+ All Categories
Home > Documents > Research Article Modulation Instability of Ion-Acoustic Waves...

Research Article Modulation Instability of Ion-Acoustic Waves...

Date post: 28-Nov-2020
Category:
Upload: others
View: 2 times
Download: 0 times
Share this document with a friend
9
Research Article Modulation Instability of Ion-Acoustic Waves in Plasma with Nonthermal Electrons Basudev Ghosh 1 and Sreyasi Banerjee 2 1 Department of Physics, Jadavpur University, Kolkata 700 032, India 2 Department of Electronics, Vidyasagar College, Kolkata 700 006, India Correspondence should be addressed to Basudev Ghosh; [email protected] Received 2 May 2014; Accepted 3 July 2014; Published 16 July 2014 Academic Editor: Milan S. Dimitrijevic Copyright © 2014 B. Ghosh and S. Banerjee. is is an open access article distributed under the Creative Commons Attribution License, which permits unrestricted use, distribution, and reproduction in any medium, provided the original work is properly cited. Modulational instability of ion-acoustic waves has been theoretically investigated in an unmagnetized collisionless plasma with nonthermal electrons, Boltzmann positrons, and warm positive ions. To describe the nonlinear evolution of the wave amplitude a nonlinear Schr¨ odinger (NLS) equation has been derived by using multiple scale perturbation technique. e nonthermal parameter, positron concentration, and ion temperature are shown to play significant role in the modulational instability of ion-acoustic waves and the formation of envelope solitons. 1. Introduction Electron-positron-ion (--) plasmas occur in many astro- physical environments such as active galactic nuclei [1], pulsar magnetospheres [2], polar regions of neutron stars [3], centres of our galaxy [4], the early universe [5, 6], and the solar atmosphere [7]. For this, over the last two decades there has been a great deal of interest in the study of nonlinear wave phenomena in -- plasmas [812]. Positrons are produced by pair production in high energy processes occurring in many astrophysical environments. Popel et al. [9] have reported decrease in soliton ampli- tude in the presence of positrons. Jehan et al. [13] have shown that solitons become narrower as the concentration of positron increases. e presence of non-Maxwellian electron is common in space and astrophysical plasmas including the magnetosphere [12] and auroral zones [14]. e presence of such non-Maxwellian electrons gives rise to many interesting characteristics in the nonlinear propagation of waves includ- ing the ion-acoustic solitons [15, 16]. e solitary structures with density depression in the magnetosphere observed by the Freja satellites [17, 18] have been explained by Cairns et al. [19] by assuming electron distribution to be nonthermal. Nonlinear ion-acoustic solitary waves in -- plasma have been considered by some authors [9, 20, 21] assuming ions to be cold. In practice ions have finite temperature and the ionic temperature can significantly affect the characteristics of nonlinear ion-acoustic structures [10, 22, 23]. Chawla et al. [24] have considered ion-acoustic waves in -- plasma with warm adiabatic ions and isothermal electrons. Baluku and Hellberg [25] have considered ion-acoustic solitary waves in -- plasma with cold ions and nonthermal electrons. Hence it is interesting to study the nonlinear ion-acoustic waves in -- plasma assuming simultaneous presence of nonthermal electrons, warm negative ions, and the positrons. Recently Pakzad [11] has shown that the presence of warm ions and nonthermal electrons can modify parametric regions of existence of ion-acoustic solitary waves. A nonlinear theory of ion-acoustic waves in -- plasma has been developed by Dubinov and Sazonkin [26] considering polytropic laws of compression and rarefraction for all plasma components. Survey of the past literatures shows that a large number of works on KdV type and large amplitude solitary structure formation in -- plasmas have been reported. Nonlinear propagation of waves in a dispersive medium is generically subject to amplitude modulation due to carrier wave self- interaction or intrinsic nonlinearity of the medium. Modula- tional instability is an important phenomenon in connection Hindawi Publishing Corporation Journal of Astrophysics Volume 2014, Article ID 785670, 8 pages http://dx.doi.org/10.1155/2014/785670
Transcript
Page 1: Research Article Modulation Instability of Ion-Acoustic Waves ...downloads.hindawi.com/journals/jas/2014/785670.pdfsech 7 ]! \ 8 , where ] istheenvelopespeedand\ is the spatial width

Research ArticleModulation Instability of Ion-Acoustic Waves in Plasma withNonthermal Electrons

Basudev Ghosh1 and Sreyasi Banerjee2

1 Department of Physics Jadavpur University Kolkata 700 032 India2Department of Electronics Vidyasagar College Kolkata 700 006 India

Correspondence should be addressed to Basudev Ghosh bsdvghoshgmailcom

Received 2 May 2014 Accepted 3 July 2014 Published 16 July 2014

Academic Editor Milan S Dimitrijevic

Copyright copy 2014 B Ghosh and S Banerjee This is an open access article distributed under the Creative Commons AttributionLicense which permits unrestricted use distribution and reproduction in any medium provided the original work is properlycited

Modulational instability of ion-acoustic waves has been theoretically investigated in an unmagnetized collisionless plasma withnonthermal electrons Boltzmann positrons and warm positive ions To describe the nonlinear evolution of the wave amplitude anonlinear Schrodinger (NLS) equation has been derived by usingmultiple scale perturbation techniqueThenonthermal parameterpositron concentration and ion temperature are shown to play significant role in the modulational instability of ion-acoustic wavesand the formation of envelope solitons

1 Introduction

Electron-positron-ion (119890-119901-119894) plasmas occur in many astro-physical environments such as active galactic nuclei [1]pulsar magnetospheres [2] polar regions of neutron stars[3] centres of our galaxy [4] the early universe [5 6]and the solar atmosphere [7] For this over the last twodecades there has been a great deal of interest in the studyof nonlinear wave phenomena in 119890-119901-119894 plasmas [8ndash12]Positrons are produced by pair production in high energyprocesses occurring in many astrophysical environmentsPopel et al [9] have reported decrease in soliton ampli-tude in the presence of positrons Jehan et al [13] haveshown that solitons become narrower as the concentration ofpositron increasesThe presence of non-Maxwellian electronis common in space and astrophysical plasmas including themagnetosphere [12] and auroral zones [14] The presence ofsuch non-Maxwellian electrons gives rise to many interestingcharacteristics in the nonlinear propagation of waves includ-ing the ion-acoustic solitons [15 16] The solitary structureswith density depression in the magnetosphere observed bythe Freja satellites [17 18] have been explained by Cairnset al [19] by assuming electron distribution to be nonthermalNonlinear ion-acoustic solitary waves in 119890-119901-119894 plasma have

been considered by some authors [9 20 21] assuming ionsto be cold In practice ions have finite temperature and theionic temperature can significantly affect the characteristicsof nonlinear ion-acoustic structures [10 22 23] Chawla et al[24] have considered ion-acoustic waves in 119890-119901-119894 plasma withwarm adiabatic ions and isothermal electrons Baluku andHellberg [25] have considered ion-acoustic solitary waves in119890-119901-119894 plasma with cold ions and nonthermal electrons Henceit is interesting to study the nonlinear ion-acoustic waves in119890-119901-119894 plasma assuming simultaneous presence of nonthermalelectrons warm negative ions and the positrons RecentlyPakzad [11] has shown that the presence of warm ionsand nonthermal electrons can modify parametric regions ofexistence of ion-acoustic solitary waves A nonlinear theoryof ion-acoustic waves in 119890-119901-119894 plasma has been developedby Dubinov and Sazonkin [26] considering polytropic lawsof compression and rarefraction for all plasma componentsSurvey of the past literatures shows that a large number ofworks on KdV type and large amplitude solitary structureformation in 119890-119901-119894 plasmas have been reported Nonlinearpropagation of waves in a dispersive medium is genericallysubject to amplitude modulation due to carrier wave self-interaction or intrinsic nonlinearity of the medium Modula-tional instability is an important phenomenon in connection

Hindawi Publishing CorporationJournal of AstrophysicsVolume 2014 Article ID 785670 8 pageshttpdxdoiorg1011552014785670

2 Journal of Astrophysics

with stablewave propagationHowever only a fewworks havebeen reported in recent years on the modulational instabilityand formation of envelope soliton in 119890-119901-119894 plasmas [20 2124] It has been shown that the presence of positrons shifts thecritical wave number separating the stability and instabilityregions to higher values and for fixed amplitude width ofenvelope solitons decreases with the increase of positronconcentration Mahmood et al [27] have studied modu-lational instability of ion-acoustic waves in 119890-119901-119894 plasmawith warm ions and isothermal electrons and positronsat the same temperature Chawla et al [24] have studiedthe effects of ion temperature positron concentration andpositron temperature on the modulational instability of ion-acoustic waves in 119890-119901-119894 plasma with isothermal electrons andpositrons at different temperatures Bains et al [28] haveconsidered modulational instability of ion-acoustic wavesin 119890-119901-119894 plasma with dust particles Eslami et al [29] haveconsidered modulational instability of ion-acoustic wavesin 119890-119901-119894 plasma with electrons and positrons following q-nonextensive distribution Gill et al [21] have studied mod-ulational instability of ion-acoustic waves in 119890-119901-119894 plasmawith superthermal electrons and isothermal positrons Zhanget al [30] have investigated modulational instability of ion-acoustic waves in 119890-119901-119894 plasmawith nonthermally distributedelectrons and cold ions Modulational instability and excita-tion of ion-acoustic envelope solitons in 119890-119901-119894 plasma withnonthermal electrons have been investigated by Gill et al [31]including ion temperature The purpose of the present paperis to make a detailed study of modulational instability of ion-acoustic waves in 119890-119901-119894 plasma including simultaneously boththe effects of nonthermality of electrons and ion-temperature

2 Basic Formulation

We consider an unmagnetized collisionless plasma consistingof warm positive ions Boltzmann positrons and nonthermalelectrons The normalized basic equations governing iondynamics for one-dimensional propagation in such plasmain dimensionless form are as follows [28]

120597119899119894

120597119905

+

120597

120597119909

(119899119894V119894) = 0

120597V119894

120597119905

+ V119894

120597V119894

120597119909

+

3120590119894

(1 minus 120594)2119899119894

120597119899119894

120597119909

= minus

120597120601

120597119909

1205972120601

1205971199092= 119899119890minus 119899119901minus 119899119894

(1)

In aforementioned equations the parameters 119899119894 V119894are

respectively the concentration and velocity of the positiveions 119899

119890and 119899119901are respectively the concentration of electrons

and positrons 120601 denotes the electrostatic potential otherparameters have their usual meaning Different quantities arenormalized as follows the velocities by ion-acoustic speed119862119904

= radic119896119861119879119890119898119894 the densities by equilibrium electron

density 1198991198900 all the length 119909 by the electron Debye length

120582De = radic119896119861119879119890411989021198991198900 time by 120582De119862119904 ion temperature 119879

119894by

119879119890(120590119894= 119879119894119879119890) and the potential 120601 by 119896

119861119879119890119890 where 119896

119861is

the Boltzmannrsquos constantThe nonthermal electron density isgiven by [19]

119899119890= (1 minus 120573120601 + 120573120601

2) exp (120601) (2)

where 120573 = 4120575(1 + 3120575) measures the deviation from thethermalized state and 120575 determines the presence of nonther-mal electrons inside the plasma The density of Boltzmannpositrons is given by

119899119901= 120594 exp (minus120590

119901120601) (3)

where 120594 = 11989911990101198991198900

is the ratio between the unperturbedpositron and electron number densities and 120590

119901= 119879119890119879119901is

the ratio between electron and positron temperatures Theequilibrium charge neutrality condition in normalized formis given by

120594 + 1198991198940= 1 (4)

in which 1198991198940is the equilibrium ion density normalized by the

equilibrium electron densityUsing (2) and (3) Poissonrsquos equation in (1) is rewritten as

1205972120601

1205971199092= (1 minus 120573 + 120573120601

2) exp (120601) minus 120594 exp (minus120590

119901120601) minus 119899

119894 (5)

3 Derivation of the Evolution Equation

Following the usual procedure wemake the following Fourierexpansions for the field quantities [28 32ndash34]

119865 = 12057621198651015840

0+

infin

sum

119904=1

120576119904119865119904exp (119894119904120595) + 119865

lowast

119904exp (minus119894119904120595) (6)

where 119865 stands for the field quantities 119899119894 V119894 and 120601 1198651015840

0and

119865119904are assumed to vary slowly with space and time that is

they are supposed to be functions of 120585 = 120576(119909 minus 119862119892119905) and

120591 = 1205762120591 with 120576 being a small parameter and 119862

119892the group

velocity 120595 = 119896119909 minus 120596119905 (120596 119896 being two constants satisfyinglinear dispersion relation) Substituting the expansion (6) in(1) and (5) and then equating from both sides the coefficientsof exp(119894120595) exp(2119894120595) and terms independent of 120595 we obtainthree sets of equationswhichwe call respectively I II and IIITo solve these equations we make the following perturbationexpansion for the field quantities 1198651015840

0and 119865119904 which we denote

by119883

119883 = 119883(1)

+ 120576119883(2)

+ 120576119883(3)

+ sdot sdot sdot (7)

Solving the lowest order equations obtained from the set ofequations I after substituting the expansion (7) we get thefollowing solutions for the first harmonic quantities in thelowest order

119899(1)

1198941= (1 minus 120573 + 120594120590

119901+ 1198962) sdot 120572

V(1)1198941

=

120596 sdot (1 minus 120573 + 120594120590119901+ 1198962)

(1 minus 120594)

sdot 120572

(8)

Journal of Astrophysics 3

where

120572 = 120601(1)

1 (9)

The linear dispersion relation is obtained as

1205962= 1198962[

(1 minus 120594)

(1 minus 120573 + 120594120590119901+ 1198962)

+

3120590119894

(1 minus 120594)

] (10)

The wave frequency is found to increase with the increasein the nonthermal parameter 120573 and the ion temperature Onthe other hand increase in positron concentration decreasesthe wave frequency In this connection it is pertinent tomention that Pakzad [35] reported an incorrect result and itwas pointed out and corrected by Baluku andHellberg [25] Ifwe put 120573 = 0 120594 = 0 and 120590

119894= 0 we get the linear dispersion

relation for ion-acoustic waves in 119890-119894 plasma as obtained byKakutani and Sugimoto [36] In the limit 119896 rarr 0 (10) leadsto the normalized ion-acoustic speed (119881

119904) modified by the

presence of positrons ion-temperature and non-Maxwellianelectron distribution

1198812

119904=

(1 minus 120594)

(1 minus 120573 + 120594120590119901)

+

3120590119894

(1 minus 120594)

(11)

It agrees with the results obtained by Baluku and Hellberg[25] for the case of cold ions (120590

119894= 0) Equation (11)

shows that for the case of cold ions increase in positronconcentration decreases the phase speed [15] increase inthe nonthermal parameter (120573) leads to an increase in phasespeed and also increase in ion temperature increases thephase speed

First harmonic quantities in the second order areobtained from the solutions (8) by replacing minus119894120596 by minus119894120596 minus

120576119862119892(120597120597120585) + 120576

2(120597120597120591) and 119894119896 by 119894119896 + 120576(120597120597120585) and then picking

out order 120576 terms These are as follows

120601(2)

1= 0

119899(2)

1198941

= minus1198942119896

120597120572

120597120585

V(2)1198941

= [(

120596

1198962minus

119862119892

119896

)(

1 minus 120573 + 120594120590119901

1 minus 120594

)

minus

2120596119896

1 minus 120594

minus

1198962119862119892

1 minus 120594

]

120597120572

120597120585

(12)

The second harmonic quantities in the lowest order obtainedfrom the set of equations II after substituting the expansion(7) are as follows

120601(1)

2= 1198601sdot 1205722

119899(1)

1198942

= [1198601(1 minus 120573 + 120594120590

119901+ 41198962)

2

+

1205941205902

119901

2

minus 120573] sdot 1205722

V(1)1198942

=

120596

119896 (1 minus 120594)

[

[

1198601(1 minus 120573 + 120594120590

119901+ 41198962)

minus

(1 minus 120573 + 120594120590119901+ 1198962)

2

(1 minus 120594)

+(

1205941205902

119901

2

minus 120573)]

]

sdot 1205722

(13)

where

1198601= [(

21205962

119896 (1 minus 120594)

minus

6120590119894

(1 minus 120594)

)(

1205941205902

119901

2

minus 120573)]

minus [(

31205962

119896(1 minus 120594)2minus

3120590119894

(1 minus 120594)2)(1 minus 120573 + 120594120590

119901+ 1198962)

2

]

times ([

6120590119894119896

(1 minus 120594)

(1 minus 120573 + 120594120590119901+ 41198962)] + 2119896

minus

[21205962(1 minus 120573 + 120594120590

119901+ 41198962)]

119896 (1 minus 120594)

)

minus1

(14)

The zeroth harmonic components generated through nonlin-ear self-interaction of the finite amplitude wave are obtainedfrom the set of equations III after substituting the expansion(7)

120601(1)

0= 1198611sdot 120572120572lowast

119899(1)

1198940

= [1198611(1 + 120594120590

119901) minus 2120573] sdot 120572120572

lowast

V(1)1198940

=[

[

[

1198611

119862119892(1 + 120594120590

119901)

1 minus 120594

minus

2120573119862119892

1 minus 120594

minus

2120596(1 minus 120573 + 120594120590119901+ 1198962)

2

119896(1 minus 120594)2

]

]

]

120572120572lowast

(15)

where

1198611=

6120573120590119894

1 minus 120594

minus

21205731198622

119892

1 minus 120594

minus[

[

(1 minus 120573 + 120594120590119901+ 1198962)

2

(1 minus 120594)2

(3120590119894+ 2119862119892

120596

119896

+

1205962

1198962)]

]

times (1 minus

1198622

119892(1 + 120594120590

119901)

1 minus 120594

+ [

3120590119894

1 minus 120594

(1 + 120594120590119901)])

minus1

(16)

4 Journal of Astrophysics

Now in order to derive the NLS equation we need to con-sider first harmonic quantities in the third order Collectingcoefficients of 1205763 from both sides of the set of equations Iafter substituting perturbation expansion (7) we get a setof equations for first harmonic quantities in the third orderfrom which after proper elimination we obtain the followingdesired NLS equation

119894

120597120572

120597120591

+ 119875 sdot

1205972120572

1205971205852= 119876 sdot 120572120572

lowast (17)

119875 =

119896 (1 minus 120594)

2120596 (1 minus 120573 + 120594120590119901+ 1198962)

times [

2120596119862119892

1 minus 120594

minus

1205962

119896 (1 minus 120594)

minus

21205962

(1 minus 120594)2minus

119896119862119892120596

(1 minus 120594)2minus 119862119892

times [(

120596

1198962minus

119862119892

119896

)(

1 minus 120573 + 120594120590119901

1 minus 120594

) minus

2120596119896

1 minus 120594

minus

1198962119862119892

1 minus 120594

]

minus

3120590119894119896

(1 minus 120594)2+

120596

119896

(

120596

1198962minus

119862119892

119896

)(

1 minus 120573 + 120594120590119901

1 minus 120594

)]

(18)

119876 =

119896 (1 minus 120594)

2120596 (1 minus 120573 + 120594120590119901+ 1198962)

[1198652119896 minus

12059621198653

119896 (1 minus 120594)

+

1205961198651

(1 minus 120594)

]

(19)

where

1198651= [(1 + 120594120590

119901) 1198611minus 2120573]

120596 (1 minus 120573 + 120594120590119901+ 1198962)

119896 (1 minus 120594)

+ (1 minus 120573 + 120594120590119901+ 1198962)

times[

[

119862119892(1 + 120594120590

119901)

1 minus 120594

minus

2120573119862119892

1 minus 120594

minus

2120596(1 minus 120573 + 120594120590119901+ 1198962)

2

119896(1 minus 120594)2

]

]

+

120596 (1 minus 120573 + 120594120590119901+ 1198962)

119896 (1 minus 120594)

times[

[

119862119892(1 + 120594120590

119901)

1 minus 120594

minus

2120573119862119892

1 minus 120594

minus

(1 minus 120573 + 120594120590119901+ 1198962)

