+ All Categories
Home > Documents > Review Article Current Development in Lead-Free Bi (Na,K...

Review Article Current Development in Lead-Free Bi (Na,K...

Date post: 23-Jul-2020
Category:
Upload: others
View: 0 times
Download: 0 times
Share this document with a friend
14
Review Article Current Development in Lead-Free Bi 0.5 (Na,K) 0.5 TiO 3 -Based Piezoelectric Materials Ngo Duc Quan, 1,2 Luong Huu Bac, 3 Duong Van Thiet, 1 Vu Ngoc Hung, 2 and Dang Duc Dung 1 1 Department of General Physics, School of Engineering Physics, Hanoi University of Science and Technology, 1 Dai Co Viet Road, Hanoi, Vietnam 2 ITIMS, Hanoi University of Science and Technology, 1 Dai Co Viet Road, Hanoi, Vietnam 3 Department of Optics and Optoelectronics, School of Engineering Physics, Hanoi University of Science and Technology, 1 Dai Co Viet Road, Hanoi, Vietnam Correspondence should be addressed to Dang Duc Dung; [email protected] Received 12 May 2014; Revised 28 July 2014; Accepted 2 August 2014; Published 21 September 2014 Academic Editor: Somchai ongtem Copyright © 2014 Ngo Duc Quan et al. is is an open access article distributed under the Creative Commons Attribution License, which permits unrestricted use, distribution, and reproduction in any medium, provided the original work is properly cited. e lead-free piezoelectric ceramics display good piezoelectric properties which are comparable with Pb(Zr,Ti)O 3 (PZT) and these materials overcome the hazard to the environment and human health. e Bi 0.5 (Na,K) 0.5 TiO 3 (BNKT) is rapidly developed because of good piezoelectric, ferroelectric, and dielectric properties compared to PZT. e origin of giant strain of BNKT piezoelectric materials was found at morphotropic phase boundary due to crystal change from tetragonal to orthorhombic and/or precipitation of cubic phases, in addition to domain switching mechanism. e dopants or secondary phases with ABO 3 structure as solid solution are expected to change the crystal structure and create the vacancies which results in enhancement of the piezoelectric properties. In this work, we reviewed the current development of BNKT by dopants and secondary phase as solid solution. Our discussion will focus on role of dopants and secondary phase to piezoelectric properties of BNKT. is result will open the direction to control the properties of lead-free piezoelectric materials. 1. Introduction e piezoelectric phenomena were discovered by Nobel lau- reates Pierre and Jacques Curie in 1880 during measurement of surface charges appearing under stress of some crystals such as tourmaline, quartz, and Rochelle salt [1]. During the World War I, Paul Langevin invented the underwater sonar for submarine detection [1]. e detecting device was fab- ricated by thin quartz crystal glued on two steel plates with resonant frequency of 50 kHz which could detect a submarine at the depth of 1500 meters. However, his achievements were not overlooked by any industrial nation. During World War II, the huge dielectric constants of piezoelectric ceramics materials were isolatedly discovered in the United States, Japan, and the Soviet Union by researching the materials to improve capacitor of devices [1]. e discovery of easily manufactured piezoelectric ceramics with astonishing per- formance characteristics naturally touched off a revival of intense research and development into piezoelectric devices which led to their widespread applications. Among them, barium titanate (BaTiO 3 ) ceramic was discovered with the giant dielectric constant of 1100, ten times higher than that of rutile TiO 2 , the highest value at that time [2]. e first commercial device made from BaTiO 3 was a phonograph pickup and was produced in 1947 [2]. e productions which used the piezoelectric materials were rapidly developed in the late 1950s because a number of other piezoelectric ceramics were found; in particular, lead niobate piezoelectric ceramics were discovered in 1952, and lead zirconate titanate (PZT) compositions were found in 1955 [1, 2]. Several piezoelectric ceramics have been commonly used today such as BaTiO 3 , PZT (and modified composition such as (Pb,La)(Zr,Ti)O 3 , etc.), and lead magnesium niobate (Pb(Mg 1/3 Nb 2/3 )O 3 ) or lead zinc niobate Pb(Zn 1/3 Nb 2/3 )O 3 . To date, PZT is one of the most widely exploited and extensively used piezoelectric materials for piezoelectric actuators, sensors, transducers, Hindawi Publishing Corporation Advances in Materials Science and Engineering Volume 2014, Article ID 365391, 13 pages http://dx.doi.org/10.1155/2014/365391
Transcript
Page 1: Review Article Current Development in Lead-Free Bi (Na,K ...downloads.hindawi.com/journals/amse/2014/365391.pdf · Bi 2 O 3 and TiO 2 and alkali carbonate powder Na 2 CO 3 and K 2

Review ArticleCurrent Development in Lead-Free Bi05(NaK)05TiO3-BasedPiezoelectric Materials

Ngo Duc Quan12 Luong Huu Bac3 Duong Van Thiet1 Vu Ngoc Hung2

and Dang Duc Dung1

1 Department of General Physics School of Engineering Physics Hanoi University of Science and Technology1 Dai Co Viet Road Hanoi Vietnam

2 ITIMS Hanoi University of Science and Technology 1 Dai Co Viet Road Hanoi Vietnam3Department of Optics and Optoelectronics School of Engineering Physics Hanoi University of Science and Technology1 Dai Co Viet Road Hanoi Vietnam

Correspondence should be addressed to Dang Duc Dung dungdangduchusteduvn

Received 12 May 2014 Revised 28 July 2014 Accepted 2 August 2014 Published 21 September 2014

Academic Editor Somchai Thongtem

Copyright copy 2014 Ngo Duc Quan et alThis is an open access article distributed under the Creative Commons Attribution Licensewhich permits unrestricted use distribution and reproduction in any medium provided the original work is properly cited

The lead-free piezoelectric ceramics display good piezoelectric properties which are comparable with Pb(ZrTi)O3(PZT) and these

materials overcome the hazard to the environment and human healthThe Bi05(NaK)

05TiO3(BNKT) is rapidly developed because

of good piezoelectric ferroelectric and dielectric properties compared to PZT The origin of giant strain of BNKT piezoelectricmaterials was found at morphotropic phase boundary due to crystal change from tetragonal to orthorhombic andor precipitationof cubic phases in addition to domain switchingmechanismThedopants or secondary phaseswithABO

3structure as solid solution

are expected to change the crystal structure and create the vacancies which results in enhancement of the piezoelectric propertiesIn this work we reviewed the current development of BNKT by dopants and secondary phase as solid solution Our discussion willfocus on role of dopants and secondary phase to piezoelectric properties of BNKTThis result will open the direction to control theproperties of lead-free piezoelectric materials

1 Introduction

The piezoelectric phenomena were discovered by Nobel lau-reates Pierre and Jacques Curie in 1880 during measurementof surface charges appearing under stress of some crystalssuch as tourmaline quartz and Rochelle salt [1] During theWorld War I Paul Langevin invented the underwater sonarfor submarine detection [1] The detecting device was fab-ricated by thin quartz crystal glued on two steel plates withresonant frequency of 50 kHzwhich could detect a submarineat the depth of 1500 meters However his achievements werenot overlooked by any industrial nation During World WarII the huge dielectric constants of piezoelectric ceramicsmaterials were isolatedly discovered in the United StatesJapan and the Soviet Union by researching the materialsto improve capacitor of devices [1] The discovery of easilymanufactured piezoelectric ceramics with astonishing per-formance characteristics naturally touched off a revival of

intense research and development into piezoelectric deviceswhich led to their widespread applications Among thembarium titanate (BaTiO

3) ceramic was discovered with the

giant dielectric constant of 1100 ten times higher than thatof rutile TiO

2 the highest value at that time [2] The first

commercial device made from BaTiO3was a phonograph

pickup and was produced in 1947 [2]The productions whichused the piezoelectricmaterials were rapidly developed in thelate 1950s because a number of other piezoelectric ceramicswere found in particular lead niobate piezoelectric ceramicswere discovered in 1952 and lead zirconate titanate (PZT)compositions were found in 1955 [1 2] Several piezoelectricceramics have been commonly used today such as BaTiO

3

PZT (and modified composition such as (PbLa)(ZrTi)O3

etc) and lead magnesium niobate (Pb(Mg13

Nb23

)O3) or

lead zinc niobate Pb(Zn13

Nb23

)O3 To date PZT is one of

the most widely exploited and extensively used piezoelectricmaterials for piezoelectric actuators sensors transducers

Hindawi Publishing CorporationAdvances in Materials Science and EngineeringVolume 2014 Article ID 365391 13 pageshttpdxdoiorg1011552014365391

2 Advances in Materials Science and Engineering

and so forth even though lead is a very toxic substance as itcan cause damage to the kidneys brain the nervous systemand especially the intelligence of the children [1] In addi-tion the volatilization of PbO during the high temperaturesintering process not only causes environmental pollution butalso generates instability in the composition and electricalproperties of the production According to the recent devel-opments the European Union (EU) is planning to restrictthe use of hazardous substances such as lead as well as otherheavymetals [3 4] Asia China Japan and Republic of Koreahave also enacted similar policies and legislations to controlthe usage of lead-containing materials [5ndash7] In order tocircumvent the drawback of lead toxicity extensive researchis focused on the quest for alternate piezoelectric materialsTherefore there has been a growing research interest in devel-oping alternative lead-free piezoelectric materials that caneventually replace the current lead-based ones There is noequivalent substitution for PZT till now therefore its use stillcontinuesThismay be a temporary respite but the legislationcertainly impressed the researchers to develop alternativelead-free piezoelectric materials in order to replace lead-based materials [8ndash10] In this paper we overviewed cur-rent developments in Bi

05(NaK)

05TiO3(BNKT) lead-free

piezoelectric ceramics and effects of various dopants on theirpiezoelectric properties

2 Bi05(NaK)05TiO3-Based Lead-FreePiezoelectric Materials

Among lead-free piezoelectric materials perovskite-basedtype bismuth sodium titanate Bi

05Na05TiO3(BNT) bis-

muth potassium titanate Bi05K05TiO3(BKT) and solid

solution based on these compounds seem to be considered asthe most promising materials choice [11ndash14] In the followingsection a brief introduction of these materials is given

21 Bismuth SodiumTitanate and Bismuth PotassiumTitanate

211 Bi05Na05TiO3Material BNT is one of the most impor-

tant lead-free materials discovered by Smolensky et al in1960 which has an ABO3 distorted perovskite structure [1015]The structure of BNT can be considered in two ways oneway is that the bismuth and sodium cations occupy thecorners of a cubic unit cell oxygen anions occupy the facecenters and titanium cations occupy the center of theoxygen octahedra that are formed the other way is a three-dimensional cubic network of 8 corner-sharing TiO

6octahe-

dra with bismuth and sodium cations at the center of the cubeformed by the octahedra [16] In the ABO3 perovskite struc-tureA cations localize at the corners B cations localize at thebody center and oxygen anions localize at the face centers Incase of BNT the bismuth and sodium ions are on the A-siteand titanium ions are on theB-site of the structure this is onlyto show the stoichiometry that is present in an ideal mixtureHowever the real material does not exhibit any long-rangeordering The BNT was rhombohedral structure with 119886 =398 A and 120572 = 8967∘ at room temperature [17] The BNT

undergoes three phase transitions as crystallographic struc-ture changes Pronin et al andZvirgzds et al obtained that thefirst phase transition tetragonal-cubic phase occurred at320∘C whereas the second phase transition temperature ofrhombohedral-tetragonal phase was 540∘C as they deter-mined the Curie temperature [18 19] It reveals an interestingdielectric which is anomaly with low phase-transition tem-perature (sim200∘C) from ferroelectric to antiferroelectricphase Suchanicz et al reported that the electrostrictive strainincreased upon heating when dielectric permittivity (1205761015840) grewwith maximum near 320∘C result from attribution of ferro-electric (FE)antiferroelectric (AFE) transition [20] Above320∘C the electrostriction coefficient (119876

11) was equal to

(04minus03) times 10minus2 Cminus2m4 and was typical for materials withdiffused phase transitions [20] The piezoelectric module 119889

33

was 100ndash120 pCN at 1205761015840 = 500 which belongs to [100]direction of the BNT single crystal [21] Emelyanov et alcharacterized the piezoelectric properties of (001) plane in therhombohedral BNT single crystals phase which were ofpiezoelectric coefficients (119889

31 119889

33) 119889

31= 160 pCN 119889

33=

60 pCN 11989631= 055 and 119896

33= 040 [22]The remnant polar-

ization (119875119903) and the coercive field (119864

119888) of BNT single crystal

are 38 120583Ccm2 and 73 kVcm respectively [10] Zhao et alreported that the values of 119889

33and coupling factor (119896

119905) were

102 pCN and 058 respectively and they were stronglyinfluenced by the grain size [23 24] Piezoelectric propertiesof the BNTceramics polarized by electric field of 40 kVcmat200∘C were 119896

31= 010 119889

31= 15 pCN 119889

33= 70 pCN 1205761015840 =

300 and tan 120575 = 0011 [25]

212 Bi05

K05TiO3Material BKTwas also first fabricated by

Smolenskii and Agranovskaya which has a perovskite typeferroelectric structure belonging to tetragonal crystal at roomtemperature [11] The BKT has been investigated much lessthan BNT because it was not easy to prepare high-denseceramics due to the fact that secondary phases such asK2Ti6O13easily formed during sintering at high temperature

even though synthesis of the compound was not difficult[10 26] BKT is a ferroelectric material with the Curie tem-perature (119879

119862) of 380∘C [27] Ivanova et al reported that BKT

has a tetragonal structure with 119886 = 3913 A and 119888 = 3993 Aat room temperature which does not show any sign of order-ing whereas a phase transition into a pseudocubic phasewas observed at about 270∘C and transition into a cubicphase was at 410∘C [28] Hiruma et al obtained the remnantpolarization 119875

119903= 222 120583Ccm2 and coercive field 119864

119862=

525 kVcm electromechanical factor 11989633= 028 and 119889

33=

698 pCN [29]Literature survey indicates that BKT is studied weaker

than BNT its behavior is clearly indicated that it does notshow such unusual phenomena as BNT (isotropic points andldquodisappearancerdquo of phase transitions) It is clear that bothphases of BKT are ferroelectric that they both are diffusedandmost probably overlapped each otherThere is of coursea problem coexistence of a paraelectric (PE) and two ferro-electric (FE) phases within a crystal lattice In addition theBKT single phase is not easy to fabricate in high-dense struc-ture However such a problem is not new for ferroelectric

Advances in Materials Science and Engineering 3

perovskites It is clear that many properties are still notstudied However by combining the sol-gel and conventionalsolid-state reaction method Zhu et al obtained the highcompact density of sim912 which overcame the low densityof sim70 of ceramics prepared by only traditional solid statesynthesis [30]The result was promoted to further investigatethe properties of BKT

22 B05Na05TiO3-B05K05TiO3Solid Solutions Systems

221 B05(NaK)

05TiO3Fabrication Methods The BNKT

ceramics were first fabricated by Buhrer by conventionalceramics method via starting materials with metal oxideBi2O3and TiO

2and alkali carbonate powder Na

2CO3and

K2CO3[12] The BNKT powder was obtained through ball

milling and solid state reaction by following equation

Bi2O3+ (1 minus 119909)Na

2CO3+ 119909K2CO3+ 4TiO

2

997888rarr 4Bi05(Na1minus119909

K119909)

05TiO3+ 2CO

2

(1)

The single crystals (1minus119909)BNT-xBKT (0 lt 119909 lt 014) werefabricated by flux method [31] The grain oriented and tex-tured BNKT ceramics were first fabricated by Tani throughreactive template grain growth method using plate likeBi4Ti3O12(BiT) particles as a template [32]The BiT platelets

were aligned parallel to the tape casting direction andgrain oriented ceramics were prepared from Bi

2O3and TiO

2

using molten salt synthesis Additional amounts of Na2CO3

K2CO3 and TiO

2to stoichiometry were included in the

mixing batch to react with the BiT according to followingequation

Bi4Ti3O12+ 2 (1 minus 119909)Na

2CO3+ 2119909K

2CO3+ 5TiO

2

997888rarr 8Bi05(Na1minus119909

K119909)

05TiO3+ 2CO

2

(2)

Recently BNKT powders were prepared by the sol-gel process [33] The starting materials as analytical-gradechemical bismuth nitrate (Bi(NO

3)3sdot5H2O) sodium acetate

(CH3COONasdot3H

2O) or sodium nitrate (NaNO

3) potassium

acetate (CH3COOK) or potassium nitrate (KNO

3) and

tetrabutyl tinatate (Ti(OC4H9)4) or titanium isopropoxide

(Ti(OC3H7)4) were used to prepare a BNKT precursor

solutionThen the sol was heated to get dried gels Finally thedried gels were calcined and annealed to remove the organicingredients and to promote crystallization respectively Inaddition the BNKT thin films and nanofibers were alsofabricated by a sol-gel method and electrospinning techniqueas reported by Chen et al [34] After preparing the sol thethin films and nanofibers were prepared on PtTiSiO

2Si

substrate by spin coating and electrospinning respectivelyThe Li-doped BNKT thin films have been grown by pulsedlaser deposition (PLD) using a krypton fluoride (KrF)excimer laser with a wavelength of 248 nm [35]

222 Crystal Structure of B05(NaK)

05TiO3 Buhrer reported

that the lattice parameters of B05Na05TiO3increased with

BKT concentration addition [12] Pronin et al indicated thatthe (1 minus 119909)Bi

05Na05TiO3-xBi05K05TiO3solid solution was

rhombohedral at 119909 lt 018 pseudocubic at 119909 = 018ndash040and tetragonal at 119909 gt 040 at the room temperature [18] Onthe morphotropic phase boundary at 119909 = 018 the latticeparameters and unit cell volume change by jump [18]However Kreisel et al obtained the structural change in solidsolution (1 minus 119909)BNT-xBKT by using the Raman scatteringResults showed existence of a phase transition at 119909 between04-05 However it also indicated that the phase transition inrange 119909 = 06ndash08 due to existence of nanosize Bi3+TiO

3and

(Na1minus2119909

K2119909)+TiO

3clusters [36] This region is considered as

a morphotropic phase boundary (MPB) where the MPBdescribed the boundary that separates regions of differencesymmetries and can be crossed through a change in compo-sition However the MPB was not reported clearly [37]

223 Some Physical Properties at Morphotropic BoundaryDiagram The Curie temperature of (1 minus 119909)Bi

05Na05TiO3-

xBi05K05TiO3solid solution was found to go through a

minimum at 119909 = 01-02 [17] Sasaki et al studied this systemand obtained a maximum of 119889

31= 42 pCN with 119896

119901= 023

which was observed on the first morphotropic boundary [14]Elkechai et al obtained 119889

33= 96 pCN 119896

119901= 021 and119873

119901=

2800Hzm at 119909 = 016 [38] Yoshii et al investigated thepiezoelectric properties of a solid solution of the binarysystem xBi

05Na05TiO3-(1minus119909)Bi

05K05TiO3[39] Fine piezo-

electric properties in lead-free piezoelectric ceramics wereobtained near MPB composition between the rhombohedraland tetragonal structures and the highest electromechan-ical coupling factor 119896

33 and piezoelectric constant 119889

33

were 056 pCN for Bi05(Na084

K016

)05TiO3and 157 pCN

for Bi05(Na08K02)05TiO3 respectively However the 119879

119889

of Bi05(Na08K02)05TiO3

was low at 174∘C The 119879119889

ofthe MPB composition was low and the 119879

119889near the MPB

composition was sharply decreased It is thought thatBi05(Na07K03)05TiO3is a candidate composition for lead-

free actuator applications owing to its relatively large piezo-electric constant 119889

33of 126 pCN dynamic 119889

33of 214 pmV

and high depolarization temperature 119879119889of 206∘C Recently

Izumi et al reported that a small amount of BKT substitutionsuppressed the remnant polarization from 38 120583Ccm2 at 119909 =0 to about 15120583Ccm2 at119909 = 002 piezoelectric strain constant(11988933) is enhanced by increasing 119909 up to 297 pmV at 119909 = 014

during studying the (1 minus 119909)BNT-xBKT single crystals (0 lt119909 lt 014) [31]

BNT-BKT solid solutions are interesting because of threephenomena (i) existence of two morphotropic boundaries(ii) neighborhood of the antiferroelectric (AFE) phase ofBNT and high-temperature ferroelectric (FE) phase of BNTand (iii) complicated coexistence of several phases within oneperovskite lattice because of the phase-transition diffusion

224 Mechanism Electric-Field-Induced Giant Strain

(1) Electric-Field-Induced Phase Transition Ferroelectric crys-tals are characterized by their asymmetric or polar structuresIn an electric field ions undergo asymmetric displacementand result in a small change in crystal dimension which is

4 Advances in Materials Science and Engineering

proportional to the applied field [40 41] However the effectis generally very small and thus limits its usefulness

In the search for lead-based materials with large electric-field-induced phase transition (EFIS) an alternative andapplicable approach for ceramics was reported by Uchinoet al and Pan et al based on thework of Berlicourt et al [5ndash7]They observed a large strain due to a change of the unit cell in(PbLa)(SnZrTi)O

3ceramic because of a transition from

antiferroelectric to ferroelectric phase which was induced bythe electric field

Zhang et al proposed that the high strain in lead-freeBi05Na05TiO3-BaTiO

3-K05Na05NbO3

system came bothfrom a significant volume change caused by the field-inducedantiferroelectric-ferroelectric phase transition and from thedomain contribution caused by the induced ferroelectricphase [42 43] Jo et al suggested that origin of the large strainin (K05Na05)NbO

3-modified (Bi

05Na05)TiO3-BaTiO

3lead-

free piezoceramics is due to the presence of a nonpolar phasethat brings the system back to its unpoled state once whenthe applied electric field is removed which leads to a largenonpolar strain [44] In addition Lee et al reported that thegiant EFIS was attributed to the transition from nonpolarto ferroelectric phases in BNKT-BiAlO

3small grains with

ferroelectric BNT large grains during external electric fieldexecution [45] Recently Lee et al suggested a model on thebasis of the coexistence of polar nanoregions and a nonpolarmatrix which can reversibly transform into a polar ferro-electric phase under cyclic fields via observation of giantEFIS in Sn doped BNKT [46] Ullah et al suggested that theorigin of the large electric-field-induced giant strain is aninherently large electrostrictive strain combined with anadditional strain introduced during electric-field-inducedphase transition [47] However the origin of phase transitionfrom polar to nonpolar due to doping is unclear because theexplanation based on the distorted tolerance factor resultsfromdifference radius of dopants but the tolerance factor justestimated the phase stability and could not predict the sta-bility of structural typeThe further mechanism understatingneeds to be further investigated

(2) Domain Switching The volume regions of the materialwith the same polarization orientation are referred to asferroelectric domains [48] When the sample is under zerofield and strain-free conditions all the domain states have thesame energy but if an electric field is applied the free energyof the system is lowered by aligning the polarization alongthe electric fieldThus large applied electric fields can perma-nently reorient the polarization between the allowed domainstates which are restricted by crystallography As a resultpolycrystals random orientation can be electrically poled toproduce net piezoelectric coefficients Recently Ren pointedout that the large EFIS in ferroelectric crystals is caused bypoint-defect-mediated reversible domain switching [49] Itis noted that the defect dipoles tend to align along the sponta-neous polarization direction which was suggested by electronparamagnetic resonance experiments [50 51] and theoret-ical modeling [52 53] The domain switched and alignedby the applied electric field The defects symmetry anddefects dipolemoment cannot be rotated in such diffusionless

process resulting in restoring force or reversing internal fieldthat favored reverse domain switching when electric field isremoved However theoretical calculation indicated that theultrahigh electromechanical response in single-crystal piezo-electrics resulted from polarization rotation during polingprocessing [54]

3 Role of Dopants in Bi05(NaK)05TiO3

31 Role of Substitution in A-Site and B-Site inBi05(NaK)

05TiO3 TheBi

05(NaK)

05TiO3is considered as a

typicalABO3perovskitewhere Bi3+ K+ andNa+ ions localize

at A-site and Ti4+ ions localize at B-site In this part thecurrent studies of the effect of dopants on BNKTrsquos propertieshave been presented

311 Rare-Earth Doped BNKT The rare earth elements aremultivalent when they were doped in BNKT which resultedin interesting and complicating phenomena Li et alreported that electromechanical coupling factor (119896

119901) of

Bi05Na044

K006

TiO3was increased from 254 to 278 with

02 wtCeO2dopant and then decreased with higher CeO

2

content [55] Liao et al also obtained enhancement in piezo-electric properties of Bi

05(Na1minus119909minus119910

K119909Li119910)05TiO3via CeO

2

doping [56] The Bi05(Na0725

K0175

Li01)05TiO3ceramics

doped with 01 wt CeO2show good performance with high

piezoelectric constant (11988933= 220 pCN) and high coupling

factor (119896119901= 393) [56] Wang et al reported the effects

of La substitution at Bi-site in (Bi1minusxNa08K02Lax)TiO3 which

were 119896119901maximumof 28with 05wtLa doping and bipolar

maximum strain of 016 with 2wt La doping [57] Yuanet al reported the strain enhanced up to 119896

119901= 35 in La-

doped [Bi05(Na075

K015

Li010

)05]TiO3[58 59] Yang et al

obtained the electromechanical coupling factor 119896119901= 27 by

substitution of 00125wt Nd2O3in 082Bi

05Na05TiO3-

018Bi05K05TiO3ceramics [60] The 03 wt Sm

2O3sub-

stitution in 082Bi05Na05TiO3-018Bi

05K05TiO3ceramics

exhibited the high planar coupling factor (119896119901= 224)which

were reported by Zhang et al [61] This group alsoobtained the enhancement of electromechanical couplingfactor 119896

119901= 2463 with 02 wt Gd

2O3doping in

082Bi05Na05TiO3-018Bi

05K05TiO3ceramics [62] Zhi-Hui

et al reported optimum value of 015 wt Dy2O3added in

Bi05(Na082

K018

)05TiO3for enhancement of electrical prop-

erties [63] Fu et al obtained the effect of Ho2O3and Er

2O3

dopants in 082Bi05Na05TiO3-018Bi

05K05TiO3where the 119896

119901

was 2426 and 2382 for 01 wt Ho2O3and 06wt Er

2O3

dopants respectively [64 65] Following this work Fu et alreported the effects of Eu

2O3on the structure and electrical

properties of 082Bi05Na05TiO3-018Bi

05K05TiO3lead-free

piezoelectric ceramics where the optimumdoping of 02wtEu2O3has displayed the highest planer coupling factor 119896

119901=

251 [66]

312 Transition Metal Doped Bi05(NaK)

05TiO3 Han et al

first reported that the adding CuO in Bi05(NaK)

05TiO3

ceramics resulted in decreasing the sintering temperature[67] Do et al reported that the 119896

119901of Bi05(Na082

K018

)05TiO3

Advances in Materials Science and Engineering 5

decreased when it was added with CuO [68] The 119878max119864maxwas 214 pmV for added 002mol CuO but it increased to427 pmV for added 002mol Nb

2O5[68] Jiang et al

obtained the best piezoelectric properties with 119896119901= 30

for 02 wt Mn2+ doped (Na05K02)05Bi05TiO3[69 70]

In addition the (Na05K02)05Bi05TiO3-05 wt Mn exhib-

ited strong ferroelectricity with remnant polarization 119875119903=

38 120583Ccm2 [69] Mn doping restrained the ferroelectricto antiferroelectric phase transition because of oxygenvacancy [69] Hu et al obtained the optimal electricproperties in 016 wt MnCO

3-added 74Bi

05Na05TiO3-

208Bi05K05TiO3-52BaTiO

3which displayed the piezoelec-

tric strain 11988933= 140 pCN mechanical coupling 119896

119901= 18

and mechanical quality 119876119898= 89 while the depolarization

temperature (119879119889) stays relatively high at 175∘C [71] The effect

of Mn and Co on electrostrains of Bi05Na05TiO3-BaTiO

3-

Bi05K05TiO3has been investigated by Shieh et al [72 73]

