119904(119860

119901119894+ 119861

119901119894119870

119901119895119862119910119901119904

+ 119860119889119901119894))

= det(119904119864 minus119896

sum

119894=1

119896

sum

119895=1

120582119894120582119895(Λ

119901119894119895+ 119860

119889119901119894))

(63)

As the discussion in Remark 7 the stochastic admissibility ofsystem (60) can be studied by means of system (61)

Theorem 13 There exists an output feedback controller (59)with controller gains 119870

119901119894= 119871

119901119894119884minus1

1199012(119901 isin S 119894 isin T) such that

system (60) with 119908(119905) = 0 is stochastically admissible if thereexist matrices 119875

119901gt 0 119876

119901gt 0 119876 gt 0 119885 gt 0 119871

119901119894 119878

119901 and 119884

1199012

119901 isin S 1 le 119894 = 119895 le 119896 such that and

Θ119901119894119894lt 0

1

119896 minus 1

Θ119901119894119894+

1

2

(Θ119901119894119895+ Θ

119901119895119894) lt 0

(64)

where

10 Mathematical Problems in Engineering

Θ119901119894119895=

[

[

[

[

[

[

[

[

[

[

[

[

[

[

[

[

[

[

[

Γ119901119894119895

lowast lowast lowast lowast lowast lowast

119871119879

119901119895119861119879

119901119894+ 119862

119910119901119894119884119901

minus119884119879

1199012minus 119884

1199012lowast lowast lowast lowast lowast

(

119884119879

119901119860119879

119889119901119894+ 119864119884

119901

119884119879

119901119864119879

minus 119885

) 0 Σ119901

lowast lowast lowast lowast

119889119860119901119894119884119901

119889119861119901119894119871119901119895

119889119860119889119901119894119884119901minus119885 lowast lowast lowast

119884119901

0 0 0 minus119876119901

lowast lowast

119889119884119901

0 0 0 0 minus119889119876 lowast

[1198681199030]119867

minus1

119872119879

1199010 0 0 0 0 minus119869

119901

]

]

]

]

]

]

]

]

]

]

]

]

]

]

]

]

]

]

]

(65)

Γ119901119894119895

= 120587119901119901119884119879

119901119864119879

+ 119860119901119894119884119901+ 119884

119879

119901119860119879

119901119894minus 119884

119879

119901119864119879

minus 119864119884119901+ 119885

Σ119901= minus119884

119879

119901minus 119884

119901+ 119876

119901minus 119884

119879

119901119864119879

minus 119864119884119901+ 119885 119871

119901119894= 119870

1199011198941198841199012

119884119901= (119864119875

119901+ 119878

119901119877

119879

)119879 119877 isin R119899times(119899minus119903) is any matrix with

full column rank and satisfies 119864119877 = 0 119866119867 are nonsingularmatrices that make 119866119864119867 = [

1198681199030

0 0] and the other notations are

the same as in Theorem 8

Proof Let 119901= [

119884119901

0

0 1198841199012

] Using Lemma 6 the proof processis similar to Theorem 8

Theorem 14 For a prescribed scalar 119889 gt 0 there exists anoutput feedback controller (59) with controller gains 119870

119901119894=

119871119901119894119884minus1

1199012(119901 isin S 119894 isin T) such that system (60) is stochastically

admissible with an 119867infin

performance 120574 for any constant timedelay 119889 satisfying 119889 isin [0 119889] if there exist matrices 119875

119901gt 0

119876119901gt 0 119876 gt 0 119885 gt 0 119871

119901119894 119878

119901 and 119884

1199012 119901 isin S 1 le 119894 = 119895 le 119896

such that and

Δ119901119894119894lt 0

1

119896 minus 1

Δ119901119894119894+

1

2

(Δ119901119894119895+ Δ

119901119895119894) lt 0

(66)

where

Δ119901119894119895=

[

[

[

[

[

[

[

[

[

[

[

[

[

[

[

[

[

[

[

[

[

[

[

[

Γ119901119894119895

lowast lowast lowast lowast lowast lowast lowast lowast

119871119879

119901119861119879

119901119894+ 119862

119910119901119894119884119901

minus119884119879

1199012minus 119884

1199012lowast lowast lowast lowast lowast lowast lowast

(

119884119879

119901119860119879

119889119901119894+ 119864119884

119901

+119884119879

119901119864119879

minus 119885

) 0 Σ119901

lowast lowast lowast lowast lowast lowast

119889119860119901119894119884119901

119889119861119901119894119871119901119895

119889119860119889119901119894119884119901minus119885 lowast lowast lowast lowast lowast

119861119879

1199081199011198940 0 0 minus120574

2

119868 lowast lowast lowast lowast

119862119901119894119884119901

119863119901119894119871119901119895

119862119889119901119894119884119901

0 119862119908119901119894

minus119868 lowast lowast lowast

119884119901

0 0 0 0 0 minus119876119901

lowast lowast

119889119884119901

0 0 0 0 0 0 minus119889119876 lowast

[1198681199030]119867

minus1

119872119879

1199010 0 0 0 0 0 0 minus119869

119901

]

]

]

]

]

]

]

]

]

]

]

]

]

]

]

]

]

]

]

]

]

]

]

]

(67)

and the other notations are the same as in Theorem 13

Remark 15 Compared with the method in [31 32] becauseof the augmented matrix adopted in Theorems 13 and 14 thenumber of LMIs needed to solve is greatly decreased Whenthe value of 119896 is relatively large the computational complexitywill be reduced On the other hand by the augmentedmatrixthere are not any crossing terms between system matricesand controller gains so assumptions for the output matrix

[23] the equality constraint for the output matrix [24] andthe bounding technique for crossing terms are not necessaryhere therefore the conservatism brought by them will nothappen

5 Numerical Examples

Two examples will be given to illustrate the validity ofdeveloped methods

Mathematical Problems in Engineering 11

Example 1 To illustrate the 119867infin

controller synthesis thefollowing nonlinear time delay system is considered

(1 + 119886 cos 120579 (119905)) 120579 (119905) = minus119887 1205793 (119905) + 119888120579 (119905) + 119888119889(119905 minus 119889)

+ 120575 (119903119905) 119890119906 (119905) + 119891119908 (119905)

(68)

The range of 120579(119905) is assumed to satisfy | 120579(119905)| lt 120595 120595 = 2

119886 = 119887 = 119890 = 119891 = 1 119888 = minus1 119888119889= 08 119889 isin [0 119889] 119889 = 03

and 119906(119905) is the control input 119908(119905) = cos(05119905)119890minus001119905 is thedisturbance input 119903

119905is a Markovian process taking values in

a finite set 1 2 3 120575(1) = 1 120575(2) = 08 120575(3) = 05 and theoutput vector 119911(119905) = 120579(119905)

Choose the vector 119909(119905) = [1199091(119905) 119909

2(119905) 119909

3(119905)]

119879 with1199091(119905) = 120579(119905) 119909

2(119905) =

120579(119905) and 119909

3(119905) =

120579(119905) Then the system

is described by

[

[

[

1 0 0

0 1 0

0 0 0

]

]

]

(119905)

=

[

[

[

[

0 1 0

0 0 1

119888 minus1198871199092

2(119905) minus1 minus 119886 cos119909

1(119905)

]

]

]

]

119909 (119905)

+[

[

[

0 0 0

0 0 0

1198881198890 0

]

]

]

119909 (119905 minus 119889) +[

[

[

0

0

120575 (119903119905) 119890

]

]

]

119906 (119905)

+[

[

[

0

0

119891

]

]

]

119908 (119905)

(69)

It can be expressed exactly by the following fuzzy singularMarkovian jump form

119864 (119905) =

3

sum

119894=1

120582119894(119860

119901119894119909 (119905) + 119860

119889119901119894119909 (119905 minus 119889) + 119861

119901119894119906 (119905)

+ 119861119908119901119894119908 (119905))

119911 (119905) =

3

sum

119894=1

120582119894119862119901119894119909 (119905)

119909 (119905) = 120601 (119905)

119905 isin [minus119889 0] 119901 isin 1 2 3

(70)

where

119864 =[

[

[

1 0 0

0 1 0

0 0 0

]

]

]

1198601199011=

[

[

[

[

0 1 0

0 0 1

119888 minus119887 (1205952

+ 2) 119886 minus 1

]

]

]

]

1198601199012=

[

[

[

[

0 1 0

0 0 1

119888 0 minus119886 minus 1 minus 1198861205952

]

]

]

]

1198601199013=[

[

[

0 1 0

0 0 1

119888 0 119886 minus 1

]

]

]

1198601198891199011

= 1198601198891199012

= 1198601198891199013

=[

[

[

0 0 0

0 0 0

1198881198890 0

]

]

]

11986111= 119861

12= 119861

13=[

[

[

0

0

119890

]

]

]

11986121= 119861

22= 119861

23=[

[

[

0

0

08119890

]

]

]

11986131= 119861

32= 119861

33=[

[

[

0

0

05119890

]

]

]

1198611199081199011

= 1198611199081199012

= 1198611199081199013

=[

[

[

0

0

119891

]

]

]

1198621199011= 119862

1199012= 119862

1199013= [1 0 0]

1205821=

1199092

2(119905)

1205952+ 2

1205822=

1 + cos1199091(119905)

1205952+ 2

1205823=

1205952

minus 1199092

2(119905) + 1 minus cos119909

1(119905)

1205952+ 2

(71)

It is seen that 0 le 120582119894le 1sum3

119894=1120582119894= 1 Let Π = [ minus02 02 0

01 minus03 02

02 03 minus05

]120574 = 1 by solving and (53) in Theorem 10 controller gainsare given by

11987011= [minus142939 minus140620 minus36426]

11987012= [minus142911 minus144082 minus32860]

12 Mathematical Problems in Engineering

0 1 2 3 4 5 6 7 8minus20

minus15

minus10

minus5

0

5

0 2 4 86minus1

0123

Time

Time

Ope

n-lo

op st

ate r

espo

nse

Mar

kov

chai

n

x1

x2

x3

Figure 1 State responses of the open-loop system

11987013= [minus142988 minus144111 minus36425]

11987021= [minus179535 minus177012 minus44471]

11987022= [minus179509 minus179806 minus41585]

11987023= [minus179578 minus179828 minus44470]

11987031= [minus286360 minus283641 minus69941]

11987032= [minus286344 minus285420 minus68118]

11987033= [minus286377 minus285436 minus69941]

(72)

To demonstrate the effectiveness assuming the initialcondition 120601(119905) = [minus12 08 minus05]

119879 Figures 1 and 2 showstate responses of the open-loop system and the closed-loopsystem controlled by (10) respectively From Figure 1 it canbe seen that the open-loop system is not stochastically admis-sible and Figure 2 shows that when the controller obtainedby Theorem 10 is exerted to this system it is stochasticallyadmissible

Example 2 Consider the example without uncertainties in[6]

Mode 1 1198601= [

15 14

minus35 minus45] 119860

1198891= [

02 119886

minus024 minus04] 119861

1= [

1

1]

1198611199081= [

15

14] 119862

1= [05 1] 119862

1198891= [minus02 02] 119863

1= 02 and

1198621199081= 02Mode 2 119860

2= [

17 15

minus13 minus25] 119860

1198892= [

119887 11

minus021 minus03] 119861

2= [

09

09]

1198611199082= [

14

15] 119862

2= [04 03] 119862

1198892= [minus01 02]119863

2= 03 and

1198621199082= 03Π = [

minus1 1

1 minus1] 119864 = [

1 0

0 0] 119889 = 03 120574 = 26 and in [6]

119886 = minus05 119887 = 21 but in this paper minus24 le 119886 le 2 minus2 le 119887 le 48are taken

In Figure 3 ldquoordquo represents the range of the feasiblesolutions using Theorem 10 in this paper and ldquolowastrdquo representsthe range of the feasible solutions using Theorem 3 in [6]

minus15minus1

minus050

051

152

253

354

Mar

kov

chai

n

0 1 2 3 4 5 6 7 8

0 2 4 6 8minus1

0123

Time

Time

Clos

ed-lo

op st

ate r

espo

nse

x1

x2

x3

Figure 2 State responses of the closed-loop system

minus2 minus15 minus1 minus05 0 05 1 15 2minus2

minus1

0

1

2

3

4

a

b

Figure 3 Comparison of the feasible regions

This illustrates that themethod obtained in this paper has lessconservatism

6 Conclusions

In this paper the problem of mode-dependent 119867infin

controlfor singular Markovian jump fuzzy systems with time delayis considered This class of systems under considerationis described by T-S fuzzy models The main contributionof this paper is to design state feedback controllers andstatic output feedback controllers which can guarantee thatresulting closed-loop systems are stochastically admissiblewith an119867

infinperformance 120574 by the method of the augmented

matrix Finally two examples are given to demonstrate theeffectiveness of main results obtained here

Conflict of Interests

The authors declare that there is no conflict of interestsregarding the publication of this paper

Mathematical Problems in Engineering 13

Acknowledgments

This work was supported by The National Natural ScienceFoundation of China under Grants nos 61304054 61273003and 61273008 respectively and Science and TechnologyResearch Fund of Liaoning Education Department underGrant no L2013051

References

[1] L Dai Singular Control Systems vol 118 of Lecture Notes inControl and Information Sciences Springer Berlin Germany1989

[2] F L Lewis ldquoA survey of linear singular systemsrdquo CircuitsSystems and Signal Processing vol 5 no 1 pp 3ndash36 1986

[3] S Xu and J Lam ldquoRobust stability and stabilization of discretesingular systems an equivalent characterizationrdquo IEEE Trans-actions on Automatic Control vol 49 no 4 pp 568ndash574 2004

[4] Z Wu and W Zhou ldquoDelay-dependent robust stabilization foruncertain singular systemswith discrete and distributed delaysrdquoJournal of ControlTheory and Applications vol 6 no 2 pp 171ndash176 2008

[5] Y Xia P Shi G Liu and D Rees ldquoRobust mixed 119867infin119867

2

state-feedback control for continuous-time descriptor systemswith parameter uncertaintiesrdquo Circuits Systems and SignalProcessing vol 24 no 4 pp 431ndash443 2005

[6] H Lu W Zhou C Duan and X Qi ldquoDelay-dependent robust119867

infincontrol for uncertain singular time-delay system with

Markovian jumping parametersrdquo Optimal Control Applicationsamp Methods vol 34 no 3 pp 296ndash307 2013

[7] Y Fang and K A Loparo ldquoStochastic stability of jump linearsystemsrdquo IEEE Transactions on Automatic Control vol 47 no 7pp 1204ndash1208 2002

[8] D Yue and Q-L Han ldquoDelay-dependent exponential stabilityof stochastic systems with time-varying delay nonlinearity andMarkovian switchingrdquo IEEETransactions onAutomatic Controlvol 50 no 2 pp 217ndash222 2005

[9] J Xiong and J Lam ldquoStabilization of discrete-time Markovianjump linear systems via time-delayed controllersrdquo Automaticavol 42 no 5 pp 747ndash753 2006

[10] W-H Chen Z-H Guan and P Yu ldquoDelay-dependent stabilityand 119867

infincontrol of uncertain discrete-time Markovian jump

systems with mode-dependent time delaysrdquo Systems amp ControlLetters vol 52 no 5 pp 361ndash376 2004

[11] E-K Boukas Control of Singular Systems with Random AbruptChanges Communications and Control Engineering SpringerBerlin Germany 2008

[12] J Zhang Y Xia and E K Boukas ldquoNew approach to Hinfin

control for Markovian jump singular systemsrdquo IET ControlTheory amp Applications vol 4 no 11 pp 2273ndash2284 2010

[13] J Lam S Zhu S Xu and E-K Boukas ldquoRobust 119867infin

controlof descriptor discrete-time Markovian jump systemsrdquo Interna-tional Journal of Control vol 80 no 3 pp 374ndash385 2007

[14] K Gu V L Kharitonov and J Chen Stability of Time-DelaySystems Birkhauser Basel Switzerland 2003

[15] G Wang Q Zhang and C Yang ldquoDissipative control forsingular Markovian jump systems with time delayrdquo OptimalControl ApplicationsampMethods vol 33 no 4 pp 415ndash432 2012

[16] Z Wu H Su and J Chu ldquoDelay-dependent 119867infin

control forsingular Markovian jump systems with time delayrdquo Optimal

Control Applications and Methods vol 30 no 5 pp 443ndash4612009

[17] C K Ahn ldquoT-S fuzzy119867infinsynchronization for chaotic systems

via delayed output feedback controlrdquo Nonlinear Dynamics vol59 no 4 pp 535ndash543 2010

[18] C K Ahn ldquoFuzzy delayed output feedback synchronizationfor time-delayed chaotic systemsrdquo Nonlinear Analysis HybridSystems vol 4 no 1 pp 16ndash24 2010

[19] H-N Wu and K-Y Cai ldquoMode-independent robust stabiliza-tion for uncertain Markovian jump nonlinear systems via fuzzycontrolrdquo IEEE Transactions on Systems Man and CyberneticsPart B Cybernetics vol 36 no 3 pp 509ndash519 2006

[20] Y Zhang S Xu Y Zou and J Lu ldquoDelay-dependent robuststabilization for uncertain discrete-time fuzzy Markovian jumpsystems with mode-dependent time delaysrdquo Fuzzy Sets andSystems vol 164 pp 66ndash81 2011

[21] A Zhang and H Fang ldquoRobustHinfinfuzzy control for uncertain

Markovian jump nonlinear singular systems with Wiener pro-cessrdquo Journal of Control Theory and Applications vol 8 no 2pp 205ndash210 2010

[22] L Li Q Zhang and B Zhu ldquo119867infin

fuzzy control for nonlin-ear time-delay singular Markovian jump systems with partlyunknown transition ratesrdquo Fuzzy Sets and Systems vol 254 pp106ndash125 2014

[23] J Dong and G-H Yang ldquoStatic output feedback 119867infin

controlof a class of nonlinear discrete-time systemsrdquo Fuzzy Sets andSystems vol 160 no 19 pp 2844ndash2859 2009

[24] Y Zhang C Liu and X Mu ldquoRobust finite-time119867infincontrol of

singular stochastic systems via static output feedbackrdquo AppliedMathematics and Computation vol 218 no 9 pp 5629ndash56402012

[25] J Wang H Wang A Xie and R Lu ldquoDelay-dependent 119867infin

control for singular Markovian jump systems with time delayrdquoNonlinear Analysis Hybrid Systems vol 8 pp 1ndash12 2012

[26] D B Xu Q L Zhang and Y B Hu ldquoReduced-order Hinfin

controller design for uncertain descriptor systemsrdquo Acta Auto-matica Sinica vol 33 no 1 pp 44ndash47 2007

[27] L Xie and C E de Souza ldquoRobust 119867infin

control for linearsystems with norm bounder time-varying uncertaintiesrdquo IEEETransactions on Automatic Control vol 37 no 8 pp 1188ndash11911992

[28] Q-L Han ldquoAbsolute stability of time-delay systemswith sector-bounded nonlinearityrdquo Automatica vol 41 no 12 pp 2171ndash2176 2005

[29] D Yue J Lam and D W C Ho ldquoReliable 119867infin

control ofuncertain descriptor systems with multiple time delaysrdquo IEEProceedings ControlTheory and Applications vol 150 no 6 pp557ndash564 2003

[30] H D Tuan P Apkarian T Narikiyo and Y YamamotoldquoParameterized linear matrix inequality techniques in fuzzycontrol systemdesignrdquo IEEETransactions on Fuzzy Systems vol9 no 2 pp 324ndash332 2001

[31] S-W Kau H-J Lee C-M Yang C-H Lee L Hong and C-HFang ldquoRobust H

infinfuzzy static output feedback control of T-

S fuzzy systems with parametric uncertaintiesrdquo Fuzzy Sets andSystems vol 158 no 2 pp 135ndash146 2007

[32] D Saifia M Chadli S Labiod and T M Guerra ldquoRobust119867

infinstatic output feedback stabilization of T-S fuzzy systems

subject to actuator saturationrdquo International Journal of ControlAutomation and Systems vol 10 no 3 pp 613ndash622 2012

Submit your manuscripts athttpwwwhindawicom

Hindawi Publishing Corporationhttpwwwhindawicom Volume 2014

MathematicsJournal of

Hindawi Publishing Corporationhttpwwwhindawicom Volume 2014

Mathematical Problems in Engineering

Hindawi Publishing Corporationhttpwwwhindawicom

Differential EquationsInternational Journal of

Volume 2014

Applied MathematicsJournal of

Hindawi Publishing Corporationhttpwwwhindawicom Volume 2014

Probability and StatisticsHindawi Publishing Corporationhttpwwwhindawicom Volume 2014

Journal of

Hindawi Publishing Corporationhttpwwwhindawicom Volume 2014

Mathematical PhysicsAdvances in

Complex AnalysisJournal of

Hindawi Publishing Corporationhttpwwwhindawicom Volume 2014

OptimizationJournal of

Hindawi Publishing Corporationhttpwwwhindawicom Volume 2014

CombinatoricsHindawi Publishing Corporationhttpwwwhindawicom Volume 2014

International Journal of

Hindawi Publishing Corporationhttpwwwhindawicom Volume 2014

Operations ResearchAdvances in

Journal of

Hindawi Publishing Corporationhttpwwwhindawicom Volume 2014

Function Spaces

Abstract and Applied AnalysisHindawi Publishing Corporationhttpwwwhindawicom Volume 2014

International Journal of Mathematics and Mathematical Sciences

Hindawi Publishing Corporationhttpwwwhindawicom Volume 2014

The Scientific World JournalHindawi Publishing Corporation httpwwwhindawicom Volume 2014

Hindawi Publishing Corporationhttpwwwhindawicom Volume 2014

Algebra

Discrete Dynamics in Nature and Society

Hindawi Publishing Corporationhttpwwwhindawicom Volume 2014

Hindawi Publishing Corporationhttpwwwhindawicom Volume 2014

Decision SciencesAdvances in

Discrete MathematicsJournal of

Hindawi Publishing Corporationhttpwwwhindawicom

Volume 2014 Hindawi Publishing Corporationhttpwwwhindawicom Volume 2014

Stochastic AnalysisInternational Journal of

Page 6: Research Article Fuzzy Control for Nonlinear Singular Markovian Jump Systems …downloads.hindawi.com/journals/mpe/2015/896515.pdf · 2019-07-31 · Singular systems, also known as

6 Mathematical Problems in Engineering

Let L be the weak infinitesimal generator of the randomprocess (119909

119905 119901) 119905 ge 0 Then for each 119901 isin S

L119881 (119909119905 119901 119905) le 2119909

119879

(119905) 119883119879

119901119864 (119905)

+ 119909119879

(119905) (

119873

sum

119902=1

120587119901119902119864119879

119883119902)119909 (119905)

+ 119909119879

(119905) 119876119901119909 (119905)

minus 119909119879

(119905 minus 119889)119876119901119909 (119905 minus 119889)

+ int

119905

119905minus119889

119909119879

(119904) (

119873

sum

119902=1

120587119901119902119876

119902)119909 (119904) d119904

+ 119889119909119879

(119905) 119876119909 (119905)

minus int

119905

119905minus119889

119909119879

(119904) 119876119909 (119904) d119904

+ 119889

2

119879

(119905) 119864119879

119885119864 (119905)

minus 119889int

119905

119905minus119889

119879

(119904) 119864119879

119885119864 (119904) d119904

(30)

From (21) it is clear that

int

119905

119905minus119889

119909119879

(119904) (

119873

sum

119902=1

120587119901119902119876

119902)119909 (119904) d119904

lt int

119905

119905minus119889

119909119879

(119904) 119876119909 (119904) d119904

(31)

From Lemma 4 it follows that

minus 119889int

119905

119905minus119889

119879

(119904) 119864119879

119885119864 (119904) d119904

le [

119909 (119905)

119909 (119905 minus 119889)

]

119879

[

minus119864119879

119885119864 119864119879

119885119864

119864119879

119885119864 minus119864119879

119885119864

][

119909 (119905)

119909 (119905 minus 119889)

]

(32)

So it can be concluded that

L119881 (119909119905 119901 119905) le

119896

sum

119894=1

120578119879

(119905) Φ119901119894120578 (119905) (33)

where

120578119879

(119905) = [119909119879

(119905) 119909119879

(119905 minus 119889)]

Φ119901119894= [

Υ1119901119894

lowast

Υ2119901119894

Υ3119901119894

]

Υ1119901119894= Γ

1119901119894+ [

119860119879

119901119894

119861119879

119901119894

]119889

2

119885 [119860119901119894119861119901119894]

Υ3119901119894= minus119876

119901minus 119864

119879

119885119864 + 119860119879

119889119901119894119889

2

119885119860119889119901119894

Υ2119901119894= 119864

119879

[119885 0] 119864 + [119860119879

1198891199011198940]119883

119901

+ 119860119879

119889119901119894119889

2

119885 [119860119901119894119861119901119894]

(34)

Using (20) it is easy to see that there exists a scalar 120581 gt 0

such that for every 119901 isin S L119881(119909119905 119901 119905) le minus120581119909(119905)

2 where120581 = min

119894isinT119901isinS(120582min(minusΦ119901119894))

So for 119905 ge 119889 by Dynkinrsquos formula it can be obtained that

E 119881 (119909119905 119901 119905) minusE 119881 (119909

119889 119903

119889 119889)

le minus120581Eint119905

119889

119909 (119904)2 d119904

(35)

which yields

Eint119905

119889

119909 (119904)2 d119904 le 120581minus1E 119881 (119909

119889 119903

119889 119889) (36)

Because 119866119864119867 = [1198681199030

0 0] denote

119860119901(119905) ≜

119896

sum

119894=1

119896

sum

119895=1

120582119894120582119895(119860

119901119894+ 119861

119901119894119870

119901119895)

= [

1198601199011(119905) 119860

1199012(119905)

1198601199013(119905) 119860

1199014(119905)

]

=

[

[

[

[

[

[

119896

sum

119894=1

119896

sum

119895=1

120582119894120582119895119860

1199011198941198951

119896

sum

119894=1

119896

sum

119895=1

120582119894120582119895119860

1199011198941198952

119896

sum

119894=1

119896

sum

119895=1

120582119894120582119895119860

1199011198941198953

119896

sum

119894=1

119896

sum

119895=1

120582119894120582119895119860

1199011198941198954

]

]

]

]

]

]

119860119889119901(119905) ≜

119896

sum

119894=1

120582119894119860

119889119901119894= [

1198601198891199011

(119905) 1198601198891199012

(119905)

1198601198891199013

(119905) 1198601198891199014

(119905)

]

=

[

[

[

[

[

[

119896

sum

119894=1

120582119894119860

1198891199011198941

119896

sum

119894=1

120582119894119860

1198891199011198942

119896

sum

119894=1

120582119894119860

1198891199011198943

119896

sum

119894=1

120582119894119860

1198891199011198944

]

]

]

]

]

]

(37)

By the regularity and nonimpulse of system (11) 1198601199014(119905) is

nonsingular for each 119901 isin S set 119866119901= [

119868119903minus1198601199012(119905)119860minus1

1199014(119905)

0 119860minus1

1199014(119905)

]119866It is easy to obtain

119866119901119864119867 = [

1198681199030

0 0

]

119866119901119860

119901(119905)119867 = [

1198601199011(119905) 0

1198601199013(119905) 119868

119899minus119903

]

119866119901119860

119901(119905)119867 = [

1198601199011(119905) 0

1198601199013(119905) 119868

119899minus119903

]

(38)

