+ All Categories
Home > Documents > Research Poster of Xu Tianchuan Nanjing University

Research Poster of Xu Tianchuan Nanjing University

Date post: 01-Mar-2016
Category:
Upload: xu-tianchuan
View: 216 times
Download: 2 times
Share this document with a friend
Description:
Poster about conformational change of CCMV capsid protein dimer in solution and at different pHs
Popular Tags:
1
Comparison between equilibrium structure in solution and the crystal (virion) structure of the CCMV capsid protein dimer From the graph above, the CCMV protein dimer achieves its equilibrium state in 30,000 steps (1.5 ns) of simulaAon in all pH condiAons. No big energy change occurs aCer the first 5,000 steps (0.25 ns), which indicates the dimer does not undergo a significant transformaAon in soluAon environment. Earlier research [4] suggests that the most important interacAon between CCMV capsid protein dimer is a special structure referred to as a “clamp”: the N terminal arm of the 'invaded', twofold related subunit, clamps the interpenetraAng C terminal arm of the other one between itself and the invaded βbarrel. Figure 5 shows that this “clamp structure” of CCMV capsid protein dimer remains the same in its equilibrated state in soluAon. Comparison between equilibrium structures in solution at different pHs Results Fig. 5 shows the conformational change of one monomer in the dimer by maximizing the overlap of the other. It indicates that under normal pH conditions, the structure of a single monomer of CCMV protein dimer differs a lot from its virion structure. However, when lowering pH to 4.3-4.6, the structure undergoes a ‘return transition’ and shows good resemblance with the virion crystal structure. The data used to make a plane fit are from the alpha carbons of each residue in the βsheet secondary structure nearby the N and C terminal. The dihedral angles under pH=7.0 and pH=4.34.6 are around 99 degrees and 90 degrees respecAvely. The dihedral angle of the beta sheet in the virion structure, calculated by the same method, is about 85 degrees. This shows the soluAon structure at pH=4.34.6 is closer to that in the crystal structure than is that at pH=7.0. In addiAon, the RMSD value between the structure at pH=7.0 and in the virion is 1.236 angstroms, while the RMSD between the pH=4.34.6 and virion structure is 1.155 angstroms, again consistent with the results above. ConformaCon of CCMV Capsid Protein Dimer, in the intact virion and in soluCon at different pHs Tianchuan Xu, Nanjing University; Charles M. Knobler and William M. Gelbart, UCLA Xu, Tianchuan Nanjing University Email:[email protected] Contact 1. Rees F. Garmann, Mauricio ComasGarcia, Ajaykumar Gopal, Charles M. Knobler, and William M. Gelbart. (2013). The Assembly Pathway of an Icosahedral SingleStranded RNA Virus Depends on the Strength of InterSubunit AtracAon. J. Mol. Biol., in press. 2. Feng Ding, Douglas Tsao, Huifen Nie, and Nikolay V. Dokholyan. (2008). Folding with AllAtom Discrete Molecular Dynamics. Structure 16, 1010–1018. 3. Florence Tama and Charles L. Brooks III. (2002). The Mechanism and Pathway of pH Induced Swelling in Cowpea ChloroAc Motle Virus. J. Mol. Biol. 318, 733–747. 4. Jeffrey A. Speir, Sanjeev Munshi, Guoji Wang, Timothy S. Baker and John E. Johnson. (1995). Structures of the naAve and swollen forms of cowpea chloroAc motle virus determined by Xray crystallography and cryoelectron microscopy. Structure 3, 6378. References Cowpea chlorotic mottle virus (CCMV), an icosahedral (T=3) RNA plant virus, has been studied for 50 years, ever since it was the first spherical virus to be reconstituted in vitro from purified components. Recent research [1] in our group has established that with the help of RNA, CCMV capsid protein dimers could self assemble at neutral pH. But more interesting is, CCMV capsid protein dimers could self assemble an empty capsid without RNA at low pH (pH around 4.5) with high ionic strength. While the structure of the CCMV protein dimer in the virion has been determined from crystallography and cryo-electron microscopy, its conformation in solution is not known. To get a better understanding of the mechanism of its self-assembly into virions, we set out to learn about the structure of the dimer