It was remarkable that Mn doping with an electrostrain ofabout 01 can bemaintainedwhen theMndoping amount isin between 05 and 15mol which were contrast for thecodoped Bi

05Na05TiO3-BaTiO

3-Bi05K05TiO3 the values of

electrostrain and 11988933

stay relatively constant regardless ofthe Co-doping level [72 73] The 030wt MnO-addedBi0485

Na0425

K006

Ba003

TiO3solid solutions were found to be

with optimal electrical properties of11988933= 109 pCNand 119896

119901=

32 [74] The highest 119896119901values for various dopants element

substitution in BNKThas been shown in Figure 1Thehighest119896

119901of 393 was reported for rare-earth Ce codoped with Li-

modification BNKT ceramics

313 Other Metal-Doped Bi05(NaK)

05TiO3 Do et al repo-

rted that Bi05(Na082

K018

)05TiO3ceramics had the value of

119878max119864max of 566 pmV when 2mol of Ta5+ substitutedon Ti4+ site which were compared to without dopants withvalue of 119878max119864max of 233 pmV [75] Pham et al obtainedthe enhancement 119878max119864max up to 641 pmV due to 3molNb5+ substitution on Ti4+ ions [76] Hussain et al reportedthe piezoelectric coefficient of 641 pmV for Zr4+ 043molconcentration substitution in Ti4+ site [77] In additionHussain et al found that Hf substitution with 3molat Ti-site resulted in enhancement of the electric-field-induced strain up to 475 pmV with corresponding strainof 038 at an applied electric field of 80 kVcm [78] Binhet al reported the EFIS of 278 pmV for 07 wt Y-dopedBi05(Na082

K018

)05TiO3which were higher than without

dopant of EFIS of 228 pmV [79] At this moment thehighest 119878max119864max was 727 pmV by codopant Li and Tain BNKT which was reported by Nguyen et al [80] The[Bi05(Na1minusxminusyKxLi119910)05]TiO3 ceramics show excellent piezo-

electric and ferroelectric properties and the optimum prop-erties were reported as follows piezoelectric constant 119889

33=

231 pCN planar and thickness electromechanical couplingfactors 119896

119901= 410 and 119896

119905= 505 remanent polarization

119875

119903= 402 120583Ccm2 and coercive field 119864

119888= 247 kVmm [81]

Recently Lee et al obtained 119878max119864max of 585 pmV for5mol Sn doped in Bi

05(Na082

K018

)05TiO3[46] Fur-

thermore Nguyen et al reported the enhancement EFISin Bi05(Na082

K018

)05Ti095

Sn005

O3by additives Li where

20

24

28

32

36

40

44

Ceramic compounds

Cou

plin

g fa

ctor

kp

()

[57]BNKT-(Li Ce)

[59]BNKT-(Li La)

[61]BNKT-Nd[58]BNKT-La[56]BNKT-Ce [63]BNKT-Gd

[65]BNKT-Ho

[66]BNKT-Er

[67]BNKT-Eu

[62]BNKT-Sm

Figure 1 The effect of electric coupling factor in case of variousdopants in BNKT

119878max119864max increased up to 646 pmV when 4mol Na wasreplaced with Li [82] Liao et al reported the effect of Kand Ag dopant concentrations in Bi

05Na05TiO3ceramics K-

and Ag-doped ceramics exhibited good performances withpiezoelectric constant 119889

33= 189 pCN electromechanical

coupling factor 119896119901= 350 remnant polarization 119875

119903=

395 120583Ccm2 and coercive field 119864119862= 23 kVmm [83]

Isikawa et al cosubstituted Ag into A-site and Ba into B-sitein BNKT and obtained enhancement in piezoelectric proper-ties [84] Moreover this group also pointed out that the addi-tion of La

2O3MnO to BNKAT-BT specimens displayed a

very large strain dynamic constant 119878max119864max of 415 pmVwhich results from the field-forced phase transition from theparaelectric phase to the ferroelectric phase [84]

314 Nonstoichiometric Effects in Bi05(NaK)

05TiO3 Ni et al

obtained the effects of A-site vacancy on the electricalproperties in lead-free nonstoichiometric ceramicsBi05+119909

(Na082

K018

)05minus3119909

TiO3and Bi

05+119910(Na082

K018

)05TiO3

[85 86] The generation of A-site vacancy leads to a randomdefect field which results in destroying the long-range orderphase induced by point field and makes the domain moveeasier However the effects of B-site vacancy or oxygenvacancy were not well-reported for BNKT system

32 Role of Solid Solution of Secondary 11986010158401198611015840O3Dopants in

Bi05(NaK)

05TiO3 At the MPB of BNK-BKT binary system

an electric-field-induced strain and dynamic piezoelectriccoefficient were 023 and 291 pmV respectively at anapplied electrical field of 80 kVcm which are the consideredvalue for application in electromechanical devices [87]Thesevalues were low as compared with PZT-based materialstherefore it is impossible to apply for real electronicdevices The recent researches tried to enhance the dynamicpiezoelectric coefficient by dopants via solid solution withother 11986010158401198611015840O

3perovskites In fact the solid solution with

small amount (simseveral mole percents) of 11986010158401198611015840O3perovskite

6 Advances in Materials Science and Engineering

to BNKT resulted in strong enhancement the 119878max119864maxvalues Ullah et al obtained large electric-field-induced strainin BiAlO

3-modified Bi

05(NaK)

05TiO3with 119878max119864max of

592 pmV at 3mol BiAlO3 near the tetragonal-pseudo-

cubic phase boundary [87] The 119878max119864max was slightlydecreased to 579 pmV via Bi

05La05AlO3-modified

Bi05(Na078

K022

)05TiO3

[88] Tran et al modifiedBi05(Na082

K018

)05TiO3ceramics with Sr(K

14Nb34

)O3and

got the significant temperature coefficient of 038 pmVK[89] Wang et al fabricated 5mol SrTiO

3-modified

Bi05(Na08K02)TiO3lead-free piezoceramic which had a

large unipolar strain of 036 (119878max119864max = 600 pmV)at a driving field of 60 kVcm at room temperature [90]The Bi(Zn

05Ti05)O3ceramic was found to enhance the

eletromechanical strain with 119878max119864max of 547 pmV and500 pmV for 5Bi(Zn

05Ti05)O3-40(Bi

05K05)TiO3-

55(Bi05Na05)TiO3and 2mol doped respectively [91ndash93]

Hussain et al obtained the 119878max119864max of 434 pmV with3mol K

05Na05NbO3-modified Bi

05(Na078

K022

)05TiO3

ceramic [94] The 82Bi05Na05TiO3-16Bi05K05TiO3-

3KNbO3ceramics had good performances with piezoelectric

constant 11988933= 138 pCN and electromechanical coupling

factor 119896119901= 38 [95] Do et al obtained the EFIS values of

443 pmV in 4mol LiTaO3-modified 78Bi

05Na05TiO3-

18Bi05K05TiO3[96] Ngoc et al reported that maximum

strain of 2mol BaZrO3-modified Bi

05(Na082

K018

)05TiO3

ceramics was two times higher than undoped case [97] Inaddition they pointed out that the modification EFISof BaZrO

3was better than that of BaTiO

3[98] The

electric-field-induced strain was significantly enhancedby the CaZrO

3-induced phase transition and reached

the highest value of 119878max119864max of 617 pmV whenBi05(Na078

K022

)05TiO3was doped with 3mol CaZrO

3

dopant [99] Kang et al obtained 119878max119864max of 333 pmVwith4mol additive Bi

05(Na082

K18)05TiO3 and it was further

increased to 363 pmV for 2mol CuO-added specimen[100] Recently we obtained the enhancement of 119878max119864maxup to 668 pmV due to modify A-site by Li in lead-freeBNKT-modified with CaZrO

3[101] Zaman et al obtained

119878max119864max of 500 pmV via codoped Zr and LiSbO3[102]

The Ba085

Ca015

Ti090

Zr010

O3 BaTiO

3 NaSbO

3 LiNbO

3

BiGaO3and Ba

085Ca015

Ti090

Zr010

O3were also found to

enhance the electromechanical properties when those weresolute in Bi

05(NaK)

05TiO3

[103ndash109] Interestinglythe multiferroics materials such as BiFeO

3 BiMnO

3

and BiCrO3-modified BNKT result in enhancement in

electromechanical properties [110ndash112] However solutionandor composite BNKT with ferromagnetic such asBNKT-CoFe

2O4and BNKT-Fe

3O4were not reported [113]

4 Discussion

The mechanism of giant electric-field-induced strain couldbe considered as (i) electric-field-induced phase transitionandor (ii) point-defect-mediated reversible domain switch-ing At room temperature the BNT system is in rhom-bohedral structure and BKT is in tetragonal structure

100

200

300

400

500

600

700

800

900

Ceramic compounds

[90]BNKT-Sr(K14Nb34)O3[99]BNKT-BaTiO3[101]BNKT-(Li CaZrO3)

[100]BNKT-CaZrO3[92]BNKT- Bi05Zn05Ti05O3[88]BNKT- BiAlO3

[102]BNKT-(Zr LiSbO3)[97]BNKT- LiTaO3

[95]BNKT- K05Na05NbO3

[88]BNKT- BiAlO3

BNKT-(LiTa)[81]

BNKT-Nb[77]BNKT-(Li Sn)[83]

BNKT-Zr[78]BNKT-Sn[47]

BNKT-Ta [76]

BNKT-Hf[79]

BNKT-La[58]

BNKT-Y[80]

Pure BNKT[80]

Sm

axE

max

(pm

V)

Figure 2 The effect of dopants and solid solution perovskite ABO3

to BNKT

Their solid solutions have rhombohedral-tetragonal mor-photropic phase boundary near 016ndash020 of BKT amount[14] The effects of elements dopants or codopants at A-or B-site of BNKT were found to be effective the piezo-electric properties by two mechanisms based on the dif-ference radii point of view Firstly the dopants distortedthe tolerance factor due to the difference the radii ofdopant in comparing with Na+ K+ Bi3+ or Ti4+ Thedistortion results in phase transition from tetragonal topseudocubic or tetragonal development from pseudocubicwhich was strongly related to electric-field-induced phasetransition mechanism Secondly the dopants created theoxygen vacancy due to difference the valence state when theradii were performed which were related to point-defect-mediated reversible domain switchingmechanismThe effectof dopants and solid solution11986010158401198611015840O

3to BNKThas been sum-

marized in Figure 2 The ceramics compositions displayedthe highest 119878max119864max values which were shown in detailsin Table 1 The highest 119878max119864max of each year was plottedat Figure 3 The result indicated that electric-field-inducedgiant strain of BNTK was comparable with that of PZT (suchas commercial PZT (PIC151)) and therefore these modifiedBNKT can become a promising piezoelectric ceramics toreplace the lead-based piezoelectric materials Actually the119878max119864max values of BNKT ceramics were increased whenthe element at B-site andor A-site of BNKT ceramics weremodified However the 119878max119864max values quickly increasedwith several percent of dopants and then decreased whenfurther dopants were added These phenomena were alsoobtained while 11986010158401198611015840O

3modified BNKT as solid solution

because 1198601015840 and 1198611015840 diffused as codopant at both A- and B-sites of BNKT with similar concentrationThe observation ofenhancement of dynamic piezoelectric coefficient was relatedto (i) distorted structure (ii) phase transition from polar tononpolar phase and (iii) polar phase growth inner nonpolarphase The recent explanation of phase transition due todopant based on distorted tolerance factor because radiusbetween host and dopants differed and oxygen vacancy

Advances in Materials Science and Engineering 7

Table 1 The detailed composition of BNKT-modified ceramics with highest electric-field-induced strain

Ceramic compounds 119878max119864max (pmV) References086Bi05Na05TiO3 minus 014Bi05K05TiO3 297 Izumi et al (2008) [31]La2O3MnO-added (1 minus y)(Bi05Na049minus119909K119909Ag001)TiO3 minus yBaTiO3 415 Isikawa et al (2009) [84]Bi05(Na082K018)05Ti097Nb003O3 641 Pham et al (2010) [76]Bi05(Na078K022)05TiO3 296 Ullah et al (2010) [87]097Bi05(Na078K022)05TiO3 minus 003BiAlO3 592 Ullah et al (2010) [87]095Bi05(Na08K02)05TiO3 minus 005BiAlO3 391 Ullah et al (2010) [115]099(K05Na05)095Li005NbO3 minus 001Bi05(K015Na085)05TiO3 330 Chen et al (2010) [33]Bi05(Na082K018)05TiO3 minus 07 wt Y2O3 278 Binh et al (2010) [79]Bi05(Na078K022)05Ti097Zr003O3 614 Hussain et al (2010) [77]Bi05(Na078K022)05(Ti097Hf003)O3 475 Hussain et al (2010) [78]Bi05(Na082K018)05Ti098Ta002O3 566 Do et al (2011) [75]Bi12Na12TiO3 minus Bi12K12TiO3 minus 002Bi(Zn12Ti12)O3 500 Dittmer et al (2011) [93]Bi05(Na075K025)05TiO3 minus BiAlO3 sim900 Lee et al (2011) [45]009Bi05(Na078K022)05TiO3 minus 001Bi05La05AlO3 579 Ullah et al (2012) [88]0975Bi05(Na078K022)05TiO3 minus 0025BiAlO3 533 Ullah et al (2012) [116]097Bi05(Na078K022)05TiO3 minus 003K05Na05NbO3 434 Hussain et al (2012) [94]Bi05Na0385Li0025K009Ti0975Ta0025O3 727 Nguyen et al (2012) [80]Bi05(Na082K018)05Ti095Sn005O3 585 Lee et al (2012) [46]094Bi12(Na08K02)12TiO3 minus 006Bi(Mg12Sn12)O3 633 Pham et al (2012) [117]Bi05(Na074Li08K018)05Ti095Sn005O3 646 Nguyen et al (2012) [82]Bi12(Na082K018)12(Ti097Nb003)O3 641 Pham et al (2012) [118]097Bi05(Na078K022)05TiO3 minus 003CaZrO3 617 Hong et al (2013) [99]095Bi05(Na08K02)05TiO3 minus 005SrTiO3 600 Wang et al (2012) [90]099Bi05(Na082K018)05Ti0980Zr0020O3 minus 001LiSbO3 500 Zaman et al (2012) [102]097Bi05(Na082K018)05 minus 003Bi(Zn05Ti05)O3 385 Ullah et al (2012) [119]5Bi(Zn05Ti05)O3 minus 40(Bi05K05)TiO3 minus 55(Bi05Na05)TiO3 547 Patterson et al (2012) [91]Bi05(Na082K018)05TiO3 minus 002CuO 214 Do et al (2012) [68]Bi05(Na082K018)05TiO3 minus 002CuO minus 002Nb2O5 427 Do et al (2012) [68]098Bi05(Na078K022)05TiO3 minus 002LaFeO3 sim500 Han et al (2012) [120]Bi05(Na082K018)05Ti095Sn005O3 sim600 Han et al (2013) [121]098Bi05(Na082K018)05TiO3 minus 002BaZrO3 437 Lee et al (2013) [122]097Bi05(Na082K018)05TiO3 minus 003CaZrO3 603 Lee et al (2013) [122]098Bi05(Na082K018)05TiO3 minus 002Ba08Ca02ZrO3 549 Lee et al (2013) [122]094Bi05(Na075K025)05TiO3 minus 006BiAlO3 930 Lee et al (2013) [123]0975Bi05(Na080K020)05TiO3 minus 0025LiNbO3 475 Hao et al (2013) [124]096Bi05(Na078K022)05TiO3 minus 004Bi(Mg05Ti05)O3 636 Ullah et al (2013) [125]40Bi05K05TiO3 minus 59Bi05Na05TiO3 minus 1Bi(Mg12Ti12)O3 422 Kumar and Cann (2013) [126][Bi12(Na082K018)12]097La003TiO3 715 Dinh et al (2013) [127]095Bi05(Na080K020)05TiO3 minus 005Ba(Ti090Sn010)O3 649 Jaita et al (2014) [128]097Bi05(Na080K020)05TiO3 minus 003SrZrO3 617 Hussain et al (2014) [129]099Bi05Na04K01Ti098Nb002O3 minus 001(Ba07Sr03)TiO3 634 Ullah et al (2014) [130]Bi05(Na080K020)05TiO3 minus (K119910Na1minus119910)NbO3 413ndash575 Hao et al (2014) [131]099Bi05(Na082K018)05Ti0987Ta0013O3 minus 001LiSbO3 650 Zaman et al (2014) [132]099[(Bi05Na04K01)0980La0020TiO3] minus 002[Ba07Sr03TiO3] 650 Ullah et al (2014) [133]

8 Advances in Materials Science and Engineering

2008 2009 2010 2011 2012 2013 20140

200

400

600

800

1000

1200

PZT (PIC151)

Year

Lead-free BNKT-based

PZT-based

Sm

axE

max

(pm

V)

Figure 3 The highest values 119878max119864max observation in years (from2008 to 2014) in lead-free BNKT-based ceramics

caused difference of valence states However the tolerancefactor has only estimated the range for stability of perovskitebut it was not showed for crystal symmetries Thus theseexplanations were unreliable The mechanism of electricalfield-induced strain was not well understood which stillrequired to further investigate Consequently the roles of A-and B-site on the electrical field-induced strain were uncleartill now However we expected that the 119878max119864max valueswere further increased by using multidopant with optimalconcentration of dopants for each position A- andor B-sitein BNKT ceramics

In case of rare-earth doped BNKT the enhancementof piezoelectric properties mostly resulted from the point-defect-mediated because rare-earth elements have variousvalences which was displayed by various radii of ion depend-ing on the valence stable state substitution For examplethe mechanism for the effect of CeO

2doped BNKT is

complicated because Ce ion possibly exists in the BNKTstructure in two valence states Ce4+ with radius of 092 Aand Ce3+ with radius of 103 A In view of the radius Ce3+is possible to fill in Bi3+ vacancies and Ce4+ can enter into theBi-site In this case Ce4+ functions as a donor dopant leadingto some vacancies of A-site in the lattice which facilitatesthe movement of domain wall to improve the piezoelectricproperties Another one is that Ce3+ and Ce4+ ions occupythe A-site of Na+ (119903Na+ = 097A) of BNKT compositionwhich are the same as the Ce4+ entering into Bi3+ [55 56] Inthese cases existing vacancies bring defect in lattice whichresults in an increasing in the dielectric loss and grain sizeand have some effects of piezoelectric properties In additionthe experiments demonstrated that rare-earth substitution inNa+ first leads to creation of oxygen vacancies and latticecontraction but when the dopants concentration is over acritical value then it begins to substitute for Bi3+ thus it leadsto lattice expansion [57ndash59]

In case of transitionmetal dopant inBNKT themost find-ings confirmed that dopants resulted in the lower sintering

temperature It is valuable inmarket due to reduction the costof electronic devices

In case of other metal dopant in BNKT there were mixedpoint-defect-mediated and electric-field-induced phase tran-sition mechanisms which depend on the valence and site-prefer to substitution For example the Ta5+ which replacedTi4+ at B-site leads to creation of A-site vacancies whichsignificantly contributed to the destabilization of ferroelectricphase in the Bi perovskite [75 80 114] These factors weresimilar to a case of nonstochiometric at A- and B-site ofBNKT where the vacancies were occurred

In case of solid solution between BNKT with other119860

1015840119861

1015840O3perovskites it is quite interesting because the ideal

was simple like tailor Some of 11986010158401198611015840O3perovskites were

unstable or hardly fabricated such as BiAlO3 but the theory

predicted that they should have goodpiezoelectric propertiesHowever interestingly they were stabled in solid solution inBNKT matrix and strong enhancement piezoelectric prop-erties Similarly the Bi

05Zn05TiO3(BZT) was a good ferro-

electric material and it was tailed their properties in BNKT-BZT as solid solution In addition BNKT-modified withBi05Li05TiO3has displayed the excellent piezoelectric con-

stant 11988933 Recently the multiferroic materials have rapidly

developed because they exhibited the electric field controlledferromagnetism and magnetic field controlled the electricpolarization However multiferroic properties of BNKT-based materials have not been reported Therefore we pro-posed that the solid solution andor composite of BNKTwith insulator ferromagnetism materials such as BiFeO

3and

CoFeO4could be a good display of multiferroics properties

which will promise candidate to develop new class of multi-ferroics materials

5 Conclusion

The current status of lead-free piezoelectric materials hasbeen introduced The lead-free BNKT-based ceramics werereviewed based on the fabrication method effect of dopantsand solid-solution with other 11986010158401198611015840O

3perovskite Most find-

ings confirmed that giant strain obtained in lead-free BNKT-based ceramics is due to phase transition from polar tononpolar phase and the highest 119878max119864max values werefound at theMPBHowever the origin of phase transitionwasstill debated The 119878max119864max values of lead-free BNKT-basedceramics are comparable with soft lead-based PZT-basedceramics which could be promising materials to readilyreplace the lead-based PZT-based materials in devices Inaddition the effects of secondary phase 11986010158401198611015840O

3as solid-

solution tailed the properties of BNKT matrix Our workreviewed current developments in lead-free BNKT-basedmaterials which were expected to understand current statusof researching about BNKT-based ceramics therefore to beguidance for designing new class materials and applications

Conflict of Interests

The authors declare that there is no conflict of interestsregarding the publication of this paper

Advances in Materials Science and Engineering 9

Acknowledgment

This work was financially supported by the Ministry of Edu-cation andTraining Vietnam under Project no B 20130155

References

[1] P K Panda ldquoReview environmental friendly lead-free piezo-electric materialsrdquo Journal of Materials Science vol 44 no 19pp 5049ndash5062 2009

[2] C A Randall R E Newnham and L E Cross History of theFirst Ferroelectric Oxide BaTiO

3 Materials Research Institute

The Pennsylvania State University University Park Pa USA2004

[3] E Ringgaard and T Wurlitzer ldquoLead-free piezoceramics basedon alkali niobatesrdquo Journal of the European Ceramic Society vol25 no 12 pp 2701ndash2706 2005

[4] T Takenaka and H Nagata ldquoCurrent status and prospects oflead-free piezoelectric ceramicsrdquo Journal of the EuropeanCeramic Society vol 25 no 12 pp 2693ndash2700 2005

[5] Ministry of Information Industry of the Peoplersquos Republic ofChina Industrial Standard of the peoplersquos Republich of China2006

[6] Japan Electronics and InformationTechnology Industries Asso-ciation Standard of Japan Electronics and Information Tech-nology Industries Association 1998

[7] TheEnvironment and Labor Committee of the National Assemblyof Korea 2007

[8] Y Li K S Moon and C P Wong ldquoElectronics without leadrdquoScience vol 308 no 5727 pp 1419ndash1420 2005

[9] E Cross ldquoLead-free at lastrdquoNature vol 432 no 7013 pp 24ndash252004

[10] G A Smolensky V A Isupov A I Agranovskaya and NN Krainic ldquoNew ferroelectrics with complex compounds IVrdquoFizika Tverdogo Tela vol 2 pp 2982ndash2985 1960

[11] G A Smolenskii and A I Agranovskaya ldquoDielectric polariza-tion of a series of compounds of complex compositionrdquo FizikaTverdogo Tela vol 1 pp 1562ndash1572 1959

[12] C F Buhrer ldquoSome properties of bismuth perovskitesrdquo TheJournal of Chemical Physics vol 36 pp 798ndash803 1962

[13] I P Pronin N N Parfenova N V Zaitseva V A Isupov andG A Smolenskii ldquoPhase transitions in solid solutions of sodi-umbismuth and potassiumbismuth titanatesrdquo Fizika TverdogoTela vol 24 pp 1060ndash1062 1982

[14] A Sasaki T Chiba Y Mamiya and E Otsuki ldquoDielectric andpiezoelectric properties of (Bi

05Na05)TiO3ndash(Bi05K05)TiO3sys-

temsrdquo Japanese Journal of Applied Physics vol 38 no 9 p 55641999

[15] G O Jones and P A Thomas ldquoInvestigation of the structureand phase transitions in the novel A-site substituted distortedperovskite compoundNa

05Bi05TiO3rdquoActa Crystallographica B

vol 58 pp 168ndash178 2002[16] PWoodward ldquoOctahedral tilting in perovskites I Geometrical

considerationsrdquo Acta Crystallographica B vol 53 pp 32ndash431997

[17] V A Isupov ldquoFerroelectric Na05Bi05TiO3and K

05Bi05TiO3

perovskites and their solid solutionsrdquo Ferroelectrics vol 315 no1 pp 123ndash147 2005

[18] I P Pronin P P Syrnikov V A Isupov V M Egorov N VZaitseva and A F Ioffe ldquoPeculiarities of phase transitions in

sodium-bismuth titanaterdquo Ferroelectrics vol 25 pp 395ndash3971980

[19] J A Zvirgzds P P Kapostis and J V Zvirgzde ldquoX-ray study ofphase transitions in efrroelectric Na

05Bi05TiO3rdquo Ferroelectrics

vol 40 no 1 pp 75ndash77 1982[20] J Suchanicz K Roleder A Kania and J Handerek ldquoElec-

trostrictive strain and pyroeffect in the region of phase coexis-tence in Na

05Bi05TiO3rdquo Ferroelectrics vol 77 pp 107ndash110 1988

[21] Y Chiang G W Farrey and A N Soukhojak ldquoLead-free high-strain single-crystal piezoelectrics in the alkaline-bismuth-titanate perovskite familyrdquo Applied Physics Letters vol 73 no25 pp 3683ndash3685 1998

[22] S M Emelyanov I P Raevskii V G Smotrakov and F ISavenko ldquoPiezoelectric and pyroelectric properties of sodium-bismuth titanate crystalsrdquo Fizika Tverdogo Tela vol 26 pp1897ndash1899 1984

[23] M L Zhao C LWangW L Zhong J FWang andHCChenldquoElectrical properties of (Bi

05Na05)TiO3ceramic prepared by

sol-gel methodrdquo Acta Physica Sinica vol 52 no 1 pp 229ndash2322003

[24] M L Zhao C L Wang W L Zhong J F Wang and Z F LildquoGrain-size effect on the dielectric properties of Bi

05Na05TiO3rdquo

Chinese Physics Letters vol 20 article 290 2003[25] B Jaffe W R Cook and H Jaffe Piezoelectric Ceramics

Academic Press London UK 1971[26] J Suchanicz ldquoTime evolution of the phase transformation in

Na05Bi05TiO3rdquo Ferrolectrics vol 200 no 1 pp 319ndash325 1997

[27] O N Razumovskaya T B Kuleshova and L M RudkovskayaldquoReactions of formation of BiF

119890O3 K05

Bi05TiO3 and

Na05Bi05TiO3rdquo Neorganicheskie Materialy [Inorganic Mat-

erials] vol 19 pp 113ndash115 1983[28] V V Ivanova A G Kapishev Y N Venevtsev and G S

Zhdanov ldquoX-ray determination of the symmetry of elemen-tary cells of the ferroelectric materials (K05Bi05)TiO3 and(Na05Bi05)TiO3 and of high-temperature phase transitionsin (K05Bi05)TiO3rdquo Izvestiya Akademii Nauk SSSR SeriyaFizicheskaya vol 26 pp 354ndash356 1962

[29] Y Hiruma R Aoyagi H Nagata and T Takenaka ldquoSynthesisand properties of 1-Methyl-4-2-[4-(dimethylamino)phenyl]-ethenylpyridinium p-toluenesulfonate derivatives with isomor-phous crystal structurerdquo Japanese Journal of Applied Physics vol44 p 5231 2005