2

1 minus 120594

]

]

+

120596 (1 minus 120573 + 120594120590119901+ 1198962)

119896 (1 minus 120594)

times [(1 minus 120573 + 120594120590119901+ 41198962)1198601+ (

1205941205902

119901

2

minus 120573)]

1198652=[

[

119862119892(1 + 120594120590

119901)

1 minus 120594

1198611minus

2120573119862119892

1 minus 120594

minus

2120596(1 minus 120573 + 120594120590119901+ 1198962)

2

119896(1 minus 120594)2

]

]

times

120596 (1 minus 120573 + 120594120590119901+ 1198962)

119896 (1 minus 120594)

1205962(1 minus 120573 + 120594120590

119901+ 1198962)

1198962(1 minus 120594)

2

times[

[

(1 minus 120573 + 120594120590119901+ 41198962) + (

1205941205902

119901

2

minus 120573)

minus

(1 minus 120573 + 120594120590119901+ 1198962)

2

(1 minus 120594)

]

]

+

3120590119894

(1 minus 120594)2(1 minus 120573 + 120594120590

119901+ 1198962)

times [ (1 + 120594120590119901) 1198611minus 2120573 + (1 minus 120573 + 120594120590

119901+ 41198962)1198601

+(

1205941205902

119901

2

minus 120573)]

1198653= 1198611(2120573 + 120594120590

2

119901) + 120573 + 120573119860

1

(20)

4 Modulational Instability andEnvelope Solitons

NLS equation (17) describes the nonlinear evolution of theamplitude of IAWs in 119890-119901-119894 plasma with warm ions non-thermal electrons and Boltzmann positrons NLS equation(17) has been studied extensively in connection with thenonlinear propagation of different wave modes It is wellknown that a uniform wave train may be modulationallystable or unstable depending on the sign of the product of thegroup dispersive and the nonlinearity coefficient that is 119875119876As the coefficients depend on the plasma parameters such asnonthermal parameter 120573 ion temperature 120590

119894 and positron

concentration 120594 the product of 119875119876 can have both positiveand negative values over different parametric regions Thewave is modulationally unstable if 119875119876 lt 0 and the growthrate of instability has a maximum value 119892

119898given by

119892119898= |119876| 120572

2

0 (21)

where 1205720is the constant real amplitude of the carrier wave

For 119875119876 gt 0 the IAW ismodulationally stable As the productcan have both positive and negative signs for different valuesof 120573 120590

119894 and 120594 there are accordingly two types of localized

solitary wave solutions of the NLS equation (17) To obtainthe soliton profile we let

120572 = 120588 exp (119894120579) (22)

Journal of Astrophysics 5

where 120588 and 120579 are two real variables Solving the resultingequations for 120588 and 120579with119875119876 lt 0we get the following brightenvelope soliton solution

120588 =

radic2 |119875119876|

119871

sech(

120585 minus 119880120591

119871

) (23)

where 119880 is the envelope speed and 119871 is the spatial width ofthe pulse It encloses high frequency carrier oscillations andvanishes at infinity On the other hand if 119875119876 gt 0 a stablegray or dark soliton (a potential hole or a localized region ofdeceased amplitude) is obtained

120588 =

radic2119875119876

119871119889

radic1 minus 1198892sech2 (120585 minus 119880120591

119871

) (24)

where the parameter 119889 determines the depth of the modula-tion For 119889 = 1 we get a dark soliton

120588 =

radic2119875119876

119871119889

tanh(

120585 minus 119880120591

119871

) (25)

Thus the sign of the product 119875119876 determines the stabil-ityinstability profile of IAWs as well as the type of solitonstructureThe soliton width is determined by the ratio |119875119876|

We have numerically examined different parametricregionswhere someof the above excitationsmay occurAs thecoefficients119875 and119876 depend on nonthermal parameter120573 ion-to-electron temperature ratio 120590

119894 and positron-to-electron

concentration ratio 120594 these parameters would definitelydetermine the modulational instability and the formationof envelope solitons Numerical plots in Figures 1ndash3 show119875119876 as a function of 119896 for different values of 120573 120590

119894 and 120594

It shows that the IAWs remain modulationally stable for 119896

less than certain critical value 119896119888and for 119896 gt 119896

119888the wave is

modulationally unstableIn Figure 1 the variation of 119875119876 with wave number has

been plotted for different values of nonthermal parameter (120573)keeping positron concentration (120594) and ion temperature (120590

119894)

fixed It shows that as 120573 increases the value of critical wavenumber separating stable and unstable regions decreases It isalso noticed that as 120573 increases the width of the dark solitonsincreases but that of the bright solitons decreases

In Figure 2 119875119876 is plotted as function of 119896 for differentvalues of ion temperature (120590

119894) taking other plasmaparameters

such as positron concentration (120594) and nonthermal parame-ter (120573) as constant It is seen that as 120590

119894increases critical wave

number decreases the width of dark solitons increases butthat of bright solitons decreases

Figure 3 is a 119875119876 versus wave number plot for differentvalues of positron concentration (120594) keeping the values ofnonthermal parameter (120573) and ion temperature (120590

119894) constant

It shows that as the value of 120594 increases the critical wavenumber increases The width of dark solitons decreases andthat of bright solitons increases as 120594 increases

Qualitatively these results agree with those obtained byGill et al [31] but quantitatively there are differences Wefind that the critical wave number is more sensitive to thevariation in 120573 120590

119894 and 120594 than that predicted by Gill et al [31]

PQ

minus2

20

2

0

1510

ab

c

a 120573 = 0

b 120573 = 0055

c 120573 = 011

Wave number

Figure 1 Plot of 119875119876 versus wave number 119896 for different values ofnonthermal parameter (120573) Curves labelled a b and c correspondto 120573 = 0 0055 and 011 respectively 120594 = 022 120590

119901= 001 and

120590119894= 002

32

a 120590i = 00145

b 120590i = 00155

c 120590i = 00165

Wave number

abc

PQ

1

0

minus1

Figure 2 Plot of 119875119876 versus wave number 119896 for different values ofion temperature (120590

119894) Curves labelled a b and c correspond to 120590

119894=

00145 00155 and 00165 respectively 120594 = 02 120590119901

= 0015 and120573 = 0022

In addition we have numerically studied the dependence ofgrowth rate of instability on all the plasma parameters 120573 120590

119894

and 120594The results are shown in Figures 4 5 and 6 It is shownthat the growth rate of instability increases with increase inthe nonthermality of electrons and ion temperature but theincrease of positron concentration reduces instability growthrate

6 Journal of AstrophysicsPQ

05

00

minus05

21

a 120594 = 025

b 120594 = 026

c 120594 = 027

Wave number

a b c

Figure 3 Plot of 119875119876 versus wave number 119896 for different values ofpositron concentration (120594) Curves labelled a b and c correspondto 120594 = 025 026 and 027 respectively 120573 = 0022 120590

119901= 001 and

120590119894= 0052

2

1

0

1

a 120573 = 0

b 120573 = 0055

c 120573 = 011

Wave number

a

b

c

Gro

wth

rate

Figure 4 Plot of growth rate versus wave number 119896 for differentvalues of nonthermal parameter (120573) Curves labelled a b and ccorrespond to 120573 = 0 0055 and 011 respectively 120594 = 002 120590

119901=

001 and 120590119894= 0002

5 Conclusions

In the present work we have investigated modulationalinstability and envelope excitations of IAWs in the 119890-119901-119894 plasma in detail including simultaneously the effects ofnonthermality of electrons and temperatures of ions Ourmain findings are summarized below

15

10

05

00

12 16

a 120590i = 00012

b 120590i = 00024

c 120590i = 00036

Wave number

a

b

c

Gro

wth

rate

Figure 5 Plot of growth rate versus wave number 119896 for differentvalues of ion temperature (120590

119894) Curves labelled a b and c correspond

to 120590119894= 00012 00024 and 00036 respectively 120594 = 0001 120590

119901=

001 and 120573 = 0001

a 120594 = 0

b 120594 = 002

c 120594 = 004

Wave number

a

b

c

Gro

wth

rate

2

1

0

201510

Figure 6 Plot of growth rate versus wave number 119896 for differentvalues of positron concentration (120594) Curves labelled a b and ccorrespond to 120594 = 0 002 and 004 respectively 120573 = 001 120590

119901=

001 and 120590119894= 001

(i) The wave frequency increases with increase innonthermality of electrons and the temperature ofions whereas the increase in positron concentrationdecreases the wave frequency

(ii) There exists a critical wave number 119896119888below which

thewave ismodulationally stable and abovewhich thewave is modulationally unstable

Journal of Astrophysics 7

(iii) The value of the critical wave number and the char-acteristics of brightdark envelope solitons dependsignificantly on the nonthermal parameter (120573) iontemperature (120590

119894) and positron concentration (120594)

Finally we would like to mention that the results pre-sented in this paper may be useful to explain modulationalinstability and envelope soliton excitations of IAWs in someastrophysical and space environments where 119890-119901-119894 plasmaswith nonthermal electrons are present

Conflict of Interests

The authors declare that there is no conflict of interestsregarding the publication of this paper

Acknowledgment

The authors would like to thank the reviewers for varioussuggestions and helpful comments in bringing the paper tothe present form

References

[1] H R Miller and P J Witta Active Galactic Nuclei SpringerBerlin Germany 1978

[2] F C Michel ldquoTheory of pulsar magnetospheresrdquo Reviews ofModern Physics vol 54 no 1 pp 1ndash66 1982

[3] F C Michel Theory of Neutron Star Magnetosphere ChicagoUniversity Press Chicago Ill USA 1991

[4] M I Barns Positron Electron Pairs in Astrophysics AmericanInstitute of Physics New York NY USA 1983

[5] W K Misner S Thorne and J A Wheeler GravitationFreeman San Francisco Calif USA 1973

[6] M J Rees G W Gibbons S W Hawking and S SiklasedsTheEarly Universe Cambridge University Press Cambridge UK1983

[7] E Tandberg-Hanssen and A Gordon Emslie The Physics ofSolar Flares CambridgeUniversity Press Cambridge UK 1988

[8] A Cairns R Bingham R O Dendy C M C Nairn P KShukla and A A Mamun ldquoIon sound solitary waves withdensity depressionsrdquo Journal of Physics IV France vol 5 no C6pp 43ndash48 1995

[9] S I Popel S V Vladimirov and P K Shukla ldquoIon-acousticsolitons in electron-positron-ion plasmasrdquo Physics of Plasmasvol 2 no 3 pp 716ndash719 1995

[10] Y N Nejoh ldquoThe effect of the ion temperature on large ampli-tude ion-acoustic waves in an electron-positron-ion plasmardquoPhysics of Plasmas vol 3 no 4 pp 1447ndash1451 1996

[11] H R Pakzad ldquoIon acoustic solitary waves in plasma withnonthermal electron positron and warm ionrdquo Astrophysics andSpace Science vol 323 no 4 pp 345ndash350 2009

[12] S Ghosh and R Bharuthram ldquoIon acoustic solitons and doublelayers in electron-positron-ion plasmas with dust particulatesrdquoAstrophysics and Space Science vol 314 no 1-3 pp 121ndash127 2008

[13] N Jehan W Masood and A M Mirza ldquoPlanar and nonplanardust acoustic solitary waves in electronpositron-ion- dust plas-masrdquo Physica Scripta vol 80 no 3 Article ID 035506 2009

[14] R A Cairns A A Mamun R Bingham and P K ShuklaldquoIon acoustic solitons in a magnetised plasma with nonthermalelectronsrdquo Physica Scripta vol 63 pp 80ndash86 1996

[15] B Ghosh S Banerjee and S N Paul ldquoEffect of non-thermalelectrons andwarmnegative ions on ion-acoustic solitarywavesinmulti-component drifting plasmardquo Indian Journal of Pure andApplied Physics vol 51 no 7 pp 488ndash493 2013

[16] B Ghosh S N Paul C Das I Paul and S Banerjee ldquoElectro-static double layers in amulticomponent drifting plasma havingnonthermal electronsrdquo Brazilian Journal of Physics vol 43 no1-2 pp 28ndash33 2013

[17] P O Dovner A I Eriksson R Bostrom and B Holback ldquoFrejamultiprobe observations of electrostatic solitary structuresrdquoGeophysical Research Letters vol 21 no 17 pp 1827ndash1830 1994

[18] R Bostrom G Gustafsson B Holback G Holmgren HKoskinen and P Kintner ldquoCharacteristics of solitary waves andweak double layers in the magnetospheric plasmardquo PhysicalReview Letters vol 61 no 1 pp 82ndash85 1988

[19] R A Cairns A A Mamun R Bingham et al ldquoElectro-static solitary structures in non-thermal plasmasrdquo GeophysicalResearch Letters vol 22 no 20 pp 2709ndash2712 1995

[20] M Salahuddin H Saleem and M Saddiq ldquoIon-acoustic enve-lope solitons in electron-positron-ion plasmasrdquo Physical ReviewE vol 66 no 3 Article ID 036407 2002

[21] T S Gill C Bedi and A S Bains ldquoEnvelope excitations of ionacoustic solitary waves in a plasma with superthermal electronsand positronsrdquo Physica Scripta vol 81 no 5 Article ID 0555032010

[22] GMurtaza andM Salahuddin ldquoModulational instability of ionacoustic waves in a magnetised plasmardquo Plasma Physics vol 24no 5 pp 451ndash456 1982

[23] Yashvir T N Bhatnagar and S R Sharma ldquoNonlinear ion-acoustic waves and solitons in warm-ion magnetized plasmardquoPlasma Physics and Controlled Fusion vol 26 no 11 article 004pp 1303ndash1310 1984

[24] J K Chawla M K Mishra and R S Tiwari ldquoModulationalinstability of ion-acoustic waves in electron-positron-ion plas-masrdquoAstrophysics and Space Science vol 347 pp 283ndash292 2013

[25] T K Baluku andM A Hellberg ldquoIon acoustic solitary waves inan electron-positron-ion plasma with non-thermal electronsrdquoPlasma Physics and Controlled Fusion vol 53 no 9 Article ID095007 2011

[26] A E Dubinov and M A Sazonkin ldquoNonlinear theory of ion-acoustic waves in an electron-positron-ion plasmardquo PlasmaPhysics Reports vol 35 no 1 pp 14ndash24 2009

[27] S Mahmood S Siddiqui and N Jehan ldquoModulational instabil-ity of ion acousticwavewithwarm ions in electron-positron-ionplasmasrdquo Physics of Plasmas vol 18 no 5 Article ID 0523092011

[28] A S BainsN S Saini andT SGill ldquoModulational instability ofion-acoustic soliton in electron-positron-ion plasma with dustparticulatesrdquo Astrophysics and Space Science vol 343 no 1 pp293ndash299 2013

[29] P Eslami M Mottaghizadeh and H R Pakzad ldquoModulationalinstability of ion acoustic waves in e-p-i plasmas with electronsand positrons following a q-nonextensive distributionrdquo Physicsof Plasmas vol 18 no 10 Article ID 102313 2011

[30] J Zhang Y Wang and L Wu ldquoModulation instability of ionacoustic waves solitons and their interactions in nonthermalelectron-positron-ion plasmasrdquo Physics of Plasmas vol 16 no6 Article ID 062102 2009

[31] T S Gill A S Bains N S Saini and C Bedi ldquoIon-acousticenvelope excitations in electron-positron-ion plasma with non-thermal electronsrdquo Physics Letters A vol 374 no 31-32 pp3210ndash3215 2010

8 Journal of Astrophysics

[32] B Ghosh S N Paul C Das and I Paul ldquoModulationalinstability of high frequency surface waves on warm plasmahalf-spacerdquo Canadian Journal of Physics vol 90 no 3 pp 291ndash297 2012

[33] B Ghosh and K P Das ldquoModulational instability of electronplasma waves in a cylindrical wave guiderdquo Plasma Physics andControlled Fusion vol 27 no 9 pp 969ndash982 1985

[34] B Ghosh S Chandra and S N Paul ldquoAmplitudemodulation ofelectron plasmawaves in a quantumplasmardquoPhysics of Plasmasvol 18 no 1 Article ID 012106 2011

[35] H R Pakzad ldquoIon acoustic solitary waves in plasma withnonthermal electron and positronrdquo Physics Letters A GeneralAtomic and Solid State Physics vol 373 no 8-9 pp 847ndash8502009

[36] T Kakutani and N Sugimoto ldquoKrylov-Bogoliubov-Mitr-opolsky method for nonlinear wave modulationrdquo The Physicsof Fluids vol 17 pp 1617ndash1625 1974

Submit your manuscripts athttpwwwhindawicom

Hindawi Publishing Corporationhttpwwwhindawicom Volume 2014

High Energy PhysicsAdvances in

The Scientific World JournalHindawi Publishing Corporation httpwwwhindawicom Volume 2014

Hindawi Publishing Corporationhttpwwwhindawicom Volume 2014

FluidsJournal of

Atomic and Molecular Physics

Journal of

Hindawi Publishing Corporationhttpwwwhindawicom Volume 2014

Hindawi Publishing Corporationhttpwwwhindawicom Volume 2014

Advances in Condensed Matter Physics

OpticsInternational Journal of

Hindawi Publishing Corporationhttpwwwhindawicom Volume 2014

Hindawi Publishing Corporationhttpwwwhindawicom Volume 2014

AstronomyAdvances in

International Journal of

Hindawi Publishing Corporationhttpwwwhindawicom Volume 2014

Superconductivity

Hindawi Publishing Corporationhttpwwwhindawicom Volume 2014

Statistical MechanicsInternational Journal of

Hindawi Publishing Corporationhttpwwwhindawicom Volume 2014

GravityJournal of

Hindawi Publishing Corporationhttpwwwhindawicom Volume 2014

AstrophysicsJournal of

Hindawi Publishing Corporationhttpwwwhindawicom Volume 2014

Physics Research International

Hindawi Publishing Corporationhttpwwwhindawicom Volume 2014

Solid State PhysicsJournal of

 Computational  Methods in Physics

Journal of

Hindawi Publishing Corporationhttpwwwhindawicom Volume 2014

Hindawi Publishing Corporationhttpwwwhindawicom Volume 2014

Soft MatterJournal of

Hindawi Publishing Corporationhttpwwwhindawicom

AerodynamicsJournal of

Volume 2014

Hindawi Publishing Corporationhttpwwwhindawicom Volume 2014

PhotonicsJournal of

Hindawi Publishing Corporationhttpwwwhindawicom Volume 2014

Journal of

Biophysics

Hindawi Publishing Corporationhttpwwwhindawicom Volume 2014

ThermodynamicsJournal of

Page 2: Research Article Modulation Instability of Ion-Acoustic Waves ...downloads.hindawi.com/journals/jas/2014/785670.pdfsech 7 ]! \ 8 , where ] istheenvelopespeedand\ is the spatial width

2 Journal of Astrophysics

with stablewave propagationHowever only a fewworks havebeen reported in recent years on the modulational instabilityand formation of envelope soliton in 119890-119901-119894 plasmas [20 2124] It has been shown that the presence of positrons shifts thecritical wave number separating the stability and instabilityregions to higher values and for fixed amplitude width ofenvelope solitons decreases with the increase of positronconcentration Mahmood et al [27] have studied modu-lational instability of ion-acoustic waves in 119890-119901-119894 plasmawith warm ions and isothermal electrons and positronsat the same temperature Chawla et al [24] have studiedthe effects of ion temperature positron concentration andpositron temperature on the modulational instability of ion-acoustic waves in 119890-119901-119894 plasma with isothermal electrons andpositrons at different temperatures Bains et al [28] haveconsidered modulational instability of ion-acoustic wavesin 119890-119901-119894 plasma with dust particles Eslami et al [29] haveconsidered modulational instability of ion-acoustic wavesin 119890-119901-119894 plasma with electrons and positrons following q-nonextensive distribution Gill et al [21] have studied mod-ulational instability of ion-acoustic waves in 119890-119901-119894 plasmawith superthermal electrons and isothermal positrons Zhanget al [30] have investigated modulational instability of ion-acoustic waves in 119890-119901-119894 plasmawith nonthermally distributedelectrons and cold ions Modulational instability and excita-tion of ion-acoustic envelope solitons in 119890-119901-119894 plasma withnonthermal electrons have been investigated by Gill et al [31]including ion temperature The purpose of the present paperis to make a detailed study of modulational instability of ion-acoustic waves in 119890-119901-119894 plasma including simultaneously boththe effects of nonthermality of electrons and ion-temperature