from molecular dynamics simulation and – in particular – to learn how its conformation changes with pH. IntroducCon Our project can be divided into two steps: 1. Obtain the equilibrium structure of CCMV dimer in solution and compare with its structure in the virion; 2. Determine how conformation changes as a function of pH. • Use the method of discrete molecular dynamics (DMD) simulation and related software to run trajectories for a sufficient number of steps to achieve equilibration (each step = 50 femtoseconds) • Use all-atom and implicit solvent models to treat the protein dimer and water molecules, respectively • Use step-well potential functions to replace continuous screened coulomb, Leonard-Jones, and other effective interactions between atom pairs Methods • The crucial ‘clamp structure’ stabilizing the capsid protein dimer – determined from high-resolution studies of the virion – remains intact upon equilibrating the dimer in solution. • The solution structure of CCMV protein dimer at pH=4.3-4.6 is closer to that of the virion structure than is the pH=7.0 dimer. This conclusion is consistent with recent experimental results from our lab showing that self-assembly of capsids from dimers is facilitated by lowering of the pH from neutral to values in the range of 4.5, both in the presence and absence of RNA. Conclusions This work is supported by the UCLA CSST Program. I appreciate the great help from Prof. William M. Gelbart, Prof. Charles M. Knobler, Prof. Anastassia N. Alexandrova, Prof. Yungya Lin, Crystal Valdez, and Xinkai Fu. Acknowledgement • Altering pH of the system by changing the protonated states of specific residues 10,000 STEPS 30,000 STEPS 50,000 STEPS 100,000 STEPS Figure 2. The dashed curve corresponds to the VDW and solvaAon interacAon between two carbon atoms. The step funcAon is its DMD discreAzed approximaAon. [2] Figure 3. The residues highlighted in blue are changed to protonated (uncharged) state to simulate pH=5.56.0 condiAon; the residues highlighted in blue and orange are changed to protonated state to simulate pH=4.34.6 condiAon [3] . Figure 4. Energy curve versus number of steps (Ame). Each step in the graph represents 10 steps in the simulaAon. Figure 5. 3D ribbon crystal (virion) structure (leC) and equilibrium soluAon structure (right) of CCMV capsid protein dimer in pH=4.34.6 condiAon aCer 50,000 simulaAon steps. Blue sequences represent the 30 th 45 th amino acid residues of the protein N terminus and red sequences represent the 180 th 190 th amino acid residues of the C terminus. Figure 6. Dihedral angle between two βsheet structures of different monomers in one dimer. Each point is the average of 10 calculaAons of dihedral angle corresponding to 10 dimer configuraAons chosen randomly from a new trajectory aCer equilibraAon at the given pH. Figure 5. Comparison between the virion structure (light brown) and the equilibrium soluAon structure in pH=5.56.0 (light blue) (leC), and between the virion structure (light brown) and the equilibrated structure in pH=4.34.6 (pink) (right). Blue sequences represent the 30 th 45 th amino acid residues of the N terminus and red sequences represent the 180 th 190 th amino acid residues of the C terminus. Improving the method of simulating changes under the pH conditions of biomolecular system in solution Altering the linear algorithm of potential calculation by parallelization of the code • Taking into explicit account the RNA and its role in the self-assembly process, as well as important metal (e.g., divalent) counterions and N terminus Calculating the RMSD value for each monomer in order to separate the influence of relative motion of two monomers from conformaAonal changes within the individual monomer subunits Future Plans Fig 1a. Capsid filled with RNA (Prepared by mixing capsid protein with RNA ) Clamp structure Clamp structure Dimer structure in capsid :neutral pH(pH=7.0) :low pH (pH=4.34.6) Fig 1b. Empty capsid without RNA (Prepared from pure capsid protein, and lowered pH to around 4.5)
Transcript
Page 1: Research Poster of Xu Tianchuan Nanjing University

Poster  Print  Size:  This  poster  template  is  48”  high  by  36”  wide.  It  can  be  used  to  print  any  poster  with  a  4:3  aspect  raAo.  