[30] M Zhu L Hou Y Hou J Liu HWang andH Yan ldquoLead-free(K05Bi05)TiO3powders and ceramics prepared by a solndashgel

methodrdquo Materials Chemistry and Physics vol 99 no 2-3 pp329ndash332 2006

[31] M Izumi K Yamamoto M Suzuki Y Noguchi andM Miyayama ldquoLarge electric-field-induced strain inBi05Na05TiO3-Bi05K05TiO3

solid solution single crystalsrdquoApplied Physics Letters vol 93 Article ID 242903 2008

[32] T Tani ldquoCrystalline-oriented piezoelectric bulk ceramics witha perovskite-type structurerdquo Journal of the Korean PhysicalSociety vol 32 no 3 pp S1217ndashS1220 1998

[33] X Chen Y Liao H Wang et al ldquoPhase structure and electricproperties of Bi

05(Na0825

K0175

)05TiO3ceramics prepared by a

sol-gel methodrdquo Journal of Alloys and Compounds vol 493 no1-2 pp 368ndash371 2010

[34] Y Q Chen X J Zheng and W Li ldquoSize effect of mechanicalbehavior for lead-free (Na

082K018

)05Bi05TiO3nanofibers by

nanoindentationrdquoMaterials Science and Engineering A vol 527pp 5462ndash5466 2010

10 Advances in Materials Science and Engineering

[35] D YWang DM Lin K SWong KW Kwok J Y Dai and HL W Chan ldquoPiezoresponse and ferroelectric properties oflead-free [Bi

05(Na07K02Li01)05]TiO3thin films by pulsed laser

depositionrdquo Applied Physics Letters vol 92 no 22 Article ID222909 2008

[36] J Kreisel A M Glazer G Jones P A Thomas L Abello andG Lucazeau ldquoAn x-ray diffraction and Raman spectroscopyinvestigation of A-site substituted perovskite compounds the(Na1minus119909

K119909)05Bi05TiO3(0le xle1) solid solutionrdquo Journal of

Physics Condensed Matter vol 12 p 3267 2000[37] H Xie L Jin D Shen X Wang and G Shen ldquoMorphotropic

phase boundary segregation effect and crystal growth in theNBT-KBT systemrdquo Journal of Crystal Growth vol 311 no 14pp 3626ndash3630 2009

[38] O Elkechai M Manier and I P Mercurio ldquoNa05Bi05TiO3ndash

K05Bi05TiO3(NBT-KBT) system a structural and electrical

studyrdquo Physica Status Solidi vol 157 no 2 pp 499ndash506 1996[39] K Yoshii Y Hiruma H Nagata and T Takenaka ldquoElectrical

properties and depolarization temperature of (Bi12Na12)TiO3-

(Bi12K12)TiO3lead-free piezoelectric ceramicsrdquo Japanese Jour-

nal of Applied Physics vol 45 part 1 no 5B pp 4493ndash44972006

[40] M E Lines and A M Glass Principles and Applications forFerroelectrics and Related Materials Oxford University PressOxford UK 1979

[41] K Uchino Piezoelectric Actuators and Ultrasonic MotorsKluwer Academic Publishers Boston Mass USA 1996

[42] S T Zhang A B Kounga E Aulbach et al ldquoLead-free piezoce-ramics with giant strain in the system Bi

05Na05TiO3ndashBaTiO

3ndash

K05Na05NbO3 II Temperature dependent propertiesrdquo Journal

of Applied Physics vol 103 no 3 Article ID 034108 2008[43] S T Zhang A B Kounga E Aulbach H Ehrenberg and J

Rodel ldquoGiant strain in lead-free piezoceramics Bi05Na05TiO3ndash

BaTiO3ndashK05Na05NbO3systemrdquo Applied Physics Letters vol 91

Article ID 112906 2007[44] W Jo T Granzow E Aulbach J Rodel and D Damjanovic

ldquoOrigin of the large strain response in (K05Na05)NbO

3-

modified (Bi05Na05)TiO3ndashBaTiO

3lead-free piezoceramicsrdquo

Journal of Applied Physics vol 105 no 9 Article ID 0941022009

[45] D S Lee D H Lim M S Kim K H Kim and S J JeongldquoElectric field-induced deformation behavior in mixedBi05Na05TiO3and Bi

05(Na075

K025

)05TiO3-BiAlO

3rdquo Applied

Physics Letters vol 99 Article ID 062906 2011[46] J S Lee K N Pham H S Han H B Lee and V D N Tran

ldquoStrain enhancement of lead-free Bi12(Na082

K018

)12TiO3

ceramics by Sn dopingrdquo Journal of the Korean Physical Societyvol 60 no 2 pp 212ndash215 2012

[47] A Ullah CW Ahn A Hussain S Y Lee and IW Kim ldquoPhasetransition electrical properties and temperature-insensitivelarge strain in BiAlO

3-modified Bi

05(Na075

K025

)05TiO3lead-

free piezoelectric ceramicsrdquo Journal of the American CeramicSociety vol 94 no 11 pp 3915ndash3921 2011

[48] L J Rigoberto G Federico and V C Maria-Elena ldquoLead-free ferroelectric ceramics with perovskite structurerdquo inFerroelectrics-Material Aspects M Lattart Ed InTech 2011

[49] X Ren ldquoLarge electric-field-induced strain in ferroelectriccrystals by point-defect-mediated reversible domain switchingrdquoNature Materials vol 3 pp 91ndash94 2004

[50] W LWarren G E Pike K Vanheusden D Dimos B A Tuttleand J Robertson ldquoDefect-dipole alignment and tetragonal

strain in ferroelectricsrdquo Journal of Applied Physics vol 79 no12 pp 9250ndash9257 1996

[51] W L Warren D Dimos G E Pike K Vanheusden and RRamesh ldquoAlignment of defect dipoles in polycrystalline ferro-electricsrdquo Applied Physics Letters vol 67 p 1689 1995

[52] R Lohkamper H Neumann and G Arlt ldquoInternal biasin acceptor-doped BaTiO

3ceramics numerical evaluation of

increase and decreaserdquo Journal of Applied Physics vol 68 p4220 1990

[53] U Robels and G Arlt ldquoDomain wall clamping in ferroelectricsby orientation of defectsrdquo Journal of Applied Physics vol 73 no7 pp 3454ndash3460 1993

[54] H Fu and R E Cohen ldquoPolarization rotation mechanism forultrahigh electromechanical response in single-crystal piezo-electricsrdquo Nature vol 403 no 6767 pp 281ndash283 2000

[55] Y Li W Chen Q Xu J Zhou Y Wang and H SunldquoPiezoelectric and dielectric properties of CeO

2-doped

Bi05Na044

K006

TiO3

lead-free ceramicsrdquo Ceramics Inter-national vol 33 no 1 pp 95ndash99 2007

[56] Y Liao D Xiao D Lin et al ldquoThe effects of CeO2-

doping on piezoelectric and dielectric properties ofBi05(Na1minus119909minus119910

K119909Li119910)05TiO3piezoelectric ceramicsrdquo Materials

Science and Engineering B vol 133 no 1ndash3 pp 172ndash176 2006[57] B Wang L Luo F Ni P Du W Li and H Chen ldquoPiezoelectric

and ferroelectric properties of (Bi1minus119909

Na08K02Lax)05TiO3lead-

free ceramicsrdquo Journal of Alloys and Compounds vol 526 pp79ndash84 2012

[58] Y Yuan S Zhang and X Zhou ldquoEffects of La occupa-tion site on the dielectric and piezoelectric properties of[Bi05(Na075

K015

L119894010

)05]TiO3ceramicsrdquo Journal of Materials

Science Materials in Electronics vol 20 no 11 pp 1090ndash10942009

[59] Y Yuan S R Zhang and X H Zhou ldquoPhasetransitions and electrical properties in La3+-substitutedBi05(Na075

K015

Li010

)05TiO3ceramicsrdquo Journal of Materials

Science Letters vol 41 pp 565ndash567 2006[60] Z Yang Y Hou B Liu and L Wei ldquoStructure and

electrical properties of Nd2O3-doped 082Bi

05Na05TiO3ndash

018Bi05K05TiO3ceramicsrdquo Ceramics International vol 35 pp

1423ndash1427 2009[61] Y Zhang R Chu Z Xu et al ldquoPiezoelectric and dielectric prop-

erties of Sm2O3-doped

082Bi05Na05TiO3-0 18Bi

05K05TiO3

ceramicsrdquo Journal of Alloys and Compounds vol 502 no 2 pp341ndash345 2010

[62] P Fu Z Xu R Chu W Li WWang and Y Liu ldquoGd2O3doped

082Bi05Na05TiO3ndash018Bi

05K05TiO3

lead-free piezoelectricceramicsrdquoMaterials amp Design vol 35 pp 267ndash280 2012

[63] C Zhi-Hui D Jian-Ning M Lin Y Ning-Yi and Z Wei-WeildquoPiezoelectric and dielectric properties of Dy

2O3-Doped Bi

05

(Na082

K018

)05TiO3lead-free ceramicsrdquo Ferroelectrics vol 425

no 1 pp 63ndash71 2011[64] P Fu Z Xu R Chu XWuW Li andH Zhang ldquoStructure and

electrical properties of the Ho2O3doped 082Bi

05Na05TiO3-

018Bi05K05TiO3lead-free piezoelectric ceramicsrdquo Journal of

Materials Science Materials in Electronics vol 23 no 12 pp2167ndash2172 2012

[65] P Fu Z Xu H Zhang R Chu W Li and M Zhao ldquoStructureand electrical properties of Er

2O3doped 082Bi

05Na05TiO3ndash

018Bi05K05TiO3lead-free piezoelectric ceramicsrdquoMaterials amp

Design vol 40 pp 373ndash377 2012

Advances in Materials Science and Engineering 11

[66] P Fu Z Xu R Chu W Li Q Xie and G Zhang ldquoEffectsof Eu

2O3

on the structure and electrical properties of082Bi

05Na05TiO3-018Bi

05K05TiO3

lead-free piezoelectricceramicsrdquo Current Applied Physics vol 11 pp 822ndash826 2011

[67] H Han N Do K Pham et al ldquoSintering behaviour andpiezoelectric properties of CuO-added lead-free Bi(NaK)TiO

3

ceramicsrdquo Ferroelectrics vol 421 no 1 pp 88ndash91 2011[68] N B Do H D Jang I Hong et al ldquoLow temperature sintering

of lead-free Bi05(Na082

K018

)05TiO3piezoelectric ceramics by

co-doping with CuO and Nb2O5rdquo Ceramics International vol

38S pp S359ndashS362 2012[69] X P Jiang L Z Li M Zeng and H L W Chan ldquoDielec-

tric properties of Mn-doped (Na08K02)05Bi05TiO3ceramicsrdquo

Materials Letters vol 60 no 15 pp 1786ndash1790 2006[70] J Xiangping L Longzhu J Fulan Z Yanyan and L Lihua

ldquoEffects of Mn-doping on the piezoelectric and ferroelectricproperties of (Na

08K02)05Bi05TiO3ceramicsrdquo Key Engineering

Materials vol 368-372 pp 69ndash71 2008[71] H Hu M Zhu Y Hou and H Yan ldquoDielectric piezoelectric

and ferroelectric properties of MnCO3-added 74(Bi

12Na12)

TiO3-208(Bi

12K12)TiO3-52BaTiO

3lead-free piezoelectric

ceramicsrdquo IEEE Transactions on Ultrasonics Ferroelectrics andFrequency Control vol 56 pp 897ndash905 2009

[72] J Shieh Y C Lin and C S Chen ldquoIntricate straining ofmanganese-doped (Bi

05Na05)TiO3-BaTiO

3-(Bi05K05)TiO3

lead-free ferroelectric ceramicsrdquo Journal of Physics D AppliedPhysics vol 43 no 2 Article ID 025404 2010

[73] J Shieh Y C Lin and S C Chen ldquoInfluence of phase com-position on electrostrains of doped (Bi

05Na05)TiO3ndashBaTiO

3ndash

(Bi05K05)TiO3lead-free ferroelectric ceramicsrdquo Smart Materi-

als and Structures vol 19 no 9 Article ID 094007 2010[74] M Zhu H Hu N Lei Y Hou and H YanInt ldquoMnO modifi-

cation on microstructure and electrical properties of lead-freeBi0485

Na0425

K006

Ba003

TiO3

solid solution around mor-photropic phase boundaryrdquo International Journal of AppliedCeramic Technology vol 7 pp E107ndashE113 2010

[75] N BDoH B Lee CHYoon J KKang and J S Lee ldquoEffect ofTa-substitution on the ferroelectric and piezoelectric propertiesof Bi05(Na082

K018

)05TiO3ceramicsrdquoTransactions on Electrical

and Electronic Materials vol 12 no 2 pp 64ndash67 2011[76] K N Pham A Hussain CW Ahn I W Kim S J Jeong and J

S Lee ldquoGiant strain in Nb-doped Bi05(Na082

K018

)05TiO3lead-

free electromechanical ceramicsrdquoMaterials Letters vol 64 no20 pp 2219ndash2222 2010

[77] A Hussain C W Ahn J S Lee A Ullah and I W KimldquoLarge electric-field-induced strain in Zr-modified lead-freeBi05(Na078

K022

)05TiO3piezoelectric ceramicsrdquo Sensors and

Actuators A vol 158 no 1 pp 84ndash89 2010[78] AHussain CWAhn AUllah J S Lee and IWKim ldquoEffects

of hafnium substitution on dielectric and electromechanicalproperties of lead-free Bi

05(Na078

K022

)05(Ti1minus119909

Hfx)O3Ceram-

icsrdquo Japanese Journal of Applied Physics vol 49 Article ID041504 2010

[79] D N Binh A Hussain H Lee et al ldquoEnhanced electric-field-induced strain at the ferroelectric-electrostrcitive phaseboundary of yttrium-doped Bi

05(Na082

K018

)05TiO3lead-free

piezoelectric ceramicsrdquo Journal of the Korean Physical Societyvol 57 no 41 pp 892ndash896 2010

[80] V Nguyen H Han K Kim D Dang K Ahn and J Lee ldquoStrainenhancement in Bi

12(Na082

K018

)12TiO3lead-free electrome-

chanical ceramics by co-dopingwith Li andTardquo Journal of Alloysand Compounds vol 511 no 1 pp 237ndash241 2012

[81] D Lin D Xiao J Zhu and P Yu ldquoPiezoelectric and ferroelectricproperties of lead-free piezoelectric ceramicsrdquo Applied PhysicsLetters vol 88 no 6 Article ID 062901 2006

[82] V Nguyen C Hong H Lee Y M Kong J Lee and K AhnldquoEnhancement in the microstructure and the strain propertiesof Bi12(NaK)

12TiO3-based lead-free ceramics by Li substitu-

tionrdquo Journal of the Korean Physical Society vol 61 no 6 pp895ndash898 2012

[83] Y Liao D Xiao and D Lin ldquoApplication of quantum cascadelasers to trace gas analysisrdquo Applied Physics B vol 90 pp 165ndash176 2008

[84] Y Isikawa Y Akiyama and T Hayashi ldquoPiezoelectric anddielectric properties of (BiNaKAg)TiO

3-BaTiO

3lead-free

piezoelectric ceramicsrdquo Japanese Journal of Applied Physics vol48 Article ID 09KD03 2009

[85] F Ni L Luo X Pan W Li and J Zhu ldquoEffects of A-sitevacancy on the electrical properties in lead-free non-stoichiometric ceramics Bi

05+119909(Na082

K018

)05minus3119909

TiO3

andBi05+119910

(Na082

K018

)05TiO3rdquo Journal of Alloys and Compounds

vol 541 pp 150ndash156 2012[86] F Ni L Luo W Lim and H Chen ldquoA-site vacancy-induced

giant strain and the electrical properties in non-stoichiometricceramics Bi

05+119909(Na1minus119910

K119910)05minus3119909

TiO3rdquo Journal of Physics D

Applied Physics vol 45 no 41 Article ID 415103 2012[87] A Ullah C W Ahn A Hussain S Y Lee H J Lee and I W

Kim ldquoPhase transitions and large electric field-induced strainin BiAlO

3-modified Bi

05(Na K)

05TiO3lead-free piezoelectric

ceramicsrdquo Current Applied Physics vol 10 pp 1174ndash1181 2010[88] A Ullah C W Ahn S Y Lee J S Kim and I W Kim ldquoStruc-

ture ferroelectric properties and electric field-induced largestrain in lead-free Bi

05(NaK)

05TiO3-(Bi05La05)AlO3piezo-

electric ceramicsrdquo Ceramics International vol 38 no 1 ppS363ndashS368 2012

[89] V DN Tran H S Han CH Yoon J S LeeW Jo and J RodelldquoLead-free electrostrictive bismuth perovskite ceramics withthermally stable field-induced strainsrdquoMaterials Letters vol 65pp 2607ndash2609 2011

[90] K Wang A Hussain W Jo and J Rodel ldquoTemperature-dependent properties of (Bi

12Na12)TiO3-(Bi12K12)TiO3-

SrTiO3

lead-free piezoceramicsrdquo Journal of the AmericanCeramic Society vol 95 no 7 pp 2241ndash2247 2012

[91] E A Patterson D P Cann J Pokomy and I M Reaney ldquoElec-tromechanical strain in Bi(Zn

12Ti12)O3-(Bi12Na12)TiO3-

(Bi12K12)TiO3solid solutionsrdquo Journal Of Applied Physics vol

111 Article ID 094105 2012[92] E A Patterson and D P Cann ldquoBipolar piezoelectric

fatigue of Bi(Zn05Ti05)O3-(Bi05K05)TiO3-(Bi05Na05)TiO3Pb-

free ceramicsrdquo Applied Physics Letters vol 101 Article ID042905 2012

[93] R Dittmer W Jo J Daniels S Schaab and JRodel ldquoRelaxor characteristics of morphotropic phaseboundary (Bi

12Na12)TiO3-(Bi12K12)TiO3

modified withBi(Zn

12Ti12)O3rdquo Journal of the American Ceramic Society vol

94 no 12 pp 4283ndash4290 2011[94] A Hussain C W Ahn A Ullah J S Lee and I W Kim

ldquoDielectric ferroelectric and field-induced strain behavior ofK05Na05NbO3-modified Bi

05(Na078

K022

)05TiO3

lead-freeceramicsrdquo Ceramics International vol 38 no 5 pp 4143ndash41492012

12 Advances in Materials Science and Engineering

[95] G Fan W Lu X Wang and F Liang ldquoMorphotropic phaseboundary and piezoelectric properties of (Bi

12Na12)TiO3ndash

(Bi12K12)TiO3ndashKNbO

3lead-free piezoelectric ceramicsrdquo

Applied Physics Letters vol 91 Article ID 202908 2007[96] N B Do H B Lee D T Le et al ldquoElectric field-induced strain

of lead-free Bi05Na05TiO3ndashBi05K05TiO3ceramics modified

with LiTaO3rdquoCurrent Applied Physics vol 11 no 3 supplement

pp S134ndashS137 2011[97] T V D Ngoc H S Han K J Kim et al ldquoRelaxor and field-

induced strain behavior in lead-free Bi05(Na082

K018

)05TiO3

ceramics modified with BaZrO3rdquo Journal of Ceramic Processing

Research vol 13 supplement 2 pp s177ndashs180 2012[98] V D N Tran A Hussain H S Han et al ldquoComparison of

ferroelectric and strain properties between BaTiO3- and

BaZrO3-modified Bi

12(Na082

K018

)12TiO3ceramicsrdquo Japanese

Journal of Applied Physics vol 51 Article ID 09MD02 2012[99] I KHongH SHan CH YoonHN JiW P Tai and J S Lee

ldquoStrain enhancement in lead-free Bi05(Na078

K022

)05TiO3

ceramics by CaZrO3

substitutionrdquo Journal of IntelligentMaterial Systems and Structures vol 24 no 11 pp 1343ndash13492013 (Swedish)

[100] J K Kang D J Heo V Q Nguyen H S Han J S Leeand K K Ahn ldquoLow-temperature sintering of lead-freeBi12(NaK)

12TiO3-based electrostrictive ceramics with CuO

additionrdquo Journal of the Korean Physical Society vol 61 no 6pp 899ndash902 2012

[101] V Q Nguyen H B Luong and D D Dang ldquoEnhancement ofelectrical field-induced strain in Bi

05(Na K)

05TiO3-based lead-

free piezoelectric ceramics role of phase transitionrdquo In press[102] A Zaman Y Iqbal A Hussain et al ldquoInfluence of zirconium

substitution on dielectric ferroelectric and field-induced strainbehaviors of lead-free 099[Bi

12(Na082

K018

)12(Ti1minus119909

Zr119909)O3]-

001LiSbO3ceramicsrdquo Journal of theKorean Physical Society vol

61 no 5 pp 773ndash778 2012[103] S Qiao J Wu B Wu B Zhang D Xiao and J Zhu ldquoEffect

of Ba085

Ca015

Ti090

Zr010

O3content on the microstructure and

electrical properties of Bi051

(Na082

K018

)050

TiO3ceramicsrdquo

Ceramics International vol 38 no 6 pp 4845ndash4851 2012[104] H Nagata M Yoshida Y Makiuchi and T Takenaka ldquoLarge

piezoelectric constant and high curie temperature of lead-freepiezoelectric ceramic ternary system based on bismuth sodiumtitanate-bismuth potassium titanate-barium titanate near themorphotropic phase boundaryrdquo Japanese Journal of AppliedPhysics vol 42 no 12 p 7401 2003

[105] Y Li W Chen Q Xu J Zhou X Gu and S Fang ldquoElec-tromechanical and dielectric properties of Na

05Bi05TiO3-

K05Bi05TiO3-BaTiO

3lead-free ceramicsrdquo Materials Chemistry

and Physics vol 94 no 2-3 pp 328ndash332 2005[106] Q Zhou C Zhou W Li J Cheng H Wang and C Yuan

Journal of Physics and Chemistry of Solids vol 72 p 909 2011[107] C Zhou X LiuW Lim andC Yuan ldquoMicrostructure and elec-

trical properties of Bi05Na05TiO3-Bi05K05TiO3-LiNbO

3lead-

free piezoelectric ceramicsrdquo Journal of Physics and Chemistry ofSolids vol 70 pp 541ndash545 2009

[108] C Zhou X Liu W Li C Yuan and G Chen ldquoStructure andelectrical properties of Bi

05(Na K)

05TiO3minusBiGaO

3lead-free

piezoelectric ceramicsrdquo Current Applied Physics vol 10 no 1pp 93ndash98 2010

[109] B Wu C Han D Xiao Z Wang J Zhu and J Wu ldquoInves-tigation of a new lead-free (089minus x)(Bi

05Na05)TiO3ndash011(Bi

05

K05)TiO3ndashxBa085

Ca015

Ti090

Zr010

O3ceramicsrdquo Materials Re-

search Bulletin vol 47 pp 3937ndash3940 2012

[110] M Zou H Fan L Chen and W Yang ldquoMicrostruc-ture and electrical properties of (1 minus 119909)[082Bi

05Na05TiO3ndash

018Bi05K05TiO3]ndashxBiFeO

3lead-free piezoelectric ceramicsrdquo

Journal of Alloys and Compounds vol 495 no 1 pp 280ndash2832010

[111] C ZhouX LiuW Li andCYuan ldquoDielectric andpiezoelectricproperties of Bi

05Na05TiO3ndashBi05K05TiO3ndashBiCrO

3lead-free

piezoelectric ceramicsrdquo Journal of Alloys and Compounds vol478 no 1-2 pp 381ndash385 2009

[112] H Yang X Shan C Zhou Q Zhou W Li and J ChengldquoMicrostructure dielectric and piezoelectric properties of lead-free Bi

05Na05

TiO3ndashBi05K05

TiO3ndashBiMnO

3ceramicsrdquo Bulletin

of Materials Science vol 36 pp 265ndash270 2013[113] M Bichurin V Petrov A Zakharov et al ldquoMagnetoelectric

interactions in lead-based and lead-free compositesrdquoMaterialsvol 4 no 4 pp 651ndash702 2011

[114] H S Han CW Ahn IW Kim A Hussain and J S Lee ldquoDes-tabilization of ferroelectric order in bismuth perovskite ceram-ics by A-site vacanciesrdquo Materials Letters vol 70 pp 98ndash1002012

[115] A Ullah CW Ahn A Hussain IW Kim H I Hwang andNK Cho ldquoStructural transition and large electric field-inducedstrain in BiAlO

3-modified Bi

05(Na08K02)05TiO3

lead-freepiezoelectric ceramicsrdquo Solid State Communications vol 150pp 1145ndash1149 2010

[116] A Ullah C W Ahn A Hussain S Y Lee J S Kim and I WKim ldquoEffect of potassium concentration on the structure andelectrical properties of lead-free Bi

05(NaK)

05TiO3ndashBiAlO

3

piezoelectric ceramicsrdquo Journal of Alloys and Compounds vol509 pp 3148ndash3154 2012

[117] K N Pham D T Hinh L H Yuong K Y Min and L SShin ldquoEffects of Bi(Mg12Sn 12)O3 modification on the dielec-tric and piezoelectric properties of Bi12(Na08K02)12TiO3ceramicsrdquo Journal of the Korean Ceramic Society vol 49 pp266ndash271 2012

[118] K N Pham H B Lee H S Han et al ldquoDielectric fer-roelectric and piezoelectric properties of Nb-substitutedBi12(Na082

K018

)12TiO3lead-free ceramicsrdquo Journal of the

Korean Ceramic Society vol 60 pp 207ndash211 2012[119] A Ullah C W Ahn and I W Kim ldquoDielectric

piezoelectric properties and field-induced large strain ofBi(Zn

05Ti05)O3-modified morphotropic phase boundary

Bi05(Na082

K018

)05TiO3

piezoelectric ceramicsrdquo JapaneseJournal of Applied Physics vol 51 Article ID 09MD07 2012

[120] H S Han W Jo J Rodel I K Hong W P Tai and J SLee ldquoCoexistence of ergodicity and nonergodicity in LaFeO

3-

modified Bi12(Na078

K022

)12TiO3relaxorsrdquo Journal of Physics

Condensed Matter vol 24 Article ID 365901 2012[121] H S Han W Jo J K Kang et al ldquoIncipient piezoelectrics and

electrostriction behavior in Sn-doped Bi12(Na082

K018

)12TiO3

lead-free ceramicsrdquo Journal of Applied Physics vol 113 ArticleID 154102 2013

[122] H B Lee D J Heo R A Malik C H Yoon H S Han and J SLee ldquoLead-free Bi

12(Na082

K018

)12TiO3ceramics exhibiting

large strain with small hysteresisrdquo Ceramics International vol39 pp S705ndashS708 2013

[123] D S Lee S J Jeong M S Kim and K H Kim ldquoEffectof sintering time on strain in ceramic composite con-sisting of 094Bi05(Na075K025)05TiO3ndash006BiAlO3 with(Bi05Na05)TiO3rdquo Japanese Journal of Applied Physics vol 52Article ID 021801 2013

Advances in Materials Science and Engineering 13

[124] J Hao W Bai W Li B Shen and J Zhai ldquoPhase transitionsrelaxor behavior and large strain response in LiNbO3-modifiedBi05(Na080K020)05TiO3 lead-free piezoceramicsrdquo Journalof Applied Physics vol 114 Article ID 044103 2013

[125] A Ullah C W Ahn A Ullah and I W Kim ldquoLarge strainunder a low electric field in lead-free bismuth-based piezo-electricsrdquo Applied Physics Letters vol 103 Article ID 0229062013

[126] N Kumar and D P Cann ldquoElectromechanical strainand bipolar fatigue in Bi(Mg

12Ti12)O3-(Bi12K12)TiO3-

(Bi12Na12)TiO3ceramicsrdquo Journal of Applied Physics vol 114

Article ID 054102 2013[127] T H Dinh H Y Lee C H Yoon et al ldquoEffect of lanthanum

doping on the structural ferroelectric and strain propertiesof Bi12(Na082

K018

)12TiO3lead-free ceramicsrdquo Journal of the

Korean Ceramic Society vol 62 pp 1004ndash1008 2013[128] P Jaita A Watcharapasorn D P Cann and S