2 Basic Formulation

We consider an unmagnetized collisionless plasma consistingof warm positive ions Boltzmann positrons and nonthermalelectrons The normalized basic equations governing iondynamics for one-dimensional propagation in such plasmain dimensionless form are as follows [28]

120597119899119894

120597119905

+

120597

120597119909

(119899119894V119894) = 0

120597V119894

120597119905

+ V119894

120597V119894

120597119909

+

3120590119894

(1 minus 120594)2119899119894

120597119899119894

120597119909

= minus

120597120601

120597119909

1205972120601

1205971199092= 119899119890minus 119899119901minus 119899119894

(1)

In aforementioned equations the parameters 119899119894 V119894are

respectively the concentration and velocity of the positiveions 119899

119890and 119899119901are respectively the concentration of electrons

and positrons 120601 denotes the electrostatic potential otherparameters have their usual meaning Different quantities arenormalized as follows the velocities by ion-acoustic speed119862119904

= radic119896119861119879119890119898119894 the densities by equilibrium electron

density 1198991198900 all the length 119909 by the electron Debye length

120582De = radic119896119861119879119890411989021198991198900 time by 120582De119862119904 ion temperature 119879

119894by

119879119890(120590119894= 119879119894119879119890) and the potential 120601 by 119896

119861119879119890119890 where 119896

119861is

the Boltzmannrsquos constantThe nonthermal electron density isgiven by [19]

119899119890= (1 minus 120573120601 + 120573120601

2) exp (120601) (2)

where 120573 = 4120575(1 + 3120575) measures the deviation from thethermalized state and 120575 determines the presence of nonther-mal electrons inside the plasma The density of Boltzmannpositrons is given by

119899119901= 120594 exp (minus120590

119901120601) (3)

where 120594 = 11989911990101198991198900

is the ratio between the unperturbedpositron and electron number densities and 120590

119901= 119879119890119879119901is

the ratio between electron and positron temperatures Theequilibrium charge neutrality condition in normalized formis given by

120594 + 1198991198940= 1 (4)

in which 1198991198940is the equilibrium ion density normalized by the

equilibrium electron densityUsing (2) and (3) Poissonrsquos equation in (1) is rewritten as

1205972120601

1205971199092= (1 minus 120573 + 120573120601

2) exp (120601) minus 120594 exp (minus120590

119901120601) minus 119899

119894 (5)

3 Derivation of the Evolution Equation

Following the usual procedure wemake the following Fourierexpansions for the field quantities [28 32ndash34]

119865 = 12057621198651015840

0+

infin

sum

119904=1

120576119904119865119904exp (119894119904120595) + 119865

lowast

119904exp (minus119894119904120595) (6)

where 119865 stands for the field quantities 119899119894 V119894 and 120601 1198651015840

0and

119865119904are assumed to vary slowly with space and time that is

they are supposed to be functions of 120585 = 120576(119909 minus 119862119892119905) and

120591 = 1205762120591 with 120576 being a small parameter and 119862

119892the group

velocity 120595 = 119896119909 minus 120596119905 (120596 119896 being two constants satisfyinglinear dispersion relation) Substituting the expansion (6) in(1) and (5) and then equating from both sides the coefficientsof exp(119894120595) exp(2119894120595) and terms independent of 120595 we obtainthree sets of equationswhichwe call respectively I II and IIITo solve these equations we make the following perturbationexpansion for the field quantities 1198651015840

0and 119865119904 which we denote

by119883

119883 = 119883(1)

+ 120576119883(2)

+ 120576119883(3)

+ sdot sdot sdot (7)

Solving the lowest order equations obtained from the set ofequations I after substituting the expansion (7) we get thefollowing solutions for the first harmonic quantities in thelowest order

119899(1)

1198941= (1 minus 120573 + 120594120590

119901+ 1198962) sdot 120572

V(1)1198941

=

120596 sdot (1 minus 120573 + 120594120590119901+ 1198962)

(1 minus 120594)

sdot 120572

(8)

Journal of Astrophysics 3

where

120572 = 120601(1)

1 (9)

The linear dispersion relation is obtained as

1205962= 1198962[

(1 minus 120594)

(1 minus 120573 + 120594120590119901+ 1198962)

+

3120590119894

(1 minus 120594)

] (10)

The wave frequency is found to increase with the increasein the nonthermal parameter 120573 and the ion temperature Onthe other hand increase in positron concentration decreasesthe wave frequency In this connection it is pertinent tomention that Pakzad [35] reported an incorrect result and itwas pointed out and corrected by Baluku andHellberg [25] Ifwe put 120573 = 0 120594 = 0 and 120590

119894= 0 we get the linear dispersion

relation for ion-acoustic waves in 119890-119894 plasma as obtained byKakutani and Sugimoto [36] In the limit 119896 rarr 0 (10) leadsto the normalized ion-acoustic speed (119881

119904) modified by the

presence of positrons ion-temperature and non-Maxwellianelectron distribution

1198812

119904=

(1 minus 120594)

(1 minus 120573 + 120594120590119901)

+

3120590119894

(1 minus 120594)

(11)

It agrees with the results obtained by Baluku and Hellberg[25] for the case of cold ions (120590

119894= 0) Equation (11)

shows that for the case of cold ions increase in positronconcentration decreases the phase speed [15] increase inthe nonthermal parameter (120573) leads to an increase in phasespeed and also increase in ion temperature increases thephase speed

First harmonic quantities in the second order areobtained from the solutions (8) by replacing minus119894120596 by minus119894120596 minus

120576119862119892(120597120597120585) + 120576

2(120597120597120591) and 119894119896 by 119894119896 + 120576(120597120597120585) and then picking

out order 120576 terms These are as follows

120601(2)

1= 0

119899(2)

1198941

= minus1198942119896

120597120572

120597120585

V(2)1198941

= [(

120596

1198962minus

119862119892

119896

)(

1 minus 120573 + 120594120590119901

1 minus 120594

)

minus

2120596119896

1 minus 120594

minus

1198962119862119892

1 minus 120594

]

120597120572

120597120585

(12)

The second harmonic quantities in the lowest order obtainedfrom the set of equations II after substituting the expansion(7) are as follows

120601(1)

2= 1198601sdot 1205722

119899(1)

1198942

= [1198601(1 minus 120573 + 120594120590

119901+ 41198962)

2

+

1205941205902

119901

2

minus 120573] sdot 1205722

V(1)1198942

=

120596

119896 (1 minus 120594)

[

[

1198601(1 minus 120573 + 120594120590

119901+ 41198962)

minus

(1 minus 120573 + 120594120590119901+ 1198962)

2

(1 minus 120594)

+(

1205941205902

119901

2

minus 120573)]

]

sdot 1205722

(13)

where

1198601= [(

21205962

119896 (1 minus 120594)

minus

6120590119894

(1 minus 120594)

)(

1205941205902

119901

2

minus 120573)]

minus [(

31205962

119896(1 minus 120594)2minus

3120590119894

(1 minus 120594)2)(1 minus 120573 + 120594120590

119901+ 1198962)

2

]

times ([

6120590119894119896

(1 minus 120594)

(1 minus 120573 + 120594120590119901+ 41198962)] + 2119896

minus

[21205962(1 minus 120573 + 120594120590

119901+ 41198962)]

119896 (1 minus 120594)

)

minus1

(14)

The zeroth harmonic components generated through nonlin-ear self-interaction of the finite amplitude wave are obtainedfrom the set of equations III after substituting the expansion(7)

120601(1)

0= 1198611sdot 120572120572lowast

119899(1)

1198940

= [1198611(1 + 120594120590

119901) minus 2120573] sdot 120572120572

lowast

V(1)1198940

=[

[

[

1198611

119862119892(1 + 120594120590

119901)

1 minus 120594

minus

2120573119862119892

1 minus 120594

minus

2120596(1 minus 120573 + 120594120590119901+ 1198962)

2

119896(1 minus 120594)2

]

]

]

120572120572lowast

(15)

where

1198611=

6120573120590119894

1 minus 120594

minus

21205731198622

119892

1 minus 120594

minus[

[

(1 minus 120573 + 120594120590119901+ 1198962)

2

(1 minus 120594)2

(3120590119894+ 2119862119892

120596

119896

+

1205962

1198962)]

]

times (1 minus

1198622

119892(1 + 120594120590

119901)

1 minus 120594

+ [

3120590119894

1 minus 120594

(1 + 120594120590119901)])

minus1

(16)

4 Journal of Astrophysics

Now in order to derive the NLS equation we need to con-sider first harmonic quantities in the third order Collectingcoefficients of 1205763 from both sides of the set of equations Iafter substituting perturbation expansion (7) we get a setof equations for first harmonic quantities in the third orderfrom which after proper elimination we obtain the followingdesired NLS equation

119894

120597120572

120597120591

+ 119875 sdot

1205972120572

1205971205852= 119876 sdot 120572120572

lowast (17)

119875 =

119896 (1 minus 120594)

2120596 (1 minus 120573 + 120594120590119901+ 1198962)

times [

2120596119862119892

1 minus 120594

minus

1205962

119896 (1 minus 120594)

minus

21205962

(1 minus 120594)2minus

119896119862119892120596

(1 minus 120594)2minus 119862119892

times [(

120596

1198962minus

119862119892

119896

)(

1 minus 120573 + 120594120590119901

1 minus 120594

) minus

2120596119896

1 minus 120594

minus

1198962119862119892

1 minus 120594

]

minus

3120590119894119896

(1 minus 120594)2+

120596

119896

(

120596

1198962minus

119862119892

119896

)(

1 minus 120573 + 120594120590119901

1 minus 120594

)]

(18)

119876 =

119896 (1 minus 120594)

2120596 (1 minus 120573 + 120594120590119901+ 1198962)

[1198652119896 minus

12059621198653

119896 (1 minus 120594)

+

1205961198651

(1 minus 120594)

]

(19)

where

1198651= [(1 + 120594120590

119901) 1198611minus 2120573]

120596 (1 minus 120573 + 120594120590119901+ 1198962)

119896 (1 minus 120594)

+ (1 minus 120573 + 120594120590119901+ 1198962)

times[

[

119862119892(1 + 120594120590

119901)

1 minus 120594

minus

2120573119862119892

1 minus 120594

minus

2120596(1 minus 120573 + 120594120590119901+ 1198962)

2

119896(1 minus 120594)2

]

]

+

120596 (1 minus 120573 + 120594120590119901+ 1198962)

119896 (1 minus 120594)

times[

[

119862119892(1 + 120594120590

119901)

1 minus 120594

minus

2120573119862119892

1 minus 120594

minus

(1 minus 120573 + 120594120590119901+ 1198962)

2

1 minus 120594

]

]

+

120596 (1 minus 120573 + 120594120590119901+ 1198962)

119896 (1 minus 120594)

times [(1 minus 120573 + 120594120590119901+ 41198962)1198601+ (

1205941205902

119901

2

minus 120573)]

1198652=[

[

119862119892(1 + 120594120590

119901)

1 minus 120594

1198611minus

2120573119862119892

1 minus 120594

minus

2120596(1 minus 120573 + 120594120590119901+ 1198962)

2

119896(1 minus 120594)2

]

]

times

120596 (1 minus 120573 + 120594120590119901+ 1198962)

119896 (1 minus 120594)

1205962(1 minus 120573 + 120594120590

119901+ 1198962)

1198962(1 minus 120594)

2

times[

[

(1 minus 120573 + 120594120590119901+ 41198962) + (

1205941205902

119901

2

minus 120573)

minus

(1 minus 120573 + 120594120590119901+ 1198962)

2

(1 minus 120594)

]

]

+

3120590119894

(1 minus 120594)2(1 minus 120573 + 120594120590

119901+ 1198962)

times [ (1 + 120594120590119901) 1198611minus 2120573 + (1 minus 120573 + 120594120590

119901+ 41198962)1198601

+(

1205941205902

119901

2

minus 120573)]

1198653= 1198611(2120573 + 120594120590

2

119901) + 120573 + 120573119860

1

(20)

4 Modulational Instability andEnvelope Solitons

NLS equation (17) describes the nonlinear evolution of theamplitude of IAWs in 119890-119901-119894 plasma with warm ions non-thermal electrons and Boltzmann positrons NLS equation(17) has been studied extensively in connection with thenonlinear propagation of different wave modes It is wellknown that a uniform wave train may be modulationallystable or unstable depending on the sign of the product of thegroup dispersive and the nonlinearity coefficient that is 119875119876As the coefficients depend on the plasma parameters such asnonthermal parameter 120573 ion temperature 120590

119894 and positron

concentration 120594 the product of 119875119876 can have both positiveand negative values over different parametric regions Thewave is modulationally unstable if 119875119876 lt 0 and the growthrate of instability has a maximum value 119892

119898given by

119892119898= |119876| 120572

2

0 (21)

where 1205720is the constant real amplitude of the carrier wave

For 119875119876 gt 0 the IAW ismodulationally stable As the productcan have both positive and negative signs for different valuesof 120573 120590

119894 and 120594 there are accordingly two types of localized

solitary wave solutions of the NLS equation (17) To obtainthe soliton profile we let

120572 = 120588 exp (119894120579) (22)

Journal of Astrophysics 5

where 120588 and 120579 are two real variables Solving the resultingequations for 120588 and 120579with119875119876 lt 0we get the following brightenvelope soliton solution

120588 =

radic2 |119875119876|

119871

sech(

120585 minus 119880120591

119871

) (23)

where 119880 is the envelope speed and 119871 is the spatial width ofthe pulse It encloses high frequency carrier oscillations andvanishes at infinity On the other hand if 119875119876 gt 0 a stablegray or dark soliton (a potential hole or a localized region ofdeceased amplitude) is obtained

120588 =

radic2119875119876

119871119889

radic1 minus 1198892sech2 (120585 minus 119880120591

119871

) (24)

where the parameter 119889 determines the depth of the modula-tion For 119889 = 1 we get a dark soliton

120588 =

radic2119875119876

119871119889

tanh(

120585 minus 119880120591

119871

) (25)

Thus the sign of the product 119875119876 determines the stabil-ityinstability profile of IAWs as well as the type of solitonstructureThe soliton width is determined by the ratio |119875119876|

We have numerically examined different parametricregionswhere someof the above excitationsmay occurAs thecoefficients119875 and119876 depend on nonthermal parameter120573 ion-to-electron temperature ratio 120590

119894 and positron-to-electron

concentration ratio 120594 these parameters would definitelydetermine the modulational instability and the formationof envelope solitons Numerical plots in Figures 1ndash3 show119875119876 as a function of 119896 for different values of 120573 120590

119894 and 120594

It shows that the IAWs remain modulationally stable for 119896

less than certain critical value 119896119888and for 119896 gt 119896

119888the wave is

modulationally unstableIn Figure 1 the variation of 119875119876 with wave number has

been plotted for different values of nonthermal parameter (120573)keeping positron concentration (120594) and ion temperature (120590

119894)

fixed It shows that as 120573 increases the value of critical wavenumber separating stable and unstable regions decreases It isalso noticed that as 120573 increases the width of the dark solitonsincreases but that of the bright solitons decreases

In Figure 2 119875119876 is plotted as function of 119896 for differentvalues of ion temperature (120590

119894) taking other plasmaparameters

such as positron concentration (120594) and nonthermal parame-ter (120573) as constant It is seen that as 120590

119894increases critical wave

number decreases the width of dark solitons increases butthat of bright solitons decreases

Figure 3 is a 119875119876 versus wave number plot for differentvalues of positron concentration (120594) keeping the values ofnonthermal parameter (120573) and ion temperature (120590

119894) constant

It shows that as the value of 120594 increases the critical wavenumber increases The width of dark solitons decreases andthat of bright solitons increases as 120594 increases

Qualitatively these results agree with those obtained byGill et al [31] but quantitatively there are differences Wefind that the critical wave number is more sensitive to thevariation in 120573 120590

119894 and 120594 than that predicted by Gill et al [31]

PQ

minus2

20

2

0

1510

ab

c

a 120573 = 0

b 120573 = 0055

c 120573 = 011

Wave number

Figure 1 Plot of 119875119876 versus wave number 119896 for different values ofnonthermal parameter (120573) Curves labelled a b and c correspondto 120573 = 0 0055 and 011 respectively 120594 = 022 120590

119901= 001 and

120590119894= 002

32

a 120590i = 00145

b 120590i = 00155

c 120590i = 00165

Wave number

abc

PQ

1

0

minus1

Figure 2 Plot of 119875119876 versus wave number 119896 for different values ofion temperature (120590

119894) Curves labelled a b and c correspond to 120590

119894=

00145 00155 and 00165 respectively 120594 = 02 120590119901

= 0015 and120573 = 0022

In addition we have numerically studied the dependence ofgrowth rate of instability on all the plasma parameters 120573 120590

119894

and 120594The results are shown in Figures 4 5 and 6 It is shownthat the growth rate of instability increases with increase inthe nonthermality of electrons and ion temperature but theincrease of positron concentration reduces instability growthrate

6 Journal of AstrophysicsPQ

05

00

minus05

21

a 120594 = 025

b 120594 = 026

c 120594 = 027

Wave number

a b c

Figure 3 Plot of 119875119876 versus wave number 119896 for different values ofpositron concentration (120594) Curves labelled a b and c correspondto 120594 = 025 026 and 027 respectively 120573 = 0022 120590

119901= 001 and

120590119894= 0052

2

1

0

1

a 120573 = 0

b 120573 = 0055

c 120573 = 011

Wave number

a

b

c

Gro

wth

rate

Figure 4 Plot of growth rate versus wave number 119896 for differentvalues of nonthermal parameter (120573) Curves labelled a b and ccorrespond to 120573 = 0 0055 and 011 respectively 120594 = 002 120590

119901=

001 and 120590119894= 0002

5 Conclusions

In the present work we have investigated modulationalinstability and envelope excitations of IAWs in the 119890-119901-119894 plasma in detail including simultaneously the effects ofnonthermality of electrons and temperatures of ions Ourmain findings are summarized below

15

10

05

00

12 16

a 120590i = 00012

b 120590i = 00024

c 120590i = 00036

Wave number

a

b

c

Gro

wth

rate

Figure 5 Plot of growth rate versus wave number 119896 for differentvalues of ion temperature (120590

119894) Curves labelled a b and c correspond

to 120590119894= 00012 00024 and 00036 respectively 120594 = 0001 120590

119901=

001 and 120573 = 0001

a 120594 = 0

b 120594 = 002

c 120594 = 004

Wave number

a

b

c

Gro

wth

rate

2

1

0

201510

Figure 6 Plot of growth rate versus wave number 119896 for differentvalues of positron concentration (120594) Curves labelled a b and ccorrespond to 120594 = 0 002 and 004 respectively 120573 = 001 120590

119901=

001 and 120590119894= 001

(i) The wave frequency increases with increase innonthermality of electrons and the temperature ofions whereas the increase in positron concentrationdecreases the wave frequency

(ii) There exists a critical wave number 119896119888below which

thewave ismodulationally stable and abovewhich thewave is modulationally unstable

Journal of Astrophysics 7

(iii) The value of the critical wave number and the char-acteristics of brightdark envelope solitons dependsignificantly on the nonthermal parameter (120573) iontemperature (120590

119894) and positron concentration (120594)

Finally we would like to mention that the results pre-sented in this paper may be useful to explain modulationalinstability and envelope soliton excitations of IAWs in someastrophysical and space environments where 119890-119901-119894 plasmaswith nonthermal electrons are present

Conflict of Interests

The authors declare that there is no conflict of interestsregarding the publication of this paper

Acknowledgment

The authors would like to thank the reviewers for varioussuggestions and helpful comments in bringing the paper tothe present form