Mathematical Problems in Engineering 7

where

1198601199011(119905) = 119860

1199011(119905) minus 119860

1199012(119905) 119860

minus1

1199014(119905) 119860

1199013(119905)

1198601199013(119905) = 119860

minus1

1199014(119905) 119860

1199013(119905)

1198601198891199011

(119905) = 1198601198891199011

(119905) minus 1198601199012(119905) 119860

minus1

1199014(119905) 119860

1198891199013(119905)

1198601198891199012

(119905) = 1198601198891199012

(119905) minus 1198601199012(119905) 119860

minus1

1199014(119905) 119860

1198891199014(119905)

1198601198891199013

(119905) = 119860minus1

1199014(119905) 119860

1198891199013(119905)

1198601198891199014

(119905) = 119860minus1

1199014(119905) 119860

1198891199014(119905)

(39)

Then for each 119901 isin S system (11) is equal to

1(119905) = 119860

1199011(119905) 120595

1(119905) + 119860

1198891199011(119905) 120595

1(119905 minus 119889)

+ 1198601198891199012

(119905) 1205952(119905 minus 119889)

minus1205952(119905) = 119860

1199013(119905) 120595

1(119905) + 119860

1198891199013(119905) 120595

1(119905 minus 119889)

+ 1198601198891199014

(119905) 1205952(119905 minus 119889)

120595 (119905) = 120593 (119905) = 119867minus1

119909 (119905)

119905 isin [minus119889 0]

(40)

where 120595(119905) = [ 1205951(119905)1205952(119905)] = 119867

minus1

119909(119905)For any 119905 ge 0 using Lemma 5 there exists a scalar 120575

119901gt 0

such that 1198601199014(119905) lt 120575

119901 and 120582

119894(120585(119905)) ge 0 andsum119896

119894=1120582119894(120585(119905)) =

1 it follows from (40) that10038171003817100381710038171205951(119905)1003817100381710038171003817

le10038171003817100381710038171205951(0)1003817100381710038171003817

+ 1198961int

119905

0

[10038171003817100381710038171205951(119904)1003817100381710038171003817+10038171003817100381710038171205951(119904 minus 119889)

1003817100381710038171003817+10038171003817100381710038171205952(119904 minus 119889)

1003817100381710038171003817] d119904

(41)

where

1198961= max

119901isinSmax119894119895isinT

10038171003817100381710038171003817119860

1199011198941198951

10038171003817100381710038171003817

+ 120575119901max119894119895isinT

10038171003817100381710038171003817119860

1199011198941198952

10038171003817100381710038171003817max119894119895isinT

10038171003817100381710038171003817119860

1199011198941198953

10038171003817100381710038171003817max119894isinT

10038171003817100381710038171003817119860

1198891199011198941

10038171003817100381710038171003817

+ 120575119901max119894119895isinT

10038171003817100381710038171003817119860

1199011198941198952

10038171003817100381710038171003817max119894119895isinT

10038171003817100381710038171003817119860

1198891199011198943

10038171003817100381710038171003817max119894isinT

10038171003817100381710038171003817119860

1198891199011198942

10038171003817100381710038171003817

+ 120575119901max119894119895isinT

10038171003817100381710038171003817119860

1199011198941198952

10038171003817100381710038171003817max119894119895isinT

10038171003817100381710038171003817119860

1198891199011198944

10038171003817100381710038171003817

(42)

Then for any 0 le 119905 le 119889

10038171003817100381710038171205951(119905)1003817100381710038171003817le (2119896

1119889 + 1)

10038171003817100381710038171205931003817100381710038171003817119889+ 119896

1int

119905

0

10038171003817100381710038171205951(119904)1003817100381710038171003817d119904 (43)

Applying the Gronwall-Bellman lemma it can be obtainedfor any 0 le 119905 le 119889 that

10038171003817100381710038171205951(119905)1003817100381710038171003817le (2119896

1119889 + 1)

100381710038171003817100381712059310038171003817100381710038171198891198901198961119889

(44)

Thus

sup0le119904le119889

10038171003817100381710038171205951(119904)1003817100381710038171003817

2

le (21198961119889 + 1)

2 10038171003817100381710038171205931003817100381710038171003817

2

11988911989021198961119889

(45)

It can be seen from (40) that

sup0le119904le119889

10038171003817100381710038171205952(119904)1003817100381710038171003817

2

le 1198962

2[(2119896

1119889 + 1) 119890

1198961119889

+ 2]

210038171003817100381710038171205931003817100381710038171003817

2

119889 (46)

where 1198962= max

119901isinS120575119901max119894119895isinT1198601199011198941198953

120575119901max

119894isinT1198601198891199011198943

120575119901max

119894isinT1198601198891199011198944 Hence

sup0le119904le119889

1003817100381710038171003817120595 (119904)

1003817100381710038171003817

2

le sup0le119904le119889

10038171003817100381710038171205951(119904)1003817100381710038171003817

2

+ sup0le119904le119889

10038171003817100381710038171205952(119904)1003817100381710038171003817

2

le 1198963

10038171003817100381710038171205931003817100381710038171003817

2

119889

(47)

where 1198963= (2119896

1119889+1)

2

11989021198961119889

+1198962

2[(2119896

1119889+1)119890

1198961119889

+2]2Therefore

sup0le119904le119889

119909 (119904)2

le 1198963119867

210038171003817100381710038171003817119867

minus110038171003817100381710038171003817

2 10038171003817100381710038171206011003817100381710038171003817

2

119889 (48)

Note that

int

0

minus119889

int

119905

119905+120579

119909119879

(119904) 119876119909 (119904) d119904 d120579 le 119889int119905

119905minus119889

119909119879

(119904) 119876119909 (119904) d119904

int

0

minus119889

int

119905

119905+120579

119879

(119904) 119864119879

119885119864 (119904) d119904 d120579

le 119889int

119905

119905minus119896119889

119879

(119904) 119864119879

119885119864 (119904) d119904

(49)

Then from (48) and (28) it can be obtained that there existsa scalar 120588 such that

119881 (119909119889 119903

119889 119889) le 120588

10038171003817100381710038171206011003817100381710038171003817

2

119889 (50)

This together with (36) and (48) implies that there exists ascalar ] such that

Eint119905

0

119909 (119904)2 d119904 = Eint

119889

0

119909 (119904)2 d119904

+Eint119905

119889

119909 (119904)2 d119904

le ]E 10038171003817100381710038171206011003817100381710038171003817

2

119889

(51)

Considering this andDefinition 1 system (11) is stochasticallystable for any constant delay 119889 satisfying 119889 isin [0 119889]Thereforesystem (11) is stochastically admissible This completes theproof

In the following a set of sufficient conditions will bedeveloped under which the considered system is guaranteedto be stochastically admissible with an119867

infinperformance

Definition 9 System (11) is said to be stochastically admissiblewith an 119867

infinperformance 120574 if it is stochastically admissible

when 119908(119905) = 0 and under zero initial condition for nonzero119908(119905) isin 119871

V2[0infin)

Eintinfin

0

119911119879

(119905) 119911 (119905) d119905 le 1205742 intinfin

0

119908119879

(119905) 119908 (119905) d119905 (52)

The following result can be presented

8 Mathematical Problems in Engineering

Theorem 10 For a prescribed scalar 119889 gt 0 there exists astate feedback controller (10) with 119906

119901(119905) = sum

119896

119894=1120582119894119871119901119894119884minus1

119901119909(119905)

such that system (11) is stochastically admissible with an 119867infin

performance 120574 for any constant time delay 119889 satisfying 119889 isin

[0 119889] if there exist matrices 119875119901gt 0 119876

119901gt 0 119876 gt 0 119885 gt 0

119871119901119894 119878

119901 119884

1199012 and 119884

1199013 119894 isin T 119901 isin S such that and

[

Ξ1199011198941

lowast

Ξ1199011198942

Ξ1199013

] lt 0 (53)

where

Ξ1199011198941=

[

[

[

[

[

[

[

[

[

[

[

[

[

[

[

Γ1119901119894

lowast lowast lowast lowast lowast

119871119901119894+ 119884

119879

1199013119861119879

119901119894+ 119884

1199012minus119884

119879

1199013minus 119884

1199013lowast lowast lowast lowast

(

119884119879

119901119860119879

119889119901119894+ 119864119884

119901

+119884119879

119901119864119879

minus 119885

) 0 (

minus119884119879

119901minus 119884

119901+ 119876

119901

minus119884119879

119901119864119879

minus 119864119884119901+ 119885

) lowast lowast lowast

119889119860119901119894119884119901minus 119889119861

1199011198941198841199012

1198891198611199011198941198841199013

119889119860119889119901119894119884119901

minus119885 lowast lowast

119861119879

1199081199011198940 0 0 minus120574

2

119868 lowast

119862119901119894119884119901minus 119863

1199011198941198841199012

1198631199011198941198841199013

119862119889119901119894119884119901

0 119862119908119901119894

minus119868

]

]

]

]

]

]

]

]

]

]

]

]

]

]

]

Ξ1199012=

[

[

[

[

119884119901

0 0 0 0 0

119889119884119901

0 0 0 0 0

[1198681199030]119867

minus1

119872119879

1199010 0 0 0 0

]

]

]

]

Ξ1199013= diag minus119876

119901 minus119889119876 minus119869

119901

(54)

and the other notations are the same as in Theorem 8

Proof FromTheorem 8 when119908(119905) = 0 system (11) is stochas-tically admissible Let

119869119911119908(119905) = Eint

119905

0

[119911119879

(119904) 119911 (119904) minus 1205742

119908119879

(119904) 119908 (119904)] d119904 (55)

Under zero initial condition it is easy to see that

119869119911119908(119905) le Eint

119905

0

[119911119879

(119904) 119911 (119904) minus 1205742

119908119879

(119904) 119908 (119904)

+L119881 (119909119904 119901 119904)] d119904

le Eint119905

0

119896

sum

119894=1

120582119894[120589

119879

(119904) (Ω119901119894+ Θ

119879

119901119894Θ

119901119894) 120589 (119904)] d119904

(56)

where

120589119879

(119905) = [119909119879

(119905) 119909119879

(119905 minus 119889) 119908119879

(119905)]

Ω119901119894=

[

[

[

[

Υ1119901119894

lowast lowast

Υ2119901119894

Υ3119901119894

lowast

[119861119879

1199081199011198940]119883

1199010 minus120574

2

119868

]

]

]

]

Θ119901119894= [119862

119901119894119862119889119901119894

119862119908119901119894]

(57)

and notations of Υ1119901119894

Υ2119901119894

and Υ3119901119894

are the same as inTheorem 8 Hence by Schur complement lemma and using

the similar method in the proof of Theorem 8 from and(53) it can be obtained that 119869

119911119908(119905) lt 0 for all 119905 gt 0

Therefore for any nonzero 119908(119905) isin 119871V2[0infin) (52) holds

Hence according to Definition 9 the system is stochasticallyadmissible with an 119867

infinperformance 120574 This completes the

proof

Remark 11 Compared with methods in [21 22] because ofthe method of the augmented matrix adopted in Theorems8 and 10 the number of LMIs needed to solve is relativelysmall in this paper When the value of 119896 is relatively largethe quality of the computation is greatly reduced some newrelaxation matrices added will reduce the conservatism ofcontrol conditions compared with previous literatures whichcan be seen from Example 2

4 The Design of the Static OutputFeedback Controller

When 119903119905= 119901 isin S consider the overall SMJFS as follows

119864 (119905) =

119896

sum

119894=1

120582119894(119860

119901119894119909 (119905) + 119860

119889119901119894119909 (119905 minus 119889) + 119861

119901119894119906 (119905)

+ 119861119908119901119894119908 (119905))

119910 (119905) =

119896

sum

119894=1

120582119894119862119910119901119894119909 (119905)

Mathematical Problems in Engineering 9

119911 (119905) =

119896

sum

119894=1

120582119894(119862

119901119894119909 (119905) + 119862

119889119901119894119909 (119905 minus 119889) + 119863

119901119894119906 (119905)

+ 119862119908119901119894119908 (119905))

119909 (119905) = 120601 (119905)

forall119905 isin [minus119889 0] 119894 isin T ≜ 1 2 119896

(58)

where 119910(119905) isin R1199011 is the system output 119862

119889119901119894(119894 isin S) are

known constant matrices with appropriate dimensions andthe other notations are the same as in (3)

The following static output feedback controller will beconsidered here

119906119901(119905) =

119896

sum

119894=1

120582119894119870

119901119894119910 (119905) (59)

where119870119901119894(119901 isin S 119894 isin T) are local controller gains such that

the closed-loop system is

119864 (119905) =

119896

sum

119894=1

119896

sum

119895=1

119896

sum

119904=1

120582119894120582119895120582119904((119860

119901119894+ 119861

119901119894119870

119901119895119862119910119901119904) 119909 (119905) + 119860

119889119901119894119909 (119905 minus 119889) + 119861

119908119901119894119908 (119905))

119911 (119905) =

119896

sum

119894=1

119896

sum

119895=1

119896

sum

119904=1

120582119894120582119895120582119904((119862

119901119894+ 119863

119901119894119870

119901119895119862119910119901119904) 119909 (119905) + 119862

119889119901119894119909 (119905 minus 119889) + 119862

119908119901119894119908 (119905))

(60)

It is difficult to drive LMI-based conditions of the stochas-tic stabilization by employing the static output feedbackcontrol approach due to the appearance of crossing termsbetween system matrices and control gains And system (60)can be rewritten in the following form

119864119909 (119905) =

119896

sum

119894=1

119896

sum

119895=1

120582119894120582119895(Λ

119901119894119895119909 (119905) + 119861

119908119901119894119908 (119905))

119911 (119905) =

119896

sum

119894=1

119896

sum

119895=1

120582119894120582119895(119862

119901119894119895119909 (119905) + 119862

119908119901119894119908 (119905))

(61)

where

119864 = [

119864 0

0 0

] isin R(119899+1199011)times(119899+119901

1)

119862119901119894119895= [119862

119901119894119863

119901119894119870

119901119895]

119860119889119901119894

= [

119860119889119901119894

0

0 0

] isin R(119899+1199011)times(119899+119901

1)

119909 (119905) = [

119909 (119905)

119910 (119905)

]

119861119908119901119894

= [

119861119908119901119894

0

] isin R(119899+1199011)timesV

Λ119901119894119895= [

119860119901119894

119861119901119894119870

119901119895

119862119910119901119894

minus119868

]

(62)

Remark 12 For systems (60) and (61) it can be seen that

det(119904119864 minus119896

sum

119894=1

119896

sum

119895=1

119896

sum

119904=1

120582119894120582119895120582119904(119860

119901119894+ 119861

119901119894119870

119901119895119862119910119901119904))

= det(119904119864 minus119896

sum

119894=1

119896

sum

119895=1

120582119894120582119895Λ

119901119894119895)

det(119904119864

minus

119896

sum

119894=1

119896

sum

119895=1

119896

sum

119904=1

120582119894120582119895120582119904(119860

119901119894+ 119861

119901119894119870

119901119895119862119910119901119904

+ 119860119889119901119894))

= det(119904119864 minus119896

sum

119894=1

119896

sum

119895=1

120582119894120582119895(Λ

119901119894119895+ 119860

119889119901119894))

(63)

As the discussion in Remark 7 the stochastic admissibility ofsystem (60) can be studied by means of system (61)

Theorem 13 There exists an output feedback controller (59)with controller gains 119870

119901119894= 119871

119901119894119884minus1

1199012(119901 isin S 119894 isin T) such that

system (60) with 119908(119905) = 0 is stochastically admissible if thereexist matrices 119875

119901gt 0 119876

119901gt 0 119876 gt 0 119885 gt 0 119871

119901119894 119878

119901 and 119884

1199012

119901 isin S 1 le 119894 = 119895 le 119896 such that and

Θ119901119894119894lt 0

1

119896 minus 1

Θ119901119894119894+

1

2

(Θ119901119894119895+ Θ

119901119895119894) lt 0

(64)

where

10 Mathematical Problems in Engineering

Θ119901119894119895=

[

[

[

[

[

[

[

[

[

[

[

[

[

[

[

[

[

[

[

Γ119901119894119895

lowast lowast lowast lowast lowast lowast

119871119879

119901119895119861119879

119901119894+ 119862

119910119901119894119884119901

minus119884119879

1199012minus 119884

1199012lowast lowast lowast lowast lowast

(

119884119879

119901119860119879

119889119901119894+ 119864119884

119901

119884119879

119901119864119879

minus 119885

) 0 Σ119901

lowast lowast lowast lowast

119889119860119901119894119884119901

119889119861119901119894119871119901119895

119889119860119889119901119894119884119901minus119885 lowast lowast lowast

119884119901

0 0 0 minus119876119901

lowast lowast

119889119884119901

0 0 0 0 minus119889119876 lowast

[1198681199030]119867

minus1

119872119879

1199010 0 0 0 0 minus119869

119901

]

]

]

]

]

]

]

]

]

]

]

]

]

]

]

]

]

]

]

(65)

Γ119901119894119895

= 120587119901119901119884119879

119901119864119879

+ 119860119901119894119884119901+ 119884

119879

119901119860119879

119901119894minus 119884

119879

119901119864119879

minus 119864119884119901+ 119885

Σ119901= minus119884

119879

119901minus 119884

119901+ 119876

119901minus 119884

119879

119901119864119879

minus 119864119884119901+ 119885 119871

119901119894= 119870

1199011198941198841199012

119884119901= (119864119875

119901+ 119878

119901119877

119879

)119879 119877 isin R119899times(119899minus119903) is any matrix with

full column rank and satisfies 119864119877 = 0 119866119867 are nonsingularmatrices that make 119866119864119867 = [

1198681199030

0 0] and the other notations are

the same as in Theorem 8

Proof Let 119901= [

119884119901

0

0 1198841199012

] Using Lemma 6 the proof processis similar to Theorem 8

Theorem 14 For a prescribed scalar 119889 gt 0 there exists anoutput feedback controller (59) with controller gains 119870

119901119894=

119871119901119894119884minus1

1199012(119901 isin S 119894 isin T) such that system (60) is stochastically

admissible with an 119867infin

performance 120574 for any constant timedelay 119889 satisfying 119889 isin [0 119889] if there exist matrices 119875

119901gt 0

119876119901gt 0 119876 gt 0 119885 gt 0 119871

119901119894 119878

119901 and 119884

1199012 119901 isin S 1 le 119894 = 119895 le 119896

such that and

Δ119901119894119894lt 0

1

119896 minus 1

Δ119901119894119894+

1

2

(Δ119901119894119895+ Δ

119901119895119894) lt 0

(66)

where

Δ119901119894119895=

[

[

[

[

[

[

[

[

[

[

[

[

[

[

[

[

[

[

[

[

[

[

[

[

Γ119901119894119895

lowast lowast lowast lowast lowast lowast lowast lowast

119871119879

119901119861119879

119901119894+ 119862

119910119901119894119884119901

minus119884119879

1199012minus 119884

1199012lowast lowast lowast lowast lowast lowast lowast

(

119884119879

119901119860119879

119889119901119894+ 119864119884

119901

+119884119879

119901119864119879

minus 119885

) 0 Σ119901

lowast lowast lowast lowast lowast lowast

119889119860119901119894119884119901

119889119861119901119894119871119901119895

119889119860119889119901119894119884119901minus119885 lowast lowast lowast lowast lowast

119861119879

1199081199011198940 0 0 minus120574

2

119868 lowast lowast lowast lowast

119862119901119894119884119901

119863119901119894119871119901119895

119862119889119901119894119884119901

0 119862119908119901119894

minus119868 lowast lowast lowast

119884119901

0 0 0 0 0 minus119876119901

lowast lowast

119889119884119901

0 0 0 0 0 0 minus119889119876 lowast

[1198681199030]119867

minus1

119872119879

1199010 0 0 0 0 0 0 minus119869

119901

]

]

]

]

]

]

]

]

]

]

]

]

]

]

]

]

]

]

]

]

]

]

]

]

(67)

and the other notations are the same as in Theorem 13

Remark 15 Compared with the method in [31 32] becauseof the augmented matrix adopted in Theorems 13 and 14 thenumber of LMIs needed to solve is greatly decreased Whenthe value of 119896 is relatively large the computational complexitywill be reduced On the other hand by the augmentedmatrixthere are not any crossing terms between system matricesand controller gains so assumptions for the output matrix

[23] the equality constraint for the output matrix [24] andthe bounding technique for crossing terms are not necessaryhere therefore the conservatism brought by them will nothappen

5 Numerical Examples

Two examples will be given to illustrate the validity ofdeveloped methods

Mathematical Problems in Engineering 11

Example 1 To illustrate the 119867infin

controller synthesis thefollowing nonlinear time delay system is considered

(1 + 119886 cos 120579 (119905)) 120579 (119905) = minus119887 1205793 (119905) + 119888120579 (119905) + 119888119889(119905 minus 119889)

+ 120575 (119903119905) 119890119906 (119905) + 119891119908 (119905)

(68)

The range of 120579(119905) is assumed to satisfy | 120579(119905)| lt 120595 120595 = 2

119886 = 119887 = 119890 = 119891 = 1 119888 = minus1 119888119889= 08 119889 isin [0 119889] 119889 = 03

and 119906(119905) is the control input 119908(119905) = cos(05119905)119890minus001119905 is thedisturbance input 119903

119905is a Markovian process taking values in

a finite set 1 2 3 120575(1) = 1 120575(2) = 08 120575(3) = 05 and theoutput vector 119911(119905) = 120579(119905)

Choose the vector 119909(119905) = [1199091(119905) 119909

2(119905) 119909

3(119905)]

119879 with1199091(119905) = 120579(119905) 119909

2(119905) =

120579(119905) and 119909

3(119905) =

120579(119905) Then the system

is described by

[

[

[

1 0 0

0 1 0

0 0 0

]

]

]

(119905)

=

[

[

[

[

0 1 0

0 0 1

119888 minus1198871199092

2(119905) minus1 minus 119886 cos119909

1(119905)

]

]

]

]

119909 (119905)

+[

[

[

0 0 0

0 0 0

1198881198890 0

]

]

]

119909 (119905 minus 119889) +[

[

[

0

0

120575 (119903119905) 119890

]

]

]

119906 (119905)

+[

[

[

0

0

119891

]

]

]

119908 (119905)

(69)

It can be expressed exactly by the following fuzzy singularMarkovian jump form

119864 (119905) =

3

sum

119894=1

120582119894(119860

119901119894119909 (119905) + 119860

119889119901119894119909 (119905 minus 119889) + 119861

119901119894119906 (119905)

+ 119861119908119901119894119908 (119905))

119911 (119905) =

3

sum

119894=1

120582119894119862119901119894119909 (119905)

119909 (119905) = 120601 (119905)

119905 isin [minus119889 0] 119901 isin 1 2 3

(70)

where

119864 =[

[

[

1 0 0

0 1 0

0 0 0

]

]

]

1198601199011=

[

[

[

[

0 1 0

0 0 1

119888 minus119887 (1205952

+ 2) 119886 minus 1

]

]

]

]

1198601199012=

[

[

[

[

0 1 0

0 0 1

119888 0 minus119886 minus 1 minus 1198861205952

]

]

]

]

1198601199013=[

[

[

0 1 0

0 0 1

119888 0 119886 minus 1

]

]

]

1198601198891199011

= 1198601198891199012

= 1198601198891199013

=[

[

[

0 0 0

0 0 0

1198881198890 0

]

]

]

11986111= 119861

12= 119861

13=[

[

[

0

0

119890

]

]

]

11986121= 119861

22= 119861

23=[

[

[

0

0

08119890

]

]

]

11986131= 119861

32= 119861

33=[

[

[

0

0

05119890

]

]

]

1198611199081199011

= 1198611199081199012

= 1198611199081199013

=[

[

[

0

0

119891

]

]

]

1198621199011= 119862

1199012= 119862

1199013= [1 0 0]

1205821=

1199092

2(119905)

1205952+ 2

1205822=

1 + cos1199091(119905)

1205952+ 2

1205823=

1205952

minus 1199092

2(119905) + 1 minus cos119909

1(119905)

1205952+ 2

(71)

It is seen that 0 le 120582119894le 1sum3

119894=1120582119894= 1 Let Π = [ minus02 02 0

01 minus03 02

02 03 minus05

]120574 = 1 by solving and (53) in Theorem 10 controller gainsare given by

11987011= [minus142939 minus140620 minus36426]

11987012= [minus142911 minus144082 minus32860]

12 Mathematical Problems in Engineering

0 1 2 3 4 5 6 7 8minus20

minus15

minus10

minus5

0

5

0 2 4 86minus1

0123

Time

Time

Ope

n-lo

op st

ate r

espo

nse

Mar

kov

chai

n

x1

x2

x3

Figure 1 State responses of the open-loop system

11987013= [minus142988 minus144111 minus36425]

11987021= [minus179535 minus177012 minus44471]

11987022= [minus179509 minus179806 minus41585]

11987023= [minus179578 minus179828 minus44470]

11987031= [minus286360 minus283641 minus69941]

11987032= [minus286344 minus285420 minus68118]

11987033= [minus286377 minus285436 minus69941]

(72)

To demonstrate the effectiveness assuming the initialcondition 120601(119905) = [minus12 08 minus05]

119879 Figures 1 and 2 showstate responses of the open-loop system and the closed-loopsystem controlled by (10) respectively From Figure 1 it canbe seen that the open-loop system is not stochastically admis-sible and Figure 2 shows that when the controller obtainedby Theorem 10 is exerted to this system it is stochasticallyadmissible

Example 2 Consider the example without uncertainties in[6]

Mode 1 1198601= [

15 14

minus35 minus45] 119860

1198891= [

02 119886

minus024 minus04] 119861

1= [

1

1]

1198611199081= [

15

14] 119862

1= [05 1] 119862

1198891= [minus02 02] 119863

1= 02 and

1198621199081= 02Mode 2 119860

2= [

17 15

minus13 minus25] 119860

1198892= [

119887 11

minus021 minus03] 119861

2= [

09

09]

1198611199082= [

14

15] 119862

2= [04 03] 119862

1198892= [minus01 02]119863

2= 03 and

1198621199082= 03Π = [

minus1 1

1 minus1] 119864 = [

1 0

0 0] 119889 = 03 120574 = 26 and in [6]

119886 = minus05 119887 = 21 but in this paper minus24 le 119886 le 2 minus2 le 119887 le 48are taken

In Figure 3 ldquoordquo represents the range of the feasiblesolutions using Theorem 10 in this paper and ldquolowastrdquo representsthe range of the feasible solutions using Theorem 3 in [6]

minus15minus1

minus050

051

152

253

354

Mar

kov

chai

n

0 1 2 3 4 5 6 7 8

0 2 4 6 8minus1

0123

Time

Time

Clos

ed-lo

op st

ate r

espo

nse

x1

x2

x3

Figure 2 State responses of the closed-loop system

minus2 minus15 minus1 minus05 0 05 1 15 2minus2

minus1

0

1

2

3

4

a

b

Figure 3 Comparison of the feasible regions

This illustrates that themethod obtained in this paper has lessconservatism

6 Conclusions

In this paper the problem of mode-dependent 119867infin

controlfor singular Markovian jump fuzzy systems with time delayis considered This class of systems under considerationis described by T-S fuzzy models The main contributionof this paper is to design state feedback controllers andstatic output feedback controllers which can guarantee thatresulting closed-loop systems are stochastically admissiblewith an119867

infinperformance 120574 by the method of the augmented

matrix Finally two examples are given to demonstrate theeffectiveness of main results obtained here