Jiansirisomboon ldquoDielectric ferroelectric and electric field-induced strain behavior of Ba(Ti090Sn010)O3-modifiedBi05(Na080K020)05TiO3 lead-free piezoelectricsrdquo Journalof Alloys and Compounds vol 596 pp 98ndash106 2014

[129] AHussain J U Rahman A Zaman et al ldquoField-induced strainand polarization response in lead-free Bi12(Na080K020)12TiO3ndashSrZrO3 ceramicrdquo Materials Chemistry and Physics vol143 pp 1282ndash1288 2014

[130] A Ullah R A Malik D S Lee et al ldquoElectric-field-inducedphase transition and large strain in lead-free Nb-doped BNKT-BST ceramicsrdquo Journal of the European Ceramic Society vol 34pp 29ndash35 2014

[131] J Hao B Shen J Zhai and H Chen ldquoPhase transitionalbehavior and electric field-induced large strain in alkali niobate-modified Bi

05(Na080

K020

)05TiO3

lead-free piezoceramicsrdquoJournal of Applied Physics vol 115 Article ID 034101 2014

[132] A Zaman Y Iqbal A Hussain M H Kim and R A MalikldquoDielectric ferroelectric and field-induced strain properties ofTa-doped 099Bi

05(Na082

K018

)05TiO3ndash001LiSbO

3ceramicsrdquo

Journal of Materials Science vol 49 no 8 pp 3205ndash3214 2014[133] A Ullah A Ullah I W Kim D S Lee S J Jeong and C W

Ahn ldquoLarge electromechanical response in lead-free La-dopedBNKTBST piezoelectric ceramicsrdquo Journal of the AmericanCeramic Society vol 97 no 8 pp 2471ndash2478 2014

Submit your manuscripts athttpwwwhindawicom

ScientificaHindawi Publishing Corporationhttpwwwhindawicom Volume 2014

CorrosionInternational Journal of

Hindawi Publishing Corporationhttpwwwhindawicom Volume 2014

Polymer ScienceInternational Journal of

Hindawi Publishing Corporationhttpwwwhindawicom Volume 2014

Hindawi Publishing Corporationhttpwwwhindawicom Volume 2014

CeramicsJournal of

Hindawi Publishing Corporationhttpwwwhindawicom Volume 2014

CompositesJournal of

NanoparticlesJournal of

Hindawi Publishing Corporationhttpwwwhindawicom Volume 2014

Hindawi Publishing Corporationhttpwwwhindawicom Volume 2014

International Journal of

Biomaterials

Hindawi Publishing Corporationhttpwwwhindawicom Volume 2014

NanoscienceJournal of

TextilesHindawi Publishing Corporation httpwwwhindawicom Volume 2014

Journal of

NanotechnologyHindawi Publishing Corporationhttpwwwhindawicom Volume 2014

Journal of

CrystallographyJournal of

Hindawi Publishing Corporationhttpwwwhindawicom Volume 2014

The Scientific World JournalHindawi Publishing Corporation httpwwwhindawicom Volume 2014

Hindawi Publishing Corporationhttpwwwhindawicom Volume 2014

CoatingsJournal of

Advances in

Materials Science and EngineeringHindawi Publishing Corporationhttpwwwhindawicom Volume 2014

Smart Materials Research

Hindawi Publishing Corporationhttpwwwhindawicom Volume 2014

Hindawi Publishing Corporationhttpwwwhindawicom Volume 2014

MetallurgyJournal of

Hindawi Publishing Corporationhttpwwwhindawicom Volume 2014

BioMed Research International

MaterialsJournal of

Hindawi Publishing Corporationhttpwwwhindawicom Volume 2014

Nano

materials

Hindawi Publishing Corporationhttpwwwhindawicom Volume 2014

Journal ofNanomaterials

Page 2: Review Article Current Development in Lead-Free Bi (Na,K ...downloads.hindawi.com/journals/amse/2014/365391.pdf · Bi 2 O 3 and TiO 2 and alkali carbonate powder Na 2 CO 3 and K 2

2 Advances in Materials Science and Engineering

and so forth even though lead is a very toxic substance as itcan cause damage to the kidneys brain the nervous systemand especially the intelligence of the children [1] In addi-tion the volatilization of PbO during the high temperaturesintering process not only causes environmental pollution butalso generates instability in the composition and electricalproperties of the production According to the recent devel-opments the European Union (EU) is planning to restrictthe use of hazardous substances such as lead as well as otherheavymetals [3 4] Asia China Japan and Republic of Koreahave also enacted similar policies and legislations to controlthe usage of lead-containing materials [5ndash7] In order tocircumvent the drawback of lead toxicity extensive researchis focused on the quest for alternate piezoelectric materialsTherefore there has been a growing research interest in devel-oping alternative lead-free piezoelectric materials that caneventually replace the current lead-based ones There is noequivalent substitution for PZT till now therefore its use stillcontinuesThismay be a temporary respite but the legislationcertainly impressed the researchers to develop alternativelead-free piezoelectric materials in order to replace lead-based materials [8ndash10] In this paper we overviewed cur-rent developments in Bi

05(NaK)

05TiO3(BNKT) lead-free

piezoelectric ceramics and effects of various dopants on theirpiezoelectric properties

2 Bi05(NaK)05TiO3-Based Lead-FreePiezoelectric Materials

Among lead-free piezoelectric materials perovskite-basedtype bismuth sodium titanate Bi

05Na05TiO3(BNT) bis-

muth potassium titanate Bi05K05TiO3(BKT) and solid

solution based on these compounds seem to be considered asthe most promising materials choice [11ndash14] In the followingsection a brief introduction of these materials is given

21 Bismuth SodiumTitanate and Bismuth PotassiumTitanate

211 Bi05Na05TiO3Material BNT is one of the most impor-

tant lead-free materials discovered by Smolensky et al in1960 which has an ABO3 distorted perovskite structure [1015]The structure of BNT can be considered in two ways oneway is that the bismuth and sodium cations occupy thecorners of a cubic unit cell oxygen anions occupy the facecenters and titanium cations occupy the center of theoxygen octahedra that are formed the other way is a three-dimensional cubic network of 8 corner-sharing TiO

6octahe-

dra with bismuth and sodium cations at the center of the cubeformed by the octahedra [16] In the ABO3 perovskite struc-tureA cations localize at the corners B cations localize at thebody center and oxygen anions localize at the face centers Incase of BNT the bismuth and sodium ions are on the A-siteand titanium ions are on theB-site of the structure this is onlyto show the stoichiometry that is present in an ideal mixtureHowever the real material does not exhibit any long-rangeordering The BNT was rhombohedral structure with 119886 =398 A and 120572 = 8967∘ at room temperature [17] The BNT

undergoes three phase transitions as crystallographic struc-ture changes Pronin et al andZvirgzds et al obtained that thefirst phase transition tetragonal-cubic phase occurred at320∘C whereas the second phase transition temperature ofrhombohedral-tetragonal phase was 540∘C as they deter-mined the Curie temperature [18 19] It reveals an interestingdielectric which is anomaly with low phase-transition tem-perature (sim200∘C) from ferroelectric to antiferroelectricphase Suchanicz et al reported that the electrostrictive strainincreased upon heating when dielectric permittivity (1205761015840) grewwith maximum near 320∘C result from attribution of ferro-electric (FE)antiferroelectric (AFE) transition [20] Above320∘C the electrostriction coefficient (119876

11) was equal to

(04minus03) times 10minus2 Cminus2m4 and was typical for materials withdiffused phase transitions [20] The piezoelectric module 119889

33

was 100ndash120 pCN at 1205761015840 = 500 which belongs to [100]direction of the BNT single crystal [21] Emelyanov et alcharacterized the piezoelectric properties of (001) plane in therhombohedral BNT single crystals phase which were ofpiezoelectric coefficients (119889

31 119889

33) 119889

31= 160 pCN 119889

33=

60 pCN 11989631= 055 and 119896

33= 040 [22]The remnant polar-

ization (119875119903) and the coercive field (119864

119888) of BNT single crystal

are 38 120583Ccm2 and 73 kVcm respectively [10] Zhao et alreported that the values of 119889

33and coupling factor (119896

119905) were

102 pCN and 058 respectively and they were stronglyinfluenced by the grain size [23 24] Piezoelectric propertiesof the BNTceramics polarized by electric field of 40 kVcmat200∘C were 119896

31= 010 119889

31= 15 pCN 119889

33= 70 pCN 1205761015840 =

300 and tan 120575 = 0011 [25]

212 Bi05

K05TiO3Material BKTwas also first fabricated by

Smolenskii and Agranovskaya which has a perovskite typeferroelectric structure belonging to tetragonal crystal at roomtemperature [11] The BKT has been investigated much lessthan BNT because it was not easy to prepare high-denseceramics due to the fact that secondary phases such asK2Ti6O13easily formed during sintering at high temperature

even though synthesis of the compound was not difficult[10 26] BKT is a ferroelectric material with the Curie tem-perature (119879

119862) of 380∘C [27] Ivanova et al reported that BKT

has a tetragonal structure with 119886 = 3913 A and 119888 = 3993 Aat room temperature which does not show any sign of order-ing whereas a phase transition into a pseudocubic phasewas observed at about 270∘C and transition into a cubicphase was at 410∘C [28] Hiruma et al obtained the remnantpolarization 119875

119903= 222 120583Ccm2 and coercive field 119864

119862=

525 kVcm electromechanical factor 11989633= 028 and 119889

33=

698 pCN [29]Literature survey indicates that BKT is studied weaker

than BNT its behavior is clearly indicated that it does notshow such unusual phenomena as BNT (isotropic points andldquodisappearancerdquo of phase transitions) It is clear that bothphases of BKT are ferroelectric that they both are diffusedandmost probably overlapped each otherThere is of coursea problem coexistence of a paraelectric (PE) and two ferro-electric (FE) phases within a crystal lattice In addition theBKT single phase is not easy to fabricate in high-dense struc-ture However such a problem is not new for ferroelectric

Advances in Materials Science and Engineering 3

perovskites It is clear that many properties are still notstudied However by combining the sol-gel and conventionalsolid-state reaction method Zhu et al obtained the highcompact density of sim912 which overcame the low densityof sim70 of ceramics prepared by only traditional solid statesynthesis [30]The result was promoted to further investigatethe properties of BKT

22 B05Na05TiO3-B05K05TiO3Solid Solutions Systems

221 B05(NaK)

05TiO3Fabrication Methods The BNKT

ceramics were first fabricated by Buhrer by conventionalceramics method via starting materials with metal oxideBi2O3and TiO

2and alkali carbonate powder Na

2CO3and

K2CO3[12] The BNKT powder was obtained through ball

milling and solid state reaction by following equation

Bi2O3+ (1 minus 119909)Na

2CO3+ 119909K2CO3+ 4TiO

2

997888rarr 4Bi05(Na1minus119909

K119909)

05TiO3+ 2CO

2

(1)

The single crystals (1minus119909)BNT-xBKT (0 lt 119909 lt 014) werefabricated by flux method [31] The grain oriented and tex-tured BNKT ceramics were first fabricated by Tani throughreactive template grain growth method using plate likeBi4Ti3O12(BiT) particles as a template [32]The BiT platelets

were aligned parallel to the tape casting direction andgrain oriented ceramics were prepared from Bi

2O3and TiO

2

using molten salt synthesis Additional amounts of Na2CO3

K2CO3 and TiO

2to stoichiometry were included in the

mixing batch to react with the BiT according to followingequation

Bi4Ti3O12+ 2 (1 minus 119909)Na

2CO3+ 2119909K

2CO3+ 5TiO

2

997888rarr 8Bi05(Na1minus119909

K119909)

05TiO3+ 2CO

2

(2)

Recently BNKT powders were prepared by the sol-gel process [33] The starting materials as analytical-gradechemical bismuth nitrate (Bi(NO

3)3sdot5H2O) sodium acetate

(CH3COONasdot3H

2O) or sodium nitrate (NaNO

3) potassium

acetate (CH3COOK) or potassium nitrate (KNO

3) and

tetrabutyl tinatate (Ti(OC4H9)4) or titanium isopropoxide

(Ti(OC3H7)4) were used to prepare a BNKT precursor

solutionThen the sol was heated to get dried gels Finally thedried gels were calcined and annealed to remove the organicingredients and to promote crystallization respectively Inaddition the BNKT thin films and nanofibers were alsofabricated by a sol-gel method and electrospinning techniqueas reported by Chen et al [34] After preparing the sol thethin films and nanofibers were prepared on PtTiSiO

2Si

substrate by spin coating and electrospinning respectivelyThe Li-doped BNKT thin films have been grown by pulsedlaser deposition (PLD) using a krypton fluoride (KrF)excimer laser with a wavelength of 248 nm [35]

222 Crystal Structure of B05(NaK)

05TiO3 Buhrer reported

that the lattice parameters of B05Na05TiO3increased with

BKT concentration addition [12] Pronin et al indicated thatthe (1 minus 119909)Bi

05Na05TiO3-xBi05K05TiO3solid solution was

rhombohedral at 119909 lt 018 pseudocubic at 119909 = 018ndash040and tetragonal at 119909 gt 040 at the room temperature [18] Onthe morphotropic phase boundary at 119909 = 018 the latticeparameters and unit cell volume change by jump [18]However Kreisel et al obtained the structural change in solidsolution (1 minus 119909)BNT-xBKT by using the Raman scatteringResults showed existence of a phase transition at 119909 between04-05 However it also indicated that the phase transition inrange 119909 = 06ndash08 due to existence of nanosize Bi3+TiO

3and

(Na1minus2119909

K2119909)+TiO

3clusters [36] This region is considered as

a morphotropic phase boundary (MPB) where the MPBdescribed the boundary that separates regions of differencesymmetries and can be crossed through a change in compo-sition However the MPB was not reported clearly [37]

223 Some Physical Properties at Morphotropic BoundaryDiagram The Curie temperature of (1 minus 119909)Bi

05Na05TiO3-

xBi05K05TiO3solid solution was found to go through a

minimum at 119909 = 01-02 [17] Sasaki et al studied this systemand obtained a maximum of 119889

31= 42 pCN with 119896

119901= 023

which was observed on the first morphotropic boundary [14]Elkechai et al obtained 119889

33= 96 pCN 119896

119901= 021 and119873

119901=

2800Hzm at 119909 = 016 [38] Yoshii et al investigated thepiezoelectric properties of a solid solution of the binarysystem xBi

05Na05TiO3-(1minus119909)Bi

05K05TiO3[39] Fine piezo-

electric properties in lead-free piezoelectric ceramics wereobtained near MPB composition between the rhombohedraland tetragonal structures and the highest electromechan-ical coupling factor 119896

33 and piezoelectric constant 119889

33

were 056 pCN for Bi05(Na084

K016

)05TiO3and 157 pCN

for Bi05(Na08K02)05TiO3 respectively However the 119879

119889

of Bi05(Na08K02)05TiO3

was low at 174∘C The 119879119889

ofthe MPB composition was low and the 119879

119889near the MPB

composition was sharply decreased It is thought thatBi05(Na07K03)05TiO3is a candidate composition for lead-

free actuator applications owing to its relatively large piezo-electric constant 119889

33of 126 pCN dynamic 119889

33of 214 pmV

and high depolarization temperature 119879119889of 206∘C Recently

Izumi et al reported that a small amount of BKT substitutionsuppressed the remnant polarization from 38 120583Ccm2 at 119909 =0 to about 15120583Ccm2 at119909 = 002 piezoelectric strain constant(11988933) is enhanced by increasing 119909 up to 297 pmV at 119909 = 014

during studying the (1 minus 119909)BNT-xBKT single crystals (0 lt119909 lt 014) [31]

BNT-BKT solid solutions are interesting because of threephenomena (i) existence of two morphotropic boundaries(ii) neighborhood of the antiferroelectric (AFE) phase ofBNT and high-temperature ferroelectric (FE) phase of BNTand (iii) complicated coexistence of several phases within oneperovskite lattice because of the phase-transition diffusion

224 Mechanism Electric-Field-Induced Giant Strain

(1) Electric-Field-Induced Phase Transition Ferroelectric crys-tals are characterized by their asymmetric or polar structuresIn an electric field ions undergo asymmetric displacementand result in a small change in crystal dimension which is

4 Advances in Materials Science and Engineering

proportional to the applied field [40 41] However the effectis generally very small and thus limits its usefulness

In the search for lead-based materials with large electric-field-induced phase transition (EFIS) an alternative andapplicable approach for ceramics was reported by Uchinoet al and Pan et al based on thework of Berlicourt et al [5ndash7]They observed a large strain due to a change of the unit cell in(PbLa)(SnZrTi)O

3ceramic because of a transition from

antiferroelectric to ferroelectric phase which was induced bythe electric field

Zhang et al proposed that the high strain in lead-freeBi05Na05TiO3-BaTiO

3-K05Na05NbO3

system came bothfrom a significant volume change caused by the field-inducedantiferroelectric-ferroelectric phase transition and from thedomain contribution caused by the induced ferroelectricphase [42 43] Jo et al suggested that origin of the large strainin (K05Na05)NbO

3-modified (Bi

05Na05)TiO3-BaTiO

3lead-

free piezoceramics is due to the presence of a nonpolar phasethat brings the system back to its unpoled state once whenthe applied electric field is removed which leads to a largenonpolar strain [44] In addition Lee et al reported that thegiant EFIS was attributed to the transition from nonpolarto ferroelectric phases in BNKT-BiAlO

3small grains with

ferroelectric BNT large grains during external electric fieldexecution [45] Recently Lee et al suggested a model on thebasis of the coexistence of polar nanoregions and a nonpolarmatrix which can reversibly transform into a polar ferro-electric phase under cyclic fields via observation of giantEFIS in Sn doped BNKT [46] Ullah et al suggested that theorigin of the large electric-field-induced giant strain is aninherently large electrostrictive strain combined with anadditional strain introduced during electric-field-inducedphase transition [47] However the origin of phase transitionfrom polar to nonpolar due to doping is unclear because theexplanation based on the distorted tolerance factor resultsfromdifference radius of dopants but the tolerance factor justestimated the phase stability and could not predict the sta-bility of structural typeThe further mechanism understatingneeds to be further investigated

(2) Domain Switching The volume regions of the materialwith the same polarization orientation are referred to asferroelectric domains [48] When the sample is under zerofield and strain-free conditions all the domain states have thesame energy but if an electric field is applied the free energyof the system is lowered by aligning the polarization alongthe electric fieldThus large applied electric fields can perma-nently reorient the polarization between the allowed domainstates which are restricted by crystallography As a resultpolycrystals random orientation can be electrically poled toproduce net piezoelectric coefficients Recently Ren pointedout that the large EFIS in ferroelectric crystals is caused bypoint-defect-mediated reversible domain switching [49] Itis noted that the defect dipoles tend to align along the sponta-neous polarization direction which was suggested by electronparamagnetic resonance experiments [50 51] and theoret-ical modeling [52 53] The domain switched and alignedby the applied electric field The defects symmetry anddefects dipolemoment cannot be rotated in such diffusionless

process resulting in restoring force or reversing internal fieldthat favored reverse domain switching when electric field isremoved However theoretical calculation indicated that theultrahigh electromechanical response in single-crystal piezo-electrics resulted from polarization rotation during polingprocessing [54]

3 Role of Dopants in Bi05(NaK)05TiO3

31 Role of Substitution in A-Site and B-Site inBi05(NaK)

05TiO3 TheBi

05(NaK)

05TiO3is considered as a

typicalABO3perovskitewhere Bi3+ K+ andNa+ ions localize

at A-site and Ti4+ ions localize at B-site In this part thecurrent studies of the effect of dopants on BNKTrsquos propertieshave been presented

311 Rare-Earth Doped BNKT The rare earth elements aremultivalent when they were doped in BNKT which resultedin interesting and complicating phenomena Li et alreported that electromechanical coupling factor (119896

119901) of

Bi05Na044

K006

TiO3was increased from 254 to 278 with

02 wtCeO2dopant and then decreased with higher CeO

2

content [55] Liao et al also obtained enhancement in piezo-electric properties of Bi

05(Na1minus119909minus119910

K119909Li119910)05TiO3via CeO

2

doping [56] The Bi05(Na0725

K0175

Li01)05TiO3ceramics

doped with 01 wt CeO2show good performance with high

piezoelectric constant (11988933= 220 pCN) and high coupling

factor (119896119901= 393) [56] Wang et al reported the effects

of La substitution at Bi-site in (Bi1minusxNa08K02Lax)TiO3 which

were 119896119901maximumof 28with 05wtLa doping and bipolar

maximum strain of 016 with 2wt La doping [57] Yuanet al reported the strain enhanced up to 119896

119901= 35 in La-

doped [Bi05(Na075

K015

Li010

)05]TiO3[58 59] Yang et al

obtained the electromechanical coupling factor 119896119901= 27 by

substitution of 00125wt Nd2O3in 082Bi

05Na05TiO3-

018Bi05K05TiO3ceramics [60] The 03 wt Sm

2O3sub-

stitution in 082Bi05Na05TiO3-018Bi

05K05TiO3ceramics

exhibited the high planar coupling factor (119896119901= 224)which

were reported by Zhang et al [61] This group alsoobtained the enhancement of electromechanical couplingfactor 119896

119901= 2463 with 02 wt Gd

2O3doping in

082Bi05Na05TiO3-018Bi

05K05TiO3ceramics [62] Zhi-Hui

et al reported optimum value of 015 wt Dy2O3added in

Bi05(Na082

K018

)05TiO3for enhancement of electrical prop-

erties [63] Fu et al obtained the effect of Ho2O3and Er

2O3

dopants in 082Bi05Na05TiO3-018Bi

05K05TiO3where the 119896

119901

was 2426 and 2382 for 01 wt Ho2O3and 06wt Er

2O3

dopants respectively [64 65] Following this work Fu et alreported the effects of Eu

2O3on the structure and electrical

properties of 082Bi05Na05TiO3-018Bi

05K05TiO3lead-free

piezoelectric ceramics where the optimumdoping of 02wtEu2O3has displayed the highest planer coupling factor 119896

119901=

251 [66]

312 Transition Metal Doped Bi05(NaK)

05TiO3 Han et al

first reported that the adding CuO in Bi05(NaK)

05TiO3

ceramics resulted in decreasing the sintering temperature[67] Do et al reported that the 119896

119901of Bi05(Na082

K018

)05TiO3

Advances in Materials Science and Engineering 5

decreased when it was added with CuO [68] The 119878max119864maxwas 214 pmV for added 002mol CuO but it increased to427 pmV for added 002mol Nb

2O5[68] Jiang et al

obtained the best piezoelectric properties with 119896119901= 30

for 02 wt Mn2+ doped (Na05K02)05Bi05TiO3[69 70]

In addition the (Na05K02)05Bi05TiO3-05 wt Mn exhib-

ited strong ferroelectricity with remnant polarization 119875119903=

38 120583Ccm2 [69] Mn doping restrained the ferroelectricto antiferroelectric phase transition because of oxygenvacancy [69] Hu et al obtained the optimal electricproperties in 016 wt MnCO

3-added 74Bi

05Na05TiO3-

208Bi05K05TiO3-52BaTiO

3which displayed the piezoelec-

tric strain 11988933= 140 pCN mechanical coupling 119896

119901= 18

and mechanical quality 119876119898= 89 while the depolarization

temperature (119879119889) stays relatively high at 175∘C [71] The effect

of Mn and Co on electrostrains of Bi05Na05TiO3-BaTiO

3-

Bi05K05TiO3has been investigated by Shieh et al [72 73]

It was remarkable that Mn doping with an electrostrain ofabout 01 can bemaintainedwhen theMndoping amount isin between 05 and 15mol which were contrast for thecodoped Bi

05Na05TiO3-BaTiO

3-Bi05K05TiO3 the values of

electrostrain and 11988933

stay relatively constant regardless ofthe Co-doping level [72 73] The 030wt MnO-addedBi0485

Na0425

K006

Ba003

TiO3solid solutions were found to be

with optimal electrical properties of11988933= 109 pCNand 119896

119901=

32 [74] The highest 119896119901values for various dopants element

substitution in BNKThas been shown in Figure 1Thehighest119896

119901of 393 was reported for rare-earth Ce codoped with Li-

modification BNKT ceramics

313 Other Metal-Doped Bi05(NaK)

05TiO3 Do et al repo-

rted that Bi05(Na082

K018

)05TiO3ceramics had the value of

119878max119864max of 566 pmV when 2mol of Ta5+ substitutedon Ti4+ site which were compared to without dopants withvalue of 119878max119864max of 233 pmV [75] Pham et al obtainedthe enhancement 119878max119864max up to 641 pmV due to 3molNb5+ substitution on Ti4+ ions [76] Hussain et al reportedthe piezoelectric coefficient of 641 pmV for Zr4+ 043molconcentration substitution in Ti4+ site [77] In additionHussain et al found that Hf substitution with 3molat Ti-site resulted in enhancement of the electric-field-induced strain up to 475 pmV with corresponding strainof 038 at an applied electric field of 80 kVcm [78] Binhet al reported the EFIS of 278 pmV for 07 wt Y-dopedBi05(Na082

K018

)05TiO3which were higher than without

dopant of EFIS of 228 pmV [79] At this moment thehighest 119878max119864max was 727 pmV by codopant Li and Tain BNKT which was reported by Nguyen et al [80] The[Bi05(Na1minusxminusyKxLi119910)05]TiO3 ceramics show excellent piezo-

electric and ferroelectric properties and the optimum prop-erties were reported as follows piezoelectric constant 119889

33=

231 pCN planar and thickness electromechanical couplingfactors 119896

119901= 410 and 119896

119905= 505 remanent polarization

119875

119903= 402 120583Ccm2 and coercive field 119864

119888= 247 kVmm [81]

Recently Lee et al obtained 119878max119864max of 585 pmV for5mol Sn doped in Bi

05(Na082

K018

)05TiO3[46] Fur-

thermore Nguyen et al reported the enhancement EFISin Bi05(Na082

K018

)05Ti095

Sn005

O3by additives Li where

20

24

28

32

36

40

44

Ceramic compounds

Cou

plin

g fa

ctor

kp

()

[57]BNKT-(Li Ce)

[59]BNKT-(Li La)

[61]BNKT-Nd[58]BNKT-La[56]BNKT-Ce [63]BNKT-Gd

[65]BNKT-Ho

[66]BNKT-Er

[67]BNKT-Eu

[62]BNKT-Sm

Figure 1 The effect of electric coupling factor in case of variousdopants in BNKT

119878max119864max increased up to 646 pmV when 4mol Na wasreplaced with Li [82] Liao et al reported the effect of Kand Ag dopant concentrations in Bi

05Na05TiO3ceramics K-

and Ag-doped ceramics exhibited good performances withpiezoelectric constant 119889

33= 189 pCN electromechanical

coupling factor 119896119901= 350 remnant polarization 119875

119903=

395 120583Ccm2 and coercive field 119864119862= 23 kVmm [83]

Isikawa et al cosubstituted Ag into A-site and Ba into B-sitein BNKT and obtained enhancement in piezoelectric proper-ties [84] Moreover this group also pointed out that the addi-tion of La

2O3MnO to BNKAT-BT specimens displayed a

very large strain dynamic constant 119878max119864max of 415 pmVwhich results from the field-forced phase transition from theparaelectric phase to the ferroelectric phase [84]

314 Nonstoichiometric Effects in Bi05(NaK)

05TiO3 Ni et al

obtained the effects of A-site vacancy on the electricalproperties in lead-free nonstoichiometric ceramicsBi05+119909

(Na082

K018

)05minus3119909

TiO3and Bi

05+119910(Na082

K018

)05TiO3

[85 86] The generation of A-site vacancy leads to a randomdefect field which results in destroying the long-range orderphase induced by point field and makes the domain moveeasier However the effects of B-site vacancy or oxygenvacancy were not well-reported for BNKT system