References

[1] H R Miller and P J Witta Active Galactic Nuclei SpringerBerlin Germany 1978

[2] F C Michel ldquoTheory of pulsar magnetospheresrdquo Reviews ofModern Physics vol 54 no 1 pp 1ndash66 1982

[3] F C Michel Theory of Neutron Star Magnetosphere ChicagoUniversity Press Chicago Ill USA 1991

[4] M I Barns Positron Electron Pairs in Astrophysics AmericanInstitute of Physics New York NY USA 1983

[5] W K Misner S Thorne and J A Wheeler GravitationFreeman San Francisco Calif USA 1973

[6] M J Rees G W Gibbons S W Hawking and S SiklasedsTheEarly Universe Cambridge University Press Cambridge UK1983

[7] E Tandberg-Hanssen and A Gordon Emslie The Physics ofSolar Flares CambridgeUniversity Press Cambridge UK 1988

[8] A Cairns R Bingham R O Dendy C M C Nairn P KShukla and A A Mamun ldquoIon sound solitary waves withdensity depressionsrdquo Journal of Physics IV France vol 5 no C6pp 43ndash48 1995

[9] S I Popel S V Vladimirov and P K Shukla ldquoIon-acousticsolitons in electron-positron-ion plasmasrdquo Physics of Plasmasvol 2 no 3 pp 716ndash719 1995

[10] Y N Nejoh ldquoThe effect of the ion temperature on large ampli-tude ion-acoustic waves in an electron-positron-ion plasmardquoPhysics of Plasmas vol 3 no 4 pp 1447ndash1451 1996

[11] H R Pakzad ldquoIon acoustic solitary waves in plasma withnonthermal electron positron and warm ionrdquo Astrophysics andSpace Science vol 323 no 4 pp 345ndash350 2009

[12] S Ghosh and R Bharuthram ldquoIon acoustic solitons and doublelayers in electron-positron-ion plasmas with dust particulatesrdquoAstrophysics and Space Science vol 314 no 1-3 pp 121ndash127 2008

[13] N Jehan W Masood and A M Mirza ldquoPlanar and nonplanardust acoustic solitary waves in electronpositron-ion- dust plas-masrdquo Physica Scripta vol 80 no 3 Article ID 035506 2009

[14] R A Cairns A A Mamun R Bingham and P K ShuklaldquoIon acoustic solitons in a magnetised plasma with nonthermalelectronsrdquo Physica Scripta vol 63 pp 80ndash86 1996

[15] B Ghosh S Banerjee and S N Paul ldquoEffect of non-thermalelectrons andwarmnegative ions on ion-acoustic solitarywavesinmulti-component drifting plasmardquo Indian Journal of Pure andApplied Physics vol 51 no 7 pp 488ndash493 2013

[16] B Ghosh S N Paul C Das I Paul and S Banerjee ldquoElectro-static double layers in amulticomponent drifting plasma havingnonthermal electronsrdquo Brazilian Journal of Physics vol 43 no1-2 pp 28ndash33 2013

[17] P O Dovner A I Eriksson R Bostrom and B Holback ldquoFrejamultiprobe observations of electrostatic solitary structuresrdquoGeophysical Research Letters vol 21 no 17 pp 1827ndash1830 1994

[18] R Bostrom G Gustafsson B Holback G Holmgren HKoskinen and P Kintner ldquoCharacteristics of solitary waves andweak double layers in the magnetospheric plasmardquo PhysicalReview Letters vol 61 no 1 pp 82ndash85 1988

[19] R A Cairns A A Mamun R Bingham et al ldquoElectro-static solitary structures in non-thermal plasmasrdquo GeophysicalResearch Letters vol 22 no 20 pp 2709ndash2712 1995

[20] M Salahuddin H Saleem and M Saddiq ldquoIon-acoustic enve-lope solitons in electron-positron-ion plasmasrdquo Physical ReviewE vol 66 no 3 Article ID 036407 2002

[21] T S Gill C Bedi and A S Bains ldquoEnvelope excitations of ionacoustic solitary waves in a plasma with superthermal electronsand positronsrdquo Physica Scripta vol 81 no 5 Article ID 0555032010

[22] GMurtaza andM Salahuddin ldquoModulational instability of ionacoustic waves in a magnetised plasmardquo Plasma Physics vol 24no 5 pp 451ndash456 1982

[23] Yashvir T N Bhatnagar and S R Sharma ldquoNonlinear ion-acoustic waves and solitons in warm-ion magnetized plasmardquoPlasma Physics and Controlled Fusion vol 26 no 11 article 004pp 1303ndash1310 1984

[24] J K Chawla M K Mishra and R S Tiwari ldquoModulationalinstability of ion-acoustic waves in electron-positron-ion plas-masrdquoAstrophysics and Space Science vol 347 pp 283ndash292 2013

[25] T K Baluku andM A Hellberg ldquoIon acoustic solitary waves inan electron-positron-ion plasma with non-thermal electronsrdquoPlasma Physics and Controlled Fusion vol 53 no 9 Article ID095007 2011

[26] A E Dubinov and M A Sazonkin ldquoNonlinear theory of ion-acoustic waves in an electron-positron-ion plasmardquo PlasmaPhysics Reports vol 35 no 1 pp 14ndash24 2009

[27] S Mahmood S Siddiqui and N Jehan ldquoModulational instabil-ity of ion acousticwavewithwarm ions in electron-positron-ionplasmasrdquo Physics of Plasmas vol 18 no 5 Article ID 0523092011

[28] A S BainsN S Saini andT SGill ldquoModulational instability ofion-acoustic soliton in electron-positron-ion plasma with dustparticulatesrdquo Astrophysics and Space Science vol 343 no 1 pp293ndash299 2013

[29] P Eslami M Mottaghizadeh and H R Pakzad ldquoModulationalinstability of ion acoustic waves in e-p-i plasmas with electronsand positrons following a q-nonextensive distributionrdquo Physicsof Plasmas vol 18 no 10 Article ID 102313 2011

[30] J Zhang Y Wang and L Wu ldquoModulation instability of ionacoustic waves solitons and their interactions in nonthermalelectron-positron-ion plasmasrdquo Physics of Plasmas vol 16 no6 Article ID 062102 2009

[31] T S Gill A S Bains N S Saini and C Bedi ldquoIon-acousticenvelope excitations in electron-positron-ion plasma with non-thermal electronsrdquo Physics Letters A vol 374 no 31-32 pp3210ndash3215 2010

8 Journal of Astrophysics

[32] B Ghosh S N Paul C Das and I Paul ldquoModulationalinstability of high frequency surface waves on warm plasmahalf-spacerdquo Canadian Journal of Physics vol 90 no 3 pp 291ndash297 2012

[33] B Ghosh and K P Das ldquoModulational instability of electronplasma waves in a cylindrical wave guiderdquo Plasma Physics andControlled Fusion vol 27 no 9 pp 969ndash982 1985

[34] B Ghosh S Chandra and S N Paul ldquoAmplitudemodulation ofelectron plasmawaves in a quantumplasmardquoPhysics of Plasmasvol 18 no 1 Article ID 012106 2011

[35] H R Pakzad ldquoIon acoustic solitary waves in plasma withnonthermal electron and positronrdquo Physics Letters A GeneralAtomic and Solid State Physics vol 373 no 8-9 pp 847ndash8502009

[36] T Kakutani and N Sugimoto ldquoKrylov-Bogoliubov-Mitr-opolsky method for nonlinear wave modulationrdquo The Physicsof Fluids vol 17 pp 1617ndash1625 1974

Submit your manuscripts athttpwwwhindawicom

Hindawi Publishing Corporationhttpwwwhindawicom Volume 2014

High Energy PhysicsAdvances in

The Scientific World JournalHindawi Publishing Corporation httpwwwhindawicom Volume 2014

Hindawi Publishing Corporationhttpwwwhindawicom Volume 2014

FluidsJournal of

Atomic and Molecular Physics

Journal of

Hindawi Publishing Corporationhttpwwwhindawicom Volume 2014

Hindawi Publishing Corporationhttpwwwhindawicom Volume 2014

Advances in Condensed Matter Physics

OpticsInternational Journal of

Hindawi Publishing Corporationhttpwwwhindawicom Volume 2014

Hindawi Publishing Corporationhttpwwwhindawicom Volume 2014

AstronomyAdvances in

International Journal of

Hindawi Publishing Corporationhttpwwwhindawicom Volume 2014

Superconductivity

Hindawi Publishing Corporationhttpwwwhindawicom Volume 2014

Statistical MechanicsInternational Journal of

Hindawi Publishing Corporationhttpwwwhindawicom Volume 2014

GravityJournal of

Hindawi Publishing Corporationhttpwwwhindawicom Volume 2014

AstrophysicsJournal of

Hindawi Publishing Corporationhttpwwwhindawicom Volume 2014

Physics Research International

Hindawi Publishing Corporationhttpwwwhindawicom Volume 2014

Solid State PhysicsJournal of

 Computational  Methods in Physics

Journal of

Hindawi Publishing Corporationhttpwwwhindawicom Volume 2014

Hindawi Publishing Corporationhttpwwwhindawicom Volume 2014

Soft MatterJournal of

Hindawi Publishing Corporationhttpwwwhindawicom

AerodynamicsJournal of

Volume 2014

Hindawi Publishing Corporationhttpwwwhindawicom Volume 2014

PhotonicsJournal of

Hindawi Publishing Corporationhttpwwwhindawicom Volume 2014

Journal of

Biophysics

Hindawi Publishing Corporationhttpwwwhindawicom Volume 2014

ThermodynamicsJournal of

Page 3: Research Article Modulation Instability of Ion-Acoustic Waves ...downloads.hindawi.com/journals/jas/2014/785670.pdfsech 7 ]! \ 8 , where ] istheenvelopespeedand\ is the spatial width

Journal of Astrophysics 3

where

120572 = 120601(1)

1 (9)

The linear dispersion relation is obtained as

1205962= 1198962[

(1 minus 120594)

(1 minus 120573 + 120594120590119901+ 1198962)

+

3120590119894

(1 minus 120594)

] (10)

The wave frequency is found to increase with the increasein the nonthermal parameter 120573 and the ion temperature Onthe other hand increase in positron concentration decreasesthe wave frequency In this connection it is pertinent tomention that Pakzad [35] reported an incorrect result and itwas pointed out and corrected by Baluku andHellberg [25] Ifwe put 120573 = 0 120594 = 0 and 120590

119894= 0 we get the linear dispersion

relation for ion-acoustic waves in 119890-119894 plasma as obtained byKakutani and Sugimoto [36] In the limit 119896 rarr 0 (10) leadsto the normalized ion-acoustic speed (119881

119904) modified by the

presence of positrons ion-temperature and non-Maxwellianelectron distribution

1198812

119904=

(1 minus 120594)

(1 minus 120573 + 120594120590119901)

+

3120590119894

(1 minus 120594)

(11)

It agrees with the results obtained by Baluku and Hellberg[25] for the case of cold ions (120590

119894= 0) Equation (11)

shows that for the case of cold ions increase in positronconcentration decreases the phase speed [15] increase inthe nonthermal parameter (120573) leads to an increase in phasespeed and also increase in ion temperature increases thephase speed

First harmonic quantities in the second order areobtained from the solutions (8) by replacing minus119894120596 by minus119894120596 minus

120576119862119892(120597120597120585) + 120576

2(120597120597120591) and 119894119896 by 119894119896 + 120576(120597120597120585) and then picking

out order 120576 terms These are as follows

120601(2)

1= 0

119899(2)

1198941

= minus1198942119896

120597120572

120597120585

V(2)1198941

= [(

120596

1198962minus

119862119892

119896

)(

1 minus 120573 + 120594120590119901

1 minus 120594

)

minus

2120596119896

1 minus 120594

minus

1198962119862119892

1 minus 120594

]

120597120572

120597120585

(12)

The second harmonic quantities in the lowest order obtainedfrom the set of equations II after substituting the expansion(7) are as follows

120601(1)

2= 1198601sdot 1205722

119899(1)

1198942

= [1198601(1 minus 120573 + 120594120590

119901+ 41198962)

2

+

1205941205902

119901

2

minus 120573] sdot 1205722

V(1)1198942

=

120596

119896 (1 minus 120594)

[

[

1198601(1 minus 120573 + 120594120590

119901+ 41198962)

minus

(1 minus 120573 + 120594120590119901+ 1198962)

2

(1 minus 120594)

+(

1205941205902

119901

2

minus 120573)]

]

sdot 1205722

(13)

where

1198601= [(

21205962

119896 (1 minus 120594)

minus

6120590119894

(1 minus 120594)

)(

1205941205902

119901

2

minus 120573)]

minus [(

31205962

119896(1 minus 120594)2minus

3120590119894

(1 minus 120594)2)(1 minus 120573 + 120594120590

119901+ 1198962)

2

]

times ([

6120590119894119896

(1 minus 120594)

(1 minus 120573 + 120594120590119901+ 41198962)] + 2119896

minus

[21205962(1 minus 120573 + 120594120590

119901+ 41198962)]

119896 (1 minus 120594)

)

minus1

(14)

The zeroth harmonic components generated through nonlin-ear self-interaction of the finite amplitude wave are obtainedfrom the set of equations III after substituting the expansion(7)

120601(1)

0= 1198611sdot 120572120572lowast

119899(1)

1198940

= [1198611(1 + 120594120590

119901) minus 2120573] sdot 120572120572

lowast

V(1)1198940

=[

[

[

1198611

119862119892(1 + 120594120590

119901)

1 minus 120594

minus

2120573119862119892

1 minus 120594

minus

2120596(1 minus 120573 + 120594120590119901+ 1198962)

2

119896(1 minus 120594)2

]

]

]

120572120572lowast

(15)

where

1198611=

6120573120590119894

1 minus 120594

minus

21205731198622

119892

1 minus 120594

minus[

[

(1 minus 120573 + 120594120590119901+ 1198962)

2

(1 minus 120594)2

(3120590119894+ 2119862119892

120596

119896

+

1205962

1198962)]

]

times (1 minus

1198622

119892(1 + 120594120590

119901)

1 minus 120594

+ [

3120590119894

1 minus 120594

(1 + 120594120590119901)])

minus1

(16)

4 Journal of Astrophysics

Now in order to derive the NLS equation we need to con-sider first harmonic quantities in the third order Collectingcoefficients of 1205763 from both sides of the set of equations Iafter substituting perturbation expansion (7) we get a setof equations for first harmonic quantities in the third orderfrom which after proper elimination we obtain the followingdesired NLS equation

119894

120597120572

120597120591

+ 119875 sdot

1205972120572

1205971205852= 119876 sdot 120572120572

lowast (17)

119875 =

119896 (1 minus 120594)

2120596 (1 minus 120573 + 120594120590119901+ 1198962)

times [

2120596119862119892

1 minus 120594

minus

1205962

119896 (1 minus 120594)

minus

21205962

(1 minus 120594)2minus

119896119862119892120596

(1 minus 120594)2minus 119862119892

times [(

120596

1198962minus

119862119892

119896

)(

1 minus 120573 + 120594120590119901

1 minus 120594

) minus

2120596119896

1 minus 120594

minus

1198962119862119892

1 minus 120594

]

minus

3120590119894119896

(1 minus 120594)2+

120596

119896

(

120596

1198962minus

119862119892

119896

)(

1 minus 120573 + 120594120590119901

1 minus 120594

)]

(18)

119876 =

119896 (1 minus 120594)

2120596 (1 minus 120573 + 120594120590119901+ 1198962)

[1198652119896 minus

12059621198653

119896 (1 minus 120594)

+

1205961198651

(1 minus 120594)

]

(19)

where

1198651= [(1 + 120594120590

119901) 1198611minus 2120573]

120596 (1 minus 120573 + 120594120590119901+ 1198962)

119896 (1 minus 120594)

+ (1 minus 120573 + 120594120590119901+ 1198962)

times[

[

119862119892(1 + 120594120590

119901)

1 minus 120594

minus

2120573119862119892

1 minus 120594

minus

2120596(1 minus 120573 + 120594120590119901+ 1198962)

2

119896(1 minus 120594)2

]

]

+

120596 (1 minus 120573 + 120594120590119901+ 1198962)

119896 (1 minus 120594)

times[

[

119862119892(1 + 120594120590

119901)

1 minus 120594

minus

2120573119862119892

1 minus 120594

minus

(1 minus 120573 + 120594120590119901+ 1198962)

2

1 minus 120594

]

]

+

120596 (1 minus 120573 + 120594120590119901+ 1198962)

119896 (1 minus 120594)

times [(1 minus 120573 + 120594120590119901+ 41198962)1198601+ (

1205941205902

119901

2

minus 120573)]

1198652=[

[

119862119892(1 + 120594120590

119901)

1 minus 120594

1198611minus

2120573119862119892

1 minus 120594

minus

2120596(1 minus 120573 + 120594120590119901+ 1198962)

2

119896(1 minus 120594)2

]

]

times

120596 (1 minus 120573 + 120594120590119901+ 1198962)

119896 (1 minus 120594)

1205962(1 minus 120573 + 120594120590

119901+ 1198962)

1198962(1 minus 120594)

2

times[

[

(1 minus 120573 + 120594120590119901+ 41198962) + (

1205941205902

119901

2

minus 120573)

minus

(1 minus 120573 + 120594120590119901+ 1198962)

2

(1 minus 120594)

]

]

+

3120590119894

(1 minus 120594)2(1 minus 120573 + 120594120590

119901+ 1198962)

times [ (1 + 120594120590119901) 1198611minus 2120573 + (1 minus 120573 + 120594120590

119901+ 41198962)1198601

+(

1205941205902

119901

2

minus 120573)]

1198653= 1198611(2120573 + 120594120590

2

119901) + 120573 + 120573119860

1

(20)

4 Modulational Instability andEnvelope Solitons

NLS equation (17) describes the nonlinear evolution of theamplitude of IAWs in 119890-119901-119894 plasma with warm ions non-thermal electrons and Boltzmann positrons NLS equation(17) has been studied extensively in connection with thenonlinear propagation of different wave modes It is wellknown that a uniform wave train may be modulationallystable or unstable depending on the sign of the product of thegroup dispersive and the nonlinearity coefficient that is 119875119876As the coefficients depend on the plasma parameters such asnonthermal parameter 120573 ion temperature 120590

119894 and positron

concentration 120594 the product of 119875119876 can have both positiveand negative values over different parametric regions Thewave is modulationally unstable if 119875119876 lt 0 and the growthrate of instability has a maximum value 119892

119898given by

119892119898= |119876| 120572

2

0 (21)

where 1205720is the constant real amplitude of the carrier wave

For 119875119876 gt 0 the IAW ismodulationally stable As the productcan have both positive and negative signs for different valuesof 120573 120590

119894 and 120594 there are accordingly two types of localized

solitary wave solutions of the NLS equation (17) To obtainthe soliton profile we let

120572 = 120588 exp (119894120579) (22)

Journal of Astrophysics 5

where 120588 and 120579 are two real variables Solving the resultingequations for 120588 and 120579with119875119876 lt 0we get the following brightenvelope soliton solution

120588 =

radic2 |119875119876|

119871

sech(

120585 minus 119880120591

119871

) (23)

where 119880 is the envelope speed and 119871 is the spatial width ofthe pulse It encloses high frequency carrier oscillations andvanishes at infinity On the other hand if 119875119876 gt 0 a stablegray or dark soliton (a potential hole or a localized region ofdeceased amplitude) is obtained

120588 =

radic2119875119876

119871119889

radic1 minus 1198892sech2 (120585 minus 119880120591

119871

) (24)

where the parameter 119889 determines the depth of the modula-tion For 119889 = 1 we get a dark soliton

120588 =

radic2119875119876

119871119889

tanh(

120585 minus 119880120591

119871

) (25)

Thus the sign of the product 119875119876 determines the stabil-ityinstability profile of IAWs as well as the type of solitonstructureThe soliton width is determined by the ratio |119875119876|

We have numerically examined different parametricregionswhere someof the above excitationsmay occurAs thecoefficients119875 and119876 depend on nonthermal parameter120573 ion-to-electron temperature ratio 120590