Conflict of Interests

The authors declare that there is no conflict of interestsregarding the publication of this paper

Mathematical Problems in Engineering 13

Acknowledgments

This work was supported by The National Natural ScienceFoundation of China under Grants nos 61304054 61273003and 61273008 respectively and Science and TechnologyResearch Fund of Liaoning Education Department underGrant no L2013051

References

[1] L Dai Singular Control Systems vol 118 of Lecture Notes inControl and Information Sciences Springer Berlin Germany1989

[2] F L Lewis ldquoA survey of linear singular systemsrdquo CircuitsSystems and Signal Processing vol 5 no 1 pp 3ndash36 1986

[3] S Xu and J Lam ldquoRobust stability and stabilization of discretesingular systems an equivalent characterizationrdquo IEEE Trans-actions on Automatic Control vol 49 no 4 pp 568ndash574 2004

[4] Z Wu and W Zhou ldquoDelay-dependent robust stabilization foruncertain singular systemswith discrete and distributed delaysrdquoJournal of ControlTheory and Applications vol 6 no 2 pp 171ndash176 2008

[5] Y Xia P Shi G Liu and D Rees ldquoRobust mixed 119867infin119867

2

state-feedback control for continuous-time descriptor systemswith parameter uncertaintiesrdquo Circuits Systems and SignalProcessing vol 24 no 4 pp 431ndash443 2005

[6] H Lu W Zhou C Duan and X Qi ldquoDelay-dependent robust119867

infincontrol for uncertain singular time-delay system with

Markovian jumping parametersrdquo Optimal Control Applicationsamp Methods vol 34 no 3 pp 296ndash307 2013

[7] Y Fang and K A Loparo ldquoStochastic stability of jump linearsystemsrdquo IEEE Transactions on Automatic Control vol 47 no 7pp 1204ndash1208 2002

[8] D Yue and Q-L Han ldquoDelay-dependent exponential stabilityof stochastic systems with time-varying delay nonlinearity andMarkovian switchingrdquo IEEETransactions onAutomatic Controlvol 50 no 2 pp 217ndash222 2005

[9] J Xiong and J Lam ldquoStabilization of discrete-time Markovianjump linear systems via time-delayed controllersrdquo Automaticavol 42 no 5 pp 747ndash753 2006

[10] W-H Chen Z-H Guan and P Yu ldquoDelay-dependent stabilityand 119867

infincontrol of uncertain discrete-time Markovian jump

systems with mode-dependent time delaysrdquo Systems amp ControlLetters vol 52 no 5 pp 361ndash376 2004

[11] E-K Boukas Control of Singular Systems with Random AbruptChanges Communications and Control Engineering SpringerBerlin Germany 2008

[12] J Zhang Y Xia and E K Boukas ldquoNew approach to Hinfin

control for Markovian jump singular systemsrdquo IET ControlTheory amp Applications vol 4 no 11 pp 2273ndash2284 2010

[13] J Lam S Zhu S Xu and E-K Boukas ldquoRobust 119867infin

controlof descriptor discrete-time Markovian jump systemsrdquo Interna-tional Journal of Control vol 80 no 3 pp 374ndash385 2007

[14] K Gu V L Kharitonov and J Chen Stability of Time-DelaySystems Birkhauser Basel Switzerland 2003

[15] G Wang Q Zhang and C Yang ldquoDissipative control forsingular Markovian jump systems with time delayrdquo OptimalControl ApplicationsampMethods vol 33 no 4 pp 415ndash432 2012

[16] Z Wu H Su and J Chu ldquoDelay-dependent 119867infin

control forsingular Markovian jump systems with time delayrdquo Optimal

Control Applications and Methods vol 30 no 5 pp 443ndash4612009

[17] C K Ahn ldquoT-S fuzzy119867infinsynchronization for chaotic systems

via delayed output feedback controlrdquo Nonlinear Dynamics vol59 no 4 pp 535ndash543 2010

[18] C K Ahn ldquoFuzzy delayed output feedback synchronizationfor time-delayed chaotic systemsrdquo Nonlinear Analysis HybridSystems vol 4 no 1 pp 16ndash24 2010

[19] H-N Wu and K-Y Cai ldquoMode-independent robust stabiliza-tion for uncertain Markovian jump nonlinear systems via fuzzycontrolrdquo IEEE Transactions on Systems Man and CyberneticsPart B Cybernetics vol 36 no 3 pp 509ndash519 2006

[20] Y Zhang S Xu Y Zou and J Lu ldquoDelay-dependent robuststabilization for uncertain discrete-time fuzzy Markovian jumpsystems with mode-dependent time delaysrdquo Fuzzy Sets andSystems vol 164 pp 66ndash81 2011

[21] A Zhang and H Fang ldquoRobustHinfinfuzzy control for uncertain

Markovian jump nonlinear singular systems with Wiener pro-cessrdquo Journal of Control Theory and Applications vol 8 no 2pp 205ndash210 2010

[22] L Li Q Zhang and B Zhu ldquo119867infin

fuzzy control for nonlin-ear time-delay singular Markovian jump systems with partlyunknown transition ratesrdquo Fuzzy Sets and Systems vol 254 pp106ndash125 2014

[23] J Dong and G-H Yang ldquoStatic output feedback 119867infin

controlof a class of nonlinear discrete-time systemsrdquo Fuzzy Sets andSystems vol 160 no 19 pp 2844ndash2859 2009

[24] Y Zhang C Liu and X Mu ldquoRobust finite-time119867infincontrol of

singular stochastic systems via static output feedbackrdquo AppliedMathematics and Computation vol 218 no 9 pp 5629ndash56402012

[25] J Wang H Wang A Xie and R Lu ldquoDelay-dependent 119867infin

control for singular Markovian jump systems with time delayrdquoNonlinear Analysis Hybrid Systems vol 8 pp 1ndash12 2012

[26] D B Xu Q L Zhang and Y B Hu ldquoReduced-order Hinfin

controller design for uncertain descriptor systemsrdquo Acta Auto-matica Sinica vol 33 no 1 pp 44ndash47 2007

[27] L Xie and C E de Souza ldquoRobust 119867infin

control for linearsystems with norm bounder time-varying uncertaintiesrdquo IEEETransactions on Automatic Control vol 37 no 8 pp 1188ndash11911992

[28] Q-L Han ldquoAbsolute stability of time-delay systemswith sector-bounded nonlinearityrdquo Automatica vol 41 no 12 pp 2171ndash2176 2005

[29] D Yue J Lam and D W C Ho ldquoReliable 119867infin

control ofuncertain descriptor systems with multiple time delaysrdquo IEEProceedings ControlTheory and Applications vol 150 no 6 pp557ndash564 2003

[30] H D Tuan P Apkarian T Narikiyo and Y YamamotoldquoParameterized linear matrix inequality techniques in fuzzycontrol systemdesignrdquo IEEETransactions on Fuzzy Systems vol9 no 2 pp 324ndash332 2001

[31] S-W Kau H-J Lee C-M Yang C-H Lee L Hong and C-HFang ldquoRobust H

infinfuzzy static output feedback control of T-

S fuzzy systems with parametric uncertaintiesrdquo Fuzzy Sets andSystems vol 158 no 2 pp 135ndash146 2007

[32] D Saifia M Chadli S Labiod and T M Guerra ldquoRobust119867

infinstatic output feedback stabilization of T-S fuzzy systems

subject to actuator saturationrdquo International Journal of ControlAutomation and Systems vol 10 no 3 pp 613ndash622 2012

Submit your manuscripts athttpwwwhindawicom

Hindawi Publishing Corporationhttpwwwhindawicom Volume 2014

MathematicsJournal of

Hindawi Publishing Corporationhttpwwwhindawicom Volume 2014

Mathematical Problems in Engineering

Hindawi Publishing Corporationhttpwwwhindawicom

Differential EquationsInternational Journal of

Volume 2014

Applied MathematicsJournal of

Hindawi Publishing Corporationhttpwwwhindawicom Volume 2014

Probability and StatisticsHindawi Publishing Corporationhttpwwwhindawicom Volume 2014

Journal of

Hindawi Publishing Corporationhttpwwwhindawicom Volume 2014

Mathematical PhysicsAdvances in

Complex AnalysisJournal of

Hindawi Publishing Corporationhttpwwwhindawicom Volume 2014

OptimizationJournal of

Hindawi Publishing Corporationhttpwwwhindawicom Volume 2014

CombinatoricsHindawi Publishing Corporationhttpwwwhindawicom Volume 2014

International Journal of

Hindawi Publishing Corporationhttpwwwhindawicom Volume 2014

Operations ResearchAdvances in

Journal of

Hindawi Publishing Corporationhttpwwwhindawicom Volume 2014

Function Spaces

Abstract and Applied AnalysisHindawi Publishing Corporationhttpwwwhindawicom Volume 2014

International Journal of Mathematics and Mathematical Sciences

Hindawi Publishing Corporationhttpwwwhindawicom Volume 2014

The Scientific World JournalHindawi Publishing Corporation httpwwwhindawicom Volume 2014

Hindawi Publishing Corporationhttpwwwhindawicom Volume 2014

Algebra

Discrete Dynamics in Nature and Society

Hindawi Publishing Corporationhttpwwwhindawicom Volume 2014

Hindawi Publishing Corporationhttpwwwhindawicom Volume 2014

Decision SciencesAdvances in

Discrete MathematicsJournal of

Hindawi Publishing Corporationhttpwwwhindawicom

Volume 2014 Hindawi Publishing Corporationhttpwwwhindawicom Volume 2014

Stochastic AnalysisInternational Journal of

Page 7: Research Article Fuzzy Control for Nonlinear Singular Markovian Jump Systems …downloads.hindawi.com/journals/mpe/2015/896515.pdf · 2019-07-31 · Singular systems, also known as

Mathematical Problems in Engineering 7

where

1198601199011(119905) = 119860

1199011(119905) minus 119860

1199012(119905) 119860

minus1

1199014(119905) 119860

1199013(119905)

1198601199013(119905) = 119860

minus1

1199014(119905) 119860

1199013(119905)

1198601198891199011

(119905) = 1198601198891199011

(119905) minus 1198601199012(119905) 119860

minus1

1199014(119905) 119860

1198891199013(119905)

1198601198891199012

(119905) = 1198601198891199012

(119905) minus 1198601199012(119905) 119860

minus1

1199014(119905) 119860

1198891199014(119905)

1198601198891199013

(119905) = 119860minus1

1199014(119905) 119860

1198891199013(119905)

1198601198891199014

(119905) = 119860minus1

1199014(119905) 119860

1198891199014(119905)

(39)

Then for each 119901 isin S system (11) is equal to

1(119905) = 119860

1199011(119905) 120595

1(119905) + 119860

1198891199011(119905) 120595

1(119905 minus 119889)

+ 1198601198891199012

(119905) 1205952(119905 minus 119889)

minus1205952(119905) = 119860

1199013(119905) 120595

1(119905) + 119860

1198891199013(119905) 120595

1(119905 minus 119889)

+ 1198601198891199014

(119905) 1205952(119905 minus 119889)

120595 (119905) = 120593 (119905) = 119867minus1

119909 (119905)

119905 isin [minus119889 0]

(40)

where 120595(119905) = [ 1205951(119905)1205952(119905)] = 119867

minus1

119909(119905)For any 119905 ge 0 using Lemma 5 there exists a scalar 120575

119901gt 0

such that 1198601199014(119905) lt 120575

119901 and 120582

119894(120585(119905)) ge 0 andsum119896

119894=1120582119894(120585(119905)) =

1 it follows from (40) that10038171003817100381710038171205951(119905)1003817100381710038171003817

le10038171003817100381710038171205951(0)1003817100381710038171003817

+ 1198961int

119905

0

[10038171003817100381710038171205951(119904)1003817100381710038171003817+10038171003817100381710038171205951(119904 minus 119889)

1003817100381710038171003817+10038171003817100381710038171205952(119904 minus 119889)

1003817100381710038171003817] d119904

(41)

where

1198961= max

119901isinSmax119894119895isinT

10038171003817100381710038171003817119860

1199011198941198951

10038171003817100381710038171003817

+ 120575119901max119894119895isinT

10038171003817100381710038171003817119860

1199011198941198952

10038171003817100381710038171003817max119894119895isinT

10038171003817100381710038171003817119860

1199011198941198953

10038171003817100381710038171003817max119894isinT

10038171003817100381710038171003817119860

1198891199011198941

10038171003817100381710038171003817

+ 120575119901max119894119895isinT

10038171003817100381710038171003817119860

1199011198941198952

10038171003817100381710038171003817max119894119895isinT

10038171003817100381710038171003817119860

1198891199011198943

10038171003817100381710038171003817max119894isinT

10038171003817100381710038171003817119860

1198891199011198942

10038171003817100381710038171003817

+ 120575119901max119894119895isinT

10038171003817100381710038171003817119860

1199011198941198952

10038171003817100381710038171003817max119894119895isinT

10038171003817100381710038171003817119860

1198891199011198944

10038171003817100381710038171003817

(42)

Then for any 0 le 119905 le 119889

10038171003817100381710038171205951(119905)1003817100381710038171003817le (2119896

1119889 + 1)

10038171003817100381710038171205931003817100381710038171003817119889+ 119896

1int

119905

0

10038171003817100381710038171205951(119904)1003817100381710038171003817d119904 (43)

Applying the Gronwall-Bellman lemma it can be obtainedfor any 0 le 119905 le 119889 that

10038171003817100381710038171205951(119905)1003817100381710038171003817le (2119896

1119889 + 1)

100381710038171003817100381712059310038171003817100381710038171198891198901198961119889

(44)

Thus

sup0le119904le119889

10038171003817100381710038171205951(119904)1003817100381710038171003817

2

le (21198961119889 + 1)

2 10038171003817100381710038171205931003817100381710038171003817

2

11988911989021198961119889

(45)

It can be seen from (40) that

sup0le119904le119889

10038171003817100381710038171205952(119904)1003817100381710038171003817

2

le 1198962

2[(2119896

1119889 + 1) 119890

1198961119889

+ 2]

210038171003817100381710038171205931003817100381710038171003817

2

119889 (46)

where 1198962= max

119901isinS120575119901max119894119895isinT1198601199011198941198953

120575119901max

119894isinT1198601198891199011198943

120575119901max

119894isinT1198601198891199011198944 Hence

sup0le119904le119889

1003817100381710038171003817120595 (119904)

1003817100381710038171003817

2

le sup0le119904le119889

10038171003817100381710038171205951(119904)1003817100381710038171003817

2

+ sup0le119904le119889

10038171003817100381710038171205952(119904)1003817100381710038171003817

2

le 1198963

10038171003817100381710038171205931003817100381710038171003817

2

119889

(47)

where 1198963= (2119896

1119889+1)

2

11989021198961119889

+1198962

2[(2119896

1119889+1)119890

1198961119889

+2]2Therefore

sup0le119904le119889

119909 (119904)2

le 1198963119867

210038171003817100381710038171003817119867

minus110038171003817100381710038171003817

2 10038171003817100381710038171206011003817100381710038171003817

2

119889 (48)

Note that

int

0

minus119889

int

119905

119905+120579

119909119879

(119904) 119876119909 (119904) d119904 d120579 le 119889int119905

119905minus119889

119909119879

(119904) 119876119909 (119904) d119904

int

0

minus119889

int

119905

119905+120579

119879

(119904) 119864119879

119885119864 (119904) d119904 d120579

le 119889int

119905

119905minus119896119889

119879

(119904) 119864119879

119885119864 (119904) d119904

(49)

Then from (48) and (28) it can be obtained that there existsa scalar 120588 such that

119881 (119909119889 119903

119889 119889) le 120588

10038171003817100381710038171206011003817100381710038171003817

2

119889 (50)

This together with (36) and (48) implies that there exists ascalar ] such that

Eint119905

0

119909 (119904)2 d119904 = Eint

119889

0

119909 (119904)2 d119904

+Eint119905

119889

119909 (119904)2 d119904

le ]E 10038171003817100381710038171206011003817100381710038171003817

2

119889

(51)

Considering this andDefinition 1 system (11) is stochasticallystable for any constant delay 119889 satisfying 119889 isin [0 119889]Thereforesystem (11) is stochastically admissible This completes theproof

In the following a set of sufficient conditions will bedeveloped under which the considered system is guaranteedto be stochastically admissible with an119867

infinperformance

Definition 9 System (11) is said to be stochastically admissiblewith an 119867

infinperformance 120574 if it is stochastically admissible

when 119908(119905) = 0 and under zero initial condition for nonzero119908(119905) isin 119871

V2[0infin)

Eintinfin

0

119911119879

(119905) 119911 (119905) d119905 le 1205742 intinfin

0

119908119879

(119905) 119908 (119905) d119905 (52)

The following result can be presented

8 Mathematical Problems in Engineering

Theorem 10 For a prescribed scalar 119889 gt 0 there exists astate feedback controller (10) with 119906

119901(119905) = sum

119896

119894=1120582119894119871119901119894119884minus1

119901119909(119905)

such that system (11) is stochastically admissible with an 119867infin

performance 120574 for any constant time delay 119889 satisfying 119889 isin

[0 119889] if there exist matrices 119875119901gt 0 119876

119901gt 0 119876 gt 0 119885 gt 0

119871119901119894 119878

119901 119884

1199012 and 119884

1199013 119894 isin T 119901 isin S such that and

[

Ξ1199011198941

lowast

Ξ1199011198942

Ξ1199013

] lt 0 (53)

where

Ξ1199011198941=

[

[

[

[

[

[

[

[

[

[

[

[

[

[

[

Γ1119901119894

lowast lowast lowast lowast lowast

119871119901119894+ 119884

119879

1199013119861119879

119901119894+ 119884

1199012minus119884

119879

1199013minus 119884

1199013lowast lowast lowast lowast

(

119884119879

119901119860119879

119889119901119894+ 119864119884

119901

+119884119879

119901119864119879

minus 119885

) 0 (

minus119884119879

119901minus 119884

119901+ 119876

119901

minus119884119879

119901119864119879

minus 119864119884119901+ 119885

) lowast lowast lowast

119889119860119901119894119884119901minus 119889119861

1199011198941198841199012

1198891198611199011198941198841199013

119889119860119889119901119894119884119901

minus119885 lowast lowast

119861119879

1199081199011198940 0 0 minus120574

2

119868 lowast

119862119901119894119884119901minus 119863

1199011198941198841199012

1198631199011198941198841199013

119862119889119901119894119884119901

0 119862119908119901119894

minus119868

]

]

]

]

]

]

]

]

]

]

]

]

]

]

]

Ξ1199012=

[

[

[

[

119884119901

0 0 0 0 0

119889119884119901

0 0 0 0 0

[1198681199030]119867

minus1

119872119879

1199010 0 0 0 0

]

]

]

]

Ξ1199013= diag minus119876

119901 minus119889119876 minus119869

119901

(54)

and the other notations are the same as in Theorem 8

Proof FromTheorem 8 when119908(119905) = 0 system (11) is stochas-tically admissible Let

119869119911119908(119905) = Eint

119905

0

[119911119879

(119904) 119911 (119904) minus 1205742

119908119879

(119904) 119908 (119904)] d119904 (55)

Under zero initial condition it is easy to see that

119869119911119908(119905) le Eint

119905

0

[119911119879

(119904) 119911 (119904) minus 1205742

119908119879

(119904) 119908 (119904)

+L119881 (119909119904 119901 119904)] d119904

le Eint119905

0

119896

sum

119894=1

120582119894[120589

119879

(119904) (Ω119901119894+ Θ

119879

119901119894Θ

119901119894) 120589 (119904)] d119904

(56)

where

120589119879

(119905) = [119909119879

(119905) 119909119879

(119905 minus 119889) 119908119879

(119905)]

Ω119901119894=

[

[

[

[

Υ1119901119894

lowast lowast

Υ2119901119894

Υ3119901119894

lowast

[119861119879

1199081199011198940]119883

1199010 minus120574

2

119868

]

]

]

]

Θ119901119894= [119862

119901119894119862119889119901119894

119862119908119901119894]

(57)

and notations of Υ1119901119894

Υ2119901119894

and Υ3119901119894

are the same as inTheorem 8 Hence by Schur complement lemma and using

the similar method in the proof of Theorem 8 from and(53) it can be obtained that 119869

119911119908(119905) lt 0 for all 119905 gt 0

Therefore for any nonzero 119908(119905) isin 119871V2[0infin) (52) holds

Hence according to Definition 9 the system is stochasticallyadmissible with an 119867

infinperformance 120574 This completes the

proof

Remark 11 Compared with methods in [21 22] because ofthe method of the augmented matrix adopted in Theorems8 and 10 the number of LMIs needed to solve is relativelysmall in this paper When the value of 119896 is relatively largethe quality of the computation is greatly reduced some newrelaxation matrices added will reduce the conservatism ofcontrol conditions compared with previous literatures whichcan be seen from Example 2

4 The Design of the Static OutputFeedback Controller

When 119903119905= 119901 isin S consider the overall SMJFS as follows

119864 (119905) =

119896

sum

119894=1

120582119894(119860

119901119894119909 (119905) + 119860

119889119901119894119909 (119905 minus 119889) + 119861

119901119894119906 (119905)

+ 119861119908119901119894119908 (119905))

119910 (119905) =

119896

sum

119894=1

120582119894119862119910119901119894119909 (119905)

Mathematical Problems in Engineering 9

119911 (119905) =

119896

sum

119894=1

120582119894(119862

119901119894119909 (119905) + 119862

119889119901119894119909 (119905 minus 119889) + 119863

119901119894119906 (119905)

+ 119862119908119901119894119908 (119905))

119909 (119905) = 120601 (119905)

forall119905 isin [minus119889 0] 119894 isin T ≜ 1 2 119896

(58)

where 119910(119905) isin R1199011 is the system output 119862

119889119901119894(119894 isin S) are

known constant matrices with appropriate dimensions andthe other notations are the same as in (3)

The following static output feedback controller will beconsidered here

119906119901(119905) =

119896

sum

119894=1

120582119894119870

119901119894119910 (119905) (59)

where119870119901119894(119901 isin S 119894 isin T) are local controller gains such that

the closed-loop system is

119864 (119905) =

119896

sum

119894=1

119896

sum

119895=1

119896

sum

119904=1

120582119894120582119895120582119904((119860

119901119894+ 119861

119901119894119870

119901119895119862119910119901119904) 119909 (119905) + 119860

119889119901119894119909 (119905 minus 119889) + 119861

119908119901119894119908 (119905))

119911 (119905) =

119896

sum

119894=1

119896

sum

119895=1

119896

sum

119904=1

120582119894120582119895120582119904((119862

119901119894+ 119863

119901119894119870

119901119895119862119910119901119904) 119909 (119905) + 119862

119889119901119894119909 (119905 minus 119889) + 119862

119908119901119894119908 (119905))

(60)

It is difficult to drive LMI-based conditions of the stochas-tic stabilization by employing the static output feedbackcontrol approach due to the appearance of crossing termsbetween system matrices and control gains And system (60)can be rewritten in the following form

119864119909 (119905) =

119896

sum

119894=1

119896

sum

119895=1

120582119894120582119895(Λ

119901119894119895119909 (119905) + 119861

119908119901119894119908 (119905))

119911 (119905) =

119896

sum

119894=1

119896

sum

119895=1

120582119894120582119895(119862

119901119894119895119909 (119905) + 119862

119908119901119894119908 (119905))

(61)

where

119864 = [

119864 0

0 0

] isin R(119899+1199011)times(119899+119901

1)

119862119901119894119895= [119862

119901119894119863

119901119894119870

119901119895]

119860119889119901119894

= [

119860119889119901119894

0

0 0

] isin R(119899+1199011)times(119899+119901

1)

119909 (119905) = [

119909 (119905)

119910 (119905)

]

119861119908119901119894

= [

119861119908119901119894

0

] isin R(119899+1199011)timesV

Λ119901119894119895= [

119860119901119894

119861119901119894119870

119901119895

119862119910119901119894

minus119868

]

(62)

Remark 12 For systems (60) and (61) it can be seen that

det(119904119864 minus119896

sum

119894=1

119896

sum

119895=1

119896

sum

119904=1

120582119894120582119895120582119904(119860

119901119894+ 119861

119901119894119870

119901119895119862119910119901119904))

= det(119904119864 minus119896

sum

119894=1

119896

sum

119895=1

120582119894120582119895Λ

119901119894119895)

det(119904119864

minus

119896

sum

119894=1

119896

sum

119895=1

119896

sum

119904=1

120582119894120582119895120582119904(119860

119901119894+ 119861

119901119894119870

119901119895119862119910119901119904

+ 119860119889119901119894))

= det(119904119864 minus119896

sum

119894=1

119896

sum

119895=1

120582119894120582119895(Λ

119901119894119895+ 119860

119889119901119894))

(63)

As the discussion in Remark 7 the stochastic admissibility ofsystem (60) can be studied by means of system (61)

Theorem 13 There exists an output feedback controller (59)with controller gains 119870

119901119894= 119871

119901119894119884minus1

1199012(119901 isin S 119894 isin T) such that

system (60) with 119908(119905) = 0 is stochastically admissible if thereexist matrices 119875

119901gt 0 119876

119901gt 0 119876 gt 0 119885 gt 0 119871

119901119894 119878

119901 and 119884

1199012

119901 isin S 1 le 119894 = 119895 le 119896 such that and

Θ119901119894119894lt 0

1

119896 minus 1

Θ119901119894119894+

1

2

(Θ119901119894119895+ Θ

119901119895119894) lt 0

(64)

where

10 Mathematical Problems in Engineering

Θ119901119894119895=

[

[

[

[

[

[

[

[

[

[

[

[

[

[

[

[

[

[

[

Γ119901119894119895

lowast lowast lowast lowast lowast lowast

119871119879

119901119895119861119879

119901119894+ 119862

119910119901119894119884119901

minus119884119879

1199012minus 119884

1199012lowast lowast lowast lowast lowast

(

119884119879

119901119860119879

119889119901119894+ 119864119884

119901

119884119879

119901119864119879

minus 119885

) 0 Σ119901

lowast lowast lowast lowast

119889119860119901119894119884119901

119889119861119901119894119871119901119895

119889119860119889119901119894119884119901minus119885 lowast lowast lowast

119884119901

0 0 0 minus119876119901

lowast lowast

119889119884119901

0 0 0 0 minus119889119876 lowast

[1198681199030]119867

minus1

119872119879

1199010 0 0 0 0 minus119869

119901

]

]

]

]

]

]

]

]

]

]

]

]

]

]

]

]

]

]

]

(65)

Γ119901119894119895

= 120587119901119901119884119879

119901119864119879

+ 119860119901119894119884119901+ 119884

119879

119901119860119879

119901119894minus 119884

119879

119901119864119879

minus 119864119884119901+ 119885

Σ119901= minus119884

119879

119901minus 119884

119901+ 119876

119901minus 119884

119879

119901119864119879

minus 119864119884119901+ 119885 119871

119901119894= 119870

1199011198941198841199012

119884119901= (119864119875

119901+ 119878

119901119877

119879

)119879 119877 isin R119899times(119899minus119903) is any matrix with

full column rank and satisfies 119864119877 = 0 119866119867 are nonsingularmatrices that make 119866119864119867 = [

1198681199030

0 0] and the other notations are

the same as in Theorem 8

Proof Let 119901= [

119884119901

0

0 1198841199012

] Using Lemma 6 the proof processis similar to Theorem 8

Theorem 14 For a prescribed scalar 119889 gt 0 there exists anoutput feedback controller (59) with controller gains 119870