Placeholders:  The  various  elements  included  in  this  poster  are  ones  we  oCen  see  in  medical,  research,  and  scienAfic  posters.  Feel  free  to  edit,  move,    add,  and  delete  items,  or  change  the  layout  to  suit  your  needs.  Always  check  with  your  conference  organizer  for  specific  requirements.  

Image  Quality:  You  can  place  digital  photos  or  logo  art  in  your  poster  file  by  selecAng  the  Insert,  Picture  command,  or  by  using  standard  copy  &  paste.  For  best  results,  all  graphic  elements  should  be  at  least  150-­‐200  pixels  per  inch  in  their  final  printed  size.  For  instance,  a  1600  x  1200  pixel  photo  will  usually  look  fine  up  to  8“-­‐10”  wide  on  your  printed  poster.  To  preview  the  print  quality  of  images,  select  a  magnificaAon  of  100%  when  previewing  your  poster.  This  will  give  you  a  good  idea  of  what  it  will  look  like  in  print.  If  you  are  laying  out  a  large  poster  and  using  half-­‐scale  dimensions,  be  sure  to  preview  your  graphics  at  200%  to  see  them  at  their  final  printed  size.  Please  note  that  graphics  from  websites  (such  as  the  logo  on  your  hospital's  or  university's  home  page)  will  only  be  72dpi  and  not  suitable  for  prinAng.  

 [This  sidebar  area  does  not  print.]  

Change  Color  Theme:  This  template  is  designed  to  use  the  built-­‐in  color  themes  in  the  newer  versions  of  PowerPoint.  To  change  the  color  theme,  select  the  Design  tab,  then  select  the  Colors  drop-­‐down  list.                    The  default  color  theme  for  this  template  is  “Office”,  so  you  can  always  return  to  that  aCer  trying  some  of  the  alternaAves.  

PrinAng  Your  Poster:  Once  your  poster  file  is  ready,  visit  www.genigraphics.com  to  order  a  high-­‐quality,  affordable  poster  print.  Every  order  receives  a  free  design  review  and  we  can  deliver  as  fast  as  next  business  day  within  the  US  and  Canada.    Genigraphics®  has  been  producing  output  from  PowerPoint®  longer  than  anyone  in  the  industry;  daAng  back  to  when  we  helped  MicrosoC®  design  the  PowerPoint  soCware.      US  and  Canada:    1-­‐800-­‐790-­‐4001  Email:  [email protected]  

 [This  sidebar  area  does  not  print.]  

 • Comparison between equilibrium structure in solution and the crystal (virion) structure of the CCMV capsid protein dimer                                    From  the  graph  above,  the  CCMV  protein  dimer            achieves  its  equilibrium  state  in  30,000  steps  (1.5  ns)  of          simulaAon  in  all  pH  condiAons.  No  big  energy  change              occurs  aCer  the  first  5,000  steps  (0.25  ns),  which          indicates  the  dimer  does  not  undergo  a  significant          transformaAon  in  soluAon  environment.                        Earlier  research[4]  suggests  that  the  most  important  interacAon  between  CCMV  capsid  protein  dimer  is  a  special  structure  referred  to  as  a  “clamp”:  the  N  terminal  arm  of  the  'invaded',  two-­‐fold  related  subunit,  clamps  the  interpenetraAng  C  terminal  arm  of  the  other  one  between  itself  and  the  invaded  β-­‐barrel.  Figure  5  shows  that  this  “clamp  structure”  of  CCMV  capsid  protein  dimer  remains  the  same  in  its  equilibrated  state  in  soluAon.      • Comparison between equilibrium structures in solution at different pHs                

