+ All Categories
Home > Documents > Research Overview: Integration Challenges for Photonics in ...

Research Overview: Integration Challenges for Photonics in ...

Date post: 06-Oct-2021
Category:
Upload: others
View: 3 times
Download: 0 times
Share this document with a friend
16
1 Research Overview: Integration Challenges for Photonics in the CMOS Platform Mark A. Beals Associate Director MIT Microphotonics Center MIT Microphotonics Center Fall Meeting October 20, 2006
Transcript

1

Research Overview: Integration Challenges forPhotonics in the CMOS Platform

Mark A. BealsAssociate Director

MIT Microphotonics Center

MIT Microphotonics Center Fall MeetingOctober 20, 2006

2

Outline

EPIC Objective CMOS Technology Photonic Materials & Processing Device Integration Result Highlights Summary

This work was sponsored under the Defense Advanced Research Projects Agency'sEPIC Program and is executed by the Microsystems Technology Office (MTO)

3

Monolithic Electronic Photonic Integration• Objective

– Electronic Photonic Integration in the CMOS ProcessTechnology Platform

• Circuit driven optical link• High performance signal processing

– Mixed signal channelizers– Multicore processors– OADM– Transceivers Modulator

One Element ofA Filter Bank

Detector/TIA

Laser

300MHz to 2.2GHz RF

Detected Waveforms(Electrical)

Multimode InterferometricSplitter

OpticalChannelizer

Slice

4.5X Increase IBW95X Reduction Size

≥“

EPIC RF PhotonicChannelizer “Chip”

4.5X Increase IBW95X Reduction Size

80X Reduction in Weight5X Reduction in Power≥100X Reduction in Cost

“Nickel” Size

Bell LaboratoriesLucent TechnologiesBell LaboratoriesLucent Technologies

4

HIC Photonic Elements

Functions - Active and Passive Optical Devices• Routing• Mode transformers• MUX/DEMUX• Filters• Tuning• Modulation• Detection

Design Elements• Waveguides• Modulators• Splitters – MMI, Directional Couplers• Mode transformers• Interferometers• Resonators• OE conversion• Heaters

Optical Channellizer

Modulator

Filter n

Detector

Detector

TIA

TIA

LASER

DRIVER

RF IN

300 MHz to 2.2 GHzTUNING

Filter 1

Mul

ti-m

ode

Inte

rfero

met

ricS

plitt

er

EPIC

5

CMOS FabricationCMOS Logic Platform− 0.18 um Node− Silicon substrate− Oxide gate, SiO2− Salicide contacts, CoSi2− STI− Planarized ILD, SiO2− Interconnect – 7 Levels, AlCu− Vdd: 1.8V & 3.3V

3 Areas of Interest- Substrate- FEOL to PMD- BEOL – Metallization

Integration Priorities- FET Performance- Thermal cycling-proper sequencing- Cross Contamination- Process complexity

• PMD – SiO2, Planarized1.0µm

1.1µm

CMOS FET & Interconnect

• Silicon Substrate p-• Gate, S/D junctions

• Metal – AlCu,Local interconnectlevels 1-4

• IMD – SiO2, Planarized

• Contacts – W studs

• Vias – W studs

900

<550<450

*Salicide spike anneal 1050°C

750*• Salicide, Ti, Co

6

HIC Optical Waveguides – Silicon Core Materials

SOI waveguides achieved 0.35 dB/cmtransmission loss

State of the Art transmission loss for highlyconfined deposited waveguides ~4dB/cm

• CMOS Compatible• Single Crystal

− No bulk absorption, lowest loss− seed for EPI Ge, SiGe

• High Temperature tolerance

• CMOS Compatible• Low temperature PECVD film <450°C

− Integration in metal interconnect• Conversion to polysilicon >625°C

− Significant increase in lossGlobal Optical Interconnect ‘Local’ optical interconnect

7

1520 1540 1560 1580 1600 1620 1640

0.0

0.5

1.0

1.5

2.0

2.5

18

0 d

eg

ree

Be

nd

Lo

ss (

dB

/cm

)

Wavelength (nm)

r = 1 um r = 2 um r = 3 um r = 5 um r = 10 um

• Turn loss is higher in the TM mode• TE Mode enables more flexibility in routing• Thin TE waveguide integrates easily with CMOS

multi layer planarization

1520 1540 1560 1580 1600

0.0

0.5

1.0

1.5

2.0

2.5

18

0 d

eg

ree

Be

nd

Lo

ss (

dB

/cm

)Wavelength (nm)

r = 10 um

Waveguide Design – TE vs. TM

17% confinement

TE TM

180° Bend Loss

8

Mode Size vs. Geometry

• Waveguide dimensions should be maximized for maximum confinement• However, dimensions should be restricted to single-mode cutoff**Hybrid exception

TE Polarization – E field Contours

Simulated with FIMMWAVE0

0.5

1.0

1.5

2.0

2.5

3.0

0 0.5 1.0 1.5 2.0 2.5 3.0 3.5 4.0 4.5

200x200 nm2

neff = 1.473Γ = 0.044

200x500 nm2

neff = 2.365Γ = 0.716

5.00

0.5

1.0

1.5

2.0

2.5

3.0

0 0.5 1.0 1.5 2.0 2.5 3.0 3.5 4.0 4.5

200x200 nm2

neff = 1.473Γ = 0.044

200x500 nm2

neff = 2.365Γ = 0.716

5.0

Si Core, SiO2 Cladding

9

Waveguide Fabrication

• Substrate Leakage – f (Δn, h, w, tunderclad)• Absorption – f (α bulk, Δn, h,w)• Roughness Scattering – f (Δn, s, Λc h,w)