119901119894=

119871119901119894119884minus1

1199012(119901 isin S 119894 isin T) such that system (60) is stochastically

admissible with an 119867infin

performance 120574 for any constant timedelay 119889 satisfying 119889 isin [0 119889] if there exist matrices 119875

119901gt 0

119876119901gt 0 119876 gt 0 119885 gt 0 119871

119901119894 119878

119901 and 119884

1199012 119901 isin S 1 le 119894 = 119895 le 119896

such that and

Δ119901119894119894lt 0

1

119896 minus 1

Δ119901119894119894+

1

2

(Δ119901119894119895+ Δ

119901119895119894) lt 0

(66)

where

Δ119901119894119895=

[

[

[

[

[

[

[

[

[

[

[

[

[

[

[

[

[

[

[

[

[

[

[

[

Γ119901119894119895

lowast lowast lowast lowast lowast lowast lowast lowast

119871119879

119901119861119879

119901119894+ 119862

119910119901119894119884119901

minus119884119879

1199012minus 119884

1199012lowast lowast lowast lowast lowast lowast lowast

(

119884119879

119901119860119879

119889119901119894+ 119864119884

119901

+119884119879

119901119864119879

minus 119885

) 0 Σ119901

lowast lowast lowast lowast lowast lowast

119889119860119901119894119884119901

119889119861119901119894119871119901119895

119889119860119889119901119894119884119901minus119885 lowast lowast lowast lowast lowast

119861119879

1199081199011198940 0 0 minus120574

2

119868 lowast lowast lowast lowast

119862119901119894119884119901

119863119901119894119871119901119895

119862119889119901119894119884119901

0 119862119908119901119894

minus119868 lowast lowast lowast

119884119901

0 0 0 0 0 minus119876119901

lowast lowast

119889119884119901

0 0 0 0 0 0 minus119889119876 lowast

[1198681199030]119867

minus1

119872119879

1199010 0 0 0 0 0 0 minus119869

119901

]

]

]

]

]

]

]

]

]

]

]

]

]

]

]

]

]

]

]

]

]

]

]

]

(67)

and the other notations are the same as in Theorem 13

Remark 15 Compared with the method in [31 32] becauseof the augmented matrix adopted in Theorems 13 and 14 thenumber of LMIs needed to solve is greatly decreased Whenthe value of 119896 is relatively large the computational complexitywill be reduced On the other hand by the augmentedmatrixthere are not any crossing terms between system matricesand controller gains so assumptions for the output matrix

[23] the equality constraint for the output matrix [24] andthe bounding technique for crossing terms are not necessaryhere therefore the conservatism brought by them will nothappen

5 Numerical Examples

Two examples will be given to illustrate the validity ofdeveloped methods

Mathematical Problems in Engineering 11

Example 1 To illustrate the 119867infin

controller synthesis thefollowing nonlinear time delay system is considered

(1 + 119886 cos 120579 (119905)) 120579 (119905) = minus119887 1205793 (119905) + 119888120579 (119905) + 119888119889(119905 minus 119889)

+ 120575 (119903119905) 119890119906 (119905) + 119891119908 (119905)

(68)

The range of 120579(119905) is assumed to satisfy | 120579(119905)| lt 120595 120595 = 2

119886 = 119887 = 119890 = 119891 = 1 119888 = minus1 119888119889= 08 119889 isin [0 119889] 119889 = 03

and 119906(119905) is the control input 119908(119905) = cos(05119905)119890minus001119905 is thedisturbance input 119903

119905is a Markovian process taking values in

a finite set 1 2 3 120575(1) = 1 120575(2) = 08 120575(3) = 05 and theoutput vector 119911(119905) = 120579(119905)

Choose the vector 119909(119905) = [1199091(119905) 119909

2(119905) 119909

3(119905)]

119879 with1199091(119905) = 120579(119905) 119909

2(119905) =

120579(119905) and 119909

3(119905) =

120579(119905) Then the system

is described by

[

[

[

1 0 0

0 1 0

0 0 0

]

]

]

(119905)

=

[

[

[

[

0 1 0

0 0 1

119888 minus1198871199092

2(119905) minus1 minus 119886 cos119909

1(119905)

]

]

]

]

119909 (119905)

+[

[

[

0 0 0

0 0 0

1198881198890 0

]

]

]

119909 (119905 minus 119889) +[

[

[

0

0

120575 (119903119905) 119890

]

]

]

119906 (119905)

+[

[

[

0

0

119891

]

]

]

119908 (119905)

(69)

It can be expressed exactly by the following fuzzy singularMarkovian jump form

119864 (119905) =

3

sum

119894=1

120582119894(119860

119901119894119909 (119905) + 119860

119889119901119894119909 (119905 minus 119889) + 119861

119901119894119906 (119905)

+ 119861119908119901119894119908 (119905))

119911 (119905) =

3

sum

119894=1

120582119894119862119901119894119909 (119905)

119909 (119905) = 120601 (119905)

119905 isin [minus119889 0] 119901 isin 1 2 3

(70)

where

119864 =[

[

[

1 0 0

0 1 0

0 0 0

]

]

]

1198601199011=

[

[

[

[

0 1 0

0 0 1

119888 minus119887 (1205952

+ 2) 119886 minus 1

]

]

]

]

1198601199012=

[

[

[

[

0 1 0

0 0 1

119888 0 minus119886 minus 1 minus 1198861205952

]

]

]

]

1198601199013=[

[

[

0 1 0

0 0 1

119888 0 119886 minus 1

]

]

]

1198601198891199011

= 1198601198891199012

= 1198601198891199013

=[

[

[

0 0 0

0 0 0

1198881198890 0

]

]

]

11986111= 119861

12= 119861

13=[

[

[

0

0

119890

]

]

]

11986121= 119861

22= 119861

23=[

[

[

0

0

08119890

]

]

]

11986131= 119861

32= 119861

33=[

[

[

0

0

05119890

]

]

]

1198611199081199011

= 1198611199081199012

= 1198611199081199013

=[

[

[

0

0

119891

]

]

]

1198621199011= 119862

1199012= 119862

1199013= [1 0 0]

1205821=

1199092

2(119905)

1205952+ 2

1205822=

1 + cos1199091(119905)

1205952+ 2

1205823=

1205952

minus 1199092

2(119905) + 1 minus cos119909

1(119905)

1205952+ 2

(71)

It is seen that 0 le 120582119894le 1sum3

119894=1120582119894= 1 Let Π = [ minus02 02 0

01 minus03 02

02 03 minus05

]120574 = 1 by solving and (53) in Theorem 10 controller gainsare given by

11987011= [minus142939 minus140620 minus36426]

11987012= [minus142911 minus144082 minus32860]

12 Mathematical Problems in Engineering

0 1 2 3 4 5 6 7 8minus20

minus15

minus10

minus5

0

5

0 2 4 86minus1

0123

Time

Time

Ope

n-lo

op st

ate r

espo

nse

Mar

kov

chai

n

x1

x2

x3

Figure 1 State responses of the open-loop system

11987013= [minus142988 minus144111 minus36425]

11987021= [minus179535 minus177012 minus44471]

11987022= [minus179509 minus179806 minus41585]

11987023= [minus179578 minus179828 minus44470]

11987031= [minus286360 minus283641 minus69941]

11987032= [minus286344 minus285420 minus68118]

11987033= [minus286377 minus285436 minus69941]

(72)

To demonstrate the effectiveness assuming the initialcondition 120601(119905) = [minus12 08 minus05]

119879 Figures 1 and 2 showstate responses of the open-loop system and the closed-loopsystem controlled by (10) respectively From Figure 1 it canbe seen that the open-loop system is not stochastically admis-sible and Figure 2 shows that when the controller obtainedby Theorem 10 is exerted to this system it is stochasticallyadmissible

Example 2 Consider the example without uncertainties in[6]

Mode 1 1198601= [

15 14

minus35 minus45] 119860

1198891= [

02 119886

minus024 minus04] 119861

1= [

1

1]

1198611199081= [

15

14] 119862

1= [05 1] 119862

1198891= [minus02 02] 119863

1= 02 and

1198621199081= 02Mode 2 119860

2= [

17 15

minus13 minus25] 119860

1198892= [

119887 11

minus021 minus03] 119861

2= [

09

09]

1198611199082= [

14

15] 119862

2= [04 03] 119862

1198892= [minus01 02]119863

2= 03 and

1198621199082= 03Π = [

minus1 1

1 minus1] 119864 = [

1 0

0 0] 119889 = 03 120574 = 26 and in [6]

119886 = minus05 119887 = 21 but in this paper minus24 le 119886 le 2 minus2 le 119887 le 48are taken

In Figure 3 ldquoordquo represents the range of the feasiblesolutions using Theorem 10 in this paper and ldquolowastrdquo representsthe range of the feasible solutions using Theorem 3 in [6]

minus15minus1

minus050

051

152

253

354

Mar

kov

chai

n

0 1 2 3 4 5 6 7 8

0 2 4 6 8minus1

0123

Time

Time

Clos

ed-lo

op st

ate r

espo

nse

x1

x2

x3

Figure 2 State responses of the closed-loop system

minus2 minus15 minus1 minus05 0 05 1 15 2minus2

minus1

0

1

2

3

4

a

b

Figure 3 Comparison of the feasible regions

This illustrates that themethod obtained in this paper has lessconservatism

6 Conclusions

In this paper the problem of mode-dependent 119867infin

controlfor singular Markovian jump fuzzy systems with time delayis considered This class of systems under considerationis described by T-S fuzzy models The main contributionof this paper is to design state feedback controllers andstatic output feedback controllers which can guarantee thatresulting closed-loop systems are stochastically admissiblewith an119867

infinperformance 120574 by the method of the augmented

matrix Finally two examples are given to demonstrate theeffectiveness of main results obtained here

Conflict of Interests

The authors declare that there is no conflict of interestsregarding the publication of this paper

Mathematical Problems in Engineering 13

Acknowledgments

This work was supported by The National Natural ScienceFoundation of China under Grants nos 61304054 61273003and 61273008 respectively and Science and TechnologyResearch Fund of Liaoning Education Department underGrant no L2013051

References

[1] L Dai Singular Control Systems vol 118 of Lecture Notes inControl and Information Sciences Springer Berlin Germany1989

[2] F L Lewis ldquoA survey of linear singular systemsrdquo CircuitsSystems and Signal Processing vol 5 no 1 pp 3ndash36 1986

[3] S Xu and J Lam ldquoRobust stability and stabilization of discretesingular systems an equivalent characterizationrdquo IEEE Trans-actions on Automatic Control vol 49 no 4 pp 568ndash574 2004

[4] Z Wu and W Zhou ldquoDelay-dependent robust stabilization foruncertain singular systemswith discrete and distributed delaysrdquoJournal of ControlTheory and Applications vol 6 no 2 pp 171ndash176 2008

[5] Y Xia P Shi G Liu and D Rees ldquoRobust mixed 119867infin119867

2

state-feedback control for continuous-time descriptor systemswith parameter uncertaintiesrdquo Circuits Systems and SignalProcessing vol 24 no 4 pp 431ndash443 2005

[6] H Lu W Zhou C Duan and X Qi ldquoDelay-dependent robust119867

infincontrol for uncertain singular time-delay system with

Markovian jumping parametersrdquo Optimal Control Applicationsamp Methods vol 34 no 3 pp 296ndash307 2013

[7] Y Fang and K A Loparo ldquoStochastic stability of jump linearsystemsrdquo IEEE Transactions on Automatic Control vol 47 no 7pp 1204ndash1208 2002

[8] D Yue and Q-L Han ldquoDelay-dependent exponential stabilityof stochastic systems with time-varying delay nonlinearity andMarkovian switchingrdquo IEEETransactions onAutomatic Controlvol 50 no 2 pp 217ndash222 2005

[9] J Xiong and J Lam ldquoStabilization of discrete-time Markovianjump linear systems via time-delayed controllersrdquo Automaticavol 42 no 5 pp 747ndash753 2006

[10] W-H Chen Z-H Guan and P Yu ldquoDelay-dependent stabilityand 119867

infincontrol of uncertain discrete-time Markovian jump

systems with mode-dependent time delaysrdquo Systems amp ControlLetters vol 52 no 5 pp 361ndash376 2004

[11] E-K Boukas Control of Singular Systems with Random AbruptChanges Communications and Control Engineering SpringerBerlin Germany 2008

[12] J Zhang Y Xia and E K Boukas ldquoNew approach to Hinfin

control for Markovian jump singular systemsrdquo IET ControlTheory amp Applications vol 4 no 11 pp 2273ndash2284 2010

[13] J Lam S Zhu S Xu and E-K Boukas ldquoRobust 119867infin

controlof descriptor discrete-time Markovian jump systemsrdquo Interna-tional Journal of Control vol 80 no 3 pp 374ndash385 2007

[14] K Gu V L Kharitonov and J Chen Stability of Time-DelaySystems Birkhauser Basel Switzerland 2003

[15] G Wang Q Zhang and C Yang ldquoDissipative control forsingular Markovian jump systems with time delayrdquo OptimalControl ApplicationsampMethods vol 33 no 4 pp 415ndash432 2012

[16] Z Wu H Su and J Chu ldquoDelay-dependent 119867infin

control forsingular Markovian jump systems with time delayrdquo Optimal

Control Applications and Methods vol 30 no 5 pp 443ndash4612009

[17] C K Ahn ldquoT-S fuzzy119867infinsynchronization for chaotic systems

via delayed output feedback controlrdquo Nonlinear Dynamics vol59 no 4 pp 535ndash543 2010

[18] C K Ahn ldquoFuzzy delayed output feedback synchronizationfor time-delayed chaotic systemsrdquo Nonlinear Analysis HybridSystems vol 4 no 1 pp 16ndash24 2010

[19] H-N Wu and K-Y Cai ldquoMode-independent robust stabiliza-tion for uncertain Markovian jump nonlinear systems via fuzzycontrolrdquo IEEE Transactions on Systems Man and CyberneticsPart B Cybernetics vol 36 no 3 pp 509ndash519 2006

[20] Y Zhang S Xu Y Zou and J Lu ldquoDelay-dependent robuststabilization for uncertain discrete-time fuzzy Markovian jumpsystems with mode-dependent time delaysrdquo Fuzzy Sets andSystems vol 164 pp 66ndash81 2011

[21] A Zhang and H Fang ldquoRobustHinfinfuzzy control for uncertain

Markovian jump nonlinear singular systems with Wiener pro-cessrdquo Journal of Control Theory and Applications vol 8 no 2pp 205ndash210 2010

[22] L Li Q Zhang and B Zhu ldquo119867infin

fuzzy control for nonlin-ear time-delay singular Markovian jump systems with partlyunknown transition ratesrdquo Fuzzy Sets and Systems vol 254 pp106ndash125 2014

[23] J Dong and G-H Yang ldquoStatic output feedback 119867infin

controlof a class of nonlinear discrete-time systemsrdquo Fuzzy Sets andSystems vol 160 no 19 pp 2844ndash2859 2009

[24] Y Zhang C Liu and X Mu ldquoRobust finite-time119867infincontrol of

singular stochastic systems via static output feedbackrdquo AppliedMathematics and Computation vol 218 no 9 pp 5629ndash56402012

[25] J Wang H Wang A Xie and R Lu ldquoDelay-dependent 119867infin

control for singular Markovian jump systems with time delayrdquoNonlinear Analysis Hybrid Systems vol 8 pp 1ndash12 2012

[26] D B Xu Q L Zhang and Y B Hu ldquoReduced-order Hinfin

controller design for uncertain descriptor systemsrdquo Acta Auto-matica Sinica vol 33 no 1 pp 44ndash47 2007

[27] L Xie and C E de Souza ldquoRobust 119867infin

control for linearsystems with norm bounder time-varying uncertaintiesrdquo IEEETransactions on Automatic Control vol 37 no 8 pp 1188ndash11911992

[28] Q-L Han ldquoAbsolute stability of time-delay systemswith sector-bounded nonlinearityrdquo Automatica vol 41 no 12 pp 2171ndash2176 2005

[29] D Yue J Lam and D W C Ho ldquoReliable 119867infin

control ofuncertain descriptor systems with multiple time delaysrdquo IEEProceedings ControlTheory and Applications vol 150 no 6 pp557ndash564 2003

[30] H D Tuan P Apkarian T Narikiyo and Y YamamotoldquoParameterized linear matrix inequality techniques in fuzzycontrol systemdesignrdquo IEEETransactions on Fuzzy Systems vol9 no 2 pp 324ndash332 2001

[31] S-W Kau H-J Lee C-M Yang C-H Lee L Hong and C-HFang ldquoRobust H

infinfuzzy static output feedback control of T-

S fuzzy systems with parametric uncertaintiesrdquo Fuzzy Sets andSystems vol 158 no 2 pp 135ndash146 2007

[32] D Saifia M Chadli S Labiod and T M Guerra ldquoRobust119867

infinstatic output feedback stabilization of T-S fuzzy systems

subject to actuator saturationrdquo International Journal of ControlAutomation and Systems vol 10 no 3 pp 613ndash622 2012

Submit your manuscripts athttpwwwhindawicom

Hindawi Publishing Corporationhttpwwwhindawicom Volume 2014

MathematicsJournal of

Hindawi Publishing Corporationhttpwwwhindawicom Volume 2014

Mathematical Problems in Engineering

Hindawi Publishing Corporationhttpwwwhindawicom

Differential EquationsInternational Journal of

Volume 2014

Applied MathematicsJournal of

Hindawi Publishing Corporationhttpwwwhindawicom Volume 2014

Probability and StatisticsHindawi Publishing Corporationhttpwwwhindawicom Volume 2014

Journal of

Hindawi Publishing Corporationhttpwwwhindawicom Volume 2014

Mathematical PhysicsAdvances in

Complex AnalysisJournal of

Hindawi Publishing Corporationhttpwwwhindawicom Volume 2014

OptimizationJournal of

Hindawi Publishing Corporationhttpwwwhindawicom Volume 2014

CombinatoricsHindawi Publishing Corporationhttpwwwhindawicom Volume 2014

International Journal of

Hindawi Publishing Corporationhttpwwwhindawicom Volume 2014

Operations ResearchAdvances in

Journal of

Hindawi Publishing Corporationhttpwwwhindawicom Volume 2014

Function Spaces

Abstract and Applied AnalysisHindawi Publishing Corporationhttpwwwhindawicom Volume 2014

International Journal of Mathematics and Mathematical Sciences

Hindawi Publishing Corporationhttpwwwhindawicom Volume 2014

The Scientific World JournalHindawi Publishing Corporation httpwwwhindawicom Volume 2014

Hindawi Publishing Corporationhttpwwwhindawicom Volume 2014

Algebra

Discrete Dynamics in Nature and Society

Hindawi Publishing Corporationhttpwwwhindawicom Volume 2014

Hindawi Publishing Corporationhttpwwwhindawicom Volume 2014

Decision SciencesAdvances in

Discrete MathematicsJournal of

Hindawi Publishing Corporationhttpwwwhindawicom

Volume 2014 Hindawi Publishing Corporationhttpwwwhindawicom Volume 2014

Stochastic AnalysisInternational Journal of

Page 8: Research Article Fuzzy Control for Nonlinear Singular Markovian Jump Systems …downloads.hindawi.com/journals/mpe/2015/896515.pdf · 2019-07-31 · Singular systems, also known as

8 Mathematical Problems in Engineering

Theorem 10 For a prescribed scalar 119889 gt 0 there exists astate feedback controller (10) with 119906

119901(119905) = sum

119896

119894=1120582119894119871119901119894119884minus1

119901119909(119905)

such that system (11) is stochastically admissible with an 119867infin

performance 120574 for any constant time delay 119889 satisfying 119889 isin

[0 119889] if there exist matrices 119875119901gt 0 119876

119901gt 0 119876 gt 0 119885 gt 0

119871119901119894 119878

119901 119884

1199012 and 119884

1199013 119894 isin T 119901 isin S such that and

[

Ξ1199011198941

lowast

Ξ1199011198942

Ξ1199013

] lt 0 (53)

where

Ξ1199011198941=

[

[

[

[

[

[

[

[

[

[

[

[

[

[

[

Γ1119901119894

lowast lowast lowast lowast lowast

119871119901119894+ 119884

119879

1199013119861119879

119901119894+ 119884

1199012minus119884

119879

1199013minus 119884

1199013lowast lowast lowast lowast

(

119884119879

119901119860119879

119889119901119894+ 119864119884

119901

+119884119879

119901119864119879

minus 119885

) 0 (

minus119884119879

119901minus 119884

119901+ 119876

119901

minus119884119879

119901119864119879

minus 119864119884119901+ 119885

) lowast lowast lowast

119889119860119901119894119884119901minus 119889119861

1199011198941198841199012

1198891198611199011198941198841199013

119889119860119889119901119894119884119901

minus119885 lowast lowast

119861119879

1199081199011198940 0 0 minus120574

2

119868 lowast

119862119901119894119884119901minus 119863

1199011198941198841199012

1198631199011198941198841199013

119862119889119901119894119884119901

0 119862119908119901119894

minus119868

]

]

]

]

]

]

]

]

]

]

]

]

]

]

]

Ξ1199012=

[

[

[

[

119884119901

0 0 0 0 0

119889119884119901

0 0 0 0 0

[1198681199030]119867

minus1

119872119879

1199010 0 0 0 0

]

]

]

]

Ξ1199013= diag minus119876

119901 minus119889119876 minus119869

119901

(54)

and the other notations are the same as in Theorem 8

Proof FromTheorem 8 when119908(119905) = 0 system (11) is stochas-tically admissible Let

119869119911119908(119905) = Eint

119905

0

[119911119879

(119904) 119911 (119904) minus 1205742

119908119879

(119904) 119908 (119904)] d119904 (55)

Under zero initial condition it is easy to see that

119869119911119908(119905) le Eint

119905

0

[119911119879

(119904) 119911 (119904) minus 1205742

119908119879

(119904) 119908 (119904)

+L119881 (119909119904 119901 119904)] d119904

le Eint119905

0

119896

sum

119894=1

120582119894[120589

119879

(119904) (Ω119901119894+ Θ

119879

119901119894Θ

119901119894) 120589 (119904)] d119904

(56)

where

120589119879

(119905) = [119909119879

(119905) 119909119879

(119905 minus 119889) 119908119879

(119905)]

Ω119901119894=

[

[

[

[

Υ1119901119894

lowast lowast

Υ2119901119894

Υ3119901119894

lowast

[119861119879

1199081199011198940]119883

1199010 minus120574

2

119868

]

]

]

]

Θ119901119894= [119862

119901119894119862119889119901119894

119862119908119901119894]

(57)

and notations of Υ1119901119894

Υ2119901119894

and Υ3119901119894

are the same as inTheorem 8 Hence by Schur complement lemma and using

the similar method in the proof of Theorem 8 from and(53) it can be obtained that 119869

119911119908(119905) lt 0 for all 119905 gt 0

Therefore for any nonzero 119908(119905) isin 119871V2[0infin) (52) holds

Hence according to Definition 9 the system is stochasticallyadmissible with an 119867

infinperformance 120574 This completes the

proof

Remark 11 Compared with methods in [21 22] because ofthe method of the augmented matrix adopted in Theorems8 and 10 the number of LMIs needed to solve is relativelysmall in this paper When the value of 119896 is relatively largethe quality of the computation is greatly reduced some newrelaxation matrices added will reduce the conservatism ofcontrol conditions compared with previous literatures whichcan be seen from Example 2

4 The Design of the Static OutputFeedback Controller

When 119903119905= 119901 isin S consider the overall SMJFS as follows

119864 (119905) =

119896

sum

119894=1

120582119894(119860

119901119894119909 (119905) + 119860

119889119901119894119909 (119905 minus 119889) + 119861

119901119894119906 (119905)

+ 119861119908119901119894119908 (119905))

119910 (119905) =

119896

sum

119894=1

120582119894119862119910119901119894119909 (119905)

Mathematical Problems in Engineering 9

119911 (119905) =

119896

sum

119894=1

120582119894(119862

119901119894119909 (119905) + 119862

119889119901119894119909 (119905 minus 119889) + 119863

119901119894119906 (119905)

+ 119862119908119901119894119908 (119905))

119909 (119905) = 120601 (119905)

forall119905 isin [minus119889 0] 119894 isin T ≜ 1 2 119896

(58)

where 119910(119905) isin R1199011 is the system output 119862

119889119901119894(119894 isin S) are

known constant matrices with appropriate dimensions andthe other notations are the same as in (3)

The following static output feedback controller will beconsidered here

119906119901(119905) =

119896

sum

119894=1

120582119894119870

119901119894119910 (119905) (59)

where119870119901119894(119901 isin S 119894 isin T) are local controller gains such that

the closed-loop system is

119864 (119905) =

119896

sum

119894=1

119896

sum

119895=1

119896

sum

119904=1

120582119894120582119895120582119904((119860

119901119894+ 119861

119901119894119870

119901119895119862119910119901119904) 119909 (119905) + 119860

119889119901119894119909 (119905 minus 119889) + 119861

119908119901119894119908 (119905))

119911 (119905) =

119896

sum

119894=1

119896

sum

119895=1

119896

sum

119904=1

120582119894120582119895120582119904((119862

119901119894+ 119863

119901119894119870

119901119895119862119910119901119904) 119909 (119905) + 119862

119889119901119894119909 (119905 minus 119889) + 119862

119908119901119894119908 (119905))

(60)

It is difficult to drive LMI-based conditions of the stochas-tic stabilization by employing the static output feedbackcontrol approach due to the appearance of crossing termsbetween system matrices and control gains And system (60)can be rewritten in the following form

119864119909 (119905) =

119896

sum

119894=1

119896

sum

119895=1

120582119894120582119895(Λ

119901119894119895119909 (119905) + 119861

119908119901119894119908 (119905))

119911 (119905) =

119896

sum

119894=1

119896

sum

119895=1

120582119894120582119895(119862

119901119894119895119909 (119905) + 119862

119908119901119894119908 (119905))

(61)

where

119864 = [

119864 0

0 0

] isin R(119899+1199011)times(119899+119901

1)

119862119901119894119895= [119862

119901119894119863

119901119894119870

119901119895]

119860119889119901119894

= [

119860119889119901119894

0

0 0

] isin R(119899+1199011)times(119899+119901

1)

119909 (119905) = [

119909 (119905)

119910 (119905)

]

119861119908119901119894

= [

119861119908119901119894

0

] isin R(119899+1199011)timesV

Λ119901119894119895= [

119860119901119894

119861119901119894119870

119901119895

119862119910119901119894

minus119868

]

(62)

Remark 12 For systems (60) and (61) it can be seen that

det(119904119864 minus119896

sum

119894=1

119896

sum

119895=1

119896

sum

119904=1

120582119894120582119895120582119904(119860

119901119894+ 119861

119901119894119870

119901119895119862119910119901119904))

= det(119904119864 minus119896

sum

119894=1

119896

sum

119895=1

120582119894120582119895Λ

119901119894119895)

det(119904119864

minus

119896

sum

119894=1

119896

sum

119895=1

119896

sum

119904=1

120582119894120582119895120582119904(119860

119901119894+ 119861

119901119894119870

119901119895119862119910119901119904

+ 119860119889119901119894))

= det(119904119864 minus119896

sum

119894=1

119896

sum

119895=1

120582119894120582119895(Λ

119901119894119895+ 119860

119889119901119894))