119894 and positron-to-electron

concentration ratio 120594 these parameters would definitelydetermine the modulational instability and the formationof envelope solitons Numerical plots in Figures 1ndash3 show119875119876 as a function of 119896 for different values of 120573 120590

119894 and 120594

It shows that the IAWs remain modulationally stable for 119896

less than certain critical value 119896119888and for 119896 gt 119896

119888the wave is

modulationally unstableIn Figure 1 the variation of 119875119876 with wave number has

been plotted for different values of nonthermal parameter (120573)keeping positron concentration (120594) and ion temperature (120590

119894)

fixed It shows that as 120573 increases the value of critical wavenumber separating stable and unstable regions decreases It isalso noticed that as 120573 increases the width of the dark solitonsincreases but that of the bright solitons decreases

In Figure 2 119875119876 is plotted as function of 119896 for differentvalues of ion temperature (120590

119894) taking other plasmaparameters

such as positron concentration (120594) and nonthermal parame-ter (120573) as constant It is seen that as 120590

119894increases critical wave

number decreases the width of dark solitons increases butthat of bright solitons decreases

Figure 3 is a 119875119876 versus wave number plot for differentvalues of positron concentration (120594) keeping the values ofnonthermal parameter (120573) and ion temperature (120590

119894) constant

It shows that as the value of 120594 increases the critical wavenumber increases The width of dark solitons decreases andthat of bright solitons increases as 120594 increases

Qualitatively these results agree with those obtained byGill et al [31] but quantitatively there are differences Wefind that the critical wave number is more sensitive to thevariation in 120573 120590

119894 and 120594 than that predicted by Gill et al [31]

PQ

minus2

20

2

0

1510

ab

c

a 120573 = 0

b 120573 = 0055

c 120573 = 011

Wave number

Figure 1 Plot of 119875119876 versus wave number 119896 for different values ofnonthermal parameter (120573) Curves labelled a b and c correspondto 120573 = 0 0055 and 011 respectively 120594 = 022 120590

119901= 001 and

120590119894= 002

32

a 120590i = 00145

b 120590i = 00155

c 120590i = 00165

Wave number

abc

PQ

1

0

minus1

Figure 2 Plot of 119875119876 versus wave number 119896 for different values ofion temperature (120590

119894) Curves labelled a b and c correspond to 120590

119894=

00145 00155 and 00165 respectively 120594 = 02 120590119901

= 0015 and120573 = 0022

In addition we have numerically studied the dependence ofgrowth rate of instability on all the plasma parameters 120573 120590

119894

and 120594The results are shown in Figures 4 5 and 6 It is shownthat the growth rate of instability increases with increase inthe nonthermality of electrons and ion temperature but theincrease of positron concentration reduces instability growthrate

6 Journal of AstrophysicsPQ

05

00

minus05

21

a 120594 = 025

b 120594 = 026

c 120594 = 027

Wave number

a b c

Figure 3 Plot of 119875119876 versus wave number 119896 for different values ofpositron concentration (120594) Curves labelled a b and c correspondto 120594 = 025 026 and 027 respectively 120573 = 0022 120590

119901= 001 and

120590119894= 0052

2

1

0

1

a 120573 = 0

b 120573 = 0055

c 120573 = 011

Wave number

a

b

c

Gro

wth

rate

Figure 4 Plot of growth rate versus wave number 119896 for differentvalues of nonthermal parameter (120573) Curves labelled a b and ccorrespond to 120573 = 0 0055 and 011 respectively 120594 = 002 120590

119901=

001 and 120590119894= 0002

5 Conclusions

In the present work we have investigated modulationalinstability and envelope excitations of IAWs in the 119890-119901-119894 plasma in detail including simultaneously the effects ofnonthermality of electrons and temperatures of ions Ourmain findings are summarized below

15

10

05

00

12 16

a 120590i = 00012

b 120590i = 00024

c 120590i = 00036

Wave number

a

b

c

Gro

wth

rate

Figure 5 Plot of growth rate versus wave number 119896 for differentvalues of ion temperature (120590

119894) Curves labelled a b and c correspond

to 120590119894= 00012 00024 and 00036 respectively 120594 = 0001 120590

119901=

001 and 120573 = 0001

a 120594 = 0

b 120594 = 002

c 120594 = 004

Wave number

a

b

c

Gro

wth

rate

2

1

0

201510

Figure 6 Plot of growth rate versus wave number 119896 for differentvalues of positron concentration (120594) Curves labelled a b and ccorrespond to 120594 = 0 002 and 004 respectively 120573 = 001 120590

119901=

001 and 120590119894= 001

(i) The wave frequency increases with increase innonthermality of electrons and the temperature ofions whereas the increase in positron concentrationdecreases the wave frequency

(ii) There exists a critical wave number 119896119888below which

thewave ismodulationally stable and abovewhich thewave is modulationally unstable

Journal of Astrophysics 7

(iii) The value of the critical wave number and the char-acteristics of brightdark envelope solitons dependsignificantly on the nonthermal parameter (120573) iontemperature (120590

119894) and positron concentration (120594)

Finally we would like to mention that the results pre-sented in this paper may be useful to explain modulationalinstability and envelope soliton excitations of IAWs in someastrophysical and space environments where 119890-119901-119894 plasmaswith nonthermal electrons are present

Conflict of Interests

The authors declare that there is no conflict of interestsregarding the publication of this paper

Acknowledgment

The authors would like to thank the reviewers for varioussuggestions and helpful comments in bringing the paper tothe present form

References

[1] H R Miller and P J Witta Active Galactic Nuclei SpringerBerlin Germany 1978

[2] F C Michel ldquoTheory of pulsar magnetospheresrdquo Reviews ofModern Physics vol 54 no 1 pp 1ndash66 1982

[3] F C Michel Theory of Neutron Star Magnetosphere ChicagoUniversity Press Chicago Ill USA 1991

[4] M I Barns Positron Electron Pairs in Astrophysics AmericanInstitute of Physics New York NY USA 1983

[5] W K Misner S Thorne and J A Wheeler GravitationFreeman San Francisco Calif USA 1973

[6] M J Rees G W Gibbons S W Hawking and S SiklasedsTheEarly Universe Cambridge University Press Cambridge UK1983

[7] E Tandberg-Hanssen and A Gordon Emslie The Physics ofSolar Flares CambridgeUniversity Press Cambridge UK 1988

[8] A Cairns R Bingham R O Dendy C M C Nairn P KShukla and A A Mamun ldquoIon sound solitary waves withdensity depressionsrdquo Journal of Physics IV France vol 5 no C6pp 43ndash48 1995

[9] S I Popel S V Vladimirov and P K Shukla ldquoIon-acousticsolitons in electron-positron-ion plasmasrdquo Physics of Plasmasvol 2 no 3 pp 716ndash719 1995

[10] Y N Nejoh ldquoThe effect of the ion temperature on large ampli-tude ion-acoustic waves in an electron-positron-ion plasmardquoPhysics of Plasmas vol 3 no 4 pp 1447ndash1451 1996

[11] H R Pakzad ldquoIon acoustic solitary waves in plasma withnonthermal electron positron and warm ionrdquo Astrophysics andSpace Science vol 323 no 4 pp 345ndash350 2009

[12] S Ghosh and R Bharuthram ldquoIon acoustic solitons and doublelayers in electron-positron-ion plasmas with dust particulatesrdquoAstrophysics and Space Science vol 314 no 1-3 pp 121ndash127 2008

[13] N Jehan W Masood and A M Mirza ldquoPlanar and nonplanardust acoustic solitary waves in electronpositron-ion- dust plas-masrdquo Physica Scripta vol 80 no 3 Article ID 035506 2009

[14] R A Cairns A A Mamun R Bingham and P K ShuklaldquoIon acoustic solitons in a magnetised plasma with nonthermalelectronsrdquo Physica Scripta vol 63 pp 80ndash86 1996

[15] B Ghosh S Banerjee and S N Paul ldquoEffect of non-thermalelectrons andwarmnegative ions on ion-acoustic solitarywavesinmulti-component drifting plasmardquo Indian Journal of Pure andApplied Physics vol 51 no 7 pp 488ndash493 2013

[16] B Ghosh S N Paul C Das I Paul and S Banerjee ldquoElectro-static double layers in amulticomponent drifting plasma havingnonthermal electronsrdquo Brazilian Journal of Physics vol 43 no1-2 pp 28ndash33 2013

[17] P O Dovner A I Eriksson R Bostrom and B Holback ldquoFrejamultiprobe observations of electrostatic solitary structuresrdquoGeophysical Research Letters vol 21 no 17 pp 1827ndash1830 1994

[18] R Bostrom G Gustafsson B Holback G Holmgren HKoskinen and P Kintner ldquoCharacteristics of solitary waves andweak double layers in the magnetospheric plasmardquo PhysicalReview Letters vol 61 no 1 pp 82ndash85 1988

[19] R A Cairns A A Mamun R Bingham et al ldquoElectro-static solitary structures in non-thermal plasmasrdquo GeophysicalResearch Letters vol 22 no 20 pp 2709ndash2712 1995

[20] M Salahuddin H Saleem and M Saddiq ldquoIon-acoustic enve-lope solitons in electron-positron-ion plasmasrdquo Physical ReviewE vol 66 no 3 Article ID 036407 2002

[21] T S Gill C Bedi and A S Bains ldquoEnvelope excitations of ionacoustic solitary waves in a plasma with superthermal electronsand positronsrdquo Physica Scripta vol 81 no 5 Article ID 0555032010

[22] GMurtaza andM Salahuddin ldquoModulational instability of ionacoustic waves in a magnetised plasmardquo Plasma Physics vol 24no 5 pp 451ndash456 1982

[23] Yashvir T N Bhatnagar and S R Sharma ldquoNonlinear ion-acoustic waves and solitons in warm-ion magnetized plasmardquoPlasma Physics and Controlled Fusion vol 26 no 11 article 004pp 1303ndash1310 1984

[24] J K Chawla M K Mishra and R S Tiwari ldquoModulationalinstability of ion-acoustic waves in electron-positron-ion plas-masrdquoAstrophysics and Space Science vol 347 pp 283ndash292 2013

[25] T K Baluku andM A Hellberg ldquoIon acoustic solitary waves inan electron-positron-ion plasma with non-thermal electronsrdquoPlasma Physics and Controlled Fusion vol 53 no 9 Article ID095007 2011

[26] A E Dubinov and M A Sazonkin ldquoNonlinear theory of ion-acoustic waves in an electron-positron-ion plasmardquo PlasmaPhysics Reports vol 35 no 1 pp 14ndash24 2009

[27] S Mahmood S Siddiqui and N Jehan ldquoModulational instabil-ity of ion acousticwavewithwarm ions in electron-positron-ionplasmasrdquo Physics of Plasmas vol 18 no 5 Article ID 0523092011

[28] A S BainsN S Saini andT SGill ldquoModulational instability ofion-acoustic soliton in electron-positron-ion plasma with dustparticulatesrdquo Astrophysics and Space Science vol 343 no 1 pp293ndash299 2013

[29] P Eslami M Mottaghizadeh and H R Pakzad ldquoModulationalinstability of ion acoustic waves in e-p-i plasmas with electronsand positrons following a q-nonextensive distributionrdquo Physicsof Plasmas vol 18 no 10 Article ID 102313 2011

[30] J Zhang Y Wang and L Wu ldquoModulation instability of ionacoustic waves solitons and their interactions in nonthermalelectron-positron-ion plasmasrdquo Physics of Plasmas vol 16 no6 Article ID 062102 2009

[31] T S Gill A S Bains N S Saini and C Bedi ldquoIon-acousticenvelope excitations in electron-positron-ion plasma with non-thermal electronsrdquo Physics Letters A vol 374 no 31-32 pp3210ndash3215 2010

8 Journal of Astrophysics

[32] B Ghosh S N Paul C Das and I Paul ldquoModulationalinstability of high frequency surface waves on warm plasmahalf-spacerdquo Canadian Journal of Physics vol 90 no 3 pp 291ndash297 2012

[33] B Ghosh and K P Das ldquoModulational instability of electronplasma waves in a cylindrical wave guiderdquo Plasma Physics andControlled Fusion vol 27 no 9 pp 969ndash982 1985

[34] B Ghosh S Chandra and S N Paul ldquoAmplitudemodulation ofelectron plasmawaves in a quantumplasmardquoPhysics of Plasmasvol 18 no 1 Article ID 012106 2011

[35] H R Pakzad ldquoIon acoustic solitary waves in plasma withnonthermal electron and positronrdquo Physics Letters A GeneralAtomic and Solid State Physics vol 373 no 8-9 pp 847ndash8502009

[36] T Kakutani and N Sugimoto ldquoKrylov-Bogoliubov-Mitr-opolsky method for nonlinear wave modulationrdquo The Physicsof Fluids vol 17 pp 1617ndash1625 1974

Submit your manuscripts athttpwwwhindawicom

Hindawi Publishing Corporationhttpwwwhindawicom Volume 2014

High Energy PhysicsAdvances in

The Scientific World JournalHindawi Publishing Corporation httpwwwhindawicom Volume 2014

Hindawi Publishing Corporationhttpwwwhindawicom Volume 2014

FluidsJournal of

Atomic and Molecular Physics

Journal of

Hindawi Publishing Corporationhttpwwwhindawicom Volume 2014

Hindawi Publishing Corporationhttpwwwhindawicom Volume 2014

Advances in Condensed Matter Physics

OpticsInternational Journal of

Hindawi Publishing Corporationhttpwwwhindawicom Volume 2014

Hindawi Publishing Corporationhttpwwwhindawicom Volume 2014

AstronomyAdvances in

International Journal of

Hindawi Publishing Corporationhttpwwwhindawicom Volume 2014

Superconductivity

Hindawi Publishing Corporationhttpwwwhindawicom Volume 2014

Statistical MechanicsInternational Journal of

Hindawi Publishing Corporationhttpwwwhindawicom Volume 2014

GravityJournal of

Hindawi Publishing Corporationhttpwwwhindawicom Volume 2014

AstrophysicsJournal of

Hindawi Publishing Corporationhttpwwwhindawicom Volume 2014

Physics Research International

Hindawi Publishing Corporationhttpwwwhindawicom Volume 2014

Solid State PhysicsJournal of

 Computational  Methods in Physics

Journal of

Hindawi Publishing Corporationhttpwwwhindawicom Volume 2014

Hindawi Publishing Corporationhttpwwwhindawicom Volume 2014

Soft MatterJournal of

Hindawi Publishing Corporationhttpwwwhindawicom

AerodynamicsJournal of

Volume 2014

Hindawi Publishing Corporationhttpwwwhindawicom Volume 2014

PhotonicsJournal of

Hindawi Publishing Corporationhttpwwwhindawicom Volume 2014

Journal of

Biophysics

Hindawi Publishing Corporationhttpwwwhindawicom Volume 2014

ThermodynamicsJournal of

Page 4: Research Article Modulation Instability of Ion-Acoustic Waves ...downloads.hindawi.com/journals/jas/2014/785670.pdfsech 7 ]! \ 8 , where ] istheenvelopespeedand\ is the spatial width

4 Journal of Astrophysics

Now in order to derive the NLS equation we need to con-sider first harmonic quantities in the third order Collectingcoefficients of 1205763 from both sides of the set of equations Iafter substituting perturbation expansion (7) we get a setof equations for first harmonic quantities in the third orderfrom which after proper elimination we obtain the followingdesired NLS equation

119894

120597120572

120597120591

+ 119875 sdot

1205972120572

1205971205852= 119876 sdot 120572120572

lowast (17)

119875 =

119896 (1 minus 120594)

2120596 (1 minus 120573 + 120594120590119901+ 1198962)

times [

2120596119862119892

1 minus 120594

minus

1205962

119896 (1 minus 120594)

minus

21205962

(1 minus 120594)2minus

119896119862119892120596

(1 minus 120594)2minus 119862119892

times [(

120596

1198962minus

119862119892

119896

)(

1 minus 120573 + 120594120590119901

1 minus 120594

) minus

2120596119896

1 minus 120594

minus

1198962119862119892

1 minus 120594

]

minus

3120590119894119896

(1 minus 120594)2+

120596

119896

(

120596

1198962minus

119862119892

119896

)(

1 minus 120573 + 120594120590119901

1 minus 120594

)]

(18)

119876 =

119896 (1 minus 120594)

2120596 (1 minus 120573 + 120594120590119901+ 1198962)

[1198652119896 minus

12059621198653

119896 (1 minus 120594)

+

1205961198651

(1 minus 120594)

]

(19)

where

1198651= [(1 + 120594120590

119901) 1198611minus 2120573]

120596 (1 minus 120573 + 120594120590119901+ 1198962)

119896 (1 minus 120594)

+ (1 minus 120573 + 120594120590119901+ 1198962)

times[

[

119862119892(1 + 120594120590

119901)

1 minus 120594

minus

2120573119862119892

1 minus 120594

minus

2120596(1 minus 120573 + 120594120590119901+ 1198962)

2

119896(1 minus 120594)2

]

]

+

120596 (1 minus 120573 + 120594120590119901+ 1198962)

119896 (1 minus 120594)

times[

[

119862119892(1 + 120594120590

119901)

1 minus 120594

minus

2120573119862119892

1 minus 120594

minus

(1 minus 120573 + 120594120590119901+ 1198962)

2

1 minus 120594

]

]

+

120596 (1 minus 120573 + 120594120590119901+ 1198962)

119896 (1 minus 120594)

times [(1 minus 120573 + 120594120590119901+ 41198962)1198601+ (

1205941205902

119901

2

minus 120573)]

1198652=[

[

119862119892(1 + 120594120590

119901)

1 minus 120594

1198611minus

2120573119862119892

1 minus 120594

minus

2120596(1 minus 120573 + 120594120590119901+ 1198962)

2

119896(1 minus 120594)2

]

]

times

120596 (1 minus 120573 + 120594120590119901+ 1198962)

119896 (1 minus 120594)

1205962(1 minus 120573 + 120594120590

119901+ 1198962)

1198962(1 minus 120594)

2

times[

[

(1 minus 120573 + 120594120590119901+ 41198962) + (

1205941205902

119901

2

minus 120573)

minus

(1 minus 120573 + 120594120590119901+ 1198962)

2

(1 minus 120594)

]

]

+

3120590119894

(1 minus 120594)2(1 minus 120573 + 120594120590

119901+ 1198962)

times [ (1 + 120594120590119901) 1198611minus 2120573 + (1 minus 120573 + 120594120590

119901+ 41198962)1198601

+(

1205941205902

119901

2

minus 120573)]

1198653= 1198611(2120573 + 120594120590

2

119901) + 120573 + 120573119860

1

(20)

4 Modulational Instability andEnvelope Solitons

NLS equation (17) describes the nonlinear evolution of theamplitude of IAWs in 119890-119901-119894 plasma with warm ions non-thermal electrons and Boltzmann positrons NLS equation(17) has been studied extensively in connection with thenonlinear propagation of different wave modes It is wellknown that a uniform wave train may be modulationallystable or unstable depending on the sign of the product of thegroup dispersive and the nonlinearity coefficient that is 119875119876As the coefficients depend on the plasma parameters such asnonthermal parameter 120573 ion temperature 120590

119894 and positron

concentration 120594 the product of 119875119876 can have both positiveand negative values over different parametric regions Thewave is modulationally unstable if 119875119876 lt 0 and the growthrate of instability has a maximum value 119892

119898given by

119892119898= |119876| 120572

2

0 (21)

where 1205720is the constant real amplitude of the carrier wave

For 119875119876 gt 0 the IAW ismodulationally stable As the productcan have both positive and negative signs for different valuesof 120573 120590

119894 and 120594 there are accordingly two types of localized

solitary wave solutions of the NLS equation (17) To obtainthe soliton profile we let

120572 = 120588 exp (119894120579) (22)

Journal of Astrophysics 5

where 120588 and 120579 are two real variables Solving the resultingequations for 120588 and 120579with119875119876 lt 0we get the following brightenvelope soliton solution

120588 =

radic2 |119875119876|

119871

sech(

120585 minus 119880120591

119871

) (23)

where 119880 is the envelope speed and 119871 is the spatial width ofthe pulse It encloses high frequency carrier oscillations andvanishes at infinity On the other hand if 119875119876 gt 0 a stablegray or dark soliton (a potential hole or a localized region ofdeceased amplitude) is obtained