Results  

Fig. 5 shows the conformational change of one monomer in the dimer by maximizing the overlap of the other. It indicates that under normal pH conditions, the structure of a single monomer of CCMV protein dimer differs a lot from its virion structure. However, when lowering pH to 4.3-4.6, the structure undergoes a ‘return transition’ and shows good resemblance with the virion crystal structure.        The  data  used  to  make  a  plane  fit  are  from  the  alpha  carbons  of  each  residue  in  the β-­‐sheet  secondary  structure  nearby  the  N  and  C  terminal.  The  dihedral  angles  under  pH=7.0  and  pH=4.3-­‐4.6  are  around  99  degrees  and  90  degrees  respecAvely.  The  dihedral  angle  of  the  beta-­‐sheet  in  the  virion  structure,  calculated  by  the  same  method,  is  about  85  degrees.  This  shows  the  soluAon  structure  at  pH=4.3-­‐4.6  is  closer  to  that  in  the  crystal  structure  than  is  that  at  pH=7.0.  In  addiAon,  the  RMSD  value  between  the  structure  at  pH=7.0  and  in  the  virion  is  1.236  angstroms,  while  the  RMSD  between  the  pH=4.3-­‐4.6  and  virion  structure  is  1.155  angstroms,  again  consistent  with  the  results  above.  

ConformaCon  of  CCMV  Capsid  Protein  Dimer,  in  the  intact  virion  and  in  soluCon  at  different  pHs  Tianchuan  Xu,  Nanjing  University;  Charles  M.  Knobler  and  William  M.  Gelbart,  UCLA  

Xu,  Tianchuan  Nanjing  University  Email:[email protected]  

Contact 1.  Rees  F.  Garmann,  Mauricio  Comas-­‐Garcia,  Ajaykumar  Gopal,  Charles  M.  Knobler,  and  William  M.  Gelbart.  (2013).  The  Assembly  Pathway  of  an  

Icosahedral  Single-­‐Stranded  RNA  Virus  Depends  on  the  Strength  of  Inter-­‐Subunit  AtracAon.  J.  Mol.  Biol.,  in  press.    2.  Feng  Ding,  Douglas  Tsao,  Huifen  Nie,  and  Nikolay  V.  Dokholyan.  (2008).  Folding  with  All-­‐Atom  Discrete  Molecular  Dynamics.  Structure  16,  1010–1018.  3.  Florence  Tama  and  Charles  L.  Brooks  III.  (2002).  The  Mechanism  and  Pathway  of  pH  Induced  Swelling  in  Cowpea  ChloroAc  Motle  Virus.  J.  Mol.  Biol.  318,  

733–747.    4.   Jeffrey  A.  Speir,  Sanjeev  Munshi,  Guoji  Wang,  Timothy  S.  Baker  and  John  E.  Johnson.  (1995).  Structures  of  the  naAve  and  swollen  forms  of  cowpea  

chloroAc  motle  virus  determined  by  X-­‐ray  crystallography  and  cryo-­‐electron  microscopy.  Structure  3,    63-­‐78.    

References

   Cowpea chlorotic mottle virus (CCMV), an icosahedral (T=3) RNA plant virus, has been studied for 50 years, ever since it was the first spherical virus to be reconstituted in vitro from purified components. Recent research[1] in our group has established that with the help of RNA, CCMV capsid protein dimers could self assemble at neutral pH. But more interesting is, CCMV capsid protein dimers could self assemble an empty capsid without RNA at low pH (pH around 4.5) with high ionic strength. While the structure of the CCMV protein dimer in the virion has been determined from crystallography and cryo-electron microscopy, its conformation in solution is not known. To get a better understanding of the mechanism of its self-assembly into virions, we set out to learn about the structure of the dimer from molecular dynamics simulation and – in particular – to learn how its conformation changes with pH.