(63)

As the discussion in Remark 7 the stochastic admissibility ofsystem (60) can be studied by means of system (61)

Theorem 13 There exists an output feedback controller (59)with controller gains 119870

119901119894= 119871

119901119894119884minus1

1199012(119901 isin S 119894 isin T) such that

system (60) with 119908(119905) = 0 is stochastically admissible if thereexist matrices 119875

119901gt 0 119876

119901gt 0 119876 gt 0 119885 gt 0 119871

119901119894 119878

119901 and 119884

1199012

119901 isin S 1 le 119894 = 119895 le 119896 such that and

Θ119901119894119894lt 0

1

119896 minus 1

Θ119901119894119894+

1

2

(Θ119901119894119895+ Θ

119901119895119894) lt 0

(64)

where

10 Mathematical Problems in Engineering

Θ119901119894119895=

[

[

[

[

[

[

[

[

[

[

[

[

[

[

[

[

[

[

[

Γ119901119894119895

lowast lowast lowast lowast lowast lowast

119871119879

119901119895119861119879

119901119894+ 119862

119910119901119894119884119901

minus119884119879

1199012minus 119884

1199012lowast lowast lowast lowast lowast

(

119884119879

119901119860119879

119889119901119894+ 119864119884

119901

119884119879

119901119864119879

minus 119885

) 0 Σ119901

lowast lowast lowast lowast

119889119860119901119894119884119901

119889119861119901119894119871119901119895

119889119860119889119901119894119884119901minus119885 lowast lowast lowast

119884119901

0 0 0 minus119876119901

lowast lowast

119889119884119901

0 0 0 0 minus119889119876 lowast

[1198681199030]119867

minus1

119872119879

1199010 0 0 0 0 minus119869

119901

]

]

]

]

]

]

]

]

]

]

]

]

]

]

]

]

]

]

]

(65)

Γ119901119894119895

= 120587119901119901119884119879

119901119864119879

+ 119860119901119894119884119901+ 119884

119879

119901119860119879

119901119894minus 119884

119879

119901119864119879

minus 119864119884119901+ 119885

Σ119901= minus119884

119879

119901minus 119884

119901+ 119876

119901minus 119884

119879

119901119864119879

minus 119864119884119901+ 119885 119871

119901119894= 119870

1199011198941198841199012

119884119901= (119864119875

119901+ 119878

119901119877

119879

)119879 119877 isin R119899times(119899minus119903) is any matrix with

full column rank and satisfies 119864119877 = 0 119866119867 are nonsingularmatrices that make 119866119864119867 = [

1198681199030

0 0] and the other notations are

the same as in Theorem 8

Proof Let 119901= [

119884119901

0

0 1198841199012

] Using Lemma 6 the proof processis similar to Theorem 8

Theorem 14 For a prescribed scalar 119889 gt 0 there exists anoutput feedback controller (59) with controller gains 119870

119901119894=

119871119901119894119884minus1

1199012(119901 isin S 119894 isin T) such that system (60) is stochastically

admissible with an 119867infin

performance 120574 for any constant timedelay 119889 satisfying 119889 isin [0 119889] if there exist matrices 119875

119901gt 0

119876119901gt 0 119876 gt 0 119885 gt 0 119871

119901119894 119878

119901 and 119884

1199012 119901 isin S 1 le 119894 = 119895 le 119896

such that and

Δ119901119894119894lt 0

1

119896 minus 1

Δ119901119894119894+

1

2

(Δ119901119894119895+ Δ

119901119895119894) lt 0

(66)

where

Δ119901119894119895=

[

[

[

[

[

[

[

[

[

[

[

[

[

[

[

[

[

[

[

[

[

[

[

[

Γ119901119894119895

lowast lowast lowast lowast lowast lowast lowast lowast

119871119879

119901119861119879

119901119894+ 119862

119910119901119894119884119901

minus119884119879

1199012minus 119884

1199012lowast lowast lowast lowast lowast lowast lowast

(

119884119879

119901119860119879

119889119901119894+ 119864119884

119901

+119884119879

119901119864119879

minus 119885

) 0 Σ119901

lowast lowast lowast lowast lowast lowast

119889119860119901119894119884119901

119889119861119901119894119871119901119895

119889119860119889119901119894119884119901minus119885 lowast lowast lowast lowast lowast

119861119879

1199081199011198940 0 0 minus120574

2

119868 lowast lowast lowast lowast

119862119901119894119884119901

119863119901119894119871119901119895

119862119889119901119894119884119901

0 119862119908119901119894

minus119868 lowast lowast lowast

119884119901

0 0 0 0 0 minus119876119901

lowast lowast

119889119884119901

0 0 0 0 0 0 minus119889119876 lowast

[1198681199030]119867

minus1

119872119879

1199010 0 0 0 0 0 0 minus119869

119901

]

]

]

]

]

]

]

]

]

]

]

]

]

]

]

]

]

]

]

]

]

]

]

]

(67)

and the other notations are the same as in Theorem 13

Remark 15 Compared with the method in [31 32] becauseof the augmented matrix adopted in Theorems 13 and 14 thenumber of LMIs needed to solve is greatly decreased Whenthe value of 119896 is relatively large the computational complexitywill be reduced On the other hand by the augmentedmatrixthere are not any crossing terms between system matricesand controller gains so assumptions for the output matrix

[23] the equality constraint for the output matrix [24] andthe bounding technique for crossing terms are not necessaryhere therefore the conservatism brought by them will nothappen

5 Numerical Examples

Two examples will be given to illustrate the validity ofdeveloped methods

Mathematical Problems in Engineering 11

Example 1 To illustrate the 119867infin

controller synthesis thefollowing nonlinear time delay system is considered

(1 + 119886 cos 120579 (119905)) 120579 (119905) = minus119887 1205793 (119905) + 119888120579 (119905) + 119888119889(119905 minus 119889)

+ 120575 (119903119905) 119890119906 (119905) + 119891119908 (119905)

(68)

The range of 120579(119905) is assumed to satisfy | 120579(119905)| lt 120595 120595 = 2

119886 = 119887 = 119890 = 119891 = 1 119888 = minus1 119888119889= 08 119889 isin [0 119889] 119889 = 03

and 119906(119905) is the control input 119908(119905) = cos(05119905)119890minus001119905 is thedisturbance input 119903

119905is a Markovian process taking values in

a finite set 1 2 3 120575(1) = 1 120575(2) = 08 120575(3) = 05 and theoutput vector 119911(119905) = 120579(119905)

Choose the vector 119909(119905) = [1199091(119905) 119909

2(119905) 119909

3(119905)]

119879 with1199091(119905) = 120579(119905) 119909

2(119905) =

120579(119905) and 119909

3(119905) =

120579(119905) Then the system

is described by

[

[

[

1 0 0

0 1 0

0 0 0

]

]

]

(119905)

=

[

[

[

[

0 1 0

0 0 1

119888 minus1198871199092

2(119905) minus1 minus 119886 cos119909

1(119905)

]

]

]

]

119909 (119905)

+[

[

[

0 0 0

0 0 0

1198881198890 0

]

]

]

119909 (119905 minus 119889) +[

[

[

0

0

120575 (119903119905) 119890

]

]

]

119906 (119905)

+[

[

[

0

0

119891

]

]

]

119908 (119905)

(69)

It can be expressed exactly by the following fuzzy singularMarkovian jump form

119864 (119905) =

3

sum

119894=1

120582119894(119860

119901119894119909 (119905) + 119860

119889119901119894119909 (119905 minus 119889) + 119861

119901119894119906 (119905)

+ 119861119908119901119894119908 (119905))

119911 (119905) =

3

sum

119894=1

120582119894119862119901119894119909 (119905)

119909 (119905) = 120601 (119905)

119905 isin [minus119889 0] 119901 isin 1 2 3

(70)

where

119864 =[

[

[

1 0 0

0 1 0

0 0 0

]

]

]

1198601199011=

[

[

[

[

0 1 0

0 0 1

119888 minus119887 (1205952

+ 2) 119886 minus 1

]

]

]

]

1198601199012=

[

[

[

[

0 1 0

0 0 1

119888 0 minus119886 minus 1 minus 1198861205952

]

]

]

]

1198601199013=[

[

[

0 1 0

0 0 1

119888 0 119886 minus 1

]

]

]

1198601198891199011

= 1198601198891199012

= 1198601198891199013

=[

[

[

0 0 0

0 0 0

1198881198890 0

]

]

]

11986111= 119861

12= 119861

13=[

[

[

0

0

119890

]

]

]

11986121= 119861

22= 119861

23=[

[

[

0

0

08119890

]

]

]

11986131= 119861

32= 119861

33=[

[

[

0

0

05119890

]

]

]

1198611199081199011

= 1198611199081199012

= 1198611199081199013

=[

[

[

0

0

119891

]

]

]

1198621199011= 119862

1199012= 119862

1199013= [1 0 0]

1205821=

1199092

2(119905)

1205952+ 2

1205822=

1 + cos1199091(119905)

1205952+ 2

1205823=

1205952

minus 1199092

2(119905) + 1 minus cos119909

1(119905)

1205952+ 2

(71)

It is seen that 0 le 120582119894le 1sum3

119894=1120582119894= 1 Let Π = [ minus02 02 0

01 minus03 02

02 03 minus05

]120574 = 1 by solving and (53) in Theorem 10 controller gainsare given by

11987011= [minus142939 minus140620 minus36426]

11987012= [minus142911 minus144082 minus32860]

12 Mathematical Problems in Engineering

0 1 2 3 4 5 6 7 8minus20

minus15

minus10

minus5

0

5

0 2 4 86minus1

0123

Time

Time

Ope

n-lo

op st

ate r

espo

nse

Mar

kov

chai

n

x1

x2

x3

Figure 1 State responses of the open-loop system

11987013= [minus142988 minus144111 minus36425]

11987021= [minus179535 minus177012 minus44471]

11987022= [minus179509 minus179806 minus41585]

11987023= [minus179578 minus179828 minus44470]

11987031= [minus286360 minus283641 minus69941]

11987032= [minus286344 minus285420 minus68118]

11987033= [minus286377 minus285436 minus69941]

(72)

To demonstrate the effectiveness assuming the initialcondition 120601(119905) = [minus12 08 minus05]

119879 Figures 1 and 2 showstate responses of the open-loop system and the closed-loopsystem controlled by (10) respectively From Figure 1 it canbe seen that the open-loop system is not stochastically admis-sible and Figure 2 shows that when the controller obtainedby Theorem 10 is exerted to this system it is stochasticallyadmissible

Example 2 Consider the example without uncertainties in[6]

Mode 1 1198601= [

15 14

minus35 minus45] 119860

1198891= [

02 119886

minus024 minus04] 119861

1= [

1

1]

1198611199081= [

15

14] 119862

1= [05 1] 119862

1198891= [minus02 02] 119863

1= 02 and

1198621199081= 02Mode 2 119860

2= [

17 15

minus13 minus25] 119860

1198892= [

119887 11

minus021 minus03] 119861

2= [

09

09]

1198611199082= [

14

15] 119862

2= [04 03] 119862

1198892= [minus01 02]119863

2= 03 and

1198621199082= 03Π = [

minus1 1

1 minus1] 119864 = [

1 0

0 0] 119889 = 03 120574 = 26 and in [6]

119886 = minus05 119887 = 21 but in this paper minus24 le 119886 le 2 minus2 le 119887 le 48are taken

In Figure 3 ldquoordquo represents the range of the feasiblesolutions using Theorem 10 in this paper and ldquolowastrdquo representsthe range of the feasible solutions using Theorem 3 in [6]

minus15minus1

minus050

051

152

253

354

Mar

kov

chai

n

0 1 2 3 4 5 6 7 8

0 2 4 6 8minus1

0123

Time

Time

Clos

ed-lo

op st

ate r

espo

nse

x1

x2

x3

Figure 2 State responses of the closed-loop system

minus2 minus15 minus1 minus05 0 05 1 15 2minus2

minus1

0

1

2

3

4

a

b

Figure 3 Comparison of the feasible regions

This illustrates that themethod obtained in this paper has lessconservatism

6 Conclusions

In this paper the problem of mode-dependent 119867infin

controlfor singular Markovian jump fuzzy systems with time delayis considered This class of systems under considerationis described by T-S fuzzy models The main contributionof this paper is to design state feedback controllers andstatic output feedback controllers which can guarantee thatresulting closed-loop systems are stochastically admissiblewith an119867

infinperformance 120574 by the method of the augmented

matrix Finally two examples are given to demonstrate theeffectiveness of main results obtained here

Conflict of Interests

The authors declare that there is no conflict of interestsregarding the publication of this paper

Mathematical Problems in Engineering 13

Acknowledgments

This work was supported by The National Natural ScienceFoundation of China under Grants nos 61304054 61273003and 61273008 respectively and Science and TechnologyResearch Fund of Liaoning Education Department underGrant no L2013051

References

[1] L Dai Singular Control Systems vol 118 of Lecture Notes inControl and Information Sciences Springer Berlin Germany1989

[2] F L Lewis ldquoA survey of linear singular systemsrdquo CircuitsSystems and Signal Processing vol 5 no 1 pp 3ndash36 1986

[3] S Xu and J Lam ldquoRobust stability and stabilization of discretesingular systems an equivalent characterizationrdquo IEEE Trans-actions on Automatic Control vol 49 no 4 pp 568ndash574 2004

[4] Z Wu and W Zhou ldquoDelay-dependent robust stabilization foruncertain singular systemswith discrete and distributed delaysrdquoJournal of ControlTheory and Applications vol 6 no 2 pp 171ndash176 2008

[5] Y Xia P Shi G Liu and D Rees ldquoRobust mixed 119867infin119867

2

state-feedback control for continuous-time descriptor systemswith parameter uncertaintiesrdquo Circuits Systems and SignalProcessing vol 24 no 4 pp 431ndash443 2005

[6] H Lu W Zhou C Duan and X Qi ldquoDelay-dependent robust119867

infincontrol for uncertain singular time-delay system with

Markovian jumping parametersrdquo Optimal Control Applicationsamp Methods vol 34 no 3 pp 296ndash307 2013

[7] Y Fang and K A Loparo ldquoStochastic stability of jump linearsystemsrdquo IEEE Transactions on Automatic Control vol 47 no 7pp 1204ndash1208 2002

[8] D Yue and Q-L Han ldquoDelay-dependent exponential stabilityof stochastic systems with time-varying delay nonlinearity andMarkovian switchingrdquo IEEETransactions onAutomatic Controlvol 50 no 2 pp 217ndash222 2005

[9] J Xiong and J Lam ldquoStabilization of discrete-time Markovianjump linear systems via time-delayed controllersrdquo Automaticavol 42 no 5 pp 747ndash753 2006

[10] W-H Chen Z-H Guan and P Yu ldquoDelay-dependent stabilityand 119867

infincontrol of uncertain discrete-time Markovian jump

systems with mode-dependent time delaysrdquo Systems amp ControlLetters vol 52 no 5 pp 361ndash376 2004

[11] E-K Boukas Control of Singular Systems with Random AbruptChanges Communications and Control Engineering SpringerBerlin Germany 2008

[12] J Zhang Y Xia and E K Boukas ldquoNew approach to Hinfin

control for Markovian jump singular systemsrdquo IET ControlTheory amp Applications vol 4 no 11 pp 2273ndash2284 2010

[13] J Lam S Zhu S Xu and E-K Boukas ldquoRobust 119867infin

controlof descriptor discrete-time Markovian jump systemsrdquo Interna-tional Journal of Control vol 80 no 3 pp 374ndash385 2007

[14] K Gu V L Kharitonov and J Chen Stability of Time-DelaySystems Birkhauser Basel Switzerland 2003

[15] G Wang Q Zhang and C Yang ldquoDissipative control forsingular Markovian jump systems with time delayrdquo OptimalControl ApplicationsampMethods vol 33 no 4 pp 415ndash432 2012

[16] Z Wu H Su and J Chu ldquoDelay-dependent 119867infin

control forsingular Markovian jump systems with time delayrdquo Optimal

Control Applications and Methods vol 30 no 5 pp 443ndash4612009

[17] C K Ahn ldquoT-S fuzzy119867infinsynchronization for chaotic systems

via delayed output feedback controlrdquo Nonlinear Dynamics vol59 no 4 pp 535ndash543 2010

[18] C K Ahn ldquoFuzzy delayed output feedback synchronizationfor time-delayed chaotic systemsrdquo Nonlinear Analysis HybridSystems vol 4 no 1 pp 16ndash24 2010

[19] H-N Wu and K-Y Cai ldquoMode-independent robust stabiliza-tion for uncertain Markovian jump nonlinear systems via fuzzycontrolrdquo IEEE Transactions on Systems Man and CyberneticsPart B Cybernetics vol 36 no 3 pp 509ndash519 2006

[20] Y Zhang S Xu Y Zou and J Lu ldquoDelay-dependent robuststabilization for uncertain discrete-time fuzzy Markovian jumpsystems with mode-dependent time delaysrdquo Fuzzy Sets andSystems vol 164 pp 66ndash81 2011

[21] A Zhang and H Fang ldquoRobustHinfinfuzzy control for uncertain

Markovian jump nonlinear singular systems with Wiener pro-cessrdquo Journal of Control Theory and Applications vol 8 no 2pp 205ndash210 2010

[22] L Li Q Zhang and B Zhu ldquo119867infin

fuzzy control for nonlin-ear time-delay singular Markovian jump systems with partlyunknown transition ratesrdquo Fuzzy Sets and Systems vol 254 pp106ndash125 2014

[23] J Dong and G-H Yang ldquoStatic output feedback 119867infin

controlof a class of nonlinear discrete-time systemsrdquo Fuzzy Sets andSystems vol 160 no 19 pp 2844ndash2859 2009

[24] Y Zhang C Liu and X Mu ldquoRobust finite-time119867infincontrol of

singular stochastic systems via static output feedbackrdquo AppliedMathematics and Computation vol 218 no 9 pp 5629ndash56402012

[25] J Wang H Wang A Xie and R Lu ldquoDelay-dependent 119867infin

control for singular Markovian jump systems with time delayrdquoNonlinear Analysis Hybrid Systems vol 8 pp 1ndash12 2012

[26] D B Xu Q L Zhang and Y B Hu ldquoReduced-order Hinfin

controller design for uncertain descriptor systemsrdquo Acta Auto-matica Sinica vol 33 no 1 pp 44ndash47 2007

[27] L Xie and C E de Souza ldquoRobust 119867infin

control for linearsystems with norm bounder time-varying uncertaintiesrdquo IEEETransactions on Automatic Control vol 37 no 8 pp 1188ndash11911992

[28] Q-L Han ldquoAbsolute stability of time-delay systemswith sector-bounded nonlinearityrdquo Automatica vol 41 no 12 pp 2171ndash2176 2005

[29] D Yue J Lam and D W C Ho ldquoReliable 119867infin

control ofuncertain descriptor systems with multiple time delaysrdquo IEEProceedings ControlTheory and Applications vol 150 no 6 pp557ndash564 2003

[30] H D Tuan P Apkarian T Narikiyo and Y YamamotoldquoParameterized linear matrix inequality techniques in fuzzycontrol systemdesignrdquo IEEETransactions on Fuzzy Systems vol9 no 2 pp 324ndash332 2001

[31] S-W Kau H-J Lee C-M Yang C-H Lee L Hong and C-HFang ldquoRobust H

infinfuzzy static output feedback control of T-

S fuzzy systems with parametric uncertaintiesrdquo Fuzzy Sets andSystems vol 158 no 2 pp 135ndash146 2007

[32] D Saifia M Chadli S Labiod and T M Guerra ldquoRobust119867

infinstatic output feedback stabilization of T-S fuzzy systems

subject to actuator saturationrdquo International Journal of ControlAutomation and Systems vol 10 no 3 pp 613ndash622 2012

Submit your manuscripts athttpwwwhindawicom

Hindawi Publishing Corporationhttpwwwhindawicom Volume 2014

MathematicsJournal of

Hindawi Publishing Corporationhttpwwwhindawicom Volume 2014

Mathematical Problems in Engineering

Hindawi Publishing Corporationhttpwwwhindawicom

Differential EquationsInternational Journal of

Volume 2014

Applied MathematicsJournal of

Hindawi Publishing Corporationhttpwwwhindawicom Volume 2014

Probability and StatisticsHindawi Publishing Corporationhttpwwwhindawicom Volume 2014

Journal of

Hindawi Publishing Corporationhttpwwwhindawicom Volume 2014

Mathematical PhysicsAdvances in

Complex AnalysisJournal of

Hindawi Publishing Corporationhttpwwwhindawicom Volume 2014

OptimizationJournal of

Hindawi Publishing Corporationhttpwwwhindawicom Volume 2014

CombinatoricsHindawi Publishing Corporationhttpwwwhindawicom Volume 2014

International Journal of

Hindawi Publishing Corporationhttpwwwhindawicom Volume 2014

Operations ResearchAdvances in

Journal of

Hindawi Publishing Corporationhttpwwwhindawicom Volume 2014

Function Spaces

Abstract and Applied AnalysisHindawi Publishing Corporationhttpwwwhindawicom Volume 2014

International Journal of Mathematics and Mathematical Sciences

Hindawi Publishing Corporationhttpwwwhindawicom Volume 2014

The Scientific World JournalHindawi Publishing Corporation httpwwwhindawicom Volume 2014

Hindawi Publishing Corporationhttpwwwhindawicom Volume 2014

Algebra

Discrete Dynamics in Nature and Society

Hindawi Publishing Corporationhttpwwwhindawicom Volume 2014

Hindawi Publishing Corporationhttpwwwhindawicom Volume 2014

Decision SciencesAdvances in

Discrete MathematicsJournal of

Hindawi Publishing Corporationhttpwwwhindawicom

Volume 2014 Hindawi Publishing Corporationhttpwwwhindawicom Volume 2014

Stochastic AnalysisInternational Journal of

Page 9: Research Article Fuzzy Control for Nonlinear Singular Markovian Jump Systems …downloads.hindawi.com/journals/mpe/2015/896515.pdf · 2019-07-31 · Singular systems, also known as

Mathematical Problems in Engineering 9

119911 (119905) =

119896

sum

119894=1

120582119894(119862

119901119894119909 (119905) + 119862

119889119901119894119909 (119905 minus 119889) + 119863

119901119894119906 (119905)

+ 119862119908119901119894119908 (119905))

119909 (119905) = 120601 (119905)

forall119905 isin [minus119889 0] 119894 isin T ≜ 1 2 119896

(58)

where 119910(119905) isin R1199011 is the system output 119862

119889119901119894(119894 isin S) are

known constant matrices with appropriate dimensions andthe other notations are the same as in (3)

The following static output feedback controller will beconsidered here

119906119901(119905) =

119896

sum

119894=1

120582119894119870

119901119894119910 (119905) (59)

where119870119901119894(119901 isin S 119894 isin T) are local controller gains such that

the closed-loop system is

119864 (119905) =

119896

sum

119894=1

119896

sum

119895=1

119896

sum

119904=1

120582119894120582119895120582119904((119860

119901119894+ 119861

119901119894119870

119901119895119862119910119901119904) 119909 (119905) + 119860

119889119901119894119909 (119905 minus 119889) + 119861

119908119901119894119908 (119905))

119911 (119905) =

119896

sum

119894=1

119896

sum

119895=1

119896

sum

119904=1

120582119894120582119895120582119904((119862

119901119894+ 119863

119901119894119870

119901119895119862119910119901119904) 119909 (119905) + 119862

119889119901119894119909 (119905 minus 119889) + 119862

119908119901119894119908 (119905))

(60)

It is difficult to drive LMI-based conditions of the stochas-tic stabilization by employing the static output feedbackcontrol approach due to the appearance of crossing termsbetween system matrices and control gains And system (60)can be rewritten in the following form

119864119909 (119905) =

119896

sum

119894=1

119896

sum

119895=1

120582119894120582119895(Λ

119901119894119895119909 (119905) + 119861

119908119901119894119908 (119905))

119911 (119905) =

119896

sum

119894=1

119896

sum

119895=1

120582119894120582119895(119862

119901119894119895119909 (119905) + 119862

119908119901119894119908 (119905))

(61)

where

119864 = [

119864 0

0 0

] isin R(119899+1199011)times(119899+119901

1)

119862119901119894119895= [119862

119901119894119863

119901119894119870

119901119895]

119860119889119901119894

= [

119860119889119901119894

0

0 0

] isin R(119899+1199011)times(119899+119901

1)

119909 (119905) = [

119909 (119905)

119910 (119905)

]

119861119908119901119894

= [

119861119908119901119894

0

] isin R(119899+1199011)timesV

Λ119901119894119895= [

119860119901119894

119861119901119894119870

119901119895

119862119910119901119894

minus119868

]

(62)

Remark 12 For systems (60) and (61) it can be seen that

det(119904119864 minus119896

sum

119894=1

119896

sum

119895=1

119896

sum

119904=1

120582119894120582119895120582119904(119860

119901119894+ 119861

119901119894119870

119901119895119862119910119901119904))

= det(119904119864 minus119896

sum

119894=1

119896

sum

119895=1

120582119894120582119895Λ

119901119894119895)

det(119904119864

minus

119896

sum

119894=1

119896

sum

119895=1

119896

sum

119904=1

120582119894120582119895120582119904(119860

119901119894+ 119861

119901119894119870

119901119895119862119910119901119904

+ 119860119889119901119894))

= det(119904119864 minus119896

sum

119894=1

119896

sum

119895=1

120582119894120582119895(Λ

119901119894119895+ 119860

119889119901119894))

(63)

As the discussion in Remark 7 the stochastic admissibility ofsystem (60) can be studied by means of system (61)

Theorem 13 There exists an output feedback controller (59)with controller gains 119870

119901119894= 119871

119901119894119884minus1

1199012(119901 isin S 119894 isin T) such that

system (60) with 119908(119905) = 0 is stochastically admissible if thereexist matrices 119875

119901gt 0 119876

119901gt 0 119876 gt 0 119885 gt 0 119871

119901119894 119878

119901 and 119884

1199012

119901 isin S 1 le 119894 = 119895 le 119896 such that and

Θ119901119894119894lt 0

1

119896 minus 1

Θ119901119894119894+

1

2

(Θ119901119894119895+ Θ

119901119895119894) lt 0

(64)

where

10 Mathematical Problems in Engineering

Θ119901119894119895=

[

[

[

[

[

[

[

[

[

[

[

[

[

[

[

[

[

[

[

Γ119901119894119895

lowast lowast lowast lowast lowast lowast

119871119879

119901119895119861119879

119901119894+ 119862

119910119901119894119884119901

minus119884119879

1199012minus 119884

1199012lowast lowast lowast lowast lowast

(

119884119879

119901119860119879

119889119901119894+ 119864119884

119901

119884119879

119901119864119879

minus 119885

) 0 Σ119901

lowast lowast lowast lowast

119889119860119901119894119884119901

119889119861119901119894119871119901119895

119889119860119889119901119894119884119901minus119885 lowast lowast lowast

119884119901

0 0 0 minus119876119901

lowast lowast

119889119884119901

0 0 0 0 minus119889119876 lowast

[1198681199030]119867

minus1

119872119879

1199010 0 0 0 0 minus119869

119901

]

]

]

]

]

]

]

]

]

]

]

]

]

]

]

]

]

]

]

(65)