120588 =

radic2119875119876

119871119889

radic1 minus 1198892sech2 (120585 minus 119880120591

119871

) (24)

where the parameter 119889 determines the depth of the modula-tion For 119889 = 1 we get a dark soliton

120588 =

radic2119875119876

119871119889

tanh(

120585 minus 119880120591

119871

) (25)

Thus the sign of the product 119875119876 determines the stabil-ityinstability profile of IAWs as well as the type of solitonstructureThe soliton width is determined by the ratio |119875119876|

We have numerically examined different parametricregionswhere someof the above excitationsmay occurAs thecoefficients119875 and119876 depend on nonthermal parameter120573 ion-to-electron temperature ratio 120590

119894 and positron-to-electron

concentration ratio 120594 these parameters would definitelydetermine the modulational instability and the formationof envelope solitons Numerical plots in Figures 1ndash3 show119875119876 as a function of 119896 for different values of 120573 120590

119894 and 120594

It shows that the IAWs remain modulationally stable for 119896

less than certain critical value 119896119888and for 119896 gt 119896

119888the wave is

modulationally unstableIn Figure 1 the variation of 119875119876 with wave number has

been plotted for different values of nonthermal parameter (120573)keeping positron concentration (120594) and ion temperature (120590

119894)

fixed It shows that as 120573 increases the value of critical wavenumber separating stable and unstable regions decreases It isalso noticed that as 120573 increases the width of the dark solitonsincreases but that of the bright solitons decreases

In Figure 2 119875119876 is plotted as function of 119896 for differentvalues of ion temperature (120590

119894) taking other plasmaparameters

such as positron concentration (120594) and nonthermal parame-ter (120573) as constant It is seen that as 120590

119894increases critical wave

number decreases the width of dark solitons increases butthat of bright solitons decreases

Figure 3 is a 119875119876 versus wave number plot for differentvalues of positron concentration (120594) keeping the values ofnonthermal parameter (120573) and ion temperature (120590

119894) constant

It shows that as the value of 120594 increases the critical wavenumber increases The width of dark solitons decreases andthat of bright solitons increases as 120594 increases

Qualitatively these results agree with those obtained byGill et al [31] but quantitatively there are differences Wefind that the critical wave number is more sensitive to thevariation in 120573 120590

119894 and 120594 than that predicted by Gill et al [31]

PQ

minus2

20

2

0

1510

ab

c

a 120573 = 0

b 120573 = 0055

c 120573 = 011

Wave number

Figure 1 Plot of 119875119876 versus wave number 119896 for different values ofnonthermal parameter (120573) Curves labelled a b and c correspondto 120573 = 0 0055 and 011 respectively 120594 = 022 120590

119901= 001 and

120590119894= 002

32

a 120590i = 00145

b 120590i = 00155

c 120590i = 00165

Wave number

abc

PQ

1

0

minus1

Figure 2 Plot of 119875119876 versus wave number 119896 for different values ofion temperature (120590

119894) Curves labelled a b and c correspond to 120590

119894=

00145 00155 and 00165 respectively 120594 = 02 120590119901

= 0015 and120573 = 0022

In addition we have numerically studied the dependence ofgrowth rate of instability on all the plasma parameters 120573 120590

119894

and 120594The results are shown in Figures 4 5 and 6 It is shownthat the growth rate of instability increases with increase inthe nonthermality of electrons and ion temperature but theincrease of positron concentration reduces instability growthrate

6 Journal of AstrophysicsPQ

05

00

minus05

21

a 120594 = 025

b 120594 = 026

c 120594 = 027

Wave number

a b c

Figure 3 Plot of 119875119876 versus wave number 119896 for different values ofpositron concentration (120594) Curves labelled a b and c correspondto 120594 = 025 026 and 027 respectively 120573 = 0022 120590

119901= 001 and

120590119894= 0052

2

1

0

1

a 120573 = 0

b 120573 = 0055

c 120573 = 011

Wave number

a

b

c

Gro

wth

rate

Figure 4 Plot of growth rate versus wave number 119896 for differentvalues of nonthermal parameter (120573) Curves labelled a b and ccorrespond to 120573 = 0 0055 and 011 respectively 120594 = 002 120590

119901=

001 and 120590119894= 0002

5 Conclusions

In the present work we have investigated modulationalinstability and envelope excitations of IAWs in the 119890-119901-119894 plasma in detail including simultaneously the effects ofnonthermality of electrons and temperatures of ions Ourmain findings are summarized below

15

10

05

00

12 16

a 120590i = 00012

b 120590i = 00024

c 120590i = 00036

Wave number

a

b

c

Gro

wth

rate

Figure 5 Plot of growth rate versus wave number 119896 for differentvalues of ion temperature (120590

119894) Curves labelled a b and c correspond

to 120590119894= 00012 00024 and 00036 respectively 120594 = 0001 120590

119901=

001 and 120573 = 0001

a 120594 = 0

b 120594 = 002

c 120594 = 004

Wave number

a

b

c

Gro

wth

rate

2

1

0

201510

Figure 6 Plot of growth rate versus wave number 119896 for differentvalues of positron concentration (120594) Curves labelled a b and ccorrespond to 120594 = 0 002 and 004 respectively 120573 = 001 120590

119901=

001 and 120590119894= 001

(i) The wave frequency increases with increase innonthermality of electrons and the temperature ofions whereas the increase in positron concentrationdecreases the wave frequency

(ii) There exists a critical wave number 119896119888below which

thewave ismodulationally stable and abovewhich thewave is modulationally unstable

Journal of Astrophysics 7

(iii) The value of the critical wave number and the char-acteristics of brightdark envelope solitons dependsignificantly on the nonthermal parameter (120573) iontemperature (120590

119894) and positron concentration (120594)

Finally we would like to mention that the results pre-sented in this paper may be useful to explain modulationalinstability and envelope soliton excitations of IAWs in someastrophysical and space environments where 119890-119901-119894 plasmaswith nonthermal electrons are present

Conflict of Interests

The authors declare that there is no conflict of interestsregarding the publication of this paper

Acknowledgment

The authors would like to thank the reviewers for varioussuggestions and helpful comments in bringing the paper tothe present form

References

[1] H R Miller and P J Witta Active Galactic Nuclei SpringerBerlin Germany 1978

[2] F C Michel ldquoTheory of pulsar magnetospheresrdquo Reviews ofModern Physics vol 54 no 1 pp 1ndash66 1982

[3] F C Michel Theory of Neutron Star Magnetosphere ChicagoUniversity Press Chicago Ill USA 1991

[4] M I Barns Positron Electron Pairs in Astrophysics AmericanInstitute of Physics New York NY USA 1983

[5] W K Misner S Thorne and J A Wheeler GravitationFreeman San Francisco Calif USA 1973

[6] M J Rees G W Gibbons S W Hawking and S SiklasedsTheEarly Universe Cambridge University Press Cambridge UK1983

[7] E Tandberg-Hanssen and A Gordon Emslie The Physics ofSolar Flares CambridgeUniversity Press Cambridge UK 1988

[8] A Cairns R Bingham R O Dendy C M C Nairn P KShukla and A A Mamun ldquoIon sound solitary waves withdensity depressionsrdquo Journal of Physics IV France vol 5 no C6pp 43ndash48 1995

[9] S I Popel S V Vladimirov and P K Shukla ldquoIon-acousticsolitons in electron-positron-ion plasmasrdquo Physics of Plasmasvol 2 no 3 pp 716ndash719 1995

[10] Y N Nejoh ldquoThe effect of the ion temperature on large ampli-tude ion-acoustic waves in an electron-positron-ion plasmardquoPhysics of Plasmas vol 3 no 4 pp 1447ndash1451 1996

[11] H R Pakzad ldquoIon acoustic solitary waves in plasma withnonthermal electron positron and warm ionrdquo Astrophysics andSpace Science vol 323 no 4 pp 345ndash350 2009

[12] S Ghosh and R Bharuthram ldquoIon acoustic solitons and doublelayers in electron-positron-ion plasmas with dust particulatesrdquoAstrophysics and Space Science vol 314 no 1-3 pp 121ndash127 2008

[13] N Jehan W Masood and A M Mirza ldquoPlanar and nonplanardust acoustic solitary waves in electronpositron-ion- dust plas-masrdquo Physica Scripta vol 80 no 3 Article ID 035506 2009

[14] R A Cairns A A Mamun R Bingham and P K ShuklaldquoIon acoustic solitons in a magnetised plasma with nonthermalelectronsrdquo Physica Scripta vol 63 pp 80ndash86 1996

[15] B Ghosh S Banerjee and S N Paul ldquoEffect of non-thermalelectrons andwarmnegative ions on ion-acoustic solitarywavesinmulti-component drifting plasmardquo Indian Journal of Pure andApplied Physics vol 51 no 7 pp 488ndash493 2013

[16] B Ghosh S N Paul C Das I Paul and S Banerjee ldquoElectro-static double layers in amulticomponent drifting plasma havingnonthermal electronsrdquo Brazilian Journal of Physics vol 43 no1-2 pp 28ndash33 2013

[17] P O Dovner A I Eriksson R Bostrom and B Holback ldquoFrejamultiprobe observations of electrostatic solitary structuresrdquoGeophysical Research Letters vol 21 no 17 pp 1827ndash1830 1994

[18] R Bostrom G Gustafsson B Holback G Holmgren HKoskinen and P Kintner ldquoCharacteristics of solitary waves andweak double layers in the magnetospheric plasmardquo PhysicalReview Letters vol 61 no 1 pp 82ndash85 1988

[19] R A Cairns A A Mamun R Bingham et al ldquoElectro-static solitary structures in non-thermal plasmasrdquo GeophysicalResearch Letters vol 22 no 20 pp 2709ndash2712 1995

[20] M Salahuddin H Saleem and M Saddiq ldquoIon-acoustic enve-lope solitons in electron-positron-ion plasmasrdquo Physical ReviewE vol 66 no 3 Article ID 036407 2002

[21] T S Gill C Bedi and A S Bains ldquoEnvelope excitations of ionacoustic solitary waves in a plasma with superthermal electronsand positronsrdquo Physica Scripta vol 81 no 5 Article ID 0555032010

[22] GMurtaza andM Salahuddin ldquoModulational instability of ionacoustic waves in a magnetised plasmardquo Plasma Physics vol 24no 5 pp 451ndash456 1982

[23] Yashvir T N Bhatnagar and S R Sharma ldquoNonlinear ion-acoustic waves and solitons in warm-ion magnetized plasmardquoPlasma Physics and Controlled Fusion vol 26 no 11 article 004pp 1303ndash1310 1984

[24] J K Chawla M K Mishra and R S Tiwari ldquoModulationalinstability of ion-acoustic waves in electron-positron-ion plas-masrdquoAstrophysics and Space Science vol 347 pp 283ndash292 2013

[25] T K Baluku andM A Hellberg ldquoIon acoustic solitary waves inan electron-positron-ion plasma with non-thermal electronsrdquoPlasma Physics and Controlled Fusion vol 53 no 9 Article ID095007 2011

[26] A E Dubinov and M A Sazonkin ldquoNonlinear theory of ion-acoustic waves in an electron-positron-ion plasmardquo PlasmaPhysics Reports vol 35 no 1 pp 14ndash24 2009

[27] S Mahmood S Siddiqui and N Jehan ldquoModulational instabil-ity of ion acousticwavewithwarm ions in electron-positron-ionplasmasrdquo Physics of Plasmas vol 18 no 5 Article ID 0523092011

[28] A S BainsN S Saini andT SGill ldquoModulational instability ofion-acoustic soliton in electron-positron-ion plasma with dustparticulatesrdquo Astrophysics and Space Science vol 343 no 1 pp293ndash299 2013

[29] P Eslami M Mottaghizadeh and H R Pakzad ldquoModulationalinstability of ion acoustic waves in e-p-i plasmas with electronsand positrons following a q-nonextensive distributionrdquo Physicsof Plasmas vol 18 no 10 Article ID 102313 2011

[30] J Zhang Y Wang and L Wu ldquoModulation instability of ionacoustic waves solitons and their interactions in nonthermalelectron-positron-ion plasmasrdquo Physics of Plasmas vol 16 no6 Article ID 062102 2009

[31] T S Gill A S Bains N S Saini and C Bedi ldquoIon-acousticenvelope excitations in electron-positron-ion plasma with non-thermal electronsrdquo Physics Letters A vol 374 no 31-32 pp3210ndash3215 2010

8 Journal of Astrophysics

[32] B Ghosh S N Paul C Das and I Paul ldquoModulationalinstability of high frequency surface waves on warm plasmahalf-spacerdquo Canadian Journal of Physics vol 90 no 3 pp 291ndash297 2012

[33] B Ghosh and K P Das ldquoModulational instability of electronplasma waves in a cylindrical wave guiderdquo Plasma Physics andControlled Fusion vol 27 no 9 pp 969ndash982 1985

[34] B Ghosh S Chandra and S N Paul ldquoAmplitudemodulation ofelectron plasmawaves in a quantumplasmardquoPhysics of Plasmasvol 18 no 1 Article ID 012106 2011

[35] H R Pakzad ldquoIon acoustic solitary waves in plasma withnonthermal electron and positronrdquo Physics Letters A GeneralAtomic and Solid State Physics vol 373 no 8-9 pp 847ndash8502009

[36] T Kakutani and N Sugimoto ldquoKrylov-Bogoliubov-Mitr-opolsky method for nonlinear wave modulationrdquo The Physicsof Fluids vol 17 pp 1617ndash1625 1974

Submit your manuscripts athttpwwwhindawicom

Hindawi Publishing Corporationhttpwwwhindawicom Volume 2014

High Energy PhysicsAdvances in

The Scientific World JournalHindawi Publishing Corporation httpwwwhindawicom Volume 2014

Hindawi Publishing Corporationhttpwwwhindawicom Volume 2014

FluidsJournal of

Atomic and Molecular Physics

Journal of

Hindawi Publishing Corporationhttpwwwhindawicom Volume 2014

Hindawi Publishing Corporationhttpwwwhindawicom Volume 2014

Advances in Condensed Matter Physics

OpticsInternational Journal of

Hindawi Publishing Corporationhttpwwwhindawicom Volume 2014

Hindawi Publishing Corporationhttpwwwhindawicom Volume 2014

AstronomyAdvances in

International Journal of

Hindawi Publishing Corporationhttpwwwhindawicom Volume 2014

Superconductivity

Hindawi Publishing Corporationhttpwwwhindawicom Volume 2014

Statistical MechanicsInternational Journal of

Hindawi Publishing Corporationhttpwwwhindawicom Volume 2014

GravityJournal of

Hindawi Publishing Corporationhttpwwwhindawicom Volume 2014

AstrophysicsJournal of

Hindawi Publishing Corporationhttpwwwhindawicom Volume 2014

Physics Research International

Hindawi Publishing Corporationhttpwwwhindawicom Volume 2014

Solid State PhysicsJournal of

 Computational  Methods in Physics

Journal of

Hindawi Publishing Corporationhttpwwwhindawicom Volume 2014

Hindawi Publishing Corporationhttpwwwhindawicom Volume 2014

Soft MatterJournal of

Hindawi Publishing Corporationhttpwwwhindawicom

AerodynamicsJournal of

Volume 2014

Hindawi Publishing Corporationhttpwwwhindawicom Volume 2014

PhotonicsJournal of

Hindawi Publishing Corporationhttpwwwhindawicom Volume 2014

Journal of

Biophysics

Hindawi Publishing Corporationhttpwwwhindawicom Volume 2014

ThermodynamicsJournal of

Page 5: Research Article Modulation Instability of Ion-Acoustic Waves ...downloads.hindawi.com/journals/jas/2014/785670.pdfsech 7 ]! \ 8 , where ] istheenvelopespeedand\ is the spatial width

Journal of Astrophysics 5

where 120588 and 120579 are two real variables Solving the resultingequations for 120588 and 120579with119875119876 lt 0we get the following brightenvelope soliton solution

120588 =

radic2 |119875119876|

119871

sech(

120585 minus 119880120591

119871

) (23)

where 119880 is the envelope speed and 119871 is the spatial width ofthe pulse It encloses high frequency carrier oscillations andvanishes at infinity On the other hand if 119875119876 gt 0 a stablegray or dark soliton (a potential hole or a localized region ofdeceased amplitude) is obtained

120588 =

radic2119875119876

119871119889

radic1 minus 1198892sech2 (120585 minus 119880120591

119871

) (24)

where the parameter 119889 determines the depth of the modula-tion For 119889 = 1 we get a dark soliton

120588 =

radic2119875119876

119871119889

tanh(

120585 minus 119880120591

119871

) (25)

Thus the sign of the product 119875119876 determines the stabil-ityinstability profile of IAWs as well as the type of solitonstructureThe soliton width is determined by the ratio |119875119876|

We have numerically examined different parametricregionswhere someof the above excitationsmay occurAs thecoefficients119875 and119876 depend on nonthermal parameter120573 ion-to-electron temperature ratio 120590

119894 and positron-to-electron

concentration ratio 120594 these parameters would definitelydetermine the modulational instability and the formationof envelope solitons Numerical plots in Figures 1ndash3 show119875119876 as a function of 119896 for different values of 120573 120590

119894 and 120594

It shows that the IAWs remain modulationally stable for 119896

less than certain critical value 119896119888and for 119896 gt 119896

119888the wave is

modulationally unstableIn Figure 1 the variation of 119875119876 with wave number has

been plotted for different values of nonthermal parameter (120573)keeping positron concentration (120594) and ion temperature (120590

119894)

fixed It shows that as 120573 increases the value of critical wavenumber separating stable and unstable regions decreases It isalso noticed that as 120573 increases the width of the dark solitonsincreases but that of the bright solitons decreases

In Figure 2 119875119876 is plotted as function of 119896 for differentvalues of ion temperature (120590

119894) taking other plasmaparameters

such as positron concentration (120594) and nonthermal parame-ter (120573) as constant It is seen that as 120590

119894increases critical wave

number decreases the width of dark solitons increases butthat of bright solitons decreases

Figure 3 is a 119875119876 versus wave number plot for differentvalues of positron concentration (120594) keeping the values ofnonthermal parameter (120573) and ion temperature (120590

119894) constant

It shows that as the value of 120594 increases the critical wavenumber increases The width of dark solitons decreases andthat of bright solitons increases as 120594 increases

Qualitatively these results agree with those obtained byGill et al [31] but quantitatively there are differences Wefind that the critical wave number is more sensitive to thevariation in 120573 120590

119894 and 120594 than that predicted by Gill et al [31]

PQ

minus2

20

2

0

1510

ab

c

a 120573 = 0

b 120573 = 0055

c 120573 = 011

Wave number

Figure 1 Plot of 119875119876 versus wave number 119896 for different values ofnonthermal parameter (120573) Curves labelled a b and c correspondto 120573 = 0 0055 and 011 respectively 120594 = 022 120590

119901= 001 and

120590119894= 002

32

a 120590i = 00145

b 120590i = 00155

c 120590i = 00165

Wave number

abc

PQ

1

0

minus1

Figure 2 Plot of 119875119876 versus wave number 119896 for different values ofion temperature (120590

119894) Curves labelled a b and c correspond to 120590

119894=

00145 00155 and 00165 respectively 120594 = 02 120590119901

= 0015 and120573 = 0022

In addition we have numerically studied the dependence ofgrowth rate of instability on all the plasma parameters 120573 120590

119894

and 120594The results are shown in Figures 4 5 and 6 It is shownthat the growth rate of instability increases with increase inthe nonthermality of electrons and ion temperature but theincrease of positron concentration reduces instability growthrate

6 Journal of AstrophysicsPQ

05

00

minus05

21

a 120594 = 025

b 120594 = 026

c 120594 = 027

Wave number

a b c

Figure 3 Plot of 119875119876 versus wave number 119896 for different values ofpositron concentration (120594) Curves labelled a b and c correspondto 120594 = 025 026 and 027 respectively 120573 = 0022 120590