IntroducCon  

 Our project can be divided into two steps: 1.  Obtain the equilibrium structure of CCMV dimer in

solution and compare with its structure in the virion; 2.  Determine how conformation changes as a function

of pH.   • Use the method of discrete molecular dynamics (DMD) simulation and related software to run trajectories for a sufficient number of steps to achieve equilibration (each step = 50 femtoseconds) • Use all-atom and implicit solvent models to treat the protein dimer and water molecules, respectively • Use step-well potential functions to replace continuous screened coulomb, Leonard-Jones, and other effective interactions between atom pairs

Methods  

 • The crucial ‘clamp structure’ stabilizing the capsid protein dimer – determined from high-resolution studies of the virion – remains intact upon equilibrating the dimer in solution. • The solution structure of CCMV protein dimer at pH=4.3-4.6 is closer to that of the virion structure than is the pH=7.0 dimer. This conclusion is consistent with recent experimental results from our lab showing that self-assembly of capsids from dimers is facilitated by lowering of the pH from neutral to values in the range of 4.5, both in the presence and absence of RNA.

Conclusions  

 This  work  is  supported  by  the  UCLA  CSST  Program.  I  appreciate  the  great  help  from  Prof.  William  M.  Gelbart,  Prof.  Charles  M.  Knobler,  Prof.  Anastassia  N.  Alexandrova,    Prof.  Yung-­‐ya  Lin,  Crystal  Valdez,  and  Xinkai  Fu.  

Acknowledgement  

• Altering pH of the system by changing the protonated states of specific residues

10,000  STEPS 30,000  STEPS 50,000  STEPS 100,000  STEPS

Figure  2.  The  dashed  curve  corresponds  to  the  VDW  and  solvaAon  interacAon  between  two  carbon  atoms.  The  step  funcAon  is  its  DMD  discreAzed  approximaAon.[2]

Figure  3.  The  residues  highlighted  in  blue  are  changed  to  protonated  (uncharged)  state  to  simulate  pH=5.5-­‐6.0  condiAon;  the  residues  highlighted  in  blue  and  orange  are  changed  to  protonated  state  to  simulate  pH=4.3-­‐4.6  condiAon[3].    

Figure  4.  Energy  curve  versus  number  of  steps  (Ame).  Each  step  in  the  graph  represents  10  steps  in  the  simulaAon.  

Figure  5.  3D  ribbon  crystal  (virion)  structure  (leC)  and  equilibrium  soluAon  structure  (right)  of  CCMV  capsid  protein  dimer  in  pH=4.3-­‐4.6  condiAon  aCer  50,000  simulaAon  steps.  Blue  sequences  represent  the  30th-­‐45th  amino  acid  residues  of  the  protein  N  terminus  and  red  sequences  represent  the  180th-­‐190th  amino  acid  residues  of  the  C  terminus.  

Figure  6.  Dihedral  angle  between  two  β-­‐sheet  structures  of  different  monomers  in  one  dimer.  Each  point  is  the  average  of  10  calculaAons  of  dihedral  angle  corresponding  to  10  dimer  configuraAons  chosen  randomly  from  a  new  trajectory  aCer  equilibraAon  at  the  given  pH.  

Figure  5.  Comparison  between  the  virion  structure  (light  brown)  and  the  equilibrium  soluAon  structure  in  pH=5.5-­‐6.0  (light  blue)  (leC),  and  between  the  virion  structure  (light  brown)  and  the  equilibrated  structure  in  pH=4.3-­‐4.6  (pink)  (right).    Blue  sequences  represent  the  30th-­‐45th  amino  acid  residues  of  the  N  terminus  and  red  sequences  represent  the  180th-­‐190th  amino  acid  residues  of  the  C  terminus.    

• Improving the method of simulating changes under the pH conditions of biomolecular system in solution • Altering the linear algorithm of potential calculation by parallelization of the code • Taking into explicit account the RNA and its role in the self-assembly process, as well as important metal (e.g., divalent) counterions and N terminus • Calculating the RMSD value for each monomer in order to separate the influence of relative motion of two monomers  from  conformaAonal  changes  within  the  individual  monomer  subunits  

Future  Plans  

Fig  1a.  Capsid filled with RNA

(Prepared by mixing capsid

protein with RNA )  

Clamp  structure Clamp  structure

Dimer  structure  in  capsid

:neutral  pH(pH=7.0)  

:low  pH  (pH=4.3-­‐4.6)

Fig  1b.  Empty capsid without RNA

(Prepared from pure capsid protein,

and lowered pH to around 4.5)  

Recommended