Γ119901119894119895

= 120587119901119901119884119879

119901119864119879

+ 119860119901119894119884119901+ 119884

119879

119901119860119879

119901119894minus 119884

119879

119901119864119879

minus 119864119884119901+ 119885

Σ119901= minus119884

119879

119901minus 119884

119901+ 119876

119901minus 119884

119879

119901119864119879

minus 119864119884119901+ 119885 119871

119901119894= 119870

1199011198941198841199012

119884119901= (119864119875

119901+ 119878

119901119877

119879

)119879 119877 isin R119899times(119899minus119903) is any matrix with

full column rank and satisfies 119864119877 = 0 119866119867 are nonsingularmatrices that make 119866119864119867 = [

1198681199030

0 0] and the other notations are

the same as in Theorem 8

Proof Let 119901= [

119884119901

0

0 1198841199012

] Using Lemma 6 the proof processis similar to Theorem 8

Theorem 14 For a prescribed scalar 119889 gt 0 there exists anoutput feedback controller (59) with controller gains 119870

119901119894=

119871119901119894119884minus1

1199012(119901 isin S 119894 isin T) such that system (60) is stochastically

admissible with an 119867infin

performance 120574 for any constant timedelay 119889 satisfying 119889 isin [0 119889] if there exist matrices 119875

119901gt 0

119876119901gt 0 119876 gt 0 119885 gt 0 119871

119901119894 119878

119901 and 119884

1199012 119901 isin S 1 le 119894 = 119895 le 119896

such that and

Δ119901119894119894lt 0

1

119896 minus 1

Δ119901119894119894+

1

2

(Δ119901119894119895+ Δ

119901119895119894) lt 0

(66)

where

Δ119901119894119895=

[

[

[

[

[

[

[

[

[

[

[

[

[

[

[

[

[

[

[

[

[

[

[

[

Γ119901119894119895

lowast lowast lowast lowast lowast lowast lowast lowast

119871119879

119901119861119879

119901119894+ 119862

119910119901119894119884119901

minus119884119879

1199012minus 119884

1199012lowast lowast lowast lowast lowast lowast lowast

(

119884119879

119901119860119879

119889119901119894+ 119864119884

119901

+119884119879

119901119864119879

minus 119885

) 0 Σ119901

lowast lowast lowast lowast lowast lowast

119889119860119901119894119884119901

119889119861119901119894119871119901119895

119889119860119889119901119894119884119901minus119885 lowast lowast lowast lowast lowast

119861119879

1199081199011198940 0 0 minus120574

2

119868 lowast lowast lowast lowast

119862119901119894119884119901

119863119901119894119871119901119895

119862119889119901119894119884119901

0 119862119908119901119894

minus119868 lowast lowast lowast

119884119901

0 0 0 0 0 minus119876119901

lowast lowast

119889119884119901

0 0 0 0 0 0 minus119889119876 lowast

[1198681199030]119867

minus1

119872119879

1199010 0 0 0 0 0 0 minus119869

119901

]

]

]

]

]

]

]

]

]

]

]

]

]

]

]

]

]

]

]

]

]

]

]

]

(67)

and the other notations are the same as in Theorem 13

Remark 15 Compared with the method in [31 32] becauseof the augmented matrix adopted in Theorems 13 and 14 thenumber of LMIs needed to solve is greatly decreased Whenthe value of 119896 is relatively large the computational complexitywill be reduced On the other hand by the augmentedmatrixthere are not any crossing terms between system matricesand controller gains so assumptions for the output matrix

[23] the equality constraint for the output matrix [24] andthe bounding technique for crossing terms are not necessaryhere therefore the conservatism brought by them will nothappen

5 Numerical Examples

Two examples will be given to illustrate the validity ofdeveloped methods

Mathematical Problems in Engineering 11

Example 1 To illustrate the 119867infin

controller synthesis thefollowing nonlinear time delay system is considered

(1 + 119886 cos 120579 (119905)) 120579 (119905) = minus119887 1205793 (119905) + 119888120579 (119905) + 119888119889(119905 minus 119889)

+ 120575 (119903119905) 119890119906 (119905) + 119891119908 (119905)

(68)

The range of 120579(119905) is assumed to satisfy | 120579(119905)| lt 120595 120595 = 2

119886 = 119887 = 119890 = 119891 = 1 119888 = minus1 119888119889= 08 119889 isin [0 119889] 119889 = 03

and 119906(119905) is the control input 119908(119905) = cos(05119905)119890minus001119905 is thedisturbance input 119903

119905is a Markovian process taking values in

a finite set 1 2 3 120575(1) = 1 120575(2) = 08 120575(3) = 05 and theoutput vector 119911(119905) = 120579(119905)

Choose the vector 119909(119905) = [1199091(119905) 119909

2(119905) 119909

3(119905)]

119879 with1199091(119905) = 120579(119905) 119909

2(119905) =

120579(119905) and 119909

3(119905) =

120579(119905) Then the system

is described by

[

[

[

1 0 0

0 1 0

0 0 0

]

]

]

(119905)

=

[

[

[

[

0 1 0

0 0 1

119888 minus1198871199092

2(119905) minus1 minus 119886 cos119909

1(119905)

]

]

]

]

119909 (119905)

+[

[

[

0 0 0

0 0 0

1198881198890 0

]

]

]

119909 (119905 minus 119889) +[

[

[

0

0

120575 (119903119905) 119890

]

]

]

119906 (119905)

+[

[

[

0

0

119891

]

]

]

119908 (119905)

(69)

It can be expressed exactly by the following fuzzy singularMarkovian jump form

119864 (119905) =

3

sum

119894=1

120582119894(119860

119901119894119909 (119905) + 119860

119889119901119894119909 (119905 minus 119889) + 119861

119901119894119906 (119905)

+ 119861119908119901119894119908 (119905))

119911 (119905) =

3

sum

119894=1

120582119894119862119901119894119909 (119905)

119909 (119905) = 120601 (119905)

119905 isin [minus119889 0] 119901 isin 1 2 3

(70)

where

119864 =[

[

[

1 0 0

0 1 0

0 0 0

]

]

]

1198601199011=

[

[

[

[

0 1 0

0 0 1

119888 minus119887 (1205952

+ 2) 119886 minus 1

]

]

]

]

1198601199012=

[

[

[

[

0 1 0

0 0 1

119888 0 minus119886 minus 1 minus 1198861205952

]

]

]

]

1198601199013=[

[

[

0 1 0

0 0 1

119888 0 119886 minus 1

]

]

]

1198601198891199011

= 1198601198891199012

= 1198601198891199013

=[

[

[

0 0 0

0 0 0

1198881198890 0

]

]

]

11986111= 119861

12= 119861

13=[

[

[

0

0

119890

]

]

]

11986121= 119861

22= 119861

23=[

[

[

0

0

08119890

]

]

]

11986131= 119861

32= 119861

33=[

[

[

0

0

05119890

]

]

]

1198611199081199011

= 1198611199081199012

= 1198611199081199013

=[

[

[

0

0

119891

]

]

]

1198621199011= 119862

1199012= 119862

1199013= [1 0 0]

1205821=

1199092

2(119905)

1205952+ 2

1205822=

1 + cos1199091(119905)

1205952+ 2

1205823=

1205952

minus 1199092

2(119905) + 1 minus cos119909

1(119905)

1205952+ 2

(71)

It is seen that 0 le 120582119894le 1sum3

119894=1120582119894= 1 Let Π = [ minus02 02 0

01 minus03 02

02 03 minus05

]120574 = 1 by solving and (53) in Theorem 10 controller gainsare given by

11987011= [minus142939 minus140620 minus36426]

11987012= [minus142911 minus144082 minus32860]

12 Mathematical Problems in Engineering

0 1 2 3 4 5 6 7 8minus20

minus15

minus10

minus5

0

5

0 2 4 86minus1

0123

Time

Time

Ope

n-lo

op st

ate r

espo

nse

Mar

kov

chai

n

x1

x2

x3

Figure 1 State responses of the open-loop system

11987013= [minus142988 minus144111 minus36425]

11987021= [minus179535 minus177012 minus44471]

11987022= [minus179509 minus179806 minus41585]

11987023= [minus179578 minus179828 minus44470]

11987031= [minus286360 minus283641 minus69941]

11987032= [minus286344 minus285420 minus68118]

11987033= [minus286377 minus285436 minus69941]

(72)

To demonstrate the effectiveness assuming the initialcondition 120601(119905) = [minus12 08 minus05]

119879 Figures 1 and 2 showstate responses of the open-loop system and the closed-loopsystem controlled by (10) respectively From Figure 1 it canbe seen that the open-loop system is not stochastically admis-sible and Figure 2 shows that when the controller obtainedby Theorem 10 is exerted to this system it is stochasticallyadmissible

Example 2 Consider the example without uncertainties in[6]

Mode 1 1198601= [

15 14

minus35 minus45] 119860

1198891= [

02 119886

minus024 minus04] 119861

1= [

1

1]

1198611199081= [

15

14] 119862

1= [05 1] 119862

1198891= [minus02 02] 119863

1= 02 and

1198621199081= 02Mode 2 119860

2= [

17 15

minus13 minus25] 119860

1198892= [

119887 11

minus021 minus03] 119861

2= [

09

09]

1198611199082= [

14

15] 119862

2= [04 03] 119862

1198892= [minus01 02]119863

2= 03 and

1198621199082= 03Π = [

minus1 1

1 minus1] 119864 = [

1 0

0 0] 119889 = 03 120574 = 26 and in [6]

119886 = minus05 119887 = 21 but in this paper minus24 le 119886 le 2 minus2 le 119887 le 48are taken

In Figure 3 ldquoordquo represents the range of the feasiblesolutions using Theorem 10 in this paper and ldquolowastrdquo representsthe range of the feasible solutions using Theorem 3 in [6]

minus15minus1

minus050

051

152

253

354

Mar

kov

chai

n

0 1 2 3 4 5 6 7 8

0 2 4 6 8minus1

0123

Time

Time

Clos

ed-lo

op st

ate r

espo

nse

x1

x2

x3

Figure 2 State responses of the closed-loop system

minus2 minus15 minus1 minus05 0 05 1 15 2minus2

minus1

0

1

2

3

4

a

b

Figure 3 Comparison of the feasible regions

This illustrates that themethod obtained in this paper has lessconservatism

6 Conclusions

In this paper the problem of mode-dependent 119867infin

controlfor singular Markovian jump fuzzy systems with time delayis considered This class of systems under considerationis described by T-S fuzzy models The main contributionof this paper is to design state feedback controllers andstatic output feedback controllers which can guarantee thatresulting closed-loop systems are stochastically admissiblewith an119867

infinperformance 120574 by the method of the augmented

matrix Finally two examples are given to demonstrate theeffectiveness of main results obtained here

Conflict of Interests

The authors declare that there is no conflict of interestsregarding the publication of this paper

Mathematical Problems in Engineering 13

Acknowledgments

This work was supported by The National Natural ScienceFoundation of China under Grants nos 61304054 61273003and 61273008 respectively and Science and TechnologyResearch Fund of Liaoning Education Department underGrant no L2013051

References

[1] L Dai Singular Control Systems vol 118 of Lecture Notes inControl and Information Sciences Springer Berlin Germany1989

[2] F L Lewis ldquoA survey of linear singular systemsrdquo CircuitsSystems and Signal Processing vol 5 no 1 pp 3ndash36 1986

[3] S Xu and J Lam ldquoRobust stability and stabilization of discretesingular systems an equivalent characterizationrdquo IEEE Trans-actions on Automatic Control vol 49 no 4 pp 568ndash574 2004

[4] Z Wu and W Zhou ldquoDelay-dependent robust stabilization foruncertain singular systemswith discrete and distributed delaysrdquoJournal of ControlTheory and Applications vol 6 no 2 pp 171ndash176 2008

[5] Y Xia P Shi G Liu and D Rees ldquoRobust mixed 119867infin119867

2

state-feedback control for continuous-time descriptor systemswith parameter uncertaintiesrdquo Circuits Systems and SignalProcessing vol 24 no 4 pp 431ndash443 2005

[6] H Lu W Zhou C Duan and X Qi ldquoDelay-dependent robust119867

infincontrol for uncertain singular time-delay system with

Markovian jumping parametersrdquo Optimal Control Applicationsamp Methods vol 34 no 3 pp 296ndash307 2013

[7] Y Fang and K A Loparo ldquoStochastic stability of jump linearsystemsrdquo IEEE Transactions on Automatic Control vol 47 no 7pp 1204ndash1208 2002

[8] D Yue and Q-L Han ldquoDelay-dependent exponential stabilityof stochastic systems with time-varying delay nonlinearity andMarkovian switchingrdquo IEEETransactions onAutomatic Controlvol 50 no 2 pp 217ndash222 2005

[9] J Xiong and J Lam ldquoStabilization of discrete-time Markovianjump linear systems via time-delayed controllersrdquo Automaticavol 42 no 5 pp 747ndash753 2006

[10] W-H Chen Z-H Guan and P Yu ldquoDelay-dependent stabilityand 119867

infincontrol of uncertain discrete-time Markovian jump

systems with mode-dependent time delaysrdquo Systems amp ControlLetters vol 52 no 5 pp 361ndash376 2004

[11] E-K Boukas Control of Singular Systems with Random AbruptChanges Communications and Control Engineering SpringerBerlin Germany 2008

[12] J Zhang Y Xia and E K Boukas ldquoNew approach to Hinfin

control for Markovian jump singular systemsrdquo IET ControlTheory amp Applications vol 4 no 11 pp 2273ndash2284 2010

[13] J Lam S Zhu S Xu and E-K Boukas ldquoRobust 119867infin

controlof descriptor discrete-time Markovian jump systemsrdquo Interna-tional Journal of Control vol 80 no 3 pp 374ndash385 2007

[14] K Gu V L Kharitonov and J Chen Stability of Time-DelaySystems Birkhauser Basel Switzerland 2003

[15] G Wang Q Zhang and C Yang ldquoDissipative control forsingular Markovian jump systems with time delayrdquo OptimalControl ApplicationsampMethods vol 33 no 4 pp 415ndash432 2012

[16] Z Wu H Su and J Chu ldquoDelay-dependent 119867infin

control forsingular Markovian jump systems with time delayrdquo Optimal

Control Applications and Methods vol 30 no 5 pp 443ndash4612009

[17] C K Ahn ldquoT-S fuzzy119867infinsynchronization for chaotic systems

via delayed output feedback controlrdquo Nonlinear Dynamics vol59 no 4 pp 535ndash543 2010

[18] C K Ahn ldquoFuzzy delayed output feedback synchronizationfor time-delayed chaotic systemsrdquo Nonlinear Analysis HybridSystems vol 4 no 1 pp 16ndash24 2010

[19] H-N Wu and K-Y Cai ldquoMode-independent robust stabiliza-tion for uncertain Markovian jump nonlinear systems via fuzzycontrolrdquo IEEE Transactions on Systems Man and CyberneticsPart B Cybernetics vol 36 no 3 pp 509ndash519 2006

[20] Y Zhang S Xu Y Zou and J Lu ldquoDelay-dependent robuststabilization for uncertain discrete-time fuzzy Markovian jumpsystems with mode-dependent time delaysrdquo Fuzzy Sets andSystems vol 164 pp 66ndash81 2011

[21] A Zhang and H Fang ldquoRobustHinfinfuzzy control for uncertain

Markovian jump nonlinear singular systems with Wiener pro-cessrdquo Journal of Control Theory and Applications vol 8 no 2pp 205ndash210 2010

[22] L Li Q Zhang and B Zhu ldquo119867infin

fuzzy control for nonlin-ear time-delay singular Markovian jump systems with partlyunknown transition ratesrdquo Fuzzy Sets and Systems vol 254 pp106ndash125 2014

[23] J Dong and G-H Yang ldquoStatic output feedback 119867infin

controlof a class of nonlinear discrete-time systemsrdquo Fuzzy Sets andSystems vol 160 no 19 pp 2844ndash2859 2009

[24] Y Zhang C Liu and X Mu ldquoRobust finite-time119867infincontrol of

singular stochastic systems via static output feedbackrdquo AppliedMathematics and Computation vol 218 no 9 pp 5629ndash56402012

[25] J Wang H Wang A Xie and R Lu ldquoDelay-dependent 119867infin

control for singular Markovian jump systems with time delayrdquoNonlinear Analysis Hybrid Systems vol 8 pp 1ndash12 2012

[26] D B Xu Q L Zhang and Y B Hu ldquoReduced-order Hinfin

controller design for uncertain descriptor systemsrdquo Acta Auto-matica Sinica vol 33 no 1 pp 44ndash47 2007

[27] L Xie and C E de Souza ldquoRobust 119867infin

control for linearsystems with norm bounder time-varying uncertaintiesrdquo IEEETransactions on Automatic Control vol 37 no 8 pp 1188ndash11911992

[28] Q-L Han ldquoAbsolute stability of time-delay systemswith sector-bounded nonlinearityrdquo Automatica vol 41 no 12 pp 2171ndash2176 2005

[29] D Yue J Lam and D W C Ho ldquoReliable 119867infin

control ofuncertain descriptor systems with multiple time delaysrdquo IEEProceedings ControlTheory and Applications vol 150 no 6 pp557ndash564 2003

[30] H D Tuan P Apkarian T Narikiyo and Y YamamotoldquoParameterized linear matrix inequality techniques in fuzzycontrol systemdesignrdquo IEEETransactions on Fuzzy Systems vol9 no 2 pp 324ndash332 2001

[31] S-W Kau H-J Lee C-M Yang C-H Lee L Hong and C-HFang ldquoRobust H

infinfuzzy static output feedback control of T-

S fuzzy systems with parametric uncertaintiesrdquo Fuzzy Sets andSystems vol 158 no 2 pp 135ndash146 2007

[32] D Saifia M Chadli S Labiod and T M Guerra ldquoRobust119867

infinstatic output feedback stabilization of T-S fuzzy systems

subject to actuator saturationrdquo International Journal of ControlAutomation and Systems vol 10 no 3 pp 613ndash622 2012

Submit your manuscripts athttpwwwhindawicom

Hindawi Publishing Corporationhttpwwwhindawicom Volume 2014

MathematicsJournal of

Hindawi Publishing Corporationhttpwwwhindawicom Volume 2014

Mathematical Problems in Engineering

Hindawi Publishing Corporationhttpwwwhindawicom

Differential EquationsInternational Journal of

Volume 2014

Applied MathematicsJournal of

Hindawi Publishing Corporationhttpwwwhindawicom Volume 2014

Probability and StatisticsHindawi Publishing Corporationhttpwwwhindawicom Volume 2014

Journal of

Hindawi Publishing Corporationhttpwwwhindawicom Volume 2014

Mathematical PhysicsAdvances in

Complex AnalysisJournal of

Hindawi Publishing Corporationhttpwwwhindawicom Volume 2014

OptimizationJournal of

Hindawi Publishing Corporationhttpwwwhindawicom Volume 2014

CombinatoricsHindawi Publishing Corporationhttpwwwhindawicom Volume 2014

International Journal of

Hindawi Publishing Corporationhttpwwwhindawicom Volume 2014

Operations ResearchAdvances in

Journal of

Hindawi Publishing Corporationhttpwwwhindawicom Volume 2014

Function Spaces

Abstract and Applied AnalysisHindawi Publishing Corporationhttpwwwhindawicom Volume 2014

International Journal of Mathematics and Mathematical Sciences

Hindawi Publishing Corporationhttpwwwhindawicom Volume 2014

The Scientific World JournalHindawi Publishing Corporation httpwwwhindawicom Volume 2014

Hindawi Publishing Corporationhttpwwwhindawicom Volume 2014

Algebra

Discrete Dynamics in Nature and Society

Hindawi Publishing Corporationhttpwwwhindawicom Volume 2014

Hindawi Publishing Corporationhttpwwwhindawicom Volume 2014

Decision SciencesAdvances in

Discrete MathematicsJournal of

Hindawi Publishing Corporationhttpwwwhindawicom

Volume 2014 Hindawi Publishing Corporationhttpwwwhindawicom Volume 2014

Stochastic AnalysisInternational Journal of

Page 10: Research Article Fuzzy Control for Nonlinear Singular Markovian Jump Systems …downloads.hindawi.com/journals/mpe/2015/896515.pdf · 2019-07-31 · Singular systems, also known as

10 Mathematical Problems in Engineering

Θ119901119894119895=

[

[

[

[

[

[

[

[

[

[

[

[

[

[

[

[

[

[

[

Γ119901119894119895

lowast lowast lowast lowast lowast lowast

119871119879

119901119895119861119879

119901119894+ 119862

119910119901119894119884119901

minus119884119879

1199012minus 119884

1199012lowast lowast lowast lowast lowast

(

119884119879

119901119860119879

119889119901119894+ 119864119884

119901

119884119879

119901119864119879

minus 119885

) 0 Σ119901

lowast lowast lowast lowast

119889119860119901119894119884119901

119889119861119901119894119871119901119895

119889119860119889119901119894119884119901minus119885 lowast lowast lowast

119884119901

0 0 0 minus119876119901

lowast lowast

119889119884119901

0 0 0 0 minus119889119876 lowast

[1198681199030]119867

minus1

119872119879

1199010 0 0 0 0 minus119869

119901

]

]

]

]

]

]

]

]

]

]

]

]

]

]

]

]

]

]

]

(65)

Γ119901119894119895

= 120587119901119901119884119879

119901119864119879

+ 119860119901119894119884119901+ 119884

119879

119901119860119879

119901119894minus 119884

119879

119901119864119879

minus 119864119884119901+ 119885

Σ119901= minus119884

119879

119901minus 119884

119901+ 119876

119901minus 119884

119879

119901119864119879

minus 119864119884119901+ 119885 119871

119901119894= 119870

1199011198941198841199012

119884119901= (119864119875

119901+ 119878

119901119877

119879

)119879 119877 isin R119899times(119899minus119903) is any matrix with

full column rank and satisfies 119864119877 = 0 119866119867 are nonsingularmatrices that make 119866119864119867 = [

1198681199030

0 0] and the other notations are

the same as in Theorem 8

Proof Let 119901= [

119884119901

0

0 1198841199012

] Using Lemma 6 the proof processis similar to Theorem 8

Theorem 14 For a prescribed scalar 119889 gt 0 there exists anoutput feedback controller (59) with controller gains 119870

119901119894=

119871119901119894119884minus1

1199012(119901 isin S 119894 isin T) such that system (60) is stochastically

admissible with an 119867infin

performance 120574 for any constant timedelay 119889 satisfying 119889 isin [0 119889] if there exist matrices 119875

119901gt 0

119876119901gt 0 119876 gt 0 119885 gt 0 119871

119901119894 119878

119901 and 119884

1199012 119901 isin S 1 le 119894 = 119895 le 119896

such that and

Δ119901119894119894lt 0

1

119896 minus 1

Δ119901119894119894+

1

2

(Δ119901119894119895+ Δ

119901119895119894) lt 0

(66)

where

Δ119901119894119895=

[

[

[

[

[

[

[

[

[

[

[

[

[

[

[

[

[

[

[

[

[

[

[

[

Γ119901119894119895

lowast lowast lowast lowast lowast lowast lowast lowast

119871119879

119901119861119879

119901119894+ 119862

119910119901119894119884119901

minus119884119879

1199012minus 119884

1199012lowast lowast lowast lowast lowast lowast lowast

(

119884119879

119901119860119879

119889119901119894+ 119864119884

119901

+119884119879

119901119864119879

minus 119885

) 0 Σ119901

lowast lowast lowast lowast lowast lowast

119889119860119901119894119884119901

119889119861119901119894119871119901119895

119889119860119889119901119894119884119901minus119885 lowast lowast lowast lowast lowast

119861119879

1199081199011198940 0 0 minus120574

2

119868 lowast lowast lowast lowast

119862119901119894119884119901

119863119901119894119871119901119895

119862119889119901119894119884119901

0 119862119908119901119894

minus119868 lowast lowast lowast

119884119901

0 0 0 0 0 minus119876119901

lowast lowast

119889119884119901

0 0 0 0 0 0 minus119889119876 lowast

[1198681199030]119867

minus1

119872119879

1199010 0 0 0 0 0 0 minus119869

119901

]

]

]

]

]

]

]

]

]

]

]

]

]

]

]

]

]

]

]

]

]

]

]

]

(67)

and the other notations are the same as in Theorem 13

Remark 15 Compared with the method in [31 32] becauseof the augmented matrix adopted in Theorems 13 and 14 thenumber of LMIs needed to solve is greatly decreased Whenthe value of 119896 is relatively large the computational complexitywill be reduced On the other hand by the augmentedmatrixthere are not any crossing terms between system matricesand controller gains so assumptions for the output matrix

[23] the equality constraint for the output matrix [24] andthe bounding technique for crossing terms are not necessaryhere therefore the conservatism brought by them will nothappen

5 Numerical Examples

Two examples will be given to illustrate the validity ofdeveloped methods

Mathematical Problems in Engineering 11

Example 1 To illustrate the 119867infin

controller synthesis thefollowing nonlinear time delay system is considered

(1 + 119886 cos 120579 (119905)) 120579 (119905) = minus119887 1205793 (119905) + 119888120579 (119905) + 119888119889(119905 minus 119889)

+ 120575 (119903119905) 119890119906 (119905) + 119891119908 (119905)

(68)

The range of 120579(119905) is assumed to satisfy | 120579(119905)| lt 120595 120595 = 2

119886 = 119887 = 119890 = 119891 = 1 119888 = minus1 119888119889= 08 119889 isin [0 119889] 119889 = 03

and 119906(119905) is the control input 119908(119905) = cos(05119905)119890minus001119905 is thedisturbance input 119903

119905is a Markovian process taking values in

a finite set 1 2 3 120575(1) = 1 120575(2) = 08 120575(3) = 05 and theoutput vector 119911(119905) = 120579(119905)

Choose the vector 119909(119905) = [1199091(119905) 119909

2(119905) 119909

3(119905)]

119879 with1199091(119905) = 120579(119905) 119909

2(119905) =

120579(119905) and 119909

3(119905) =

120579(119905) Then the system

is described by

[

[

[

1 0 0

0 1 0

0 0 0

]

]

]

(119905)

=

[

[

[

[

0 1 0

0 0 1

119888 minus1198871199092

2(119905) minus1 minus 119886 cos119909

1(119905)

]

]

]

]

119909 (119905)

+[

[

[

0 0 0

0 0 0

1198881198890 0

]

]

]

119909 (119905 minus 119889) +[

[

[

0

0

120575 (119903119905) 119890

]

]

]

119906 (119905)

+[

[

[

0

0

119891

]

]

]

119908 (119905)

(69)

It can be expressed exactly by the following fuzzy singularMarkovian jump form

119864 (119905) =

3

sum

119894=1

120582119894(119860

119901119894119909 (119905) + 119860

119889119901119894119909 (119905 minus 119889) + 119861

119901119894119906 (119905)

+ 119861119908119901119894119908 (119905))

119911 (119905) =

3

sum

119894=1

120582119894119862119901119894119909 (119905)

119909 (119905) = 120601 (119905)

119905 isin [minus119889 0] 119901 isin 1 2 3

(70)

where

119864 =[

[

[

1 0 0

0 1 0

0 0 0

]

]

]

1198601199011=

[

[

[

[

0 1 0

0 0 1

119888 minus119887 (1205952

+ 2) 119886 minus 1

]

]

]

]

1198601199012=

[

[

[

[

0 1 0

0 0 1

119888 0 minus119886 minus 1 minus 1198861205952

]

]

]

]

1198601199013=[

[

[

0 1 0

0 0 1

119888 0 119886 minus 1

]