32 Role of Solid Solution of Secondary 11986010158401198611015840O3Dopants in

Bi05(NaK)

05TiO3 At the MPB of BNK-BKT binary system

an electric-field-induced strain and dynamic piezoelectriccoefficient were 023 and 291 pmV respectively at anapplied electrical field of 80 kVcm which are the consideredvalue for application in electromechanical devices [87]Thesevalues were low as compared with PZT-based materialstherefore it is impossible to apply for real electronicdevices The recent researches tried to enhance the dynamicpiezoelectric coefficient by dopants via solid solution withother 11986010158401198611015840O

3perovskites In fact the solid solution with

small amount (simseveral mole percents) of 11986010158401198611015840O3perovskite

6 Advances in Materials Science and Engineering

to BNKT resulted in strong enhancement the 119878max119864maxvalues Ullah et al obtained large electric-field-induced strainin BiAlO

3-modified Bi

05(NaK)

05TiO3with 119878max119864max of

592 pmV at 3mol BiAlO3 near the tetragonal-pseudo-

cubic phase boundary [87] The 119878max119864max was slightlydecreased to 579 pmV via Bi

05La05AlO3-modified

Bi05(Na078

K022

)05TiO3

[88] Tran et al modifiedBi05(Na082

K018

)05TiO3ceramics with Sr(K

14Nb34

)O3and

got the significant temperature coefficient of 038 pmVK[89] Wang et al fabricated 5mol SrTiO

3-modified

Bi05(Na08K02)TiO3lead-free piezoceramic which had a

large unipolar strain of 036 (119878max119864max = 600 pmV)at a driving field of 60 kVcm at room temperature [90]The Bi(Zn

05Ti05)O3ceramic was found to enhance the

eletromechanical strain with 119878max119864max of 547 pmV and500 pmV for 5Bi(Zn

05Ti05)O3-40(Bi

05K05)TiO3-

55(Bi05Na05)TiO3and 2mol doped respectively [91ndash93]

Hussain et al obtained the 119878max119864max of 434 pmV with3mol K

05Na05NbO3-modified Bi

05(Na078

K022

)05TiO3

ceramic [94] The 82Bi05Na05TiO3-16Bi05K05TiO3-

3KNbO3ceramics had good performances with piezoelectric

constant 11988933= 138 pCN and electromechanical coupling

factor 119896119901= 38 [95] Do et al obtained the EFIS values of

443 pmV in 4mol LiTaO3-modified 78Bi

05Na05TiO3-

18Bi05K05TiO3[96] Ngoc et al reported that maximum

strain of 2mol BaZrO3-modified Bi

05(Na082

K018

)05TiO3

ceramics was two times higher than undoped case [97] Inaddition they pointed out that the modification EFISof BaZrO

3was better than that of BaTiO

3[98] The

electric-field-induced strain was significantly enhancedby the CaZrO

3-induced phase transition and reached

the highest value of 119878max119864max of 617 pmV whenBi05(Na078

K022

)05TiO3was doped with 3mol CaZrO

3

dopant [99] Kang et al obtained 119878max119864max of 333 pmVwith4mol additive Bi

05(Na082

K18)05TiO3 and it was further

increased to 363 pmV for 2mol CuO-added specimen[100] Recently we obtained the enhancement of 119878max119864maxup to 668 pmV due to modify A-site by Li in lead-freeBNKT-modified with CaZrO

3[101] Zaman et al obtained

119878max119864max of 500 pmV via codoped Zr and LiSbO3[102]

The Ba085

Ca015

Ti090

Zr010

O3 BaTiO

3 NaSbO

3 LiNbO

3

BiGaO3and Ba

085Ca015

Ti090

Zr010

O3were also found to

enhance the electromechanical properties when those weresolute in Bi

05(NaK)

05TiO3

[103ndash109] Interestinglythe multiferroics materials such as BiFeO

3 BiMnO

3

and BiCrO3-modified BNKT result in enhancement in

electromechanical properties [110ndash112] However solutionandor composite BNKT with ferromagnetic such asBNKT-CoFe

2O4and BNKT-Fe

3O4were not reported [113]

4 Discussion

The mechanism of giant electric-field-induced strain couldbe considered as (i) electric-field-induced phase transitionandor (ii) point-defect-mediated reversible domain switch-ing At room temperature the BNT system is in rhom-bohedral structure and BKT is in tetragonal structure

100

200

300

400

500

600

700

800

900

Ceramic compounds

[90]BNKT-Sr(K14Nb34)O3[99]BNKT-BaTiO3[101]BNKT-(Li CaZrO3)

[100]BNKT-CaZrO3[92]BNKT- Bi05Zn05Ti05O3[88]BNKT- BiAlO3

[102]BNKT-(Zr LiSbO3)[97]BNKT- LiTaO3

[95]BNKT- K05Na05NbO3

[88]BNKT- BiAlO3

BNKT-(LiTa)[81]

BNKT-Nb[77]BNKT-(Li Sn)[83]

BNKT-Zr[78]BNKT-Sn[47]

BNKT-Ta [76]

BNKT-Hf[79]

BNKT-La[58]

BNKT-Y[80]

Pure BNKT[80]

Sm

axE

max

(pm

V)

Figure 2 The effect of dopants and solid solution perovskite ABO3

to BNKT

Their solid solutions have rhombohedral-tetragonal mor-photropic phase boundary near 016ndash020 of BKT amount[14] The effects of elements dopants or codopants at A-or B-site of BNKT were found to be effective the piezo-electric properties by two mechanisms based on the dif-ference radii point of view Firstly the dopants distortedthe tolerance factor due to the difference the radii ofdopant in comparing with Na+ K+ Bi3+ or Ti4+ Thedistortion results in phase transition from tetragonal topseudocubic or tetragonal development from pseudocubicwhich was strongly related to electric-field-induced phasetransition mechanism Secondly the dopants created theoxygen vacancy due to difference the valence state when theradii were performed which were related to point-defect-mediated reversible domain switchingmechanismThe effectof dopants and solid solution11986010158401198611015840O

3to BNKThas been sum-

marized in Figure 2 The ceramics compositions displayedthe highest 119878max119864max values which were shown in detailsin Table 1 The highest 119878max119864max of each year was plottedat Figure 3 The result indicated that electric-field-inducedgiant strain of BNTK was comparable with that of PZT (suchas commercial PZT (PIC151)) and therefore these modifiedBNKT can become a promising piezoelectric ceramics toreplace the lead-based piezoelectric materials Actually the119878max119864max values of BNKT ceramics were increased whenthe element at B-site andor A-site of BNKT ceramics weremodified However the 119878max119864max values quickly increasedwith several percent of dopants and then decreased whenfurther dopants were added These phenomena were alsoobtained while 11986010158401198611015840O

3modified BNKT as solid solution

because 1198601015840 and 1198611015840 diffused as codopant at both A- and B-sites of BNKT with similar concentrationThe observation ofenhancement of dynamic piezoelectric coefficient was relatedto (i) distorted structure (ii) phase transition from polar tononpolar phase and (iii) polar phase growth inner nonpolarphase The recent explanation of phase transition due todopant based on distorted tolerance factor because radiusbetween host and dopants differed and oxygen vacancy

Advances in Materials Science and Engineering 7

Table 1 The detailed composition of BNKT-modified ceramics with highest electric-field-induced strain

Ceramic compounds 119878max119864max (pmV) References086Bi05Na05TiO3 minus 014Bi05K05TiO3 297 Izumi et al (2008) [31]La2O3MnO-added (1 minus y)(Bi05Na049minus119909K119909Ag001)TiO3 minus yBaTiO3 415 Isikawa et al (2009) [84]Bi05(Na082K018)05Ti097Nb003O3 641 Pham et al (2010) [76]Bi05(Na078K022)05TiO3 296 Ullah et al (2010) [87]097Bi05(Na078K022)05TiO3 minus 003BiAlO3 592 Ullah et al (2010) [87]095Bi05(Na08K02)05TiO3 minus 005BiAlO3 391 Ullah et al (2010) [115]099(K05Na05)095Li005NbO3 minus 001Bi05(K015Na085)05TiO3 330 Chen et al (2010) [33]Bi05(Na082K018)05TiO3 minus 07 wt Y2O3 278 Binh et al (2010) [79]Bi05(Na078K022)05Ti097Zr003O3 614 Hussain et al (2010) [77]Bi05(Na078K022)05(Ti097Hf003)O3 475 Hussain et al (2010) [78]Bi05(Na082K018)05Ti098Ta002O3 566 Do et al (2011) [75]Bi12Na12TiO3 minus Bi12K12TiO3 minus 002Bi(Zn12Ti12)O3 500 Dittmer et al (2011) [93]Bi05(Na075K025)05TiO3 minus BiAlO3 sim900 Lee et al (2011) [45]009Bi05(Na078K022)05TiO3 minus 001Bi05La05AlO3 579 Ullah et al (2012) [88]0975Bi05(Na078K022)05TiO3 minus 0025BiAlO3 533 Ullah et al (2012) [116]097Bi05(Na078K022)05TiO3 minus 003K05Na05NbO3 434 Hussain et al (2012) [94]Bi05Na0385Li0025K009Ti0975Ta0025O3 727 Nguyen et al (2012) [80]Bi05(Na082K018)05Ti095Sn005O3 585 Lee et al (2012) [46]094Bi12(Na08K02)12TiO3 minus 006Bi(Mg12Sn12)O3 633 Pham et al (2012) [117]Bi05(Na074Li08K018)05Ti095Sn005O3 646 Nguyen et al (2012) [82]Bi12(Na082K018)12(Ti097Nb003)O3 641 Pham et al (2012) [118]097Bi05(Na078K022)05TiO3 minus 003CaZrO3 617 Hong et al (2013) [99]095Bi05(Na08K02)05TiO3 minus 005SrTiO3 600 Wang et al (2012) [90]099Bi05(Na082K018)05Ti0980Zr0020O3 minus 001LiSbO3 500 Zaman et al (2012) [102]097Bi05(Na082K018)05 minus 003Bi(Zn05Ti05)O3 385 Ullah et al (2012) [119]5Bi(Zn05Ti05)O3 minus 40(Bi05K05)TiO3 minus 55(Bi05Na05)TiO3 547 Patterson et al (2012) [91]Bi05(Na082K018)05TiO3 minus 002CuO 214 Do et al (2012) [68]Bi05(Na082K018)05TiO3 minus 002CuO minus 002Nb2O5 427 Do et al (2012) [68]098Bi05(Na078K022)05TiO3 minus 002LaFeO3 sim500 Han et al (2012) [120]Bi05(Na082K018)05Ti095Sn005O3 sim600 Han et al (2013) [121]098Bi05(Na082K018)05TiO3 minus 002BaZrO3 437 Lee et al (2013) [122]097Bi05(Na082K018)05TiO3 minus 003CaZrO3 603 Lee et al (2013) [122]098Bi05(Na082K018)05TiO3 minus 002Ba08Ca02ZrO3 549 Lee et al (2013) [122]094Bi05(Na075K025)05TiO3 minus 006BiAlO3 930 Lee et al (2013) [123]0975Bi05(Na080K020)05TiO3 minus 0025LiNbO3 475 Hao et al (2013) [124]096Bi05(Na078K022)05TiO3 minus 004Bi(Mg05Ti05)O3 636 Ullah et al (2013) [125]40Bi05K05TiO3 minus 59Bi05Na05TiO3 minus 1Bi(Mg12Ti12)O3 422 Kumar and Cann (2013) [126][Bi12(Na082K018)12]097La003TiO3 715 Dinh et al (2013) [127]095Bi05(Na080K020)05TiO3 minus 005Ba(Ti090Sn010)O3 649 Jaita et al (2014) [128]097Bi05(Na080K020)05TiO3 minus 003SrZrO3 617 Hussain et al (2014) [129]099Bi05Na04K01Ti098Nb002O3 minus 001(Ba07Sr03)TiO3 634 Ullah et al (2014) [130]Bi05(Na080K020)05TiO3 minus (K119910Na1minus119910)NbO3 413ndash575 Hao et al (2014) [131]099Bi05(Na082K018)05Ti0987Ta0013O3 minus 001LiSbO3 650 Zaman et al (2014) [132]099[(Bi05Na04K01)0980La0020TiO3] minus 002[Ba07Sr03TiO3] 650 Ullah et al (2014) [133]

8 Advances in Materials Science and Engineering

2008 2009 2010 2011 2012 2013 20140

200

400

600

800

1000

1200

PZT (PIC151)

Year

Lead-free BNKT-based

PZT-based

Sm

axE

max

(pm

V)

Figure 3 The highest values 119878max119864max observation in years (from2008 to 2014) in lead-free BNKT-based ceramics

caused difference of valence states However the tolerancefactor has only estimated the range for stability of perovskitebut it was not showed for crystal symmetries Thus theseexplanations were unreliable The mechanism of electricalfield-induced strain was not well understood which stillrequired to further investigate Consequently the roles of A-and B-site on the electrical field-induced strain were uncleartill now However we expected that the 119878max119864max valueswere further increased by using multidopant with optimalconcentration of dopants for each position A- andor B-sitein BNKT ceramics

In case of rare-earth doped BNKT the enhancementof piezoelectric properties mostly resulted from the point-defect-mediated because rare-earth elements have variousvalences which was displayed by various radii of ion depend-ing on the valence stable state substitution For examplethe mechanism for the effect of CeO

2doped BNKT is

complicated because Ce ion possibly exists in the BNKTstructure in two valence states Ce4+ with radius of 092 Aand Ce3+ with radius of 103 A In view of the radius Ce3+is possible to fill in Bi3+ vacancies and Ce4+ can enter into theBi-site In this case Ce4+ functions as a donor dopant leadingto some vacancies of A-site in the lattice which facilitatesthe movement of domain wall to improve the piezoelectricproperties Another one is that Ce3+ and Ce4+ ions occupythe A-site of Na+ (119903Na+ = 097A) of BNKT compositionwhich are the same as the Ce4+ entering into Bi3+ [55 56] Inthese cases existing vacancies bring defect in lattice whichresults in an increasing in the dielectric loss and grain sizeand have some effects of piezoelectric properties In additionthe experiments demonstrated that rare-earth substitution inNa+ first leads to creation of oxygen vacancies and latticecontraction but when the dopants concentration is over acritical value then it begins to substitute for Bi3+ thus it leadsto lattice expansion [57ndash59]

In case of transitionmetal dopant inBNKT themost find-ings confirmed that dopants resulted in the lower sintering

temperature It is valuable inmarket due to reduction the costof electronic devices

In case of other metal dopant in BNKT there were mixedpoint-defect-mediated and electric-field-induced phase tran-sition mechanisms which depend on the valence and site-prefer to substitution For example the Ta5+ which replacedTi4+ at B-site leads to creation of A-site vacancies whichsignificantly contributed to the destabilization of ferroelectricphase in the Bi perovskite [75 80 114] These factors weresimilar to a case of nonstochiometric at A- and B-site ofBNKT where the vacancies were occurred

In case of solid solution between BNKT with other119860

1015840119861

1015840O3perovskites it is quite interesting because the ideal

was simple like tailor Some of 11986010158401198611015840O3perovskites were

unstable or hardly fabricated such as BiAlO3 but the theory

predicted that they should have goodpiezoelectric propertiesHowever interestingly they were stabled in solid solution inBNKT matrix and strong enhancement piezoelectric prop-erties Similarly the Bi

05Zn05TiO3(BZT) was a good ferro-

electric material and it was tailed their properties in BNKT-BZT as solid solution In addition BNKT-modified withBi05Li05TiO3has displayed the excellent piezoelectric con-

stant 11988933 Recently the multiferroic materials have rapidly

developed because they exhibited the electric field controlledferromagnetism and magnetic field controlled the electricpolarization However multiferroic properties of BNKT-based materials have not been reported Therefore we pro-posed that the solid solution andor composite of BNKTwith insulator ferromagnetism materials such as BiFeO

3and

CoFeO4could be a good display of multiferroics properties

which will promise candidate to develop new class of multi-ferroics materials

5 Conclusion

The current status of lead-free piezoelectric materials hasbeen introduced The lead-free BNKT-based ceramics werereviewed based on the fabrication method effect of dopantsand solid-solution with other 11986010158401198611015840O

3perovskite Most find-

ings confirmed that giant strain obtained in lead-free BNKT-based ceramics is due to phase transition from polar tononpolar phase and the highest 119878max119864max values werefound at theMPBHowever the origin of phase transitionwasstill debated The 119878max119864max values of lead-free BNKT-basedceramics are comparable with soft lead-based PZT-basedceramics which could be promising materials to readilyreplace the lead-based PZT-based materials in devices Inaddition the effects of secondary phase 11986010158401198611015840O

3as solid-

solution tailed the properties of BNKT matrix Our workreviewed current developments in lead-free BNKT-basedmaterials which were expected to understand current statusof researching about BNKT-based ceramics therefore to beguidance for designing new class materials and applications

Conflict of Interests

The authors declare that there is no conflict of interestsregarding the publication of this paper

Advances in Materials Science and Engineering 9

Acknowledgment

This work was financially supported by the Ministry of Edu-cation andTraining Vietnam under Project no B 20130155

References

[1] P K Panda ldquoReview environmental friendly lead-free piezo-electric materialsrdquo Journal of Materials Science vol 44 no 19pp 5049ndash5062 2009

[2] C A Randall R E Newnham and L E Cross History of theFirst Ferroelectric Oxide BaTiO

3 Materials Research Institute

The Pennsylvania State University University Park Pa USA2004

[3] E Ringgaard and T Wurlitzer ldquoLead-free piezoceramics basedon alkali niobatesrdquo Journal of the European Ceramic Society vol25 no 12 pp 2701ndash2706 2005

[4] T Takenaka and H Nagata ldquoCurrent status and prospects oflead-free piezoelectric ceramicsrdquo Journal of the EuropeanCeramic Society vol 25 no 12 pp 2693ndash2700 2005

[5] Ministry of Information Industry of the Peoplersquos Republic ofChina Industrial Standard of the peoplersquos Republich of China2006

[6] Japan Electronics and InformationTechnology Industries Asso-ciation Standard of Japan Electronics and Information Tech-nology Industries Association 1998

[7] TheEnvironment and Labor Committee of the National Assemblyof Korea 2007

[8] Y Li K S Moon and C P Wong ldquoElectronics without leadrdquoScience vol 308 no 5727 pp 1419ndash1420 2005

[9] E Cross ldquoLead-free at lastrdquoNature vol 432 no 7013 pp 24ndash252004

[10] G A Smolensky V A Isupov A I Agranovskaya and NN Krainic ldquoNew ferroelectrics with complex compounds IVrdquoFizika Tverdogo Tela vol 2 pp 2982ndash2985 1960

[11] G A Smolenskii and A I Agranovskaya ldquoDielectric polariza-tion of a series of compounds of complex compositionrdquo FizikaTverdogo Tela vol 1 pp 1562ndash1572 1959

[12] C F Buhrer ldquoSome properties of bismuth perovskitesrdquo TheJournal of Chemical Physics vol 36 pp 798ndash803 1962

[13] I P Pronin N N Parfenova N V Zaitseva V A Isupov andG A Smolenskii ldquoPhase transitions in solid solutions of sodi-umbismuth and potassiumbismuth titanatesrdquo Fizika TverdogoTela vol 24 pp 1060ndash1062 1982

[14] A Sasaki T Chiba Y Mamiya and E Otsuki ldquoDielectric andpiezoelectric properties of (Bi

05Na05)TiO3ndash(Bi05K05)TiO3sys-

temsrdquo Japanese Journal of Applied Physics vol 38 no 9 p 55641999

[15] G O Jones and P A Thomas ldquoInvestigation of the structureand phase transitions in the novel A-site substituted distortedperovskite compoundNa

05Bi05TiO3rdquoActa Crystallographica B

vol 58 pp 168ndash178 2002[16] PWoodward ldquoOctahedral tilting in perovskites I Geometrical

considerationsrdquo Acta Crystallographica B vol 53 pp 32ndash431997

[17] V A Isupov ldquoFerroelectric Na05Bi05TiO3and K

05Bi05TiO3

perovskites and their solid solutionsrdquo Ferroelectrics vol 315 no1 pp 123ndash147 2005

[18] I P Pronin P P Syrnikov V A Isupov V M Egorov N VZaitseva and A F Ioffe ldquoPeculiarities of phase transitions in

sodium-bismuth titanaterdquo Ferroelectrics vol 25 pp 395ndash3971980

[19] J A Zvirgzds P P Kapostis and J V Zvirgzde ldquoX-ray study ofphase transitions in efrroelectric Na

05Bi05TiO3rdquo Ferroelectrics

vol 40 no 1 pp 75ndash77 1982[20] J Suchanicz K Roleder A Kania and J Handerek ldquoElec-

trostrictive strain and pyroeffect in the region of phase coexis-tence in Na

05Bi05TiO3rdquo Ferroelectrics vol 77 pp 107ndash110 1988

[21] Y Chiang G W Farrey and A N Soukhojak ldquoLead-free high-strain single-crystal piezoelectrics in the alkaline-bismuth-titanate perovskite familyrdquo Applied Physics Letters vol 73 no25 pp 3683ndash3685 1998

[22] S M Emelyanov I P Raevskii V G Smotrakov and F ISavenko ldquoPiezoelectric and pyroelectric properties of sodium-bismuth titanate crystalsrdquo Fizika Tverdogo Tela vol 26 pp1897ndash1899 1984

[23] M L Zhao C LWangW L Zhong J FWang andHCChenldquoElectrical properties of (Bi

05Na05)TiO3ceramic prepared by

sol-gel methodrdquo Acta Physica Sinica vol 52 no 1 pp 229ndash2322003

[24] M L Zhao C L Wang W L Zhong J F Wang and Z F LildquoGrain-size effect on the dielectric properties of Bi

05Na05TiO3rdquo

Chinese Physics Letters vol 20 article 290 2003[25] B Jaffe W R Cook and H Jaffe Piezoelectric Ceramics

Academic Press London UK 1971[26] J Suchanicz ldquoTime evolution of the phase transformation in

Na05Bi05TiO3rdquo Ferrolectrics vol 200 no 1 pp 319ndash325 1997

[27] O N Razumovskaya T B Kuleshova and L M RudkovskayaldquoReactions of formation of BiF

119890O3 K05

Bi05TiO3 and

Na05Bi05TiO3rdquo Neorganicheskie Materialy [Inorganic Mat-

erials] vol 19 pp 113ndash115 1983[28] V V Ivanova A G Kapishev Y N Venevtsev and G S

Zhdanov ldquoX-ray determination of the symmetry of elemen-tary cells of the ferroelectric materials (K05Bi05)TiO3 and(Na05Bi05)TiO3 and of high-temperature phase transitionsin (K05Bi05)TiO3rdquo Izvestiya Akademii Nauk SSSR SeriyaFizicheskaya vol 26 pp 354ndash356 1962

[29] Y Hiruma R Aoyagi H Nagata and T Takenaka ldquoSynthesisand properties of 1-Methyl-4-2-[4-(dimethylamino)phenyl]-ethenylpyridinium p-toluenesulfonate derivatives with isomor-phous crystal structurerdquo Japanese Journal of Applied Physics vol44 p 5231 2005

[30] M Zhu L Hou Y Hou J Liu HWang andH Yan ldquoLead-free(K05Bi05)TiO3powders and ceramics prepared by a solndashgel

methodrdquo Materials Chemistry and Physics vol 99 no 2-3 pp329ndash332 2006

[31] M Izumi K Yamamoto M Suzuki Y Noguchi andM Miyayama ldquoLarge electric-field-induced strain inBi05Na05TiO3-Bi05K05TiO3

solid solution single crystalsrdquoApplied Physics Letters vol 93 Article ID 242903 2008

[32] T Tani ldquoCrystalline-oriented piezoelectric bulk ceramics witha perovskite-type structurerdquo Journal of the Korean PhysicalSociety vol 32 no 3 pp S1217ndashS1220 1998

[33] X Chen Y Liao H Wang et al ldquoPhase structure and electricproperties of Bi

05(Na0825

K0175

)05TiO3ceramics prepared by a

sol-gel methodrdquo Journal of Alloys and Compounds vol 493 no1-2 pp 368ndash371 2010

[34] Y Q Chen X J Zheng and W Li ldquoSize effect of mechanicalbehavior for lead-free (Na

082K018

)05Bi05TiO3nanofibers by

nanoindentationrdquoMaterials Science and Engineering A vol 527pp 5462ndash5466 2010

10 Advances in Materials Science and Engineering

[35] D YWang DM Lin K SWong KW Kwok J Y Dai and HL W Chan ldquoPiezoresponse and ferroelectric properties oflead-free [Bi

05(Na07K02Li01)05]TiO3thin films by pulsed laser

depositionrdquo Applied Physics Letters vol 92 no 22 Article ID222909 2008

[36] J Kreisel A M Glazer G Jones P A Thomas L Abello andG Lucazeau ldquoAn x-ray diffraction and Raman spectroscopyinvestigation of A-site substituted perovskite compounds the(Na1minus119909

K119909)05Bi05TiO3(0le xle1) solid solutionrdquo Journal of

Physics Condensed Matter vol 12 p 3267 2000[37] H Xie L Jin D Shen X Wang and G Shen ldquoMorphotropic

phase boundary segregation effect and crystal growth in theNBT-KBT systemrdquo Journal of Crystal Growth vol 311 no 14pp 3626ndash3630 2009

[38] O Elkechai M Manier and I P Mercurio ldquoNa05Bi05TiO3ndash

K05Bi05TiO3(NBT-KBT) system a structural and electrical

studyrdquo Physica Status Solidi vol 157 no 2 pp 499ndash506 1996[39] K Yoshii Y Hiruma H Nagata and T Takenaka ldquoElectrical

properties and depolarization temperature of (Bi12Na12)TiO3-

(Bi12K12)TiO3lead-free piezoelectric ceramicsrdquo Japanese Jour-

nal of Applied Physics vol 45 part 1 no 5B pp 4493ndash44972006

[40] M E Lines and A M Glass Principles and Applications forFerroelectrics and Related Materials Oxford University PressOxford UK 1979

[41] K Uchino Piezoelectric Actuators and Ultrasonic MotorsKluwer Academic Publishers Boston Mass USA 1996

[42] S T Zhang A B Kounga E Aulbach et al ldquoLead-free piezoce-ramics with giant strain in the system Bi

05Na05TiO3ndashBaTiO

3ndash

K05Na05NbO3 II Temperature dependent propertiesrdquo Journal

of Applied Physics vol 103 no 3 Article ID 034108 2008[43] S T Zhang A B Kounga E Aulbach H Ehrenberg and J

Rodel ldquoGiant strain in lead-free piezoceramics Bi05Na05TiO3ndash

BaTiO3ndashK05Na05NbO3systemrdquo Applied Physics Letters vol 91

Article ID 112906 2007[44] W Jo T Granzow E Aulbach J Rodel and D Damjanovic

ldquoOrigin of the large strain response in (K05Na05)NbO

3-

modified (Bi05Na05)TiO3ndashBaTiO

3lead-free piezoceramicsrdquo

Journal of Applied Physics vol 105 no 9 Article ID 0941022009

[45] D S Lee D H Lim M S Kim K H Kim and S J JeongldquoElectric field-induced deformation behavior in mixedBi05Na05TiO3and Bi

05(Na075

K025

)05TiO3-BiAlO

3rdquo Applied

Physics Letters vol 99 Article ID 062906 2011[46] J S Lee K N Pham H S Han H B Lee and V D N Tran

ldquoStrain enhancement of lead-free Bi12(Na082

K018

)12TiO3

ceramics by Sn dopingrdquo Journal of the Korean Physical Societyvol 60 no 2 pp 212ndash215 2012

[47] A Ullah CW Ahn A Hussain S Y Lee and IW Kim ldquoPhasetransition electrical properties and temperature-insensitivelarge strain in BiAlO