119901= 001 and

120590119894= 0052

2

1

0

1

a 120573 = 0

b 120573 = 0055

c 120573 = 011

Wave number

a

b

c

Gro

wth

rate

Figure 4 Plot of growth rate versus wave number 119896 for differentvalues of nonthermal parameter (120573) Curves labelled a b and ccorrespond to 120573 = 0 0055 and 011 respectively 120594 = 002 120590

119901=

001 and 120590119894= 0002

5 Conclusions

In the present work we have investigated modulationalinstability and envelope excitations of IAWs in the 119890-119901-119894 plasma in detail including simultaneously the effects ofnonthermality of electrons and temperatures of ions Ourmain findings are summarized below

15

10

05

00

12 16

a 120590i = 00012

b 120590i = 00024

c 120590i = 00036

Wave number

a

b

c

Gro

wth

rate

Figure 5 Plot of growth rate versus wave number 119896 for differentvalues of ion temperature (120590

119894) Curves labelled a b and c correspond

to 120590119894= 00012 00024 and 00036 respectively 120594 = 0001 120590

119901=

001 and 120573 = 0001

a 120594 = 0

b 120594 = 002

c 120594 = 004

Wave number

a

b

c

Gro

wth

rate

2

1

0

201510

Figure 6 Plot of growth rate versus wave number 119896 for differentvalues of positron concentration (120594) Curves labelled a b and ccorrespond to 120594 = 0 002 and 004 respectively 120573 = 001 120590

119901=

001 and 120590119894= 001

(i) The wave frequency increases with increase innonthermality of electrons and the temperature ofions whereas the increase in positron concentrationdecreases the wave frequency

(ii) There exists a critical wave number 119896119888below which

thewave ismodulationally stable and abovewhich thewave is modulationally unstable

Journal of Astrophysics 7

(iii) The value of the critical wave number and the char-acteristics of brightdark envelope solitons dependsignificantly on the nonthermal parameter (120573) iontemperature (120590

119894) and positron concentration (120594)

Finally we would like to mention that the results pre-sented in this paper may be useful to explain modulationalinstability and envelope soliton excitations of IAWs in someastrophysical and space environments where 119890-119901-119894 plasmaswith nonthermal electrons are present

Conflict of Interests

The authors declare that there is no conflict of interestsregarding the publication of this paper

Acknowledgment

The authors would like to thank the reviewers for varioussuggestions and helpful comments in bringing the paper tothe present form

References

[1] H R Miller and P J Witta Active Galactic Nuclei SpringerBerlin Germany 1978

[2] F C Michel ldquoTheory of pulsar magnetospheresrdquo Reviews ofModern Physics vol 54 no 1 pp 1ndash66 1982

[3] F C Michel Theory of Neutron Star Magnetosphere ChicagoUniversity Press Chicago Ill USA 1991

[4] M I Barns Positron Electron Pairs in Astrophysics AmericanInstitute of Physics New York NY USA 1983

[5] W K Misner S Thorne and J A Wheeler GravitationFreeman San Francisco Calif USA 1973

[6] M J Rees G W Gibbons S W Hawking and S SiklasedsTheEarly Universe Cambridge University Press Cambridge UK1983

[7] E Tandberg-Hanssen and A Gordon Emslie The Physics ofSolar Flares CambridgeUniversity Press Cambridge UK 1988

[8] A Cairns R Bingham R O Dendy C M C Nairn P KShukla and A A Mamun ldquoIon sound solitary waves withdensity depressionsrdquo Journal of Physics IV France vol 5 no C6pp 43ndash48 1995

[9] S I Popel S V Vladimirov and P K Shukla ldquoIon-acousticsolitons in electron-positron-ion plasmasrdquo Physics of Plasmasvol 2 no 3 pp 716ndash719 1995

[10] Y N Nejoh ldquoThe effect of the ion temperature on large ampli-tude ion-acoustic waves in an electron-positron-ion plasmardquoPhysics of Plasmas vol 3 no 4 pp 1447ndash1451 1996

[11] H R Pakzad ldquoIon acoustic solitary waves in plasma withnonthermal electron positron and warm ionrdquo Astrophysics andSpace Science vol 323 no 4 pp 345ndash350 2009

[12] S Ghosh and R Bharuthram ldquoIon acoustic solitons and doublelayers in electron-positron-ion plasmas with dust particulatesrdquoAstrophysics and Space Science vol 314 no 1-3 pp 121ndash127 2008

[13] N Jehan W Masood and A M Mirza ldquoPlanar and nonplanardust acoustic solitary waves in electronpositron-ion- dust plas-masrdquo Physica Scripta vol 80 no 3 Article ID 035506 2009

[14] R A Cairns A A Mamun R Bingham and P K ShuklaldquoIon acoustic solitons in a magnetised plasma with nonthermalelectronsrdquo Physica Scripta vol 63 pp 80ndash86 1996

[15] B Ghosh S Banerjee and S N Paul ldquoEffect of non-thermalelectrons andwarmnegative ions on ion-acoustic solitarywavesinmulti-component drifting plasmardquo Indian Journal of Pure andApplied Physics vol 51 no 7 pp 488ndash493 2013

[16] B Ghosh S N Paul C Das I Paul and S Banerjee ldquoElectro-static double layers in amulticomponent drifting plasma havingnonthermal electronsrdquo Brazilian Journal of Physics vol 43 no1-2 pp 28ndash33 2013

[17] P O Dovner A I Eriksson R Bostrom and B Holback ldquoFrejamultiprobe observations of electrostatic solitary structuresrdquoGeophysical Research Letters vol 21 no 17 pp 1827ndash1830 1994

[18] R Bostrom G Gustafsson B Holback G Holmgren HKoskinen and P Kintner ldquoCharacteristics of solitary waves andweak double layers in the magnetospheric plasmardquo PhysicalReview Letters vol 61 no 1 pp 82ndash85 1988

[19] R A Cairns A A Mamun R Bingham et al ldquoElectro-static solitary structures in non-thermal plasmasrdquo GeophysicalResearch Letters vol 22 no 20 pp 2709ndash2712 1995

[20] M Salahuddin H Saleem and M Saddiq ldquoIon-acoustic enve-lope solitons in electron-positron-ion plasmasrdquo Physical ReviewE vol 66 no 3 Article ID 036407 2002

[21] T S Gill C Bedi and A S Bains ldquoEnvelope excitations of ionacoustic solitary waves in a plasma with superthermal electronsand positronsrdquo Physica Scripta vol 81 no 5 Article ID 0555032010

[22] GMurtaza andM Salahuddin ldquoModulational instability of ionacoustic waves in a magnetised plasmardquo Plasma Physics vol 24no 5 pp 451ndash456 1982

[23] Yashvir T N Bhatnagar and S R Sharma ldquoNonlinear ion-acoustic waves and solitons in warm-ion magnetized plasmardquoPlasma Physics and Controlled Fusion vol 26 no 11 article 004pp 1303ndash1310 1984

[24] J K Chawla M K Mishra and R S Tiwari ldquoModulationalinstability of ion-acoustic waves in electron-positron-ion plas-masrdquoAstrophysics and Space Science vol 347 pp 283ndash292 2013

[25] T K Baluku andM A Hellberg ldquoIon acoustic solitary waves inan electron-positron-ion plasma with non-thermal electronsrdquoPlasma Physics and Controlled Fusion vol 53 no 9 Article ID095007 2011

[26] A E Dubinov and M A Sazonkin ldquoNonlinear theory of ion-acoustic waves in an electron-positron-ion plasmardquo PlasmaPhysics Reports vol 35 no 1 pp 14ndash24 2009

[27] S Mahmood S Siddiqui and N Jehan ldquoModulational instabil-ity of ion acousticwavewithwarm ions in electron-positron-ionplasmasrdquo Physics of Plasmas vol 18 no 5 Article ID 0523092011

[28] A S BainsN S Saini andT SGill ldquoModulational instability ofion-acoustic soliton in electron-positron-ion plasma with dustparticulatesrdquo Astrophysics and Space Science vol 343 no 1 pp293ndash299 2013

[29] P Eslami M Mottaghizadeh and H R Pakzad ldquoModulationalinstability of ion acoustic waves in e-p-i plasmas with electronsand positrons following a q-nonextensive distributionrdquo Physicsof Plasmas vol 18 no 10 Article ID 102313 2011

[30] J Zhang Y Wang and L Wu ldquoModulation instability of ionacoustic waves solitons and their interactions in nonthermalelectron-positron-ion plasmasrdquo Physics of Plasmas vol 16 no6 Article ID 062102 2009

[31] T S Gill A S Bains N S Saini and C Bedi ldquoIon-acousticenvelope excitations in electron-positron-ion plasma with non-thermal electronsrdquo Physics Letters A vol 374 no 31-32 pp3210ndash3215 2010

8 Journal of Astrophysics

[32] B Ghosh S N Paul C Das and I Paul ldquoModulationalinstability of high frequency surface waves on warm plasmahalf-spacerdquo Canadian Journal of Physics vol 90 no 3 pp 291ndash297 2012

[33] B Ghosh and K P Das ldquoModulational instability of electronplasma waves in a cylindrical wave guiderdquo Plasma Physics andControlled Fusion vol 27 no 9 pp 969ndash982 1985

[34] B Ghosh S Chandra and S N Paul ldquoAmplitudemodulation ofelectron plasmawaves in a quantumplasmardquoPhysics of Plasmasvol 18 no 1 Article ID 012106 2011

[35] H R Pakzad ldquoIon acoustic solitary waves in plasma withnonthermal electron and positronrdquo Physics Letters A GeneralAtomic and Solid State Physics vol 373 no 8-9 pp 847ndash8502009

[36] T Kakutani and N Sugimoto ldquoKrylov-Bogoliubov-Mitr-opolsky method for nonlinear wave modulationrdquo The Physicsof Fluids vol 17 pp 1617ndash1625 1974

Submit your manuscripts athttpwwwhindawicom

Hindawi Publishing Corporationhttpwwwhindawicom Volume 2014

High Energy PhysicsAdvances in

The Scientific World JournalHindawi Publishing Corporation httpwwwhindawicom Volume 2014

Hindawi Publishing Corporationhttpwwwhindawicom Volume 2014

FluidsJournal of

Atomic and Molecular Physics

Journal of

Hindawi Publishing Corporationhttpwwwhindawicom Volume 2014

Hindawi Publishing Corporationhttpwwwhindawicom Volume 2014

Advances in Condensed Matter Physics

OpticsInternational Journal of

Hindawi Publishing Corporationhttpwwwhindawicom Volume 2014

Hindawi Publishing Corporationhttpwwwhindawicom Volume 2014

AstronomyAdvances in

International Journal of

Hindawi Publishing Corporationhttpwwwhindawicom Volume 2014

Superconductivity

Hindawi Publishing Corporationhttpwwwhindawicom Volume 2014

Statistical MechanicsInternational Journal of

Hindawi Publishing Corporationhttpwwwhindawicom Volume 2014

GravityJournal of

Hindawi Publishing Corporationhttpwwwhindawicom Volume 2014

AstrophysicsJournal of

Hindawi Publishing Corporationhttpwwwhindawicom Volume 2014

Physics Research International

Hindawi Publishing Corporationhttpwwwhindawicom Volume 2014

Solid State PhysicsJournal of

 Computational  Methods in Physics

Journal of

Hindawi Publishing Corporationhttpwwwhindawicom Volume 2014

Hindawi Publishing Corporationhttpwwwhindawicom Volume 2014

Soft MatterJournal of

Hindawi Publishing Corporationhttpwwwhindawicom

AerodynamicsJournal of

Volume 2014

Hindawi Publishing Corporationhttpwwwhindawicom Volume 2014

PhotonicsJournal of

Hindawi Publishing Corporationhttpwwwhindawicom Volume 2014

Journal of

Biophysics

Hindawi Publishing Corporationhttpwwwhindawicom Volume 2014

ThermodynamicsJournal of

Page 6: Research Article Modulation Instability of Ion-Acoustic Waves ...downloads.hindawi.com/journals/jas/2014/785670.pdfsech 7 ]! \ 8 , where ] istheenvelopespeedand\ is the spatial width

6 Journal of AstrophysicsPQ

05

00

minus05

21

a 120594 = 025

b 120594 = 026

c 120594 = 027

Wave number

a b c

Figure 3 Plot of 119875119876 versus wave number 119896 for different values ofpositron concentration (120594) Curves labelled a b and c correspondto 120594 = 025 026 and 027 respectively 120573 = 0022 120590

119901= 001 and

120590119894= 0052

2

1

0

1

a 120573 = 0

b 120573 = 0055

c 120573 = 011

Wave number

a

b

c

Gro

wth

rate

Figure 4 Plot of growth rate versus wave number 119896 for differentvalues of nonthermal parameter (120573) Curves labelled a b and ccorrespond to 120573 = 0 0055 and 011 respectively 120594 = 002 120590

119901=

001 and 120590119894= 0002

5 Conclusions

In the present work we have investigated modulationalinstability and envelope excitations of IAWs in the 119890-119901-119894 plasma in detail including simultaneously the effects ofnonthermality of electrons and temperatures of ions Ourmain findings are summarized below

15

10

05

00

12 16

a 120590i = 00012

b 120590i = 00024

c 120590i = 00036

Wave number

a

b

c

Gro

wth

rate

Figure 5 Plot of growth rate versus wave number 119896 for differentvalues of ion temperature (120590

119894) Curves labelled a b and c correspond

to 120590119894= 00012 00024 and 00036 respectively 120594 = 0001 120590

119901=

001 and 120573 = 0001

a 120594 = 0

b 120594 = 002

c 120594 = 004

Wave number

a

b

c

Gro

wth

rate

2

1

0

201510

Figure 6 Plot of growth rate versus wave number 119896 for differentvalues of positron concentration (120594) Curves labelled a b and ccorrespond to 120594 = 0 002 and 004 respectively 120573 = 001 120590

119901=

001 and 120590119894= 001

(i) The wave frequency increases with increase innonthermality of electrons and the temperature ofions whereas the increase in positron concentrationdecreases the wave frequency

(ii) There exists a critical wave number 119896119888below which

thewave ismodulationally stable and abovewhich thewave is modulationally unstable

Journal of Astrophysics 7

(iii) The value of the critical wave number and the char-acteristics of brightdark envelope solitons dependsignificantly on the nonthermal parameter (120573) iontemperature (120590

119894) and positron concentration (120594)

Finally we would like to mention that the results pre-sented in this paper may be useful to explain modulationalinstability and envelope soliton excitations of IAWs in someastrophysical and space environments where 119890-119901-119894 plasmaswith nonthermal electrons are present

Conflict of Interests

The authors declare that there is no conflict of interestsregarding the publication of this paper

Acknowledgment

The authors would like to thank the reviewers for varioussuggestions and helpful comments in bringing the paper tothe present form

References

[1] H R Miller and P J Witta Active Galactic Nuclei SpringerBerlin Germany 1978

[2] F C Michel ldquoTheory of pulsar magnetospheresrdquo Reviews ofModern Physics vol 54 no 1 pp 1ndash66 1982

[3] F C Michel Theory of Neutron Star Magnetosphere ChicagoUniversity Press Chicago Ill USA 1991

[4] M I Barns Positron Electron Pairs in Astrophysics AmericanInstitute of Physics New York NY USA 1983

[5] W K Misner S Thorne and J A Wheeler GravitationFreeman San Francisco Calif USA 1973

[6] M J Rees G W Gibbons S W Hawking and S SiklasedsTheEarly Universe Cambridge University Press Cambridge UK1983

[7] E Tandberg-Hanssen and A Gordon Emslie The Physics ofSolar Flares CambridgeUniversity Press Cambridge UK 1988

[8] A Cairns R Bingham R O Dendy C M C Nairn P KShukla and A A Mamun ldquoIon sound solitary waves withdensity depressionsrdquo Journal of Physics IV France vol 5 no C6pp 43ndash48 1995

[9] S I Popel S V Vladimirov and P K Shukla ldquoIon-acousticsolitons in electron-positron-ion plasmasrdquo Physics of Plasmasvol 2 no 3 pp 716ndash719 1995

[10] Y N Nejoh ldquoThe effect of the ion temperature on large ampli-tude ion-acoustic waves in an electron-positron-ion plasmardquoPhysics of Plasmas vol 3 no 4 pp 1447ndash1451 1996

[11] H R Pakzad ldquoIon acoustic solitary waves in plasma withnonthermal electron positron and warm ionrdquo Astrophysics andSpace Science vol 323 no 4 pp 345ndash350 2009

[12] S Ghosh and R Bharuthram ldquoIon acoustic solitons and doublelayers in electron-positron-ion plasmas with dust particulatesrdquoAstrophysics and Space Science vol 314 no 1-3 pp 121ndash127 2008

[13] N Jehan W Masood and A M Mirza ldquoPlanar and nonplanardust acoustic solitary waves in electronpositron-ion- dust plas-masrdquo Physica Scripta vol 80 no 3 Article ID 035506 2009

[14] R A Cairns A A Mamun R Bingham and P K ShuklaldquoIon acoustic solitons in a magnetised plasma with nonthermalelectronsrdquo Physica Scripta vol 63 pp 80ndash86 1996

[15] B Ghosh S Banerjee and S N Paul ldquoEffect of non-thermalelectrons andwarmnegative ions on ion-acoustic solitarywavesinmulti-component drifting plasmardquo Indian Journal of Pure andApplied Physics vol 51 no 7 pp 488ndash493 2013

[16] B Ghosh S N Paul C Das I Paul and S Banerjee ldquoElectro-static double layers in amulticomponent drifting plasma havingnonthermal electronsrdquo Brazilian Journal of Physics vol 43 no1-2 pp 28ndash33 2013

[17] P O Dovner A I Eriksson R Bostrom and B Holback ldquoFrejamultiprobe observations of electrostatic solitary structuresrdquoGeophysical Research Letters vol 21 no 17 pp 1827ndash1830 1994

[18] R Bostrom G Gustafsson B Holback G Holmgren HKoskinen and P Kintner ldquoCharacteristics of solitary waves andweak double layers in the magnetospheric plasmardquo PhysicalReview Letters vol 61 no 1 pp 82ndash85 1988

[19] R A Cairns A A Mamun R Bingham et al ldquoElectro-static solitary structures in non-thermal plasmasrdquo GeophysicalResearch Letters vol 22 no 20 pp 2709ndash2712 1995

[20] M Salahuddin H Saleem and M Saddiq ldquoIon-acoustic enve-lope solitons in electron-positron-ion plasmasrdquo Physical ReviewE vol 66 no 3 Article ID 036407 2002

[21] T S Gill C Bedi and A S Bains ldquoEnvelope excitations of ionacoustic solitary waves in a plasma with superthermal electronsand positronsrdquo Physica Scripta vol 81 no 5 Article ID 0555032010

[22] GMurtaza andM Salahuddin ldquoModulational instability of ionacoustic waves in a magnetised plasmardquo Plasma Physics vol 24no 5 pp 451ndash456 1982

[23] Yashvir T N Bhatnagar and S R Sharma ldquoNonlinear ion-acoustic waves and solitons in warm-ion magnetized plasmardquoPlasma Physics and Controlled Fusion vol 26 no 11 article 004pp 1303ndash1310 1984

[24] J K Chawla M K Mishra and R S Tiwari ldquoModulationalinstability of ion-acoustic waves in electron-positron-ion plas-masrdquoAstrophysics and Space Science vol 347 pp 283ndash292 2013

[25] T K Baluku andM A Hellberg ldquoIon acoustic solitary waves inan electron-positron-ion plasma with non-thermal electronsrdquoPlasma Physics and Controlled Fusion vol 53 no 9 Article ID095007 2011

[26] A E Dubinov and M A Sazonkin ldquoNonlinear theory of ion-acoustic waves in an electron-positron-ion plasmardquo PlasmaPhysics Reports vol 35 no 1 pp 14ndash24 2009

[27] S Mahmood S Siddiqui and N Jehan ldquoModulational instabil-ity of ion acousticwavewithwarm ions in electron-positron-ionplasmasrdquo Physics of Plasmas vol 18 no 5 Article ID 0523092011