•Surface loss•Sidewall loss

Controlling Sources of Loss

Substrate/Underlayer

SiO2 tunderclad

SiO2

200nm

500nm

− Design > isolation design rules− Material & process method

− CMP− Etch & Post etch treatments

Si Optical Isolation VolumeConfined Mode – 200x500~ 10um3/per 1um length

~3.5um

~3umSiSiN ComparisonConfined Mode – 400x900~ 32um3/per 1um length

10

a-Si Annealeda-Si As Deposited

a-Si CMP

Processing α-Silicon Waveguides

Surface Scattering Loss Reduction

α-Si CMP removes surfaceroughness to <1nm rms

11

Active Photonic Device Materials & Processing

Ge Processing• Temperature 700C, 4.5h• Growth Rate = 2.4 nm/min• Roughness ~ 4nm rms

Ge UHV-CVD EPI Ge & SiGe Films

AFM of As Grown Ge Film

RIE Patterned GeTrench Filled &

CMP Planarization

Two New ‘Hot’ Processes for CMOS FEOL Integration

12

New Process Steps for “CMOS Front End” Photonic Integration

SiGe

M1

M2

M3

Heater

Deposited Si waveguide

LV

Via 2

Via 1

Contacts

SOI Waveguide

• Waveguide routing in SOI• SOI BOX optical isolation−Si wafer: Oxide filled trench optical

isolation, extension of STI• Planarized deposited waveguides &

cladding• Trench filled & planarized EPI SiGe

growth• n+ Top polysilicon electrode implant &

patterning• Resistive heater over tunable

elements

Polysilicon top SiGe electrodeSiGe Detector/Modulator

Metal 1

Metal 2

Metal 3

p+ implant (ldd)

n+ implant (ldd)

SiGe p-i-n Device Filter & Waveguides

13

Center Coupled Waveguide Integrated SiGe Detector

0.15 um Node9 mask levels

SiGe

Via

W Contacts & ILD

SOI Silicon Waveguide/Lower SiGe electrode

Metalinterconnect &IMD

α-Si Waveguide

Upper SiGe Electrode

BOX

Silicon Substrate

Edge View Side View

SOI CMOS Process using vertical input/output couplers

λ in λ out

n+

p+

CMOS Process flow enables multiple configurations for waveguide integration including:Bottom coupled, center coupled and top coupled waveguides

14

Essential Elements ofEssential Elements ofEPIC TechnologyEPIC Technology

Demonstrated fully tunable, integrated optical filterswith fine passband resolution (1 GHz) and excellent out

of band rejection (>25 dB)

In !=0.5R1 R2

R3 R4

!=0.5In !=0.5R1 R2

R3 R4

!=0.5

Optical Filters

-40

-30

-20

-10

0

Tra

nsm

itta

nce (

dB

)

193.44193.43193.42193.41193.40193.39

Frequency (THz)

1550.2 1550.1 1550.0 1549.9 1549.8

Tuned

output

Tuned

output

Tuned

output

Tuned

output

Passive output(as fabricated)

Passive output(as fabricated)

DetectorsModulators

Optical Waveguides

Demonstrated Si ring modulators with lowestreported power to date, 3.3V at 1 mA, and

modulation speeds of > 6.5 Gbps

600 800 1000 1200 1400 16000.0

0.2

0.4

0.6

0.8

1.0

Res

po

nsi

vit

y (

A/W

)

Wavelength (nm)

-2V 0V

Demonstrated discrete SiGe detectors withresponsivities > 0.8 A/W and integrated devices with

BWs > 4.5 GHz with IMD3 > 60 dB

Fabricated High Index Contrast waveguides in a rad-hard CMOS foundry with state of the art transmission

losses (0.35 dB/cm in SOI, 4 dB/cm in a-Si)

Oxide Underclad

DepositedWaveguide

CMOS Electronics

Integrated SiGewaveguide detector

Micrographof EPIC Filter

SEM of a-SiWaveguides

Bell LaboratoriesLucent TechnologiesBell LaboratoriesLucent Technologies

15

Technology Migration Challengesfor Monolithic Integration

• Integrated Designs– Limited Area availability– Use of 3D, new ‘optical plane– Electronic speed

• Improvement in Materials– Low temperature

• CMOS Technology to 32nm– Substrates

• SiGe• GeOI

– Feature size reduction– Cross contamination

• Contact metallurgy– Cu/Low K Interconnect

• Reduction in layerthickness

Altera/TSMC 90nm Cyclone II FPGACu Interconnect with CVD Low K

Source: Altera

16

AcknowledgementsEPIC Team• BAE Systems

– D. Carothers, T. Conway, J. Giunta, M. Gregory, M. Grove, C. Hill,M. Jaso, A. Pomerene

• Columbia University– C. W. Wong, R. Chatterjee, J. McMilan

• Cornell University– A. B. Apsel, M. Lipson, T. Kopa, Q. Xu

• Lucent Technologies – Bell Laboratories– Y.K. Chen, D. M. Gill, S. Patel, M. Rasras, K.Y. Tu, A. White

• MIT– L. C. Kimerling, D. Ahn, M. Beals, C. Hong, N. Jongthammanurak,

J. Liu, K. McComber, J. Michel, D. Pan, D. K. Sparacin, R. Sun,K. Wada

The early The early GeGe detector research was sponsored by Analog Devices, Inc. and Pirelli Lab, detector research was sponsored by Analog Devices, Inc. and Pirelli Lab, SpASpA


Recommended