]

]

1198601198891199011

= 1198601198891199012

= 1198601198891199013

=[

[

[

0 0 0

0 0 0

1198881198890 0

]

]

]

11986111= 119861

12= 119861

13=[

[

[

0

0

119890

]

]

]

11986121= 119861

22= 119861

23=[

[

[

0

0

08119890

]

]

]

11986131= 119861

32= 119861

33=[

[

[

0

0

05119890

]

]

]

1198611199081199011

= 1198611199081199012

= 1198611199081199013

=[

[

[

0

0

119891

]

]

]

1198621199011= 119862

1199012= 119862

1199013= [1 0 0]

1205821=

1199092

2(119905)

1205952+ 2

1205822=

1 + cos1199091(119905)

1205952+ 2

1205823=

1205952

minus 1199092

2(119905) + 1 minus cos119909

1(119905)

1205952+ 2

(71)

It is seen that 0 le 120582119894le 1sum3

119894=1120582119894= 1 Let Π = [ minus02 02 0

01 minus03 02

02 03 minus05

]120574 = 1 by solving and (53) in Theorem 10 controller gainsare given by

11987011= [minus142939 minus140620 minus36426]

11987012= [minus142911 minus144082 minus32860]

12 Mathematical Problems in Engineering

0 1 2 3 4 5 6 7 8minus20

minus15

minus10

minus5

0

5

0 2 4 86minus1

0123

Time

Time

Ope

n-lo

op st

ate r

espo

nse

Mar

kov

chai

n

x1

x2

x3

Figure 1 State responses of the open-loop system

11987013= [minus142988 minus144111 minus36425]

11987021= [minus179535 minus177012 minus44471]

11987022= [minus179509 minus179806 minus41585]

11987023= [minus179578 minus179828 minus44470]

11987031= [minus286360 minus283641 minus69941]

11987032= [minus286344 minus285420 minus68118]

11987033= [minus286377 minus285436 minus69941]

(72)

To demonstrate the effectiveness assuming the initialcondition 120601(119905) = [minus12 08 minus05]

119879 Figures 1 and 2 showstate responses of the open-loop system and the closed-loopsystem controlled by (10) respectively From Figure 1 it canbe seen that the open-loop system is not stochastically admis-sible and Figure 2 shows that when the controller obtainedby Theorem 10 is exerted to this system it is stochasticallyadmissible

Example 2 Consider the example without uncertainties in[6]

Mode 1 1198601= [

15 14

minus35 minus45] 119860

1198891= [

02 119886

minus024 minus04] 119861

1= [

1

1]

1198611199081= [

15

14] 119862

1= [05 1] 119862

1198891= [minus02 02] 119863

1= 02 and

1198621199081= 02Mode 2 119860

2= [

17 15

minus13 minus25] 119860

1198892= [

119887 11

minus021 minus03] 119861

2= [

09

09]

1198611199082= [

14

15] 119862

2= [04 03] 119862

1198892= [minus01 02]119863

2= 03 and

1198621199082= 03Π = [

minus1 1

1 minus1] 119864 = [

1 0

0 0] 119889 = 03 120574 = 26 and in [6]

119886 = minus05 119887 = 21 but in this paper minus24 le 119886 le 2 minus2 le 119887 le 48are taken

In Figure 3 ldquoordquo represents the range of the feasiblesolutions using Theorem 10 in this paper and ldquolowastrdquo representsthe range of the feasible solutions using Theorem 3 in [6]

minus15minus1

minus050

051

152

253

354

Mar

kov

chai

n

0 1 2 3 4 5 6 7 8

0 2 4 6 8minus1

0123

Time

Time

Clos

ed-lo

op st

ate r

espo

nse

x1

x2

x3

Figure 2 State responses of the closed-loop system

minus2 minus15 minus1 minus05 0 05 1 15 2minus2

minus1

0

1

2

3

4

a

b

Figure 3 Comparison of the feasible regions

This illustrates that themethod obtained in this paper has lessconservatism

6 Conclusions

In this paper the problem of mode-dependent 119867infin

controlfor singular Markovian jump fuzzy systems with time delayis considered This class of systems under considerationis described by T-S fuzzy models The main contributionof this paper is to design state feedback controllers andstatic output feedback controllers which can guarantee thatresulting closed-loop systems are stochastically admissiblewith an119867

infinperformance 120574 by the method of the augmented

matrix Finally two examples are given to demonstrate theeffectiveness of main results obtained here

Conflict of Interests

The authors declare that there is no conflict of interestsregarding the publication of this paper

Mathematical Problems in Engineering 13

Acknowledgments

This work was supported by The National Natural ScienceFoundation of China under Grants nos 61304054 61273003and 61273008 respectively and Science and TechnologyResearch Fund of Liaoning Education Department underGrant no L2013051

References

[1] L Dai Singular Control Systems vol 118 of Lecture Notes inControl and Information Sciences Springer Berlin Germany1989

[2] F L Lewis ldquoA survey of linear singular systemsrdquo CircuitsSystems and Signal Processing vol 5 no 1 pp 3ndash36 1986

[3] S Xu and J Lam ldquoRobust stability and stabilization of discretesingular systems an equivalent characterizationrdquo IEEE Trans-actions on Automatic Control vol 49 no 4 pp 568ndash574 2004

[4] Z Wu and W Zhou ldquoDelay-dependent robust stabilization foruncertain singular systemswith discrete and distributed delaysrdquoJournal of ControlTheory and Applications vol 6 no 2 pp 171ndash176 2008

[5] Y Xia P Shi G Liu and D Rees ldquoRobust mixed 119867infin119867

2

state-feedback control for continuous-time descriptor systemswith parameter uncertaintiesrdquo Circuits Systems and SignalProcessing vol 24 no 4 pp 431ndash443 2005

[6] H Lu W Zhou C Duan and X Qi ldquoDelay-dependent robust119867

infincontrol for uncertain singular time-delay system with

Markovian jumping parametersrdquo Optimal Control Applicationsamp Methods vol 34 no 3 pp 296ndash307 2013

[7] Y Fang and K A Loparo ldquoStochastic stability of jump linearsystemsrdquo IEEE Transactions on Automatic Control vol 47 no 7pp 1204ndash1208 2002

[8] D Yue and Q-L Han ldquoDelay-dependent exponential stabilityof stochastic systems with time-varying delay nonlinearity andMarkovian switchingrdquo IEEETransactions onAutomatic Controlvol 50 no 2 pp 217ndash222 2005

[9] J Xiong and J Lam ldquoStabilization of discrete-time Markovianjump linear systems via time-delayed controllersrdquo Automaticavol 42 no 5 pp 747ndash753 2006

[10] W-H Chen Z-H Guan and P Yu ldquoDelay-dependent stabilityand 119867

infincontrol of uncertain discrete-time Markovian jump

systems with mode-dependent time delaysrdquo Systems amp ControlLetters vol 52 no 5 pp 361ndash376 2004

[11] E-K Boukas Control of Singular Systems with Random AbruptChanges Communications and Control Engineering SpringerBerlin Germany 2008

[12] J Zhang Y Xia and E K Boukas ldquoNew approach to Hinfin

control for Markovian jump singular systemsrdquo IET ControlTheory amp Applications vol 4 no 11 pp 2273ndash2284 2010

[13] J Lam S Zhu S Xu and E-K Boukas ldquoRobust 119867infin

controlof descriptor discrete-time Markovian jump systemsrdquo Interna-tional Journal of Control vol 80 no 3 pp 374ndash385 2007

[14] K Gu V L Kharitonov and J Chen Stability of Time-DelaySystems Birkhauser Basel Switzerland 2003

[15] G Wang Q Zhang and C Yang ldquoDissipative control forsingular Markovian jump systems with time delayrdquo OptimalControl ApplicationsampMethods vol 33 no 4 pp 415ndash432 2012

[16] Z Wu H Su and J Chu ldquoDelay-dependent 119867infin

control forsingular Markovian jump systems with time delayrdquo Optimal

Control Applications and Methods vol 30 no 5 pp 443ndash4612009

[17] C K Ahn ldquoT-S fuzzy119867infinsynchronization for chaotic systems

via delayed output feedback controlrdquo Nonlinear Dynamics vol59 no 4 pp 535ndash543 2010

[18] C K Ahn ldquoFuzzy delayed output feedback synchronizationfor time-delayed chaotic systemsrdquo Nonlinear Analysis HybridSystems vol 4 no 1 pp 16ndash24 2010

[19] H-N Wu and K-Y Cai ldquoMode-independent robust stabiliza-tion for uncertain Markovian jump nonlinear systems via fuzzycontrolrdquo IEEE Transactions on Systems Man and CyberneticsPart B Cybernetics vol 36 no 3 pp 509ndash519 2006

[20] Y Zhang S Xu Y Zou and J Lu ldquoDelay-dependent robuststabilization for uncertain discrete-time fuzzy Markovian jumpsystems with mode-dependent time delaysrdquo Fuzzy Sets andSystems vol 164 pp 66ndash81 2011

[21] A Zhang and H Fang ldquoRobustHinfinfuzzy control for uncertain

Markovian jump nonlinear singular systems with Wiener pro-cessrdquo Journal of Control Theory and Applications vol 8 no 2pp 205ndash210 2010

[22] L Li Q Zhang and B Zhu ldquo119867infin

fuzzy control for nonlin-ear time-delay singular Markovian jump systems with partlyunknown transition ratesrdquo Fuzzy Sets and Systems vol 254 pp106ndash125 2014

[23] J Dong and G-H Yang ldquoStatic output feedback 119867infin

controlof a class of nonlinear discrete-time systemsrdquo Fuzzy Sets andSystems vol 160 no 19 pp 2844ndash2859 2009

[24] Y Zhang C Liu and X Mu ldquoRobust finite-time119867infincontrol of

singular stochastic systems via static output feedbackrdquo AppliedMathematics and Computation vol 218 no 9 pp 5629ndash56402012

[25] J Wang H Wang A Xie and R Lu ldquoDelay-dependent 119867infin

control for singular Markovian jump systems with time delayrdquoNonlinear Analysis Hybrid Systems vol 8 pp 1ndash12 2012

[26] D B Xu Q L Zhang and Y B Hu ldquoReduced-order Hinfin

controller design for uncertain descriptor systemsrdquo Acta Auto-matica Sinica vol 33 no 1 pp 44ndash47 2007

[27] L Xie and C E de Souza ldquoRobust 119867infin

control for linearsystems with norm bounder time-varying uncertaintiesrdquo IEEETransactions on Automatic Control vol 37 no 8 pp 1188ndash11911992

[28] Q-L Han ldquoAbsolute stability of time-delay systemswith sector-bounded nonlinearityrdquo Automatica vol 41 no 12 pp 2171ndash2176 2005

[29] D Yue J Lam and D W C Ho ldquoReliable 119867infin

control ofuncertain descriptor systems with multiple time delaysrdquo IEEProceedings ControlTheory and Applications vol 150 no 6 pp557ndash564 2003

[30] H D Tuan P Apkarian T Narikiyo and Y YamamotoldquoParameterized linear matrix inequality techniques in fuzzycontrol systemdesignrdquo IEEETransactions on Fuzzy Systems vol9 no 2 pp 324ndash332 2001

[31] S-W Kau H-J Lee C-M Yang C-H Lee L Hong and C-HFang ldquoRobust H

infinfuzzy static output feedback control of T-

S fuzzy systems with parametric uncertaintiesrdquo Fuzzy Sets andSystems vol 158 no 2 pp 135ndash146 2007

[32] D Saifia M Chadli S Labiod and T M Guerra ldquoRobust119867

infinstatic output feedback stabilization of T-S fuzzy systems

subject to actuator saturationrdquo International Journal of ControlAutomation and Systems vol 10 no 3 pp 613ndash622 2012

Submit your manuscripts athttpwwwhindawicom

Hindawi Publishing Corporationhttpwwwhindawicom Volume 2014

MathematicsJournal of

Hindawi Publishing Corporationhttpwwwhindawicom Volume 2014

Mathematical Problems in Engineering

Hindawi Publishing Corporationhttpwwwhindawicom

Differential EquationsInternational Journal of

Volume 2014

Applied MathematicsJournal of

Hindawi Publishing Corporationhttpwwwhindawicom Volume 2014

Probability and StatisticsHindawi Publishing Corporationhttpwwwhindawicom Volume 2014

Journal of

Hindawi Publishing Corporationhttpwwwhindawicom Volume 2014

Mathematical PhysicsAdvances in

Complex AnalysisJournal of

Hindawi Publishing Corporationhttpwwwhindawicom Volume 2014

OptimizationJournal of

Hindawi Publishing Corporationhttpwwwhindawicom Volume 2014

CombinatoricsHindawi Publishing Corporationhttpwwwhindawicom Volume 2014

International Journal of

Hindawi Publishing Corporationhttpwwwhindawicom Volume 2014

Operations ResearchAdvances in

Journal of

Hindawi Publishing Corporationhttpwwwhindawicom Volume 2014

Function Spaces

Abstract and Applied AnalysisHindawi Publishing Corporationhttpwwwhindawicom Volume 2014

International Journal of Mathematics and Mathematical Sciences

Hindawi Publishing Corporationhttpwwwhindawicom Volume 2014

The Scientific World JournalHindawi Publishing Corporation httpwwwhindawicom Volume 2014

Hindawi Publishing Corporationhttpwwwhindawicom Volume 2014

Algebra

Discrete Dynamics in Nature and Society

Hindawi Publishing Corporationhttpwwwhindawicom Volume 2014

Hindawi Publishing Corporationhttpwwwhindawicom Volume 2014

Decision SciencesAdvances in

Discrete MathematicsJournal of

Hindawi Publishing Corporationhttpwwwhindawicom

Volume 2014 Hindawi Publishing Corporationhttpwwwhindawicom Volume 2014

Stochastic AnalysisInternational Journal of

Page 11: Research Article Fuzzy Control for Nonlinear Singular Markovian Jump Systems …downloads.hindawi.com/journals/mpe/2015/896515.pdf · 2019-07-31 · Singular systems, also known as

Mathematical Problems in Engineering 11

Example 1 To illustrate the 119867infin

controller synthesis thefollowing nonlinear time delay system is considered

(1 + 119886 cos 120579 (119905)) 120579 (119905) = minus119887 1205793 (119905) + 119888120579 (119905) + 119888119889(119905 minus 119889)

+ 120575 (119903119905) 119890119906 (119905) + 119891119908 (119905)

(68)

The range of 120579(119905) is assumed to satisfy | 120579(119905)| lt 120595 120595 = 2

119886 = 119887 = 119890 = 119891 = 1 119888 = minus1 119888119889= 08 119889 isin [0 119889] 119889 = 03

and 119906(119905) is the control input 119908(119905) = cos(05119905)119890minus001119905 is thedisturbance input 119903

119905is a Markovian process taking values in

a finite set 1 2 3 120575(1) = 1 120575(2) = 08 120575(3) = 05 and theoutput vector 119911(119905) = 120579(119905)

Choose the vector 119909(119905) = [1199091(119905) 119909

2(119905) 119909

3(119905)]

119879 with1199091(119905) = 120579(119905) 119909

2(119905) =

120579(119905) and 119909

3(119905) =

120579(119905) Then the system

is described by

[

[

[

1 0 0

0 1 0

0 0 0

]

]

]

(119905)

=

[

[

[

[

0 1 0

0 0 1

119888 minus1198871199092

2(119905) minus1 minus 119886 cos119909

1(119905)

]

]

]

]

119909 (119905)

+[

[

[

0 0 0

0 0 0

1198881198890 0

]

]

]

119909 (119905 minus 119889) +[

[

[

0

0

120575 (119903119905) 119890

]

]

]

119906 (119905)

+[

[

[

0

0

119891

]

]

]

119908 (119905)

(69)

It can be expressed exactly by the following fuzzy singularMarkovian jump form

119864 (119905) =

3

sum

119894=1

120582119894(119860

119901119894119909 (119905) + 119860

119889119901119894119909 (119905 minus 119889) + 119861

119901119894119906 (119905)

+ 119861119908119901119894119908 (119905))

119911 (119905) =

3

sum

119894=1

120582119894119862119901119894119909 (119905)

119909 (119905) = 120601 (119905)

119905 isin [minus119889 0] 119901 isin 1 2 3

(70)

where

119864 =[

[

[

1 0 0

0 1 0

0 0 0

]

]

]

1198601199011=

[

[

[

[

0 1 0

0 0 1

119888 minus119887 (1205952

+ 2) 119886 minus 1

]

]

]

]

1198601199012=

[

[

[

[

0 1 0

0 0 1

119888 0 minus119886 minus 1 minus 1198861205952

]

]

]

]

1198601199013=[

[

[

0 1 0

0 0 1

119888 0 119886 minus 1

]

]

]

1198601198891199011

= 1198601198891199012

= 1198601198891199013

=[

[

[

0 0 0

0 0 0

1198881198890 0

]

]

]

11986111= 119861

12= 119861

13=[

[

[

0

0

119890

]

]

]

11986121= 119861

22= 119861

23=[

[

[

0

0

08119890

]

]

]

11986131= 119861

32= 119861

33=[

[

[

0

0

05119890

]

]

]

1198611199081199011

= 1198611199081199012

= 1198611199081199013

=[

[

[

0

0

119891

]

]

]

1198621199011= 119862

1199012= 119862

1199013= [1 0 0]

1205821=

1199092

2(119905)

1205952+ 2

1205822=

1 + cos1199091(119905)

1205952+ 2

1205823=

1205952

minus 1199092

2(119905) + 1 minus cos119909

1(119905)

1205952+ 2

(71)

It is seen that 0 le 120582119894le 1sum3

119894=1120582119894= 1 Let Π = [ minus02 02 0

01 minus03 02

02 03 minus05

]120574 = 1 by solving and (53) in Theorem 10 controller gainsare given by

11987011= [minus142939 minus140620 minus36426]

11987012= [minus142911 minus144082 minus32860]

12 Mathematical Problems in Engineering

0 1 2 3 4 5 6 7 8minus20

minus15

minus10

minus5

0

5

0 2 4 86minus1

0123

Time

Time

Ope

n-lo

op st

ate r

espo

nse

Mar

kov

chai

n

x1

x2

x3

Figure 1 State responses of the open-loop system

11987013= [minus142988 minus144111 minus36425]

11987021= [minus179535 minus177012 minus44471]

11987022= [minus179509 minus179806 minus41585]

11987023= [minus179578 minus179828 minus44470]

11987031= [minus286360 minus283641 minus69941]

11987032= [minus286344 minus285420 minus68118]

11987033= [minus286377 minus285436 minus69941]

(72)

To demonstrate the effectiveness assuming the initialcondition 120601(119905) = [minus12 08 minus05]

119879 Figures 1 and 2 showstate responses of the open-loop system and the closed-loopsystem controlled by (10) respectively From Figure 1 it canbe seen that the open-loop system is not stochastically admis-sible and Figure 2 shows that when the controller obtainedby Theorem 10 is exerted to this system it is stochasticallyadmissible

Example 2 Consider the example without uncertainties in[6]

Mode 1 1198601= [

15 14

minus35 minus45] 119860

1198891= [

02 119886

minus024 minus04] 119861

1= [

1

1]

1198611199081= [

15

14] 119862

1= [05 1] 119862

1198891= [minus02 02] 119863

1= 02 and

1198621199081= 02Mode 2 119860

2= [

17 15

minus13 minus25] 119860

1198892= [

119887 11

minus021 minus03] 119861

2= [

09

09]

1198611199082= [

14

15] 119862

2= [04 03] 119862

1198892= [minus01 02]119863

2= 03 and

1198621199082= 03Π = [

minus1 1

1 minus1] 119864 = [

1 0

0 0] 119889 = 03 120574 = 26 and in [6]

119886 = minus05 119887 = 21 but in this paper minus24 le 119886 le 2 minus2 le 119887 le 48are taken

In Figure 3 ldquoordquo represents the range of the feasiblesolutions using Theorem 10 in this paper and ldquolowastrdquo representsthe range of the feasible solutions using Theorem 3 in [6]

minus15minus1

minus050

051

152

253

354

Mar

kov

chai

n

0 1 2 3 4 5 6 7 8

0 2 4 6 8minus1

0123

Time

Time

Clos

ed-lo

op st

ate r

espo

nse

x1

x2

x3

Figure 2 State responses of the closed-loop system

minus2 minus15 minus1 minus05 0 05 1 15 2minus2

minus1

0

1

2

3

4

a

b

Figure 3 Comparison of the feasible regions

This illustrates that themethod obtained in this paper has lessconservatism

6 Conclusions

In this paper the problem of mode-dependent 119867infin

controlfor singular Markovian jump fuzzy systems with time delayis considered This class of systems under considerationis described by T-S fuzzy models The main contributionof this paper is to design state feedback controllers andstatic output feedback controllers which can guarantee thatresulting closed-loop systems are stochastically admissiblewith an119867

infinperformance 120574 by the method of the augmented

matrix Finally two examples are given to demonstrate theeffectiveness of main results obtained here

Conflict of Interests

The authors declare that there is no conflict of interestsregarding the publication of this paper

Mathematical Problems in Engineering 13

Acknowledgments

This work was supported by The National Natural ScienceFoundation of China under Grants nos 61304054 61273003and 61273008 respectively and Science and TechnologyResearch Fund of Liaoning Education Department underGrant no L2013051

References

[1] L Dai Singular Control Systems vol 118 of Lecture Notes inControl and Information Sciences Springer Berlin Germany1989

[2] F L Lewis ldquoA survey of linear singular systemsrdquo CircuitsSystems and Signal Processing vol 5 no 1 pp 3ndash36 1986

[3] S Xu and J Lam ldquoRobust stability and stabilization of discretesingular systems an equivalent characterizationrdquo IEEE Trans-actions on Automatic Control vol 49 no 4 pp 568ndash574 2004

[4] Z Wu and W Zhou ldquoDelay-dependent robust stabilization foruncertain singular systemswith discrete and distributed delaysrdquoJournal of ControlTheory and Applications vol 6 no 2 pp 171ndash176 2008

[5] Y Xia P Shi G Liu and D Rees ldquoRobust mixed 119867infin119867

2

state-feedback control for continuous-time descriptor systemswith parameter uncertaintiesrdquo Circuits Systems and SignalProcessing vol 24 no 4 pp 431ndash443 2005

[6] H Lu W Zhou C Duan and X Qi ldquoDelay-dependent robust119867

infincontrol for uncertain singular time-delay system with

Markovian jumping parametersrdquo Optimal Control Applicationsamp Methods vol 34 no 3 pp 296ndash307 2013

[7] Y Fang and K A Loparo ldquoStochastic stability of jump linearsystemsrdquo IEEE Transactions on Automatic Control vol 47 no 7pp 1204ndash1208 2002

[8] D Yue and Q-L Han ldquoDelay-dependent exponential stabilityof stochastic systems with time-varying delay nonlinearity andMarkovian switchingrdquo IEEETransactions onAutomatic Controlvol 50 no 2 pp 217ndash222 2005

[9] J Xiong and J Lam ldquoStabilization of discrete-time Markovianjump linear systems via time-delayed controllersrdquo Automaticavol 42 no 5 pp 747ndash753 2006

[10] W-H Chen Z-H Guan and P Yu ldquoDelay-dependent stabilityand 119867

infincontrol of uncertain discrete-time Markovian jump

systems with mode-dependent time delaysrdquo Systems amp ControlLetters vol 52 no 5 pp 361ndash376 2004

[11] E-K Boukas Control of Singular Systems with Random AbruptChanges Communications and Control Engineering SpringerBerlin Germany 2008

[12] J Zhang Y Xia and E K Boukas ldquoNew approach to Hinfin

control for Markovian jump singular systemsrdquo IET ControlTheory amp Applications vol 4 no 11 pp 2273ndash2284 2010

[13] J Lam S Zhu S Xu and E-K Boukas ldquoRobust 119867infin

controlof descriptor discrete-time Markovian jump systemsrdquo Interna-tional Journal of Control vol 80 no 3 pp 374ndash385 2007

[14] K Gu V L Kharitonov and J Chen Stability of Time-DelaySystems Birkhauser Basel Switzerland 2003

[15] G Wang Q Zhang and C Yang ldquoDissipative control forsingular Markovian jump systems with time delayrdquo OptimalControl ApplicationsampMethods vol 33 no 4 pp 415ndash432 2012

[16] Z Wu H Su and J Chu ldquoDelay-dependent 119867infin

control forsingular Markovian jump systems with time delayrdquo Optimal

Control Applications and Methods vol 30 no 5 pp 443ndash4612009

[17] C K Ahn ldquoT-S fuzzy119867infinsynchronization for chaotic systems

via delayed output feedback controlrdquo Nonlinear Dynamics vol59 no 4 pp 535ndash543 2010

[18] C K Ahn ldquoFuzzy delayed output feedback synchronizationfor time-delayed chaotic systemsrdquo Nonlinear Analysis HybridSystems vol 4 no 1 pp 16ndash24 2010

[19] H-N Wu and K-Y Cai ldquoMode-independent robust stabiliza-tion for uncertain Markovian jump nonlinear systems via fuzzycontrolrdquo IEEE Transactions on Systems Man and CyberneticsPart B Cybernetics vol 36 no 3 pp 509ndash519 2006

[20] Y Zhang S Xu Y Zou and J Lu ldquoDelay-dependent robuststabilization for uncertain discrete-time fuzzy Markovian jumpsystems with mode-dependent time delaysrdquo Fuzzy Sets andSystems vol 164 pp 66ndash81 2011

[21] A Zhang and H Fang ldquoRobustHinfinfuzzy control for uncertain

Markovian jump nonlinear singular systems with Wiener pro-cessrdquo Journal of Control Theory and Applications vol 8 no 2pp 205ndash210 2010

[22] L Li Q Zhang and B Zhu ldquo119867infin

fuzzy control for nonlin-ear time-delay singular Markovian jump systems with partlyunknown transition ratesrdquo Fuzzy Sets and Systems vol 254 pp106ndash125 2014

[23] J Dong and G-H Yang ldquoStatic output feedback 119867infin

controlof a class of nonlinear discrete-time systemsrdquo Fuzzy Sets andSystems vol 160 no 19 pp 2844ndash2859 2009

[24] Y Zhang C Liu and X Mu ldquoRobust finite-time119867infincontrol of

singular stochastic systems via static output feedbackrdquo AppliedMathematics and Computation vol 218 no 9 pp 5629ndash56402012

[25] J Wang H Wang A Xie and R Lu ldquoDelay-dependent 119867infin

control for singular Markovian jump systems with time delayrdquoNonlinear Analysis Hybrid Systems vol 8 pp 1ndash12 2012

[26] D B Xu Q L Zhang and Y B Hu ldquoReduced-order Hinfin

controller design for uncertain descriptor systemsrdquo Acta Auto-matica Sinica vol 33 no 1 pp 44ndash47 2007

[27] L Xie and C E de Souza ldquoRobust 119867infin

control for linearsystems with norm bounder time-varying uncertaintiesrdquo IEEETransactions on Automatic Control vol 37 no 8 pp 1188ndash11911992

[28] Q-L Han ldquoAbsolute stability of time-delay systemswith sector-bounded nonlinearityrdquo Automatica vol 41 no 12 pp 2171ndash2176 2005

[29] D Yue J Lam and D W C Ho ldquoReliable 119867infin

control ofuncertain descriptor systems with multiple time delaysrdquo IEEProceedings ControlTheory and Applications vol 150 no 6 pp557ndash564 2003