3-modified Bi

05(Na075

K025

)05TiO3lead-

free piezoelectric ceramicsrdquo Journal of the American CeramicSociety vol 94 no 11 pp 3915ndash3921 2011

[48] L J Rigoberto G Federico and V C Maria-Elena ldquoLead-free ferroelectric ceramics with perovskite structurerdquo inFerroelectrics-Material Aspects M Lattart Ed InTech 2011

[49] X Ren ldquoLarge electric-field-induced strain in ferroelectriccrystals by point-defect-mediated reversible domain switchingrdquoNature Materials vol 3 pp 91ndash94 2004

[50] W LWarren G E Pike K Vanheusden D Dimos B A Tuttleand J Robertson ldquoDefect-dipole alignment and tetragonal

strain in ferroelectricsrdquo Journal of Applied Physics vol 79 no12 pp 9250ndash9257 1996

[51] W L Warren D Dimos G E Pike K Vanheusden and RRamesh ldquoAlignment of defect dipoles in polycrystalline ferro-electricsrdquo Applied Physics Letters vol 67 p 1689 1995

[52] R Lohkamper H Neumann and G Arlt ldquoInternal biasin acceptor-doped BaTiO

3ceramics numerical evaluation of

increase and decreaserdquo Journal of Applied Physics vol 68 p4220 1990

[53] U Robels and G Arlt ldquoDomain wall clamping in ferroelectricsby orientation of defectsrdquo Journal of Applied Physics vol 73 no7 pp 3454ndash3460 1993

[54] H Fu and R E Cohen ldquoPolarization rotation mechanism forultrahigh electromechanical response in single-crystal piezo-electricsrdquo Nature vol 403 no 6767 pp 281ndash283 2000

[55] Y Li W Chen Q Xu J Zhou Y Wang and H SunldquoPiezoelectric and dielectric properties of CeO

2-doped

Bi05Na044

K006

TiO3

lead-free ceramicsrdquo Ceramics Inter-national vol 33 no 1 pp 95ndash99 2007

[56] Y Liao D Xiao D Lin et al ldquoThe effects of CeO2-

doping on piezoelectric and dielectric properties ofBi05(Na1minus119909minus119910

K119909Li119910)05TiO3piezoelectric ceramicsrdquo Materials

Science and Engineering B vol 133 no 1ndash3 pp 172ndash176 2006[57] B Wang L Luo F Ni P Du W Li and H Chen ldquoPiezoelectric

and ferroelectric properties of (Bi1minus119909

Na08K02Lax)05TiO3lead-

free ceramicsrdquo Journal of Alloys and Compounds vol 526 pp79ndash84 2012

[58] Y Yuan S Zhang and X Zhou ldquoEffects of La occupa-tion site on the dielectric and piezoelectric properties of[Bi05(Na075

K015

L119894010

)05]TiO3ceramicsrdquo Journal of Materials

Science Materials in Electronics vol 20 no 11 pp 1090ndash10942009

[59] Y Yuan S R Zhang and X H Zhou ldquoPhasetransitions and electrical properties in La3+-substitutedBi05(Na075

K015

Li010

)05TiO3ceramicsrdquo Journal of Materials

Science Letters vol 41 pp 565ndash567 2006[60] Z Yang Y Hou B Liu and L Wei ldquoStructure and

electrical properties of Nd2O3-doped 082Bi

05Na05TiO3ndash

018Bi05K05TiO3ceramicsrdquo Ceramics International vol 35 pp

1423ndash1427 2009[61] Y Zhang R Chu Z Xu et al ldquoPiezoelectric and dielectric prop-

erties of Sm2O3-doped

082Bi05Na05TiO3-0 18Bi

05K05TiO3

ceramicsrdquo Journal of Alloys and Compounds vol 502 no 2 pp341ndash345 2010

[62] P Fu Z Xu R Chu W Li WWang and Y Liu ldquoGd2O3doped

082Bi05Na05TiO3ndash018Bi

05K05TiO3

lead-free piezoelectricceramicsrdquoMaterials amp Design vol 35 pp 267ndash280 2012

[63] C Zhi-Hui D Jian-Ning M Lin Y Ning-Yi and Z Wei-WeildquoPiezoelectric and dielectric properties of Dy

2O3-Doped Bi

05

(Na082

K018

)05TiO3lead-free ceramicsrdquo Ferroelectrics vol 425

no 1 pp 63ndash71 2011[64] P Fu Z Xu R Chu XWuW Li andH Zhang ldquoStructure and

electrical properties of the Ho2O3doped 082Bi

05Na05TiO3-

018Bi05K05TiO3lead-free piezoelectric ceramicsrdquo Journal of

Materials Science Materials in Electronics vol 23 no 12 pp2167ndash2172 2012

[65] P Fu Z Xu H Zhang R Chu W Li and M Zhao ldquoStructureand electrical properties of Er

2O3doped 082Bi

05Na05TiO3ndash

018Bi05K05TiO3lead-free piezoelectric ceramicsrdquoMaterials amp

Design vol 40 pp 373ndash377 2012

Advances in Materials Science and Engineering 11

[66] P Fu Z Xu R Chu W Li Q Xie and G Zhang ldquoEffectsof Eu

2O3

on the structure and electrical properties of082Bi

05Na05TiO3-018Bi

05K05TiO3

lead-free piezoelectricceramicsrdquo Current Applied Physics vol 11 pp 822ndash826 2011

[67] H Han N Do K Pham et al ldquoSintering behaviour andpiezoelectric properties of CuO-added lead-free Bi(NaK)TiO

3

ceramicsrdquo Ferroelectrics vol 421 no 1 pp 88ndash91 2011[68] N B Do H D Jang I Hong et al ldquoLow temperature sintering

of lead-free Bi05(Na082

K018

)05TiO3piezoelectric ceramics by

co-doping with CuO and Nb2O5rdquo Ceramics International vol

38S pp S359ndashS362 2012[69] X P Jiang L Z Li M Zeng and H L W Chan ldquoDielec-

tric properties of Mn-doped (Na08K02)05Bi05TiO3ceramicsrdquo

Materials Letters vol 60 no 15 pp 1786ndash1790 2006[70] J Xiangping L Longzhu J Fulan Z Yanyan and L Lihua

ldquoEffects of Mn-doping on the piezoelectric and ferroelectricproperties of (Na

08K02)05Bi05TiO3ceramicsrdquo Key Engineering

Materials vol 368-372 pp 69ndash71 2008[71] H Hu M Zhu Y Hou and H Yan ldquoDielectric piezoelectric

and ferroelectric properties of MnCO3-added 74(Bi

12Na12)

TiO3-208(Bi

12K12)TiO3-52BaTiO

3lead-free piezoelectric

ceramicsrdquo IEEE Transactions on Ultrasonics Ferroelectrics andFrequency Control vol 56 pp 897ndash905 2009

[72] J Shieh Y C Lin and C S Chen ldquoIntricate straining ofmanganese-doped (Bi

05Na05)TiO3-BaTiO

3-(Bi05K05)TiO3

lead-free ferroelectric ceramicsrdquo Journal of Physics D AppliedPhysics vol 43 no 2 Article ID 025404 2010

[73] J Shieh Y C Lin and S C Chen ldquoInfluence of phase com-position on electrostrains of doped (Bi

05Na05)TiO3ndashBaTiO

3ndash

(Bi05K05)TiO3lead-free ferroelectric ceramicsrdquo Smart Materi-

als and Structures vol 19 no 9 Article ID 094007 2010[74] M Zhu H Hu N Lei Y Hou and H YanInt ldquoMnO modifi-

cation on microstructure and electrical properties of lead-freeBi0485

Na0425

K006

Ba003

TiO3

solid solution around mor-photropic phase boundaryrdquo International Journal of AppliedCeramic Technology vol 7 pp E107ndashE113 2010

[75] N BDoH B Lee CHYoon J KKang and J S Lee ldquoEffect ofTa-substitution on the ferroelectric and piezoelectric propertiesof Bi05(Na082

K018

)05TiO3ceramicsrdquoTransactions on Electrical

and Electronic Materials vol 12 no 2 pp 64ndash67 2011[76] K N Pham A Hussain CW Ahn I W Kim S J Jeong and J

S Lee ldquoGiant strain in Nb-doped Bi05(Na082

K018

)05TiO3lead-

free electromechanical ceramicsrdquoMaterials Letters vol 64 no20 pp 2219ndash2222 2010

[77] A Hussain C W Ahn J S Lee A Ullah and I W KimldquoLarge electric-field-induced strain in Zr-modified lead-freeBi05(Na078

K022

)05TiO3piezoelectric ceramicsrdquo Sensors and

Actuators A vol 158 no 1 pp 84ndash89 2010[78] AHussain CWAhn AUllah J S Lee and IWKim ldquoEffects

of hafnium substitution on dielectric and electromechanicalproperties of lead-free Bi

05(Na078

K022

)05(Ti1minus119909

Hfx)O3Ceram-

icsrdquo Japanese Journal of Applied Physics vol 49 Article ID041504 2010

[79] D N Binh A Hussain H Lee et al ldquoEnhanced electric-field-induced strain at the ferroelectric-electrostrcitive phaseboundary of yttrium-doped Bi

05(Na082

K018

)05TiO3lead-free

piezoelectric ceramicsrdquo Journal of the Korean Physical Societyvol 57 no 41 pp 892ndash896 2010

[80] V Nguyen H Han K Kim D Dang K Ahn and J Lee ldquoStrainenhancement in Bi

12(Na082

K018

)12TiO3lead-free electrome-

chanical ceramics by co-dopingwith Li andTardquo Journal of Alloysand Compounds vol 511 no 1 pp 237ndash241 2012

[81] D Lin D Xiao J Zhu and P Yu ldquoPiezoelectric and ferroelectricproperties of lead-free piezoelectric ceramicsrdquo Applied PhysicsLetters vol 88 no 6 Article ID 062901 2006

[82] V Nguyen C Hong H Lee Y M Kong J Lee and K AhnldquoEnhancement in the microstructure and the strain propertiesof Bi12(NaK)

12TiO3-based lead-free ceramics by Li substitu-

tionrdquo Journal of the Korean Physical Society vol 61 no 6 pp895ndash898 2012

[83] Y Liao D Xiao and D Lin ldquoApplication of quantum cascadelasers to trace gas analysisrdquo Applied Physics B vol 90 pp 165ndash176 2008

[84] Y Isikawa Y Akiyama and T Hayashi ldquoPiezoelectric anddielectric properties of (BiNaKAg)TiO

3-BaTiO

3lead-free

piezoelectric ceramicsrdquo Japanese Journal of Applied Physics vol48 Article ID 09KD03 2009

[85] F Ni L Luo X Pan W Li and J Zhu ldquoEffects of A-sitevacancy on the electrical properties in lead-free non-stoichiometric ceramics Bi

05+119909(Na082

K018

)05minus3119909

TiO3

andBi05+119910

(Na082

K018

)05TiO3rdquo Journal of Alloys and Compounds

vol 541 pp 150ndash156 2012[86] F Ni L Luo W Lim and H Chen ldquoA-site vacancy-induced

giant strain and the electrical properties in non-stoichiometricceramics Bi

05+119909(Na1minus119910

K119910)05minus3119909

TiO3rdquo Journal of Physics D

Applied Physics vol 45 no 41 Article ID 415103 2012[87] A Ullah C W Ahn A Hussain S Y Lee H J Lee and I W

Kim ldquoPhase transitions and large electric field-induced strainin BiAlO

3-modified Bi

05(Na K)

05TiO3lead-free piezoelectric

ceramicsrdquo Current Applied Physics vol 10 pp 1174ndash1181 2010[88] A Ullah C W Ahn S Y Lee J S Kim and I W Kim ldquoStruc-

ture ferroelectric properties and electric field-induced largestrain in lead-free Bi

05(NaK)

05TiO3-(Bi05La05)AlO3piezo-

electric ceramicsrdquo Ceramics International vol 38 no 1 ppS363ndashS368 2012

[89] V DN Tran H S Han CH Yoon J S LeeW Jo and J RodelldquoLead-free electrostrictive bismuth perovskite ceramics withthermally stable field-induced strainsrdquoMaterials Letters vol 65pp 2607ndash2609 2011

[90] K Wang A Hussain W Jo and J Rodel ldquoTemperature-dependent properties of (Bi

12Na12)TiO3-(Bi12K12)TiO3-

SrTiO3

lead-free piezoceramicsrdquo Journal of the AmericanCeramic Society vol 95 no 7 pp 2241ndash2247 2012

[91] E A Patterson D P Cann J Pokomy and I M Reaney ldquoElec-tromechanical strain in Bi(Zn

12Ti12)O3-(Bi12Na12)TiO3-

(Bi12K12)TiO3solid solutionsrdquo Journal Of Applied Physics vol

111 Article ID 094105 2012[92] E A Patterson and D P Cann ldquoBipolar piezoelectric

fatigue of Bi(Zn05Ti05)O3-(Bi05K05)TiO3-(Bi05Na05)TiO3Pb-

free ceramicsrdquo Applied Physics Letters vol 101 Article ID042905 2012

[93] R Dittmer W Jo J Daniels S Schaab and JRodel ldquoRelaxor characteristics of morphotropic phaseboundary (Bi

12Na12)TiO3-(Bi12K12)TiO3

modified withBi(Zn

12Ti12)O3rdquo Journal of the American Ceramic Society vol

94 no 12 pp 4283ndash4290 2011[94] A Hussain C W Ahn A Ullah J S Lee and I W Kim

ldquoDielectric ferroelectric and field-induced strain behavior ofK05Na05NbO3-modified Bi

05(Na078

K022

)05TiO3

lead-freeceramicsrdquo Ceramics International vol 38 no 5 pp 4143ndash41492012

12 Advances in Materials Science and Engineering

[95] G Fan W Lu X Wang and F Liang ldquoMorphotropic phaseboundary and piezoelectric properties of (Bi

12Na12)TiO3ndash

(Bi12K12)TiO3ndashKNbO

3lead-free piezoelectric ceramicsrdquo

Applied Physics Letters vol 91 Article ID 202908 2007[96] N B Do H B Lee D T Le et al ldquoElectric field-induced strain

of lead-free Bi05Na05TiO3ndashBi05K05TiO3ceramics modified

with LiTaO3rdquoCurrent Applied Physics vol 11 no 3 supplement

pp S134ndashS137 2011[97] T V D Ngoc H S Han K J Kim et al ldquoRelaxor and field-

induced strain behavior in lead-free Bi05(Na082

K018

)05TiO3

ceramics modified with BaZrO3rdquo Journal of Ceramic Processing

Research vol 13 supplement 2 pp s177ndashs180 2012[98] V D N Tran A Hussain H S Han et al ldquoComparison of

ferroelectric and strain properties between BaTiO3- and

BaZrO3-modified Bi

12(Na082

K018

)12TiO3ceramicsrdquo Japanese

Journal of Applied Physics vol 51 Article ID 09MD02 2012[99] I KHongH SHan CH YoonHN JiW P Tai and J S Lee

ldquoStrain enhancement in lead-free Bi05(Na078

K022

)05TiO3

ceramics by CaZrO3

substitutionrdquo Journal of IntelligentMaterial Systems and Structures vol 24 no 11 pp 1343ndash13492013 (Swedish)

[100] J K Kang D J Heo V Q Nguyen H S Han J S Leeand K K Ahn ldquoLow-temperature sintering of lead-freeBi12(NaK)

12TiO3-based electrostrictive ceramics with CuO

additionrdquo Journal of the Korean Physical Society vol 61 no 6pp 899ndash902 2012

[101] V Q Nguyen H B Luong and D D Dang ldquoEnhancement ofelectrical field-induced strain in Bi

05(Na K)

05TiO3-based lead-

free piezoelectric ceramics role of phase transitionrdquo In press[102] A Zaman Y Iqbal A Hussain et al ldquoInfluence of zirconium

substitution on dielectric ferroelectric and field-induced strainbehaviors of lead-free 099[Bi

12(Na082

K018

)12(Ti1minus119909

Zr119909)O3]-

001LiSbO3ceramicsrdquo Journal of theKorean Physical Society vol

61 no 5 pp 773ndash778 2012[103] S Qiao J Wu B Wu B Zhang D Xiao and J Zhu ldquoEffect

of Ba085

Ca015

Ti090

Zr010

O3content on the microstructure and

electrical properties of Bi051

(Na082

K018

)050

TiO3ceramicsrdquo

Ceramics International vol 38 no 6 pp 4845ndash4851 2012[104] H Nagata M Yoshida Y Makiuchi and T Takenaka ldquoLarge

piezoelectric constant and high curie temperature of lead-freepiezoelectric ceramic ternary system based on bismuth sodiumtitanate-bismuth potassium titanate-barium titanate near themorphotropic phase boundaryrdquo Japanese Journal of AppliedPhysics vol 42 no 12 p 7401 2003

[105] Y Li W Chen Q Xu J Zhou X Gu and S Fang ldquoElec-tromechanical and dielectric properties of Na

05Bi05TiO3-

K05Bi05TiO3-BaTiO

3lead-free ceramicsrdquo Materials Chemistry

and Physics vol 94 no 2-3 pp 328ndash332 2005[106] Q Zhou C Zhou W Li J Cheng H Wang and C Yuan

Journal of Physics and Chemistry of Solids vol 72 p 909 2011[107] C Zhou X LiuW Lim andC Yuan ldquoMicrostructure and elec-

trical properties of Bi05Na05TiO3-Bi05K05TiO3-LiNbO

3lead-

free piezoelectric ceramicsrdquo Journal of Physics and Chemistry ofSolids vol 70 pp 541ndash545 2009

[108] C Zhou X Liu W Li C Yuan and G Chen ldquoStructure andelectrical properties of Bi

05(Na K)

05TiO3minusBiGaO

3lead-free

piezoelectric ceramicsrdquo Current Applied Physics vol 10 no 1pp 93ndash98 2010

[109] B Wu C Han D Xiao Z Wang J Zhu and J Wu ldquoInves-tigation of a new lead-free (089minus x)(Bi

05Na05)TiO3ndash011(Bi

05

K05)TiO3ndashxBa085

Ca015

Ti090

Zr010

O3ceramicsrdquo Materials Re-

search Bulletin vol 47 pp 3937ndash3940 2012

[110] M Zou H Fan L Chen and W Yang ldquoMicrostruc-ture and electrical properties of (1 minus 119909)[082Bi

05Na05TiO3ndash

018Bi05K05TiO3]ndashxBiFeO

3lead-free piezoelectric ceramicsrdquo

Journal of Alloys and Compounds vol 495 no 1 pp 280ndash2832010

[111] C ZhouX LiuW Li andCYuan ldquoDielectric andpiezoelectricproperties of Bi

05Na05TiO3ndashBi05K05TiO3ndashBiCrO

3lead-free

piezoelectric ceramicsrdquo Journal of Alloys and Compounds vol478 no 1-2 pp 381ndash385 2009

[112] H Yang X Shan C Zhou Q Zhou W Li and J ChengldquoMicrostructure dielectric and piezoelectric properties of lead-free Bi

05Na05

TiO3ndashBi05K05

TiO3ndashBiMnO

3ceramicsrdquo Bulletin

of Materials Science vol 36 pp 265ndash270 2013[113] M Bichurin V Petrov A Zakharov et al ldquoMagnetoelectric

interactions in lead-based and lead-free compositesrdquoMaterialsvol 4 no 4 pp 651ndash702 2011

[114] H S Han CW Ahn IW Kim A Hussain and J S Lee ldquoDes-tabilization of ferroelectric order in bismuth perovskite ceram-ics by A-site vacanciesrdquo Materials Letters vol 70 pp 98ndash1002012

[115] A Ullah CW Ahn A Hussain IW Kim H I Hwang andNK Cho ldquoStructural transition and large electric field-inducedstrain in BiAlO

3-modified Bi

05(Na08K02)05TiO3

lead-freepiezoelectric ceramicsrdquo Solid State Communications vol 150pp 1145ndash1149 2010

[116] A Ullah C W Ahn A Hussain S Y Lee J S Kim and I WKim ldquoEffect of potassium concentration on the structure andelectrical properties of lead-free Bi

05(NaK)

05TiO3ndashBiAlO

3

piezoelectric ceramicsrdquo Journal of Alloys and Compounds vol509 pp 3148ndash3154 2012

[117] K N Pham D T Hinh L H Yuong K Y Min and L SShin ldquoEffects of Bi(Mg12Sn 12)O3 modification on the dielec-tric and piezoelectric properties of Bi12(Na08K02)12TiO3ceramicsrdquo Journal of the Korean Ceramic Society vol 49 pp266ndash271 2012

[118] K N Pham H B Lee H S Han et al ldquoDielectric fer-roelectric and piezoelectric properties of Nb-substitutedBi12(Na082

K018

)12TiO3lead-free ceramicsrdquo Journal of the

Korean Ceramic Society vol 60 pp 207ndash211 2012[119] A Ullah C W Ahn and I W Kim ldquoDielectric

piezoelectric properties and field-induced large strain ofBi(Zn

05Ti05)O3-modified morphotropic phase boundary

Bi05(Na082

K018

)05TiO3

piezoelectric ceramicsrdquo JapaneseJournal of Applied Physics vol 51 Article ID 09MD07 2012

[120] H S Han W Jo J Rodel I K Hong W P Tai and J SLee ldquoCoexistence of ergodicity and nonergodicity in LaFeO

3-

modified Bi12(Na078

K022

)12TiO3relaxorsrdquo Journal of Physics

Condensed Matter vol 24 Article ID 365901 2012[121] H S Han W Jo J K Kang et al ldquoIncipient piezoelectrics and

electrostriction behavior in Sn-doped Bi12(Na082

K018

)12TiO3

lead-free ceramicsrdquo Journal of Applied Physics vol 113 ArticleID 154102 2013

[122] H B Lee D J Heo R A Malik C H Yoon H S Han and J SLee ldquoLead-free Bi

12(Na082

K018

)12TiO3ceramics exhibiting

large strain with small hysteresisrdquo Ceramics International vol39 pp S705ndashS708 2013

[123] D S Lee S J Jeong M S Kim and K H Kim ldquoEffectof sintering time on strain in ceramic composite con-sisting of 094Bi05(Na075K025)05TiO3ndash006BiAlO3 with(Bi05Na05)TiO3rdquo Japanese Journal of Applied Physics vol 52Article ID 021801 2013

Advances in Materials Science and Engineering 13

[124] J Hao W Bai W Li B Shen and J Zhai ldquoPhase transitionsrelaxor behavior and large strain response in LiNbO3-modifiedBi05(Na080K020)05TiO3 lead-free piezoceramicsrdquo Journalof Applied Physics vol 114 Article ID 044103 2013

[125] A Ullah C W Ahn A Ullah and I W Kim ldquoLarge strainunder a low electric field in lead-free bismuth-based piezo-electricsrdquo Applied Physics Letters vol 103 Article ID 0229062013

[126] N Kumar and D P Cann ldquoElectromechanical strainand bipolar fatigue in Bi(Mg

12Ti12)O3-(Bi12K12)TiO3-

(Bi12Na12)TiO3ceramicsrdquo Journal of Applied Physics vol 114

Article ID 054102 2013[127] T H Dinh H Y Lee C H Yoon et al ldquoEffect of lanthanum

doping on the structural ferroelectric and strain propertiesof Bi12(Na082

K018

)12TiO3lead-free ceramicsrdquo Journal of the

Korean Ceramic Society vol 62 pp 1004ndash1008 2013[128] P Jaita A Watcharapasorn D P Cann and S

Jiansirisomboon ldquoDielectric ferroelectric and electric field-induced strain behavior of Ba(Ti090Sn010)O3-modifiedBi05(Na080K020)05TiO3 lead-free piezoelectricsrdquo Journalof Alloys and Compounds vol 596 pp 98ndash106 2014

[129] AHussain J U Rahman A Zaman et al ldquoField-induced strainand polarization response in lead-free Bi12(Na080K020)12TiO3ndashSrZrO3 ceramicrdquo Materials Chemistry and Physics vol143 pp 1282ndash1288 2014

[130] A Ullah R A Malik D S Lee et al ldquoElectric-field-inducedphase transition and large strain in lead-free Nb-doped BNKT-BST ceramicsrdquo Journal of the European Ceramic Society vol 34pp 29ndash35 2014

[131] J Hao B Shen J Zhai and H Chen ldquoPhase transitionalbehavior and electric field-induced large strain in alkali niobate-modified Bi

05(Na080

K020

)05TiO3

lead-free piezoceramicsrdquoJournal of Applied Physics vol 115 Article ID 034101 2014

[132] A Zaman Y Iqbal A Hussain M H Kim and R A MalikldquoDielectric ferroelectric and field-induced strain properties ofTa-doped 099Bi

05(Na082

K018

)05TiO3ndash001LiSbO

3ceramicsrdquo

Journal of Materials Science vol 49 no 8 pp 3205ndash3214 2014[133] A Ullah A Ullah I W Kim D S Lee S J Jeong and C W

Ahn ldquoLarge electromechanical response in lead-free La-dopedBNKTBST piezoelectric ceramicsrdquo Journal of the AmericanCeramic Society vol 97 no 8 pp 2471ndash2478 2014

Submit your manuscripts athttpwwwhindawicom

ScientificaHindawi Publishing Corporationhttpwwwhindawicom Volume 2014

CorrosionInternational Journal of

Hindawi Publishing Corporationhttpwwwhindawicom Volume 2014

Polymer ScienceInternational Journal of

Hindawi Publishing Corporationhttpwwwhindawicom Volume 2014

Hindawi Publishing Corporationhttpwwwhindawicom Volume 2014

CeramicsJournal of

Hindawi Publishing Corporationhttpwwwhindawicom Volume 2014

CompositesJournal of

NanoparticlesJournal of

Hindawi Publishing Corporationhttpwwwhindawicom Volume 2014

Hindawi Publishing Corporationhttpwwwhindawicom Volume 2014

International Journal of

Biomaterials

Hindawi Publishing Corporationhttpwwwhindawicom Volume 2014

NanoscienceJournal of

TextilesHindawi Publishing Corporation httpwwwhindawicom Volume 2014

Journal of

NanotechnologyHindawi Publishing Corporationhttpwwwhindawicom Volume 2014

Journal of

CrystallographyJournal of

Hindawi Publishing Corporationhttpwwwhindawicom Volume 2014

The Scientific World JournalHindawi Publishing Corporation httpwwwhindawicom Volume 2014

Hindawi Publishing Corporationhttpwwwhindawicom Volume 2014

CoatingsJournal of

Advances in

Materials Science and EngineeringHindawi Publishing Corporationhttpwwwhindawicom Volume 2014

Smart Materials Research

Hindawi Publishing Corporationhttpwwwhindawicom Volume 2014

Hindawi Publishing Corporationhttpwwwhindawicom Volume 2014

MetallurgyJournal of

Hindawi Publishing Corporationhttpwwwhindawicom Volume 2014

BioMed Research International

MaterialsJournal of

Hindawi Publishing Corporationhttpwwwhindawicom Volume 2014

Nano

materials

Hindawi Publishing Corporationhttpwwwhindawicom Volume 2014

Journal ofNanomaterials

Page 3: Review Article Current Development in Lead-Free Bi (Na,K ...downloads.hindawi.com/journals/amse/2014/365391.pdf · Bi 2 O 3 and TiO 2 and alkali carbonate powder Na 2 CO 3 and K 2

Advances in Materials Science and Engineering 3

perovskites It is clear that many properties are still notstudied However by combining the sol-gel and conventionalsolid-state reaction method Zhu et al obtained the highcompact density of sim912 which overcame the low densityof sim70 of ceramics prepared by only traditional solid statesynthesis [30]The result was promoted to further investigatethe properties of BKT

22 B05Na05TiO3-B05K05TiO3Solid Solutions Systems

221 B05(NaK)

05TiO3Fabrication Methods The BNKT

ceramics were first fabricated by Buhrer by conventionalceramics method via starting materials with metal oxideBi2O3and TiO