[28] A S BainsN S Saini andT SGill ldquoModulational instability ofion-acoustic soliton in electron-positron-ion plasma with dustparticulatesrdquo Astrophysics and Space Science vol 343 no 1 pp293ndash299 2013

[29] P Eslami M Mottaghizadeh and H R Pakzad ldquoModulationalinstability of ion acoustic waves in e-p-i plasmas with electronsand positrons following a q-nonextensive distributionrdquo Physicsof Plasmas vol 18 no 10 Article ID 102313 2011

[30] J Zhang Y Wang and L Wu ldquoModulation instability of ionacoustic waves solitons and their interactions in nonthermalelectron-positron-ion plasmasrdquo Physics of Plasmas vol 16 no6 Article ID 062102 2009

[31] T S Gill A S Bains N S Saini and C Bedi ldquoIon-acousticenvelope excitations in electron-positron-ion plasma with non-thermal electronsrdquo Physics Letters A vol 374 no 31-32 pp3210ndash3215 2010

8 Journal of Astrophysics

[32] B Ghosh S N Paul C Das and I Paul ldquoModulationalinstability of high frequency surface waves on warm plasmahalf-spacerdquo Canadian Journal of Physics vol 90 no 3 pp 291ndash297 2012

[33] B Ghosh and K P Das ldquoModulational instability of electronplasma waves in a cylindrical wave guiderdquo Plasma Physics andControlled Fusion vol 27 no 9 pp 969ndash982 1985

[34] B Ghosh S Chandra and S N Paul ldquoAmplitudemodulation ofelectron plasmawaves in a quantumplasmardquoPhysics of Plasmasvol 18 no 1 Article ID 012106 2011

[35] H R Pakzad ldquoIon acoustic solitary waves in plasma withnonthermal electron and positronrdquo Physics Letters A GeneralAtomic and Solid State Physics vol 373 no 8-9 pp 847ndash8502009

[36] T Kakutani and N Sugimoto ldquoKrylov-Bogoliubov-Mitr-opolsky method for nonlinear wave modulationrdquo The Physicsof Fluids vol 17 pp 1617ndash1625 1974

Submit your manuscripts athttpwwwhindawicom

Hindawi Publishing Corporationhttpwwwhindawicom Volume 2014

High Energy PhysicsAdvances in

The Scientific World JournalHindawi Publishing Corporation httpwwwhindawicom Volume 2014

Hindawi Publishing Corporationhttpwwwhindawicom Volume 2014

FluidsJournal of

Atomic and Molecular Physics

Journal of

Hindawi Publishing Corporationhttpwwwhindawicom Volume 2014

Hindawi Publishing Corporationhttpwwwhindawicom Volume 2014

Advances in Condensed Matter Physics

OpticsInternational Journal of

Hindawi Publishing Corporationhttpwwwhindawicom Volume 2014

Hindawi Publishing Corporationhttpwwwhindawicom Volume 2014

AstronomyAdvances in

International Journal of

Hindawi Publishing Corporationhttpwwwhindawicom Volume 2014

Superconductivity

Hindawi Publishing Corporationhttpwwwhindawicom Volume 2014

Statistical MechanicsInternational Journal of

Hindawi Publishing Corporationhttpwwwhindawicom Volume 2014

GravityJournal of

Hindawi Publishing Corporationhttpwwwhindawicom Volume 2014

AstrophysicsJournal of

Hindawi Publishing Corporationhttpwwwhindawicom Volume 2014

Physics Research International

Hindawi Publishing Corporationhttpwwwhindawicom Volume 2014

Solid State PhysicsJournal of

 Computational  Methods in Physics

Journal of

Hindawi Publishing Corporationhttpwwwhindawicom Volume 2014

Hindawi Publishing Corporationhttpwwwhindawicom Volume 2014

Soft MatterJournal of

Hindawi Publishing Corporationhttpwwwhindawicom

AerodynamicsJournal of

Volume 2014

Hindawi Publishing Corporationhttpwwwhindawicom Volume 2014

PhotonicsJournal of

Hindawi Publishing Corporationhttpwwwhindawicom Volume 2014

Journal of

Biophysics

Hindawi Publishing Corporationhttpwwwhindawicom Volume 2014

ThermodynamicsJournal of

Page 7: Research Article Modulation Instability of Ion-Acoustic Waves ...downloads.hindawi.com/journals/jas/2014/785670.pdfsech 7 ]! \ 8 , where ] istheenvelopespeedand\ is the spatial width

Journal of Astrophysics 7

(iii) The value of the critical wave number and the char-acteristics of brightdark envelope solitons dependsignificantly on the nonthermal parameter (120573) iontemperature (120590

119894) and positron concentration (120594)

Finally we would like to mention that the results pre-sented in this paper may be useful to explain modulationalinstability and envelope soliton excitations of IAWs in someastrophysical and space environments where 119890-119901-119894 plasmaswith nonthermal electrons are present

Conflict of Interests

The authors declare that there is no conflict of interestsregarding the publication of this paper

Acknowledgment

The authors would like to thank the reviewers for varioussuggestions and helpful comments in bringing the paper tothe present form

References

[1] H R Miller and P J Witta Active Galactic Nuclei SpringerBerlin Germany 1978

[2] F C Michel ldquoTheory of pulsar magnetospheresrdquo Reviews ofModern Physics vol 54 no 1 pp 1ndash66 1982

[3] F C Michel Theory of Neutron Star Magnetosphere ChicagoUniversity Press Chicago Ill USA 1991

[4] M I Barns Positron Electron Pairs in Astrophysics AmericanInstitute of Physics New York NY USA 1983

[5] W K Misner S Thorne and J A Wheeler GravitationFreeman San Francisco Calif USA 1973

[6] M J Rees G W Gibbons S W Hawking and S SiklasedsTheEarly Universe Cambridge University Press Cambridge UK1983

[7] E Tandberg-Hanssen and A Gordon Emslie The Physics ofSolar Flares CambridgeUniversity Press Cambridge UK 1988

[8] A Cairns R Bingham R O Dendy C M C Nairn P KShukla and A A Mamun ldquoIon sound solitary waves withdensity depressionsrdquo Journal of Physics IV France vol 5 no C6pp 43ndash48 1995

[9] S I Popel S V Vladimirov and P K Shukla ldquoIon-acousticsolitons in electron-positron-ion plasmasrdquo Physics of Plasmasvol 2 no 3 pp 716ndash719 1995

[10] Y N Nejoh ldquoThe effect of the ion temperature on large ampli-tude ion-acoustic waves in an electron-positron-ion plasmardquoPhysics of Plasmas vol 3 no 4 pp 1447ndash1451 1996

[11] H R Pakzad ldquoIon acoustic solitary waves in plasma withnonthermal electron positron and warm ionrdquo Astrophysics andSpace Science vol 323 no 4 pp 345ndash350 2009

[12] S Ghosh and R Bharuthram ldquoIon acoustic solitons and doublelayers in electron-positron-ion plasmas with dust particulatesrdquoAstrophysics and Space Science vol 314 no 1-3 pp 121ndash127 2008

[13] N Jehan W Masood and A M Mirza ldquoPlanar and nonplanardust acoustic solitary waves in electronpositron-ion- dust plas-masrdquo Physica Scripta vol 80 no 3 Article ID 035506 2009

[14] R A Cairns A A Mamun R Bingham and P K ShuklaldquoIon acoustic solitons in a magnetised plasma with nonthermalelectronsrdquo Physica Scripta vol 63 pp 80ndash86 1996

[15] B Ghosh S Banerjee and S N Paul ldquoEffect of non-thermalelectrons andwarmnegative ions on ion-acoustic solitarywavesinmulti-component drifting plasmardquo Indian Journal of Pure andApplied Physics vol 51 no 7 pp 488ndash493 2013

[16] B Ghosh S N Paul C Das I Paul and S Banerjee ldquoElectro-static double layers in amulticomponent drifting plasma havingnonthermal electronsrdquo Brazilian Journal of Physics vol 43 no1-2 pp 28ndash33 2013

[17] P O Dovner A I Eriksson R Bostrom and B Holback ldquoFrejamultiprobe observations of electrostatic solitary structuresrdquoGeophysical Research Letters vol 21 no 17 pp 1827ndash1830 1994

[18] R Bostrom G Gustafsson B Holback G Holmgren HKoskinen and P Kintner ldquoCharacteristics of solitary waves andweak double layers in the magnetospheric plasmardquo PhysicalReview Letters vol 61 no 1 pp 82ndash85 1988

[19] R A Cairns A A Mamun R Bingham et al ldquoElectro-static solitary structures in non-thermal plasmasrdquo GeophysicalResearch Letters vol 22 no 20 pp 2709ndash2712 1995

[20] M Salahuddin H Saleem and M Saddiq ldquoIon-acoustic enve-lope solitons in electron-positron-ion plasmasrdquo Physical ReviewE vol 66 no 3 Article ID 036407 2002

[21] T S Gill C Bedi and A S Bains ldquoEnvelope excitations of ionacoustic solitary waves in a plasma with superthermal electronsand positronsrdquo Physica Scripta vol 81 no 5 Article ID 0555032010

[22] GMurtaza andM Salahuddin ldquoModulational instability of ionacoustic waves in a magnetised plasmardquo Plasma Physics vol 24no 5 pp 451ndash456 1982

[23] Yashvir T N Bhatnagar and S R Sharma ldquoNonlinear ion-acoustic waves and solitons in warm-ion magnetized plasmardquoPlasma Physics and Controlled Fusion vol 26 no 11 article 004pp 1303ndash1310 1984

[24] J K Chawla M K Mishra and R S Tiwari ldquoModulationalinstability of ion-acoustic waves in electron-positron-ion plas-masrdquoAstrophysics and Space Science vol 347 pp 283ndash292 2013

[25] T K Baluku andM A Hellberg ldquoIon acoustic solitary waves inan electron-positron-ion plasma with non-thermal electronsrdquoPlasma Physics and Controlled Fusion vol 53 no 9 Article ID095007 2011

[26] A E Dubinov and M A Sazonkin ldquoNonlinear theory of ion-acoustic waves in an electron-positron-ion plasmardquo PlasmaPhysics Reports vol 35 no 1 pp 14ndash24 2009

[27] S Mahmood S Siddiqui and N Jehan ldquoModulational instabil-ity of ion acousticwavewithwarm ions in electron-positron-ionplasmasrdquo Physics of Plasmas vol 18 no 5 Article ID 0523092011

[28] A S BainsN S Saini andT SGill ldquoModulational instability ofion-acoustic soliton in electron-positron-ion plasma with dustparticulatesrdquo Astrophysics and Space Science vol 343 no 1 pp293ndash299 2013

[29] P Eslami M Mottaghizadeh and H R Pakzad ldquoModulationalinstability of ion acoustic waves in e-p-i plasmas with electronsand positrons following a q-nonextensive distributionrdquo Physicsof Plasmas vol 18 no 10 Article ID 102313 2011

[30] J Zhang Y Wang and L Wu ldquoModulation instability of ionacoustic waves solitons and their interactions in nonthermalelectron-positron-ion plasmasrdquo Physics of Plasmas vol 16 no6 Article ID 062102 2009

[31] T S Gill A S Bains N S Saini and C Bedi ldquoIon-acousticenvelope excitations in electron-positron-ion plasma with non-thermal electronsrdquo Physics Letters A vol 374 no 31-32 pp3210ndash3215 2010

8 Journal of Astrophysics

[32] B Ghosh S N Paul C Das and I Paul ldquoModulationalinstability of high frequency surface waves on warm plasmahalf-spacerdquo Canadian Journal of Physics vol 90 no 3 pp 291ndash297 2012

[33] B Ghosh and K P Das ldquoModulational instability of electronplasma waves in a cylindrical wave guiderdquo Plasma Physics andControlled Fusion vol 27 no 9 pp 969ndash982 1985

[34] B Ghosh S Chandra and S N Paul ldquoAmplitudemodulation ofelectron plasmawaves in a quantumplasmardquoPhysics of Plasmasvol 18 no 1 Article ID 012106 2011

[35] H R Pakzad ldquoIon acoustic solitary waves in plasma withnonthermal electron and positronrdquo Physics Letters A GeneralAtomic and Solid State Physics vol 373 no 8-9 pp 847ndash8502009

[36] T Kakutani and N Sugimoto ldquoKrylov-Bogoliubov-Mitr-opolsky method for nonlinear wave modulationrdquo The Physicsof Fluids vol 17 pp 1617ndash1625 1974

Submit your manuscripts athttpwwwhindawicom

Hindawi Publishing Corporationhttpwwwhindawicom Volume 2014

High Energy PhysicsAdvances in

The Scientific World JournalHindawi Publishing Corporation httpwwwhindawicom Volume 2014

Hindawi Publishing Corporationhttpwwwhindawicom Volume 2014

FluidsJournal of

Atomic and Molecular Physics

Journal of

Hindawi Publishing Corporationhttpwwwhindawicom Volume 2014

Hindawi Publishing Corporationhttpwwwhindawicom Volume 2014

Advances in Condensed Matter Physics

OpticsInternational Journal of

Hindawi Publishing Corporationhttpwwwhindawicom Volume 2014

Hindawi Publishing Corporationhttpwwwhindawicom Volume 2014

AstronomyAdvances in

International Journal of

Hindawi Publishing Corporationhttpwwwhindawicom Volume 2014

Superconductivity

Hindawi Publishing Corporationhttpwwwhindawicom Volume 2014

Statistical MechanicsInternational Journal of

Hindawi Publishing Corporationhttpwwwhindawicom Volume 2014

GravityJournal of

Hindawi Publishing Corporationhttpwwwhindawicom Volume 2014

AstrophysicsJournal of

Hindawi Publishing Corporationhttpwwwhindawicom Volume 2014

Physics Research International

Hindawi Publishing Corporationhttpwwwhindawicom Volume 2014

Solid State PhysicsJournal of

 Computational  Methods in Physics

Journal of

Hindawi Publishing Corporationhttpwwwhindawicom Volume 2014

Hindawi Publishing Corporationhttpwwwhindawicom Volume 2014

Soft MatterJournal of

Hindawi Publishing Corporationhttpwwwhindawicom

AerodynamicsJournal of

Volume 2014

Hindawi Publishing Corporationhttpwwwhindawicom Volume 2014

PhotonicsJournal of

Hindawi Publishing Corporationhttpwwwhindawicom Volume 2014

Journal of

Biophysics

Hindawi Publishing Corporationhttpwwwhindawicom Volume 2014

ThermodynamicsJournal of

Page 8: Research Article Modulation Instability of Ion-Acoustic Waves ...downloads.hindawi.com/journals/jas/2014/785670.pdfsech 7 ]! \ 8 , where ] istheenvelopespeedand\ is the spatial width

8 Journal of Astrophysics

[32] B Ghosh S N Paul C Das and I Paul ldquoModulationalinstability of high frequency surface waves on warm plasmahalf-spacerdquo Canadian Journal of Physics vol 90 no 3 pp 291ndash297 2012

[33] B Ghosh and K P Das ldquoModulational instability of electronplasma waves in a cylindrical wave guiderdquo Plasma Physics andControlled Fusion vol 27 no 9 pp 969ndash982 1985

[34] B Ghosh S Chandra and S N Paul ldquoAmplitudemodulation ofelectron plasmawaves in a quantumplasmardquoPhysics of Plasmasvol 18 no 1 Article ID 012106 2011

[35] H R Pakzad ldquoIon acoustic solitary waves in plasma withnonthermal electron and positronrdquo Physics Letters A GeneralAtomic and Solid State Physics vol 373 no 8-9 pp 847ndash8502009

[36] T Kakutani and N Sugimoto ldquoKrylov-Bogoliubov-Mitr-opolsky method for nonlinear wave modulationrdquo The Physicsof Fluids vol 17 pp 1617ndash1625 1974

Submit your manuscripts athttpwwwhindawicom

Hindawi Publishing Corporationhttpwwwhindawicom Volume 2014

High Energy PhysicsAdvances in

The Scientific World JournalHindawi Publishing Corporation httpwwwhindawicom Volume 2014

Hindawi Publishing Corporationhttpwwwhindawicom Volume 2014

FluidsJournal of

Atomic and Molecular Physics

Journal of

Hindawi Publishing Corporationhttpwwwhindawicom Volume 2014

Hindawi Publishing Corporationhttpwwwhindawicom Volume 2014

Advances in Condensed Matter Physics

OpticsInternational Journal of

Hindawi Publishing Corporationhttpwwwhindawicom Volume 2014

Hindawi Publishing Corporationhttpwwwhindawicom Volume 2014

AstronomyAdvances in

International Journal of

Hindawi Publishing Corporationhttpwwwhindawicom Volume 2014

Superconductivity

Hindawi Publishing Corporationhttpwwwhindawicom Volume 2014

Statistical MechanicsInternational Journal of

Hindawi Publishing Corporationhttpwwwhindawicom Volume 2014

GravityJournal of

Hindawi Publishing Corporationhttpwwwhindawicom Volume 2014

AstrophysicsJournal of

Hindawi Publishing Corporationhttpwwwhindawicom Volume 2014

Physics Research International

Hindawi Publishing Corporationhttpwwwhindawicom Volume 2014

Solid State PhysicsJournal of

 Computational  Methods in Physics

Journal of

Hindawi Publishing Corporationhttpwwwhindawicom Volume 2014

Hindawi Publishing Corporationhttpwwwhindawicom Volume 2014

Soft MatterJournal of

Hindawi Publishing Corporationhttpwwwhindawicom

AerodynamicsJournal of

Volume 2014

Hindawi Publishing Corporationhttpwwwhindawicom Volume 2014

PhotonicsJournal of

Hindawi Publishing Corporationhttpwwwhindawicom Volume 2014

Journal of

Biophysics

Hindawi Publishing Corporationhttpwwwhindawicom Volume 2014

ThermodynamicsJournal of

Page 9: Research Article Modulation Instability of Ion-Acoustic Waves ...downloads.hindawi.com/journals/jas/2014/785670.pdfsech 7 ]! \ 8 , where ] istheenvelopespeedand\ is the spatial width

Submit your manuscripts athttpwwwhindawicom

Hindawi Publishing Corporationhttpwwwhindawicom Volume 2014

High Energy PhysicsAdvances in

The Scientific World JournalHindawi Publishing Corporation httpwwwhindawicom Volume 2014

Hindawi Publishing Corporationhttpwwwhindawicom Volume 2014

FluidsJournal of

Atomic and Molecular Physics

Journal of

Hindawi Publishing Corporationhttpwwwhindawicom Volume 2014

Hindawi Publishing Corporationhttpwwwhindawicom Volume 2014

Advances in Condensed Matter Physics

OpticsInternational Journal of

Hindawi Publishing Corporationhttpwwwhindawicom Volume 2014

Hindawi Publishing Corporationhttpwwwhindawicom Volume 2014

AstronomyAdvances in

International Journal of

Hindawi Publishing Corporationhttpwwwhindawicom Volume 2014

Superconductivity

Hindawi Publishing Corporationhttpwwwhindawicom Volume 2014

Statistical MechanicsInternational Journal of

Hindawi Publishing Corporationhttpwwwhindawicom Volume 2014

GravityJournal of

Hindawi Publishing Corporationhttpwwwhindawicom Volume 2014

AstrophysicsJournal of

Hindawi Publishing Corporationhttpwwwhindawicom Volume 2014

Physics Research International

Hindawi Publishing Corporationhttpwwwhindawicom Volume 2014

Solid State PhysicsJournal of

 Computational  Methods in Physics

Journal of

Hindawi Publishing Corporationhttpwwwhindawicom Volume 2014

Hindawi Publishing Corporationhttpwwwhindawicom Volume 2014

Soft MatterJournal of

Hindawi Publishing Corporationhttpwwwhindawicom

AerodynamicsJournal of

Volume 2014

Hindawi Publishing Corporationhttpwwwhindawicom Volume 2014

PhotonicsJournal of

Hindawi Publishing Corporationhttpwwwhindawicom Volume 2014

Journal of

Biophysics

Hindawi Publishing Corporationhttpwwwhindawicom Volume 2014

ThermodynamicsJournal of


Recommended