[30] H D Tuan P Apkarian T Narikiyo and Y YamamotoldquoParameterized linear matrix inequality techniques in fuzzycontrol systemdesignrdquo IEEETransactions on Fuzzy Systems vol9 no 2 pp 324ndash332 2001

[31] S-W Kau H-J Lee C-M Yang C-H Lee L Hong and C-HFang ldquoRobust H

infinfuzzy static output feedback control of T-

S fuzzy systems with parametric uncertaintiesrdquo Fuzzy Sets andSystems vol 158 no 2 pp 135ndash146 2007

[32] D Saifia M Chadli S Labiod and T M Guerra ldquoRobust119867

infinstatic output feedback stabilization of T-S fuzzy systems

subject to actuator saturationrdquo International Journal of ControlAutomation and Systems vol 10 no 3 pp 613ndash622 2012

Submit your manuscripts athttpwwwhindawicom

Hindawi Publishing Corporationhttpwwwhindawicom Volume 2014

MathematicsJournal of

Hindawi Publishing Corporationhttpwwwhindawicom Volume 2014

Mathematical Problems in Engineering

Hindawi Publishing Corporationhttpwwwhindawicom

Differential EquationsInternational Journal of

Volume 2014

Applied MathematicsJournal of

Hindawi Publishing Corporationhttpwwwhindawicom Volume 2014

Probability and StatisticsHindawi Publishing Corporationhttpwwwhindawicom Volume 2014

Journal of

Hindawi Publishing Corporationhttpwwwhindawicom Volume 2014

Mathematical PhysicsAdvances in

Complex AnalysisJournal of

Hindawi Publishing Corporationhttpwwwhindawicom Volume 2014

OptimizationJournal of

Hindawi Publishing Corporationhttpwwwhindawicom Volume 2014

CombinatoricsHindawi Publishing Corporationhttpwwwhindawicom Volume 2014

International Journal of

Hindawi Publishing Corporationhttpwwwhindawicom Volume 2014

Operations ResearchAdvances in

Journal of

Hindawi Publishing Corporationhttpwwwhindawicom Volume 2014

Function Spaces

Abstract and Applied AnalysisHindawi Publishing Corporationhttpwwwhindawicom Volume 2014

International Journal of Mathematics and Mathematical Sciences

Hindawi Publishing Corporationhttpwwwhindawicom Volume 2014

The Scientific World JournalHindawi Publishing Corporation httpwwwhindawicom Volume 2014

Hindawi Publishing Corporationhttpwwwhindawicom Volume 2014

Algebra

Discrete Dynamics in Nature and Society

Hindawi Publishing Corporationhttpwwwhindawicom Volume 2014

Hindawi Publishing Corporationhttpwwwhindawicom Volume 2014

Decision SciencesAdvances in

Discrete MathematicsJournal of

Hindawi Publishing Corporationhttpwwwhindawicom

Volume 2014 Hindawi Publishing Corporationhttpwwwhindawicom Volume 2014

Stochastic AnalysisInternational Journal of

Page 12: Research Article Fuzzy Control for Nonlinear Singular Markovian Jump Systems …downloads.hindawi.com/journals/mpe/2015/896515.pdf · 2019-07-31 · Singular systems, also known as

12 Mathematical Problems in Engineering

0 1 2 3 4 5 6 7 8minus20

minus15

minus10

minus5

0

5

0 2 4 86minus1

0123

Time

Time

Ope

n-lo

op st

ate r

espo

nse

Mar

kov

chai

n

x1

x2

x3

Figure 1 State responses of the open-loop system

11987013= [minus142988 minus144111 minus36425]

11987021= [minus179535 minus177012 minus44471]

11987022= [minus179509 minus179806 minus41585]

11987023= [minus179578 minus179828 minus44470]

11987031= [minus286360 minus283641 minus69941]

11987032= [minus286344 minus285420 minus68118]

11987033= [minus286377 minus285436 minus69941]

(72)

To demonstrate the effectiveness assuming the initialcondition 120601(119905) = [minus12 08 minus05]

119879 Figures 1 and 2 showstate responses of the open-loop system and the closed-loopsystem controlled by (10) respectively From Figure 1 it canbe seen that the open-loop system is not stochastically admis-sible and Figure 2 shows that when the controller obtainedby Theorem 10 is exerted to this system it is stochasticallyadmissible

Example 2 Consider the example without uncertainties in[6]

Mode 1 1198601= [

15 14

minus35 minus45] 119860

1198891= [

02 119886

minus024 minus04] 119861

1= [

1

1]

1198611199081= [

15

14] 119862

1= [05 1] 119862

1198891= [minus02 02] 119863

1= 02 and

1198621199081= 02Mode 2 119860

2= [

17 15

minus13 minus25] 119860

1198892= [

119887 11

minus021 minus03] 119861

2= [

09

09]

1198611199082= [

14

15] 119862

2= [04 03] 119862

1198892= [minus01 02]119863

2= 03 and

1198621199082= 03Π = [

minus1 1

1 minus1] 119864 = [

1 0

0 0] 119889 = 03 120574 = 26 and in [6]

119886 = minus05 119887 = 21 but in this paper minus24 le 119886 le 2 minus2 le 119887 le 48are taken

In Figure 3 ldquoordquo represents the range of the feasiblesolutions using Theorem 10 in this paper and ldquolowastrdquo representsthe range of the feasible solutions using Theorem 3 in [6]

minus15minus1

minus050

051

152

253

354

Mar

kov

chai

n

0 1 2 3 4 5 6 7 8

0 2 4 6 8minus1

0123

Time

Time

Clos

ed-lo

op st

ate r

espo

nse

x1

x2

x3

Figure 2 State responses of the closed-loop system

minus2 minus15 minus1 minus05 0 05 1 15 2minus2

minus1

0

1

2

3

4

a

b

Figure 3 Comparison of the feasible regions

This illustrates that themethod obtained in this paper has lessconservatism

6 Conclusions

In this paper the problem of mode-dependent 119867infin

controlfor singular Markovian jump fuzzy systems with time delayis considered This class of systems under considerationis described by T-S fuzzy models The main contributionof this paper is to design state feedback controllers andstatic output feedback controllers which can guarantee thatresulting closed-loop systems are stochastically admissiblewith an119867

infinperformance 120574 by the method of the augmented

matrix Finally two examples are given to demonstrate theeffectiveness of main results obtained here

Conflict of Interests

The authors declare that there is no conflict of interestsregarding the publication of this paper

Mathematical Problems in Engineering 13

Acknowledgments

This work was supported by The National Natural ScienceFoundation of China under Grants nos 61304054 61273003and 61273008 respectively and Science and TechnologyResearch Fund of Liaoning Education Department underGrant no L2013051

References

[1] L Dai Singular Control Systems vol 118 of Lecture Notes inControl and Information Sciences Springer Berlin Germany1989

[2] F L Lewis ldquoA survey of linear singular systemsrdquo CircuitsSystems and Signal Processing vol 5 no 1 pp 3ndash36 1986

[3] S Xu and J Lam ldquoRobust stability and stabilization of discretesingular systems an equivalent characterizationrdquo IEEE Trans-actions on Automatic Control vol 49 no 4 pp 568ndash574 2004

[4] Z Wu and W Zhou ldquoDelay-dependent robust stabilization foruncertain singular systemswith discrete and distributed delaysrdquoJournal of ControlTheory and Applications vol 6 no 2 pp 171ndash176 2008

[5] Y Xia P Shi G Liu and D Rees ldquoRobust mixed 119867infin119867

2

state-feedback control for continuous-time descriptor systemswith parameter uncertaintiesrdquo Circuits Systems and SignalProcessing vol 24 no 4 pp 431ndash443 2005

[6] H Lu W Zhou C Duan and X Qi ldquoDelay-dependent robust119867

infincontrol for uncertain singular time-delay system with

Markovian jumping parametersrdquo Optimal Control Applicationsamp Methods vol 34 no 3 pp 296ndash307 2013

[7] Y Fang and K A Loparo ldquoStochastic stability of jump linearsystemsrdquo IEEE Transactions on Automatic Control vol 47 no 7pp 1204ndash1208 2002

[8] D Yue and Q-L Han ldquoDelay-dependent exponential stabilityof stochastic systems with time-varying delay nonlinearity andMarkovian switchingrdquo IEEETransactions onAutomatic Controlvol 50 no 2 pp 217ndash222 2005

[9] J Xiong and J Lam ldquoStabilization of discrete-time Markovianjump linear systems via time-delayed controllersrdquo Automaticavol 42 no 5 pp 747ndash753 2006

[10] W-H Chen Z-H Guan and P Yu ldquoDelay-dependent stabilityand 119867

infincontrol of uncertain discrete-time Markovian jump

systems with mode-dependent time delaysrdquo Systems amp ControlLetters vol 52 no 5 pp 361ndash376 2004

[11] E-K Boukas Control of Singular Systems with Random AbruptChanges Communications and Control Engineering SpringerBerlin Germany 2008

[12] J Zhang Y Xia and E K Boukas ldquoNew approach to Hinfin

control for Markovian jump singular systemsrdquo IET ControlTheory amp Applications vol 4 no 11 pp 2273ndash2284 2010

[13] J Lam S Zhu S Xu and E-K Boukas ldquoRobust 119867infin

controlof descriptor discrete-time Markovian jump systemsrdquo Interna-tional Journal of Control vol 80 no 3 pp 374ndash385 2007

[14] K Gu V L Kharitonov and J Chen Stability of Time-DelaySystems Birkhauser Basel Switzerland 2003

[15] G Wang Q Zhang and C Yang ldquoDissipative control forsingular Markovian jump systems with time delayrdquo OptimalControl ApplicationsampMethods vol 33 no 4 pp 415ndash432 2012

[16] Z Wu H Su and J Chu ldquoDelay-dependent 119867infin

control forsingular Markovian jump systems with time delayrdquo Optimal

Control Applications and Methods vol 30 no 5 pp 443ndash4612009

[17] C K Ahn ldquoT-S fuzzy119867infinsynchronization for chaotic systems

via delayed output feedback controlrdquo Nonlinear Dynamics vol59 no 4 pp 535ndash543 2010

[18] C K Ahn ldquoFuzzy delayed output feedback synchronizationfor time-delayed chaotic systemsrdquo Nonlinear Analysis HybridSystems vol 4 no 1 pp 16ndash24 2010

[19] H-N Wu and K-Y Cai ldquoMode-independent robust stabiliza-tion for uncertain Markovian jump nonlinear systems via fuzzycontrolrdquo IEEE Transactions on Systems Man and CyberneticsPart B Cybernetics vol 36 no 3 pp 509ndash519 2006

[20] Y Zhang S Xu Y Zou and J Lu ldquoDelay-dependent robuststabilization for uncertain discrete-time fuzzy Markovian jumpsystems with mode-dependent time delaysrdquo Fuzzy Sets andSystems vol 164 pp 66ndash81 2011

[21] A Zhang and H Fang ldquoRobustHinfinfuzzy control for uncertain

Markovian jump nonlinear singular systems with Wiener pro-cessrdquo Journal of Control Theory and Applications vol 8 no 2pp 205ndash210 2010

[22] L Li Q Zhang and B Zhu ldquo119867infin

fuzzy control for nonlin-ear time-delay singular Markovian jump systems with partlyunknown transition ratesrdquo Fuzzy Sets and Systems vol 254 pp106ndash125 2014

[23] J Dong and G-H Yang ldquoStatic output feedback 119867infin

controlof a class of nonlinear discrete-time systemsrdquo Fuzzy Sets andSystems vol 160 no 19 pp 2844ndash2859 2009

[24] Y Zhang C Liu and X Mu ldquoRobust finite-time119867infincontrol of

singular stochastic systems via static output feedbackrdquo AppliedMathematics and Computation vol 218 no 9 pp 5629ndash56402012

[25] J Wang H Wang A Xie and R Lu ldquoDelay-dependent 119867infin

control for singular Markovian jump systems with time delayrdquoNonlinear Analysis Hybrid Systems vol 8 pp 1ndash12 2012

[26] D B Xu Q L Zhang and Y B Hu ldquoReduced-order Hinfin

controller design for uncertain descriptor systemsrdquo Acta Auto-matica Sinica vol 33 no 1 pp 44ndash47 2007

[27] L Xie and C E de Souza ldquoRobust 119867infin

control for linearsystems with norm bounder time-varying uncertaintiesrdquo IEEETransactions on Automatic Control vol 37 no 8 pp 1188ndash11911992

[28] Q-L Han ldquoAbsolute stability of time-delay systemswith sector-bounded nonlinearityrdquo Automatica vol 41 no 12 pp 2171ndash2176 2005

[29] D Yue J Lam and D W C Ho ldquoReliable 119867infin

control ofuncertain descriptor systems with multiple time delaysrdquo IEEProceedings ControlTheory and Applications vol 150 no 6 pp557ndash564 2003

[30] H D Tuan P Apkarian T Narikiyo and Y YamamotoldquoParameterized linear matrix inequality techniques in fuzzycontrol systemdesignrdquo IEEETransactions on Fuzzy Systems vol9 no 2 pp 324ndash332 2001

[31] S-W Kau H-J Lee C-M Yang C-H Lee L Hong and C-HFang ldquoRobust H

infinfuzzy static output feedback control of T-

S fuzzy systems with parametric uncertaintiesrdquo Fuzzy Sets andSystems vol 158 no 2 pp 135ndash146 2007

[32] D Saifia M Chadli S Labiod and T M Guerra ldquoRobust119867

infinstatic output feedback stabilization of T-S fuzzy systems

subject to actuator saturationrdquo International Journal of ControlAutomation and Systems vol 10 no 3 pp 613ndash622 2012

Submit your manuscripts athttpwwwhindawicom

Hindawi Publishing Corporationhttpwwwhindawicom Volume 2014

MathematicsJournal of

Hindawi Publishing Corporationhttpwwwhindawicom Volume 2014

Mathematical Problems in Engineering

Hindawi Publishing Corporationhttpwwwhindawicom

Differential EquationsInternational Journal of

Volume 2014

Applied MathematicsJournal of

Hindawi Publishing Corporationhttpwwwhindawicom Volume 2014

Probability and StatisticsHindawi Publishing Corporationhttpwwwhindawicom Volume 2014

Journal of

Hindawi Publishing Corporationhttpwwwhindawicom Volume 2014

Mathematical PhysicsAdvances in

Complex AnalysisJournal of

Hindawi Publishing Corporationhttpwwwhindawicom Volume 2014

OptimizationJournal of

Hindawi Publishing Corporationhttpwwwhindawicom Volume 2014

CombinatoricsHindawi Publishing Corporationhttpwwwhindawicom Volume 2014

International Journal of

Hindawi Publishing Corporationhttpwwwhindawicom Volume 2014

Operations ResearchAdvances in

Journal of

Hindawi Publishing Corporationhttpwwwhindawicom Volume 2014

Function Spaces

Abstract and Applied AnalysisHindawi Publishing Corporationhttpwwwhindawicom Volume 2014

International Journal of Mathematics and Mathematical Sciences

Hindawi Publishing Corporationhttpwwwhindawicom Volume 2014

The Scientific World JournalHindawi Publishing Corporation httpwwwhindawicom Volume 2014

Hindawi Publishing Corporationhttpwwwhindawicom Volume 2014

Algebra

Discrete Dynamics in Nature and Society

Hindawi Publishing Corporationhttpwwwhindawicom Volume 2014

Hindawi Publishing Corporationhttpwwwhindawicom Volume 2014

Decision SciencesAdvances in

Discrete MathematicsJournal of

Hindawi Publishing Corporationhttpwwwhindawicom

Volume 2014 Hindawi Publishing Corporationhttpwwwhindawicom Volume 2014

Stochastic AnalysisInternational Journal of

Page 13: Research Article Fuzzy Control for Nonlinear Singular Markovian Jump Systems …downloads.hindawi.com/journals/mpe/2015/896515.pdf · 2019-07-31 · Singular systems, also known as

Mathematical Problems in Engineering 13

Acknowledgments

This work was supported by The National Natural ScienceFoundation of China under Grants nos 61304054 61273003and 61273008 respectively and Science and TechnologyResearch Fund of Liaoning Education Department underGrant no L2013051

References

[1] L Dai Singular Control Systems vol 118 of Lecture Notes inControl and Information Sciences Springer Berlin Germany1989

[2] F L Lewis ldquoA survey of linear singular systemsrdquo CircuitsSystems and Signal Processing vol 5 no 1 pp 3ndash36 1986

[3] S Xu and J Lam ldquoRobust stability and stabilization of discretesingular systems an equivalent characterizationrdquo IEEE Trans-actions on Automatic Control vol 49 no 4 pp 568ndash574 2004

[4] Z Wu and W Zhou ldquoDelay-dependent robust stabilization foruncertain singular systemswith discrete and distributed delaysrdquoJournal of ControlTheory and Applications vol 6 no 2 pp 171ndash176 2008

[5] Y Xia P Shi G Liu and D Rees ldquoRobust mixed 119867infin119867

2

state-feedback control for continuous-time descriptor systemswith parameter uncertaintiesrdquo Circuits Systems and SignalProcessing vol 24 no 4 pp 431ndash443 2005

[6] H Lu W Zhou C Duan and X Qi ldquoDelay-dependent robust119867

infincontrol for uncertain singular time-delay system with

Markovian jumping parametersrdquo Optimal Control Applicationsamp Methods vol 34 no 3 pp 296ndash307 2013

[7] Y Fang and K A Loparo ldquoStochastic stability of jump linearsystemsrdquo IEEE Transactions on Automatic Control vol 47 no 7pp 1204ndash1208 2002

[8] D Yue and Q-L Han ldquoDelay-dependent exponential stabilityof stochastic systems with time-varying delay nonlinearity andMarkovian switchingrdquo IEEETransactions onAutomatic Controlvol 50 no 2 pp 217ndash222 2005

[9] J Xiong and J Lam ldquoStabilization of discrete-time Markovianjump linear systems via time-delayed controllersrdquo Automaticavol 42 no 5 pp 747ndash753 2006

[10] W-H Chen Z-H Guan and P Yu ldquoDelay-dependent stabilityand 119867

infincontrol of uncertain discrete-time Markovian jump

systems with mode-dependent time delaysrdquo Systems amp ControlLetters vol 52 no 5 pp 361ndash376 2004

[11] E-K Boukas Control of Singular Systems with Random AbruptChanges Communications and Control Engineering SpringerBerlin Germany 2008

[12] J Zhang Y Xia and E K Boukas ldquoNew approach to Hinfin

control for Markovian jump singular systemsrdquo IET ControlTheory amp Applications vol 4 no 11 pp 2273ndash2284 2010

[13] J Lam S Zhu S Xu and E-K Boukas ldquoRobust 119867infin

controlof descriptor discrete-time Markovian jump systemsrdquo Interna-tional Journal of Control vol 80 no 3 pp 374ndash385 2007

[14] K Gu V L Kharitonov and J Chen Stability of Time-DelaySystems Birkhauser Basel Switzerland 2003

[15] G Wang Q Zhang and C Yang ldquoDissipative control forsingular Markovian jump systems with time delayrdquo OptimalControl ApplicationsampMethods vol 33 no 4 pp 415ndash432 2012

[16] Z Wu H Su and J Chu ldquoDelay-dependent 119867infin

control forsingular Markovian jump systems with time delayrdquo Optimal

Control Applications and Methods vol 30 no 5 pp 443ndash4612009

[17] C K Ahn ldquoT-S fuzzy119867infinsynchronization for chaotic systems

via delayed output feedback controlrdquo Nonlinear Dynamics vol59 no 4 pp 535ndash543 2010

[18] C K Ahn ldquoFuzzy delayed output feedback synchronizationfor time-delayed chaotic systemsrdquo Nonlinear Analysis HybridSystems vol 4 no 1 pp 16ndash24 2010

[19] H-N Wu and K-Y Cai ldquoMode-independent robust stabiliza-tion for uncertain Markovian jump nonlinear systems via fuzzycontrolrdquo IEEE Transactions on Systems Man and CyberneticsPart B Cybernetics vol 36 no 3 pp 509ndash519 2006

[20] Y Zhang S Xu Y Zou and J Lu ldquoDelay-dependent robuststabilization for uncertain discrete-time fuzzy Markovian jumpsystems with mode-dependent time delaysrdquo Fuzzy Sets andSystems vol 164 pp 66ndash81 2011

[21] A Zhang and H Fang ldquoRobustHinfinfuzzy control for uncertain

Markovian jump nonlinear singular systems with Wiener pro-cessrdquo Journal of Control Theory and Applications vol 8 no 2pp 205ndash210 2010

[22] L Li Q Zhang and B Zhu ldquo119867infin

fuzzy control for nonlin-ear time-delay singular Markovian jump systems with partlyunknown transition ratesrdquo Fuzzy Sets and Systems vol 254 pp106ndash125 2014

[23] J Dong and G-H Yang ldquoStatic output feedback 119867infin

controlof a class of nonlinear discrete-time systemsrdquo Fuzzy Sets andSystems vol 160 no 19 pp 2844ndash2859 2009

[24] Y Zhang C Liu and X Mu ldquoRobust finite-time119867infincontrol of

singular stochastic systems via static output feedbackrdquo AppliedMathematics and Computation vol 218 no 9 pp 5629ndash56402012

[25] J Wang H Wang A Xie and R Lu ldquoDelay-dependent 119867infin

control for singular Markovian jump systems with time delayrdquoNonlinear Analysis Hybrid Systems vol 8 pp 1ndash12 2012

[26] D B Xu Q L Zhang and Y B Hu ldquoReduced-order Hinfin

controller design for uncertain descriptor systemsrdquo Acta Auto-matica Sinica vol 33 no 1 pp 44ndash47 2007

[27] L Xie and C E de Souza ldquoRobust 119867infin

control for linearsystems with norm bounder time-varying uncertaintiesrdquo IEEETransactions on Automatic Control vol 37 no 8 pp 1188ndash11911992

[28] Q-L Han ldquoAbsolute stability of time-delay systemswith sector-bounded nonlinearityrdquo Automatica vol 41 no 12 pp 2171ndash2176 2005

[29] D Yue J Lam and D W C Ho ldquoReliable 119867infin

control ofuncertain descriptor systems with multiple time delaysrdquo IEEProceedings ControlTheory and Applications vol 150 no 6 pp557ndash564 2003

[30] H D Tuan P Apkarian T Narikiyo and Y YamamotoldquoParameterized linear matrix inequality techniques in fuzzycontrol systemdesignrdquo IEEETransactions on Fuzzy Systems vol9 no 2 pp 324ndash332 2001

[31] S-W Kau H-J Lee C-M Yang C-H Lee L Hong and C-HFang ldquoRobust H

infinfuzzy static output feedback control of T-

S fuzzy systems with parametric uncertaintiesrdquo Fuzzy Sets andSystems vol 158 no 2 pp 135ndash146 2007

[32] D Saifia M Chadli S Labiod and T M Guerra ldquoRobust119867

infinstatic output feedback stabilization of T-S fuzzy systems

subject to actuator saturationrdquo International Journal of ControlAutomation and Systems vol 10 no 3 pp 613ndash622 2012

Submit your manuscripts athttpwwwhindawicom

Hindawi Publishing Corporationhttpwwwhindawicom Volume 2014

MathematicsJournal of

Hindawi Publishing Corporationhttpwwwhindawicom Volume 2014

Mathematical Problems in Engineering

Hindawi Publishing Corporationhttpwwwhindawicom

Differential EquationsInternational Journal of

Volume 2014

Applied MathematicsJournal of

Hindawi Publishing Corporationhttpwwwhindawicom Volume 2014

Probability and StatisticsHindawi Publishing Corporationhttpwwwhindawicom Volume 2014

Journal of

Hindawi Publishing Corporationhttpwwwhindawicom Volume 2014

Mathematical PhysicsAdvances in

Complex AnalysisJournal of

Hindawi Publishing Corporationhttpwwwhindawicom Volume 2014

OptimizationJournal of

Hindawi Publishing Corporationhttpwwwhindawicom Volume 2014

CombinatoricsHindawi Publishing Corporationhttpwwwhindawicom Volume 2014

International Journal of

Hindawi Publishing Corporationhttpwwwhindawicom Volume 2014

Operations ResearchAdvances in

Journal of

Hindawi Publishing Corporationhttpwwwhindawicom Volume 2014

Function Spaces

Abstract and Applied AnalysisHindawi Publishing Corporationhttpwwwhindawicom Volume 2014

International Journal of Mathematics and Mathematical Sciences

Hindawi Publishing Corporationhttpwwwhindawicom Volume 2014

The Scientific World JournalHindawi Publishing Corporation httpwwwhindawicom Volume 2014

Hindawi Publishing Corporationhttpwwwhindawicom Volume 2014

Algebra

Discrete Dynamics in Nature and Society

Hindawi Publishing Corporationhttpwwwhindawicom Volume 2014

Hindawi Publishing Corporationhttpwwwhindawicom Volume 2014

Decision SciencesAdvances in

Discrete MathematicsJournal of

Hindawi Publishing Corporationhttpwwwhindawicom

Volume 2014 Hindawi Publishing Corporationhttpwwwhindawicom Volume 2014

Stochastic AnalysisInternational Journal of

Page 14: Research Article Fuzzy Control for Nonlinear Singular Markovian Jump Systems …downloads.hindawi.com/journals/mpe/2015/896515.pdf · 2019-07-31 · Singular systems, also known as

Submit your manuscripts athttpwwwhindawicom

Hindawi Publishing Corporationhttpwwwhindawicom Volume 2014

MathematicsJournal of

Hindawi Publishing Corporationhttpwwwhindawicom Volume 2014

Mathematical Problems in Engineering

Hindawi Publishing Corporationhttpwwwhindawicom

Differential EquationsInternational Journal of

Volume 2014

Applied MathematicsJournal of

Hindawi Publishing Corporationhttpwwwhindawicom Volume 2014

Probability and StatisticsHindawi Publishing Corporationhttpwwwhindawicom Volume 2014

Journal of

Hindawi Publishing Corporationhttpwwwhindawicom Volume 2014

Mathematical PhysicsAdvances in

Complex AnalysisJournal of

Hindawi Publishing Corporationhttpwwwhindawicom Volume 2014

OptimizationJournal of

Hindawi Publishing Corporationhttpwwwhindawicom Volume 2014

CombinatoricsHindawi Publishing Corporationhttpwwwhindawicom Volume 2014

International Journal of

Hindawi Publishing Corporationhttpwwwhindawicom Volume 2014

Operations ResearchAdvances in

Journal of

Hindawi Publishing Corporationhttpwwwhindawicom Volume 2014

Function Spaces

Abstract and Applied AnalysisHindawi Publishing Corporationhttpwwwhindawicom Volume 2014

International Journal of Mathematics and Mathematical Sciences

Hindawi Publishing Corporationhttpwwwhindawicom Volume 2014

The Scientific World JournalHindawi Publishing Corporation httpwwwhindawicom Volume 2014

Hindawi Publishing Corporationhttpwwwhindawicom Volume 2014

Algebra

Discrete Dynamics in Nature and Society

Hindawi Publishing Corporationhttpwwwhindawicom Volume 2014

Hindawi Publishing Corporationhttpwwwhindawicom Volume 2014

Decision SciencesAdvances in

Discrete MathematicsJournal of

Hindawi Publishing Corporationhttpwwwhindawicom

Volume 2014 Hindawi Publishing Corporationhttpwwwhindawicom Volume 2014

Stochastic AnalysisInternational Journal of


Recommended