2and alkali carbonate powder Na

2CO3and

K2CO3[12] The BNKT powder was obtained through ball

milling and solid state reaction by following equation

Bi2O3+ (1 minus 119909)Na

2CO3+ 119909K2CO3+ 4TiO

2

997888rarr 4Bi05(Na1minus119909

K119909)

05TiO3+ 2CO

2

(1)

The single crystals (1minus119909)BNT-xBKT (0 lt 119909 lt 014) werefabricated by flux method [31] The grain oriented and tex-tured BNKT ceramics were first fabricated by Tani throughreactive template grain growth method using plate likeBi4Ti3O12(BiT) particles as a template [32]The BiT platelets

were aligned parallel to the tape casting direction andgrain oriented ceramics were prepared from Bi

2O3and TiO

2

using molten salt synthesis Additional amounts of Na2CO3

K2CO3 and TiO

2to stoichiometry were included in the

mixing batch to react with the BiT according to followingequation

Bi4Ti3O12+ 2 (1 minus 119909)Na

2CO3+ 2119909K

2CO3+ 5TiO

2

997888rarr 8Bi05(Na1minus119909

K119909)

05TiO3+ 2CO

2

(2)

Recently BNKT powders were prepared by the sol-gel process [33] The starting materials as analytical-gradechemical bismuth nitrate (Bi(NO

3)3sdot5H2O) sodium acetate

(CH3COONasdot3H

2O) or sodium nitrate (NaNO

3) potassium

acetate (CH3COOK) or potassium nitrate (KNO

3) and

tetrabutyl tinatate (Ti(OC4H9)4) or titanium isopropoxide

(Ti(OC3H7)4) were used to prepare a BNKT precursor

solutionThen the sol was heated to get dried gels Finally thedried gels were calcined and annealed to remove the organicingredients and to promote crystallization respectively Inaddition the BNKT thin films and nanofibers were alsofabricated by a sol-gel method and electrospinning techniqueas reported by Chen et al [34] After preparing the sol thethin films and nanofibers were prepared on PtTiSiO

2Si

substrate by spin coating and electrospinning respectivelyThe Li-doped BNKT thin films have been grown by pulsedlaser deposition (PLD) using a krypton fluoride (KrF)excimer laser with a wavelength of 248 nm [35]

222 Crystal Structure of B05(NaK)

05TiO3 Buhrer reported

that the lattice parameters of B05Na05TiO3increased with

BKT concentration addition [12] Pronin et al indicated thatthe (1 minus 119909)Bi

05Na05TiO3-xBi05K05TiO3solid solution was

rhombohedral at 119909 lt 018 pseudocubic at 119909 = 018ndash040and tetragonal at 119909 gt 040 at the room temperature [18] Onthe morphotropic phase boundary at 119909 = 018 the latticeparameters and unit cell volume change by jump [18]However Kreisel et al obtained the structural change in solidsolution (1 minus 119909)BNT-xBKT by using the Raman scatteringResults showed existence of a phase transition at 119909 between04-05 However it also indicated that the phase transition inrange 119909 = 06ndash08 due to existence of nanosize Bi3+TiO

3and

(Na1minus2119909

K2119909)+TiO

3clusters [36] This region is considered as

a morphotropic phase boundary (MPB) where the MPBdescribed the boundary that separates regions of differencesymmetries and can be crossed through a change in compo-sition However the MPB was not reported clearly [37]

223 Some Physical Properties at Morphotropic BoundaryDiagram The Curie temperature of (1 minus 119909)Bi

05Na05TiO3-

xBi05K05TiO3solid solution was found to go through a

minimum at 119909 = 01-02 [17] Sasaki et al studied this systemand obtained a maximum of 119889

31= 42 pCN with 119896

119901= 023

which was observed on the first morphotropic boundary [14]Elkechai et al obtained 119889

33= 96 pCN 119896

119901= 021 and119873

119901=

2800Hzm at 119909 = 016 [38] Yoshii et al investigated thepiezoelectric properties of a solid solution of the binarysystem xBi

05Na05TiO3-(1minus119909)Bi

05K05TiO3[39] Fine piezo-

electric properties in lead-free piezoelectric ceramics wereobtained near MPB composition between the rhombohedraland tetragonal structures and the highest electromechan-ical coupling factor 119896

33 and piezoelectric constant 119889

33

were 056 pCN for Bi05(Na084

K016

)05TiO3and 157 pCN

for Bi05(Na08K02)05TiO3 respectively However the 119879

119889

of Bi05(Na08K02)05TiO3

was low at 174∘C The 119879119889

ofthe MPB composition was low and the 119879

119889near the MPB

composition was sharply decreased It is thought thatBi05(Na07K03)05TiO3is a candidate composition for lead-

free actuator applications owing to its relatively large piezo-electric constant 119889

33of 126 pCN dynamic 119889

33of 214 pmV

and high depolarization temperature 119879119889of 206∘C Recently

Izumi et al reported that a small amount of BKT substitutionsuppressed the remnant polarization from 38 120583Ccm2 at 119909 =0 to about 15120583Ccm2 at119909 = 002 piezoelectric strain constant(11988933) is enhanced by increasing 119909 up to 297 pmV at 119909 = 014

during studying the (1 minus 119909)BNT-xBKT single crystals (0 lt119909 lt 014) [31]

BNT-BKT solid solutions are interesting because of threephenomena (i) existence of two morphotropic boundaries(ii) neighborhood of the antiferroelectric (AFE) phase ofBNT and high-temperature ferroelectric (FE) phase of BNTand (iii) complicated coexistence of several phases within oneperovskite lattice because of the phase-transition diffusion

224 Mechanism Electric-Field-Induced Giant Strain

(1) Electric-Field-Induced Phase Transition Ferroelectric crys-tals are characterized by their asymmetric or polar structuresIn an electric field ions undergo asymmetric displacementand result in a small change in crystal dimension which is

4 Advances in Materials Science and Engineering

proportional to the applied field [40 41] However the effectis generally very small and thus limits its usefulness

In the search for lead-based materials with large electric-field-induced phase transition (EFIS) an alternative andapplicable approach for ceramics was reported by Uchinoet al and Pan et al based on thework of Berlicourt et al [5ndash7]They observed a large strain due to a change of the unit cell in(PbLa)(SnZrTi)O

3ceramic because of a transition from

antiferroelectric to ferroelectric phase which was induced bythe electric field

Zhang et al proposed that the high strain in lead-freeBi05Na05TiO3-BaTiO

3-K05Na05NbO3

system came bothfrom a significant volume change caused by the field-inducedantiferroelectric-ferroelectric phase transition and from thedomain contribution caused by the induced ferroelectricphase [42 43] Jo et al suggested that origin of the large strainin (K05Na05)NbO

3-modified (Bi

05Na05)TiO3-BaTiO

3lead-

free piezoceramics is due to the presence of a nonpolar phasethat brings the system back to its unpoled state once whenthe applied electric field is removed which leads to a largenonpolar strain [44] In addition Lee et al reported that thegiant EFIS was attributed to the transition from nonpolarto ferroelectric phases in BNKT-BiAlO

3small grains with

ferroelectric BNT large grains during external electric fieldexecution [45] Recently Lee et al suggested a model on thebasis of the coexistence of polar nanoregions and a nonpolarmatrix which can reversibly transform into a polar ferro-electric phase under cyclic fields via observation of giantEFIS in Sn doped BNKT [46] Ullah et al suggested that theorigin of the large electric-field-induced giant strain is aninherently large electrostrictive strain combined with anadditional strain introduced during electric-field-inducedphase transition [47] However the origin of phase transitionfrom polar to nonpolar due to doping is unclear because theexplanation based on the distorted tolerance factor resultsfromdifference radius of dopants but the tolerance factor justestimated the phase stability and could not predict the sta-bility of structural typeThe further mechanism understatingneeds to be further investigated

(2) Domain Switching The volume regions of the materialwith the same polarization orientation are referred to asferroelectric domains [48] When the sample is under zerofield and strain-free conditions all the domain states have thesame energy but if an electric field is applied the free energyof the system is lowered by aligning the polarization alongthe electric fieldThus large applied electric fields can perma-nently reorient the polarization between the allowed domainstates which are restricted by crystallography As a resultpolycrystals random orientation can be electrically poled toproduce net piezoelectric coefficients Recently Ren pointedout that the large EFIS in ferroelectric crystals is caused bypoint-defect-mediated reversible domain switching [49] Itis noted that the defect dipoles tend to align along the sponta-neous polarization direction which was suggested by electronparamagnetic resonance experiments [50 51] and theoret-ical modeling [52 53] The domain switched and alignedby the applied electric field The defects symmetry anddefects dipolemoment cannot be rotated in such diffusionless

process resulting in restoring force or reversing internal fieldthat favored reverse domain switching when electric field isremoved However theoretical calculation indicated that theultrahigh electromechanical response in single-crystal piezo-electrics resulted from polarization rotation during polingprocessing [54]

3 Role of Dopants in Bi05(NaK)05TiO3

31 Role of Substitution in A-Site and B-Site inBi05(NaK)

05TiO3 TheBi

05(NaK)

05TiO3is considered as a

typicalABO3perovskitewhere Bi3+ K+ andNa+ ions localize

at A-site and Ti4+ ions localize at B-site In this part thecurrent studies of the effect of dopants on BNKTrsquos propertieshave been presented

311 Rare-Earth Doped BNKT The rare earth elements aremultivalent when they were doped in BNKT which resultedin interesting and complicating phenomena Li et alreported that electromechanical coupling factor (119896

119901) of

Bi05Na044

K006

TiO3was increased from 254 to 278 with

02 wtCeO2dopant and then decreased with higher CeO

2

content [55] Liao et al also obtained enhancement in piezo-electric properties of Bi

05(Na1minus119909minus119910

K119909Li119910)05TiO3via CeO

2

doping [56] The Bi05(Na0725

K0175

Li01)05TiO3ceramics

doped with 01 wt CeO2show good performance with high

piezoelectric constant (11988933= 220 pCN) and high coupling

factor (119896119901= 393) [56] Wang et al reported the effects

of La substitution at Bi-site in (Bi1minusxNa08K02Lax)TiO3 which

were 119896119901maximumof 28with 05wtLa doping and bipolar

maximum strain of 016 with 2wt La doping [57] Yuanet al reported the strain enhanced up to 119896

119901= 35 in La-

doped [Bi05(Na075

K015

Li010

)05]TiO3[58 59] Yang et al

obtained the electromechanical coupling factor 119896119901= 27 by

substitution of 00125wt Nd2O3in 082Bi

05Na05TiO3-

018Bi05K05TiO3ceramics [60] The 03 wt Sm

2O3sub-

stitution in 082Bi05Na05TiO3-018Bi

05K05TiO3ceramics

exhibited the high planar coupling factor (119896119901= 224)which

were reported by Zhang et al [61] This group alsoobtained the enhancement of electromechanical couplingfactor 119896

119901= 2463 with 02 wt Gd

2O3doping in

082Bi05Na05TiO3-018Bi

05K05TiO3ceramics [62] Zhi-Hui

et al reported optimum value of 015 wt Dy2O3added in

Bi05(Na082

K018

)05TiO3for enhancement of electrical prop-

erties [63] Fu et al obtained the effect of Ho2O3and Er

2O3

dopants in 082Bi05Na05TiO3-018Bi

05K05TiO3where the 119896

119901

was 2426 and 2382 for 01 wt Ho2O3and 06wt Er

2O3

dopants respectively [64 65] Following this work Fu et alreported the effects of Eu

2O3on the structure and electrical

properties of 082Bi05Na05TiO3-018Bi

05K05TiO3lead-free

piezoelectric ceramics where the optimumdoping of 02wtEu2O3has displayed the highest planer coupling factor 119896

119901=

251 [66]

312 Transition Metal Doped Bi05(NaK)

05TiO3 Han et al

first reported that the adding CuO in Bi05(NaK)

05TiO3

ceramics resulted in decreasing the sintering temperature[67] Do et al reported that the 119896

119901of Bi05(Na082

K018

)05TiO3

Advances in Materials Science and Engineering 5

decreased when it was added with CuO [68] The 119878max119864maxwas 214 pmV for added 002mol CuO but it increased to427 pmV for added 002mol Nb

2O5[68] Jiang et al

obtained the best piezoelectric properties with 119896119901= 30

for 02 wt Mn2+ doped (Na05K02)05Bi05TiO3[69 70]

In addition the (Na05K02)05Bi05TiO3-05 wt Mn exhib-

ited strong ferroelectricity with remnant polarization 119875119903=

38 120583Ccm2 [69] Mn doping restrained the ferroelectricto antiferroelectric phase transition because of oxygenvacancy [69] Hu et al obtained the optimal electricproperties in 016 wt MnCO

3-added 74Bi

05Na05TiO3-

208Bi05K05TiO3-52BaTiO

3which displayed the piezoelec-

tric strain 11988933= 140 pCN mechanical coupling 119896

119901= 18

and mechanical quality 119876119898= 89 while the depolarization

temperature (119879119889) stays relatively high at 175∘C [71] The effect

of Mn and Co on electrostrains of Bi05Na05TiO3-BaTiO

3-

Bi05K05TiO3has been investigated by Shieh et al [72 73]

It was remarkable that Mn doping with an electrostrain ofabout 01 can bemaintainedwhen theMndoping amount isin between 05 and 15mol which were contrast for thecodoped Bi

05Na05TiO3-BaTiO

3-Bi05K05TiO3 the values of

electrostrain and 11988933

stay relatively constant regardless ofthe Co-doping level [72 73] The 030wt MnO-addedBi0485

Na0425

K006

Ba003

TiO3solid solutions were found to be

with optimal electrical properties of11988933= 109 pCNand 119896

119901=

32 [74] The highest 119896119901values for various dopants element

substitution in BNKThas been shown in Figure 1Thehighest119896

119901of 393 was reported for rare-earth Ce codoped with Li-

modification BNKT ceramics

313 Other Metal-Doped Bi05(NaK)

05TiO3 Do et al repo-

rted that Bi05(Na082

K018

)05TiO3ceramics had the value of

119878max119864max of 566 pmV when 2mol of Ta5+ substitutedon Ti4+ site which were compared to without dopants withvalue of 119878max119864max of 233 pmV [75] Pham et al obtainedthe enhancement 119878max119864max up to 641 pmV due to 3molNb5+ substitution on Ti4+ ions [76] Hussain et al reportedthe piezoelectric coefficient of 641 pmV for Zr4+ 043molconcentration substitution in Ti4+ site [77] In additionHussain et al found that Hf substitution with 3molat Ti-site resulted in enhancement of the electric-field-induced strain up to 475 pmV with corresponding strainof 038 at an applied electric field of 80 kVcm [78] Binhet al reported the EFIS of 278 pmV for 07 wt Y-dopedBi05(Na082

K018

)05TiO3which were higher than without

dopant of EFIS of 228 pmV [79] At this moment thehighest 119878max119864max was 727 pmV by codopant Li and Tain BNKT which was reported by Nguyen et al [80] The[Bi05(Na1minusxminusyKxLi119910)05]TiO3 ceramics show excellent piezo-

electric and ferroelectric properties and the optimum prop-erties were reported as follows piezoelectric constant 119889

33=

231 pCN planar and thickness electromechanical couplingfactors 119896

119901= 410 and 119896

119905= 505 remanent polarization

119875

119903= 402 120583Ccm2 and coercive field 119864

119888= 247 kVmm [81]

Recently Lee et al obtained 119878max119864max of 585 pmV for5mol Sn doped in Bi

05(Na082

K018

)05TiO3[46] Fur-

thermore Nguyen et al reported the enhancement EFISin Bi05(Na082

K018

)05Ti095

Sn005

O3by additives Li where

20

24

28

32

36

40

44

Ceramic compounds

Cou

plin

g fa

ctor

kp

()

[57]BNKT-(Li Ce)

[59]BNKT-(Li La)

[61]BNKT-Nd[58]BNKT-La[56]BNKT-Ce [63]BNKT-Gd

[65]BNKT-Ho

[66]BNKT-Er

[67]BNKT-Eu

[62]BNKT-Sm

Figure 1 The effect of electric coupling factor in case of variousdopants in BNKT

119878max119864max increased up to 646 pmV when 4mol Na wasreplaced with Li [82] Liao et al reported the effect of Kand Ag dopant concentrations in Bi

05Na05TiO3ceramics K-

and Ag-doped ceramics exhibited good performances withpiezoelectric constant 119889

33= 189 pCN electromechanical

coupling factor 119896119901= 350 remnant polarization 119875

119903=

395 120583Ccm2 and coercive field 119864119862= 23 kVmm [83]

Isikawa et al cosubstituted Ag into A-site and Ba into B-sitein BNKT and obtained enhancement in piezoelectric proper-ties [84] Moreover this group also pointed out that the addi-tion of La

2O3MnO to BNKAT-BT specimens displayed a

very large strain dynamic constant 119878max119864max of 415 pmVwhich results from the field-forced phase transition from theparaelectric phase to the ferroelectric phase [84]

314 Nonstoichiometric Effects in Bi05(NaK)

05TiO3 Ni et al

obtained the effects of A-site vacancy on the electricalproperties in lead-free nonstoichiometric ceramicsBi05+119909

(Na082

K018

)05minus3119909

TiO3and Bi

05+119910(Na082

K018

)05TiO3

[85 86] The generation of A-site vacancy leads to a randomdefect field which results in destroying the long-range orderphase induced by point field and makes the domain moveeasier However the effects of B-site vacancy or oxygenvacancy were not well-reported for BNKT system

32 Role of Solid Solution of Secondary 11986010158401198611015840O3Dopants in

Bi05(NaK)

05TiO3 At the MPB of BNK-BKT binary system

an electric-field-induced strain and dynamic piezoelectriccoefficient were 023 and 291 pmV respectively at anapplied electrical field of 80 kVcm which are the consideredvalue for application in electromechanical devices [87]Thesevalues were low as compared with PZT-based materialstherefore it is impossible to apply for real electronicdevices The recent researches tried to enhance the dynamicpiezoelectric coefficient by dopants via solid solution withother 11986010158401198611015840O

3perovskites In fact the solid solution with

small amount (simseveral mole percents) of 11986010158401198611015840O3perovskite

6 Advances in Materials Science and Engineering

to BNKT resulted in strong enhancement the 119878max119864maxvalues Ullah et al obtained large electric-field-induced strainin BiAlO

3-modified Bi

05(NaK)

05TiO3with 119878max119864max of

592 pmV at 3mol BiAlO3 near the tetragonal-pseudo-

cubic phase boundary [87] The 119878max119864max was slightlydecreased to 579 pmV via Bi

05La05AlO3-modified

Bi05(Na078

K022

)05TiO3

[88] Tran et al modifiedBi05(Na082

K018

)05TiO3ceramics with Sr(K

14Nb34

)O3and

got the significant temperature coefficient of 038 pmVK[89] Wang et al fabricated 5mol SrTiO

3-modified

Bi05(Na08K02)TiO3lead-free piezoceramic which had a

large unipolar strain of 036 (119878max119864max = 600 pmV)at a driving field of 60 kVcm at room temperature [90]The Bi(Zn

05Ti05)O3ceramic was found to enhance the

eletromechanical strain with 119878max119864max of 547 pmV and500 pmV for 5Bi(Zn

05Ti05)O3-40(Bi

05K05)TiO3-

55(Bi05Na05)TiO3and 2mol doped respectively [91ndash93]

Hussain et al obtained the 119878max119864max of 434 pmV with3mol K

05Na05NbO3-modified Bi

05(Na078

K022

)05TiO3

ceramic [94] The 82Bi05Na05TiO3-16Bi05K05TiO3-

3KNbO3ceramics had good performances with piezoelectric

constant 11988933= 138 pCN and electromechanical coupling

factor 119896119901= 38 [95] Do et al obtained the EFIS values of

443 pmV in 4mol LiTaO3-modified 78Bi

05Na05TiO3-

18Bi05K05TiO3[96] Ngoc et al reported that maximum

strain of 2mol BaZrO3-modified Bi

05(Na082

K018

)05TiO3

ceramics was two times higher than undoped case [97] Inaddition they pointed out that the modification EFISof BaZrO

3was better than that of BaTiO

3[98] The

electric-field-induced strain was significantly enhancedby the CaZrO

3-induced phase transition and reached

the highest value of 119878max119864max of 617 pmV whenBi05(Na078

K022

)05TiO3was doped with 3mol CaZrO

3

dopant [99] Kang et al obtained 119878max119864max of 333 pmVwith4mol additive Bi

05(Na082

K18)05TiO3 and it was further

increased to 363 pmV for 2mol CuO-added specimen[100] Recently we obtained the enhancement of 119878max119864maxup to 668 pmV due to modify A-site by Li in lead-freeBNKT-modified with CaZrO

3[101] Zaman et al obtained

119878max119864max of 500 pmV via codoped Zr and LiSbO3[102]

The Ba085

Ca015

Ti090

Zr010

O3 BaTiO

3 NaSbO

3 LiNbO

3

BiGaO3and Ba

085Ca015

Ti090

Zr010

O3were also found to

enhance the electromechanical properties when those weresolute in Bi

05(NaK)

05TiO3

[103ndash109] Interestinglythe multiferroics materials such as BiFeO

3 BiMnO

3

and BiCrO3-modified BNKT result in enhancement in

electromechanical properties [110ndash112] However solutionandor composite BNKT with ferromagnetic such asBNKT-CoFe

2O4and BNKT-Fe

3O4were not reported [113]

4 Discussion

The mechanism of giant electric-field-induced strain couldbe considered as (i) electric-field-induced phase transitionandor (ii) point-defect-mediated reversible domain switch-ing At room temperature the BNT system is in rhom-bohedral structure and BKT is in tetragonal structure

100

200

300

400

500

600

700

800

900

Ceramic compounds

[90]BNKT-Sr(K14Nb34)O3[99]BNKT-BaTiO3[101]BNKT-(Li CaZrO3)

[100]BNKT-CaZrO3[92]BNKT- Bi05Zn05Ti05O3[88]BNKT- BiAlO3

[102]BNKT-(Zr LiSbO3)[97]BNKT- LiTaO3

[95]BNKT- K05Na05NbO3

[88]BNKT- BiAlO3

BNKT-(LiTa)[81]

BNKT-Nb[77]BNKT-(Li Sn)[83]

BNKT-Zr[78]BNKT-Sn[47]

BNKT-Ta [76]

BNKT-Hf[79]

BNKT-La[58]

BNKT-Y[80]

Pure BNKT[80]

Sm

axE

max

(pm

V)

Figure 2 The effect of dopants and solid solution perovskite ABO3

to BNKT

Their solid solutions have rhombohedral-tetragonal mor-photropic phase boundary near 016ndash020 of BKT amount[14] The effects of elements dopants or codopants at A-or B-site of BNKT were found to be effective the piezo-electric properties by two mechanisms based on the dif-ference radii point of view Firstly the dopants distortedthe tolerance factor due to the difference the radii ofdopant in comparing with Na+ K+ Bi3+ or Ti4+ Thedistortion results in phase transition from tetragonal topseudocubic or tetragonal development from pseudocubicwhich was strongly related to electric-field-induced phasetransition mechanism Secondly the dopants created theoxygen vacancy due to difference the valence state when theradii were performed which were related to point-defect-mediated reversible domain switchingmechanismThe effectof dopants and solid solution11986010158401198611015840O

3to BNKThas been sum-

marized in Figure 2 The ceramics compositions displayedthe highest 119878max119864max values which were shown in detailsin Table 1 The highest 119878max119864max of each year was plottedat Figure 3 The result indicated that electric-field-inducedgiant strain of BNTK was comparable with that of PZT (suchas commercial PZT (PIC151)) and therefore these modifiedBNKT can become a promising piezoelectric ceramics toreplace the lead-based piezoelectric materials Actually the119878max119864max values of BNKT ceramics were increased whenthe element at B-site andor A-site of BNKT ceramics weremodified However the 119878max119864max values quickly increasedwith several percent of dopants and then decreased whenfurther dopants were added These phenomena were alsoobtained while 11986010158401198611015840O

3modified BNKT as solid solution

because 1198601015840 and 1198611015840 diffused as codopant at both A- and B-sites of BNKT with similar concentrationThe observation ofenhancement of dynamic piezoelectric coefficient was relatedto (i) distorted structure (ii) phase transition from polar tononpolar phase and (iii) polar phase growth inner nonpolarphase The recent explanation of phase transition due todopant based on distorted tolerance factor because radiusbetween host and dopants differed and oxygen vacancy

Advances in Materials Science and Engineering 7

Table 1 The detailed composition of BNKT-modified ceramics with highest electric-field-induced strain

Ceramic compounds 119878max119864max (pmV) References086Bi05Na05TiO3 minus 014Bi05K05TiO3 297 Izumi et al (2008) [31]La2O3MnO-added (1 minus y)(Bi05Na049minus119909K119909Ag001)TiO3 minus yBaTiO3 415 Isikawa et al (2009) [84]Bi05(Na082K018)05Ti097Nb003O3 641 Pham et al (2010) [76]Bi05(Na078K022)05TiO3 296 Ullah et al (2010) [87]097Bi05(Na078K022)05TiO3 minus 003BiAlO3 592 Ullah et al (2010) [87]095Bi05(Na08K02)05TiO3 minus 005BiAlO3 391 Ullah et al (2010) [115]099(K05Na05)095Li005NbO3 minus 001Bi05(K015Na085)05TiO3 330 Chen et al (2010) [33]Bi05(Na082K018)05TiO3 minus 07 wt Y2O3 278 Binh et al (2010) [79]Bi05(Na078K022)05Ti097Zr003O3 614 Hussain et al (2010) [77]Bi05(Na078K022)05(Ti097Hf003)O3 475 Hussain et al (2010) [78]Bi05(Na082K018)05Ti098Ta002O3 566 Do et al (2011) [75]Bi12Na12TiO3 minus Bi12K12TiO3 minus 002Bi(Zn12Ti12)O3 500 Dittmer et al (2011) [93]Bi05(Na075K025)05TiO3 minus BiAlO3 sim900 Lee et al (2011) [45]009Bi05(Na078K022)05TiO3 minus 001Bi05La05AlO3 579 Ullah et al (2012) [88]0975Bi05(Na078K022)05TiO3 minus 0025BiAlO3 533 Ullah et al (2012) [116]097Bi05(Na078K022)05TiO3 minus 003K05Na05NbO3 434 Hussain et al (2012) [94]Bi05Na0385Li0025K009Ti0975Ta0025O3 727 Nguyen et al (2012) [80]Bi05(Na082K018)05Ti095Sn005O3 585 Lee et al (2012) [46]094Bi12(Na08K02)12TiO3 minus 006Bi(Mg12Sn12)O3 633 Pham et al (2012) [117]Bi05(Na074Li08K018)05Ti095Sn005O3 646 Nguyen et al (2012) [82]Bi12(Na082K018)12(Ti097Nb003)O3 641 Pham et al (2012) [118]097Bi05(Na078K022)05TiO3 minus 003CaZrO3 617 Hong et al (2013) [99]095Bi05(Na08K02)05TiO3 minus 005SrTiO3 600 Wang et al (2012) [90]099Bi05(Na082K018)05Ti0980Zr0020O3 minus 001LiSbO3 500 Zaman et al (2012) [102]097Bi05(Na082K018)05 minus 003Bi(Zn05Ti05)O3 385 Ullah et al (2012) [119]5Bi(Zn05Ti05)O3 minus 40(Bi05K05)TiO3 minus 55(Bi05Na05)TiO3 547 Patterson et al (2012) [91]Bi05(Na082K018)05TiO3 minus 002CuO 214 Do et al (2012) [68]Bi05(Na082K018)05TiO3 minus 002CuO minus 002Nb2O5 427 Do et al (2012) [68]098Bi05(Na078K022)05TiO3 minus 002LaFeO3 sim500 Han et al (2012) [120]Bi05(Na082K018)05Ti095Sn005O3 sim600 Han et al (2013) [121]098Bi05(Na082K018)05TiO3 minus 002BaZrO3 437 Lee et al (2013) [122]097Bi05(Na082K018)05TiO3 minus 003CaZrO3 603 Lee et al (2013) [122]098Bi05(Na082K018)05TiO3 minus 002Ba08Ca02ZrO3 549 Lee et al (2013) [122]094Bi05(Na075K025)05TiO3 minus 006BiAlO3 930 Lee et al (2013) [123]0975Bi05(Na080K020)05TiO3 minus 0025LiNbO3 475 Hao et al (2013) [124]096Bi05(Na078K022)05TiO3 minus 004Bi(Mg05Ti05)O3 636 Ullah et al (2013) [125]40Bi05K05TiO3 minus 59Bi05Na05TiO3 minus 1Bi(Mg12Ti12)O3 422 Kumar and Cann (2013) [126][Bi12(Na082K018)12]097La003TiO3 715 Dinh et al (2013) [127]095Bi05(Na080K020)05TiO3 minus 005Ba(Ti090Sn010)O3 649 Jaita et al (2014) [128]097Bi05(Na080K020)05TiO3 minus 003SrZrO3 617 Hussain et al (2014) [129]099Bi05Na04K01Ti098Nb002O3 minus 001(Ba07Sr03)TiO3 634 Ullah et al (2014) [130]Bi05(Na080K020)05TiO3 minus (K119910Na1minus119910)NbO3 413ndash575 Hao et al (2014) [131]099Bi05(Na082K018)05Ti0987Ta0013O3 minus 001LiSbO3 650 Zaman et al (2014) [132]099[(Bi05Na04K01)0980La0020TiO3] minus 002[Ba07Sr03TiO3] 650 Ullah et al (2014) [133]

8 Advances in Materials Science and Engineering

2008 2009 2010 2011 2012 2013 20140

200

400

600

800

1000

1200

PZT (PIC151)

Year

Lead-free BNKT-based

PZT-based

Sm

axE

max

(pm

V)

Figure 3 The highest values 119878max119864max observation in years (from2008 to 2014) in lead-free BNKT-based ceramics

caused difference of valence states However the tolerancefactor has only estimated the range for stability of perovskitebut it was not showed for crystal symmetries Thus theseexplanations were unreliable The mechanism of electricalfield-induced strain was not well understood which stillrequired to further investigate Consequently the roles of A-and B-site on the electrical field-induced strain were uncleartill now However we expected that the 119878max119864max valueswere further increased by using multidopant with optimalconcentration of dopants for each position A- andor B-sitein BNKT ceramics

In case of rare-earth doped BNKT the enhancementof piezoelectric properties mostly resulted from the point-defect-mediated because rare-earth elements have variousvalences which was displayed by various radii of ion depend-ing on the valence stable state substitution For examplethe mechanism for the effect of CeO

2doped BNKT is

complicated because Ce ion possibly exists in the BNKTstructure in two valence states Ce4+ with radius of 092 Aand Ce3+ with radius of 103 A In view of the radius Ce3+is possible to fill in Bi3+ vacancies and Ce4+ can enter into theBi-site In this case Ce4+ functions as a donor dopant leadingto some vacancies of A-site in the lattice which facilitatesthe movement of domain wall to improve the piezoelectricproperties Another one is that Ce3+ and Ce4+ ions occupythe A-site of Na+ (119903Na+ = 097A) of BNKT compositionwhich are the same as the Ce4+ entering into Bi3+ [55 56] Inthese cases existing vacancies bring defect in lattice whichresults in an increasing in the dielectric loss and grain sizeand have some effects of piezoelectric properties In additionthe experiments demonstrated that rare-earth substitution inNa+ first leads to creation of oxygen vacancies and latticecontraction but when the dopants concentration is over acritical value then it begins to substitute for Bi3+ thus it leadsto lattice expansion [57ndash59]

In case of transitionmetal dopant inBNKT themost find-ings confirmed that dopants resulted in the lower sintering

temperature It is valuable inmarket due to reduction the costof electronic devices

In case of other metal dopant in BNKT there were mixedpoint-defect-mediated and electric-field-induced phase tran-sition mechanisms which depend on the valence and site-prefer to substitution For example the Ta5+ which replacedTi4+ at B-site leads to creation of A-site vacancies whichsignificantly contributed to the destabilization of ferroelectricphase in the Bi perovskite [75 80 114] These factors weresimilar to a case of nonstochiometric at A- and B-site ofBNKT where the vacancies were occurred

In case of solid solution between BNKT with other119860

1015840119861

1015840O3perovskites it is quite interesting because the ideal

was simple like tailor Some of 11986010158401198611015840O3perovskites were

unstable or hardly fabricated such as BiAlO3 but the theory

predicted that they should have goodpiezoelectric propertiesHowever interestingly they were stabled in solid solution inBNKT matrix and strong enhancement piezoelectric prop-erties Similarly the Bi

05Zn05TiO3(BZT) was a good ferro-

electric material and it was tailed their properties in BNKT-BZT as solid solution In addition BNKT-modified withBi05Li05TiO3has displayed the excellent piezoelectric con-

stant 11988933 Recently the multiferroic materials have rapidly

developed because they exhibited the electric field controlledferromagnetism and magnetic field controlled the electricpolarization However multiferroic properties of BNKT-based materials have not been reported Therefore we pro-posed that the solid solution andor composite of BNKTwith insulator ferromagnetism materials such as BiFeO

3and

CoFeO4could be a good display of multiferroics properties

which will promise candidate to develop new class of multi-ferroics materials

5 Conclusion

The current status of lead-free piezoelectric materials hasbeen introduced The lead-free BNKT-based ceramics werereviewed based on the fabrication method effect of dopantsand solid-solution with other 11986010158401198611015840O

3perovskite Most find-

ings confirmed that giant strain obtained in lead-free BNKT-based ceramics is due to phase transition from polar tononpolar phase and the highest 119878max119864max values werefound at theMPBHowever the origin of phase transitionwasstill debated The 119878max119864max values of lead-free BNKT-basedceramics are comparable with soft lead-based PZT-basedceramics which could be promising materials to readilyreplace the lead-based PZT-based materials in devices Inaddition the effects of secondary phase 11986010158401198611015840O

3as solid-

solution tailed the properties of BNKT matrix Our workreviewed current developments in lead-free BNKT-basedmaterials which were expected to understand current statusof researching about BNKT-based ceramics therefore to beguidance for designing new class materials and applications

Conflict of Interests

The authors declare that there is no conflict of interestsregarding the publication of this paper

Advances in Materials Science and Engineering 9

Acknowledgment

This work was financially supported by the Ministry of Edu-cation andTraining Vietnam under Project no B 20130155

References

[1] P K Panda ldquoReview environmental friendly lead-free piezo-electric materialsrdquo Journal of Materials Science vol 44 no 19pp 5049ndash5062 2009

[2] C A Randall R E Newnham and L E Cross History of theFirst Ferroelectric Oxide BaTiO

3 Materials Research Institute

The Pennsylvania State University University Park Pa USA2004

[3] E Ringgaard and T Wurlitzer ldquoLead-free piezoceramics basedon alkali niobatesrdquo Journal of the European Ceramic Society vol25 no 12 pp 2701ndash2706 2005

[4] T Takenaka and H Nagata ldquoCurrent status and prospects oflead-free piezoelectric ceramicsrdquo Journal of the EuropeanCeramic Society vol 25 no 12 pp 2693ndash2700 2005

[5] Ministry of Information Industry of the Peoplersquos Republic ofChina Industrial Standard of the peoplersquos Republich of China2006

[6] Japan Electronics and InformationTechnology Industries Asso-ciation Standard of Japan Electronics and Information Tech-nology Industries Association 1998

[7] TheEnvironment and Labor Committee of the National Assemblyof Korea 2007

[8] Y Li K S Moon and C P Wong ldquoElectronics without leadrdquoScience vol 308 no 5727 pp 1419ndash1420 2005

[9] E Cross ldquoLead-free at lastrdquoNature vol 432 no 7013 pp 24ndash252004

[10] G A Smolensky V A Isupov A I Agranovskaya and NN Krainic ldquoNew ferroelectrics with complex compounds IVrdquoFizika Tverdogo Tela vol 2 pp 2982ndash2985 1960

[11] G A Smolenskii and A I Agranovskaya ldquoDielectric polariza-tion of a series of compounds of complex compositionrdquo FizikaTverdogo Tela vol 1 pp 1562ndash1572 1959

[12] C F Buhrer ldquoSome properties of bismuth perovskitesrdquo TheJournal of Chemical Physics vol 36 pp 798ndash803 1962

[13] I P Pronin N N Parfenova N V Zaitseva V A Isupov andG A Smolenskii ldquoPhase transitions in solid solutions of sodi-umbismuth and potassiumbismuth titanatesrdquo Fizika TverdogoTela vol 24 pp 1060ndash1062 1982

[14] A Sasaki T Chiba Y Mamiya and E Otsuki ldquoDielectric andpiezoelectric properties of (Bi

05Na05)TiO3ndash(Bi05K05)TiO3sys-

temsrdquo Japanese Journal of Applied Physics vol 38 no 9 p 55641999

[15] G O Jones and P A Thomas ldquoInvestigation of the structureand phase transitions in the novel A-site substituted distortedperovskite compoundNa

05Bi05TiO3rdquoActa Crystallographica B

vol 58 pp 168ndash178 2002[16] PWoodward ldquoOctahedral tilting in perovskites I Geometrical

considerationsrdquo Acta Crystallographica B vol 53 pp 32ndash431997

[17] V A Isupov ldquoFerroelectric Na05Bi05TiO3and K

05Bi05TiO3

perovskites and their solid solutionsrdquo Ferroelectrics vol 315 no1 pp 123ndash147 2005

[18] I P Pronin P P Syrnikov V A Isupov V M Egorov N VZaitseva and A F Ioffe ldquoPeculiarities of phase transitions in

sodium-bismuth titanaterdquo Ferroelectrics vol 25 pp 395ndash3971980

[19] J A Zvirgzds P P Kapostis and J V Zvirgzde ldquoX-ray study ofphase transitions in efrroelectric Na

05Bi05TiO3rdquo Ferroelectrics

vol 40 no 1 pp 75ndash77 1982[20] J Suchanicz K Roleder A Kania and J Handerek ldquoElec-

trostrictive strain and pyroeffect in the region of phase coexis-tence in Na

05Bi05TiO3rdquo Ferroelectrics vol 77 pp 107ndash110 1988

[21] Y Chiang G W Farrey and A N Soukhojak ldquoLead-free high-strain single-crystal piezoelectrics in the alkaline-bismuth-titanate perovskite familyrdquo Applied Physics Letters vol 73 no25 pp 3683ndash3685 1998

[22] S M Emelyanov I P Raevskii V G Smotrakov and F ISavenko ldquoPiezoelectric and pyroelectric properties of sodium-bismuth titanate crystalsrdquo Fizika Tverdogo Tela vol 26 pp1897ndash1899 1984

[23] M L Zhao C LWangW L Zhong J FWang andHCChenldquoElectrical properties of (Bi

05Na05)TiO3ceramic prepared by

sol-gel methodrdquo Acta Physica Sinica vol 52 no 1 pp 229ndash2322003

[24] M L Zhao C L Wang W L Zhong J F Wang and Z F LildquoGrain-size effect on the dielectric properties of Bi

05Na05TiO3rdquo

Chinese Physics Letters vol 20 article 290 2003[25] B Jaffe W R Cook and H Jaffe Piezoelectric Ceramics

Academic Press London UK 1971[26] J Suchanicz ldquoTime evolution of the phase transformation in

Na05Bi05TiO3rdquo Ferrolectrics vol 200 no 1 pp 319ndash325 1997

[27] O N Razumovskaya T B Kuleshova and L M RudkovskayaldquoReactions of formation of BiF

119890O3 K05

Bi05TiO3 and

Na05Bi05TiO3rdquo Neorganicheskie Materialy [Inorganic Mat-

erials] vol 19 pp 113ndash115 1983[28] V V Ivanova A G Kapishev Y N Venevtsev and G S

Zhdanov ldquoX-ray determination of the symmetry of elemen-tary cells of the ferroelectric materials (K05Bi05)TiO3 and(Na05Bi05)TiO3 and of high-temperature phase transitionsin (K05Bi05)TiO3rdquo Izvestiya Akademii Nauk SSSR SeriyaFizicheskaya vol 26 pp 354ndash356 1962

[29] Y Hiruma R Aoyagi H Nagata and T Takenaka ldquoSynthesisand properties of 1-Methyl-4-2-[4-(dimethylamino)phenyl]-ethenylpyridinium p-toluenesulfonate derivatives with isomor-phous crystal structurerdquo Japanese Journal of Applied Physics vol44 p 5231 2005

[30] M Zhu L Hou Y Hou J Liu HWang andH Yan ldquoLead-free(K05Bi05)TiO3powders and ceramics prepared by a solndashgel

methodrdquo Materials Chemistry and Physics vol 99 no 2-3 pp329ndash332 2006

[31] M Izumi K Yamamoto M Suzuki Y Noguchi andM Miyayama ldquoLarge electric-field-induced strain inBi05Na05TiO3-Bi05K05TiO3

solid solution single crystalsrdquoApplied Physics Letters vol 93 Article ID 242903 2008

[32] T Tani ldquoCrystalline-oriented piezoelectric bulk ceramics witha perovskite-type structurerdquo Journal of the Korean PhysicalSociety vol 32 no 3 pp S1217ndashS1220 1998

[33] X Chen Y Liao H Wang et al ldquoPhase structure and electricproperties of Bi

05(Na0825

K0175

)05TiO3ceramics prepared by a

sol-gel methodrdquo Journal of Alloys and Compounds vol 493 no1-2 pp 368ndash371 2010

[34] Y Q Chen X J Zheng and W Li ldquoSize effect of mechanicalbehavior for lead-free (Na

082K018

)05Bi05TiO3nanofibers by

nanoindentationrdquoMaterials Science and Engineering A vol 527pp 5462ndash5466 2010

10 Advances in Materials Science and Engineering

[35] D YWang DM Lin K SWong KW Kwok J Y Dai and HL W Chan ldquoPiezoresponse and ferroelectric properties oflead-free [Bi

05(Na07K02Li01)05]TiO3thin films by pulsed laser

depositionrdquo Applied Physics Letters vol 92 no 22 Article ID222909 2008

[36] J Kreisel A M Glazer G Jones P A Thomas L Abello andG Lucazeau ldquoAn x-ray diffraction and Raman spectroscopyinvestigation of A-site substituted perovskite compounds the(Na1minus119909

K119909)05Bi05TiO3(0le xle1) solid solutionrdquo Journal of

Physics Condensed Matter vol 12 p 3267 2000[37] H Xie L Jin D Shen X Wang and G Shen ldquoMorphotropic

phase boundary segregation effect and crystal growth in theNBT-KBT systemrdquo Journal of Crystal Growth vol 311 no 14pp 3626ndash3630 2009

[38] O Elkechai M Manier and I P Mercurio ldquoNa05Bi05TiO3ndash

K05Bi05TiO3(NBT-KBT) system a structural and electrical

studyrdquo Physica Status Solidi vol 157 no 2 pp 499ndash506 1996[39] K Yoshii Y Hiruma H Nagata and T Takenaka ldquoElectrical

properties and depolarization temperature of (Bi12Na12)TiO3-

(Bi12K12)TiO3lead-free piezoelectric ceramicsrdquo Japanese Jour-

nal of Applied Physics vol 45 part 1 no 5B pp 4493ndash44972006

[40] M E Lines and A M Glass Principles and Applications forFerroelectrics and Related Materials Oxford University PressOxford UK 1979

[41] K Uchino Piezoelectric Actuators and Ultrasonic MotorsKluwer Academic Publishers Boston Mass USA 1996

[42] S T Zhang A B Kounga E Aulbach et al ldquoLead-free piezoce-ramics with giant strain in the system Bi

05Na05TiO3ndashBaTiO

3ndash

K05Na05NbO3 II Temperature dependent propertiesrdquo Journal

of Applied Physics vol 103 no 3 Article ID 034108 2008[43] S T Zhang A B Kounga E Aulbach H Ehrenberg and J

Rodel ldquoGiant strain in lead-free piezoceramics Bi05Na05TiO3ndash

BaTiO3ndashK05Na05NbO3systemrdquo Applied Physics Letters vol 91

Article ID 112906 2007[44] W Jo T Granzow E Aulbach J Rodel and D Damjanovic

ldquoOrigin of the large strain response in (K05Na05)NbO

3-

modified (Bi05Na05)TiO3ndashBaTiO

3lead-free piezoceramicsrdquo

Journal of Applied Physics vol 105 no 9 Article ID 0941022009

[45] D S Lee D H Lim M S Kim K H Kim and S J JeongldquoElectric field-induced deformation behavior in mixedBi05Na05TiO3and Bi

05(Na075

K025

)05TiO3-BiAlO

3rdquo Applied

Physics Letters vol 99 Article ID 062906 2011[46] J S Lee K N Pham H S Han H B Lee and V D N Tran

ldquoStrain enhancement of lead-free Bi12(Na082

K018

)12TiO3

ceramics by Sn dopingrdquo Journal of the Korean Physical Societyvol 60 no 2 pp 212ndash215 2012

[47] A Ullah CW Ahn A Hussain S Y Lee and IW Kim ldquoPhasetransition electrical properties and temperature-insensitivelarge strain in BiAlO

3-modified Bi

05(Na075

K025

)05TiO3lead-

free piezoelectric ceramicsrdquo Journal of the American CeramicSociety vol 94 no 11 pp 3915ndash3921 2011

[48] L J Rigoberto G Federico and V C Maria-Elena ldquoLead-free ferroelectric ceramics with perovskite structurerdquo inFerroelectrics-Material Aspects M Lattart Ed InTech 2011

[49] X Ren ldquoLarge electric-field-induced strain in ferroelectriccrystals by point-defect-mediated reversible domain switchingrdquoNature Materials vol 3 pp 91ndash94 2004

[50] W LWarren G E Pike K Vanheusden D Dimos B A Tuttleand J Robertson ldquoDefect-dipole alignment and tetragonal

strain in ferroelectricsrdquo Journal of Applied Physics vol 79 no12 pp 9250ndash9257 1996

[51] W L Warren D Dimos G E Pike K Vanheusden and RRamesh ldquoAlignment of defect dipoles in polycrystalline ferro-electricsrdquo Applied Physics Letters vol 67 p 1689 1995

[52] R Lohkamper H Neumann and G Arlt ldquoInternal biasin acceptor-doped BaTiO

3ceramics numerical evaluation of

increase and decreaserdquo Journal of Applied Physics vol 68 p4220 1990

[53] U Robels and G Arlt ldquoDomain wall clamping in ferroelectricsby orientation of defectsrdquo Journal of Applied Physics vol 73 no7 pp 3454ndash3460 1993

[54] H Fu and R E Cohen ldquoPolarization rotation mechanism forultrahigh electromechanical response in single-crystal piezo-electricsrdquo Nature vol 403 no 6767 pp 281ndash283 2000

[55] Y Li W Chen Q Xu J Zhou Y Wang and H SunldquoPiezoelectric and dielectric properties of CeO

2-doped

Bi05Na044

K006

TiO3

lead-free ceramicsrdquo Ceramics Inter-national vol 33 no 1 pp 95ndash99 2007

[56] Y Liao D Xiao D Lin et al ldquoThe effects of CeO2-

doping on piezoelectric and dielectric properties ofBi05(Na1minus119909minus119910

K119909Li119910)05TiO3piezoelectric ceramicsrdquo Materials

Science and Engineering B vol 133 no 1ndash3 pp 172ndash176 2006[57] B Wang L Luo F Ni P Du W Li and H Chen ldquoPiezoelectric

and ferroelectric properties of (Bi1minus119909

Na08K02Lax)05TiO3lead-

free ceramicsrdquo Journal of Alloys and Compounds vol 526 pp79ndash84 2012

[58] Y Yuan S Zhang and X Zhou ldquoEffects of La occupa-tion site on the dielectric and piezoelectric properties of[Bi05(Na075

K015

L119894010

)05]TiO3ceramicsrdquo Journal of Materials

Science Materials in Electronics vol 20 no 11 pp 1090ndash10942009

[59] Y Yuan S R Zhang and X H Zhou ldquoPhasetransitions and electrical properties in La3+-substitutedBi05(Na075

K015

Li010

)05TiO3ceramicsrdquo Journal of Materials

Science Letters vol 41 pp 565ndash567 2006[60] Z Yang Y Hou B Liu and L Wei ldquoStructure and

electrical properties of Nd2O3-doped 082Bi

05Na05TiO3ndash

018Bi05K05TiO3ceramicsrdquo Ceramics International vol 35 pp

1423ndash1427 2009[61] Y Zhang R Chu Z Xu et al ldquoPiezoelectric and dielectric prop-

erties of Sm2O3-doped

082Bi05Na05TiO3-0 18Bi

05K05TiO3

ceramicsrdquo Journal of Alloys and Compounds vol 502 no 2 pp341ndash345 2010

[62] P Fu Z Xu R Chu W Li WWang and Y Liu ldquoGd2O3doped

082Bi05Na05TiO3ndash018Bi

05K05TiO3

lead-free piezoelectricceramicsrdquoMaterials amp Design vol 35 pp 267ndash280 2012

[63] C Zhi-Hui D Jian-Ning M Lin Y Ning-Yi and Z Wei-WeildquoPiezoelectric and dielectric properties of Dy

2O3-Doped Bi

05

(Na082

K018

)05TiO3lead-free ceramicsrdquo Ferroelectrics vol 425

no 1 pp 63ndash71 2011[64] P Fu Z Xu R Chu XWuW Li andH Zhang ldquoStructure and

electrical properties of the Ho2O3doped 082Bi

05Na05TiO3-

018Bi05K05TiO3lead-free piezoelectric ceramicsrdquo Journal of

Materials Science Materials in Electronics vol 23 no 12 pp2167ndash2172 2012

[65] P Fu Z Xu H Zhang R Chu W Li and M Zhao ldquoStructureand electrical properties of Er

2O3doped 082Bi

05Na05TiO3ndash

018Bi05K05TiO3lead-free piezoelectric ceramicsrdquoMaterials amp

Design vol 40 pp 373ndash377 2012

Advances in Materials Science and Engineering 11

[66] P Fu Z Xu R Chu W Li Q Xie and G Zhang ldquoEffectsof Eu

2O3

on the structure and electrical properties of082Bi

05Na05TiO3-018Bi

05K05TiO3

lead-free piezoelectricceramicsrdquo Current Applied Physics vol 11 pp 822ndash826 2011

[67] H Han N Do K Pham et al ldquoSintering behaviour andpiezoelectric properties of CuO-added lead-free Bi(NaK)TiO

3

ceramicsrdquo Ferroelectrics vol 421 no 1 pp 88ndash91 2011[68] N B Do H D Jang I Hong et al ldquoLow temperature sintering

of lead-free Bi05(Na082

K018

)05TiO3piezoelectric ceramics by

co-doping with CuO and Nb2O5rdquo Ceramics International vol

38S pp S359ndashS362 2012[69] X P Jiang L Z Li M Zeng and H L W Chan ldquoDielec-

tric properties of Mn-doped (Na08K02)05Bi05TiO3ceramicsrdquo

Materials Letters vol 60 no 15 pp 1786ndash1790 2006[70] J Xiangping L Longzhu J Fulan Z Yanyan and L Lihua

ldquoEffects of Mn-doping on the piezoelectric and ferroelectricproperties of (Na

08K02)05Bi05TiO3ceramicsrdquo Key Engineering

Materials vol 368-372 pp 69ndash71 2008[71] H Hu M Zhu Y Hou and H Yan ldquoDielectric piezoelectric

and ferroelectric properties of MnCO3-added 74(Bi

12Na12)

TiO3-208(Bi

12K12)TiO3-52BaTiO

3lead-free piezoelectric

ceramicsrdquo IEEE Transactions on Ultrasonics Ferroelectrics andFrequency Control vol 56 pp 897ndash905 2009

[72] J Shieh Y C Lin and C S Chen ldquoIntricate straining ofmanganese-doped (Bi

05Na05)TiO3-BaTiO

3-(Bi05K05)TiO3

lead-free ferroelectric ceramicsrdquo Journal of Physics D AppliedPhysics vol 43 no 2 Article ID 025404 2010

[73] J Shieh Y C Lin and S C Chen ldquoInfluence of phase com-position on electrostrains of doped (Bi

05Na05)TiO3ndashBaTiO

3ndash

(Bi05K05)TiO3lead-free ferroelectric ceramicsrdquo Smart Materi-

als and Structures vol 19 no 9 Article ID 094007 2010[74] M Zhu H Hu N Lei Y Hou and H YanInt ldquoMnO modifi-

cation on microstructure and electrical properties of lead-freeBi0485

Na0425

K006

Ba003

TiO3

solid solution around mor-photropic phase boundaryrdquo International Journal of AppliedCeramic Technology vol 7 pp E107ndashE113 2010

[75] N BDoH B Lee CHYoon J KKang and J S Lee ldquoEffect ofTa-substitution on the ferroelectric and piezoelectric propertiesof Bi05(Na082

K018

)05TiO3ceramicsrdquoTransactions on Electrical

and Electronic Materials vol 12 no 2 pp 64ndash67 2011[76] K N Pham A Hussain CW Ahn I W Kim S J Jeong and J

S Lee ldquoGiant strain in Nb-doped Bi05(Na082

K018

)05TiO3lead-

free electromechanical ceramicsrdquoMaterials Letters vol 64 no20 pp 2219ndash2222 2010

[77] A Hussain C W Ahn J S Lee A Ullah and I W KimldquoLarge electric-field-induced strain in Zr-modified lead-freeBi05(Na078

K022

)05TiO3piezoelectric ceramicsrdquo Sensors and

Actuators A vol 158 no 1 pp 84ndash89 2010[78] AHussain CWAhn AUllah J S Lee and IWKim ldquoEffects

of hafnium substitution on dielectric and electromechanicalproperties of lead-free Bi

05(Na078

K022

)05(Ti1minus119909

Hfx)O3Ceram-

icsrdquo Japanese Journal of Applied Physics vol 49 Article ID041504 2010

[79] D N Binh A Hussain H Lee et al ldquoEnhanced electric-field-induced strain at the ferroelectric-electrostrcitive phaseboundary of yttrium-doped Bi

05(Na082

K018

)05TiO3lead-free

piezoelectric ceramicsrdquo Journal of the Korean Physical Societyvol 57 no 41 pp 892ndash896 2010

[80] V Nguyen H Han K Kim D Dang K Ahn and J Lee ldquoStrainenhancement in Bi

12(Na082

K018

)12TiO3lead-free electrome-

chanical ceramics by co-dopingwith Li andTardquo Journal of Alloysand Compounds vol 511 no 1 pp 237ndash241 2012

[81] D Lin D Xiao J Zhu and P Yu ldquoPiezoelectric and ferroelectricproperties of lead-free piezoelectric ceramicsrdquo Applied PhysicsLetters vol 88 no 6 Article ID 062901 2006

[82] V Nguyen C Hong H Lee Y M Kong J Lee and K AhnldquoEnhancement in the microstructure and the strain propertiesof Bi12(NaK)

12TiO3-based lead-free ceramics by Li substitu-

tionrdquo Journal of the Korean Physical Society vol 61 no 6 pp895ndash898 2012

[83] Y Liao D Xiao and D Lin ldquoApplication of quantum cascadelasers to trace gas analysisrdquo Applied Physics B vol 90 pp 165ndash176 2008

[84] Y Isikawa Y Akiyama and T Hayashi ldquoPiezoelectric anddielectric properties of (BiNaKAg)TiO

3-BaTiO

3lead-free

piezoelectric ceramicsrdquo Japanese Journal of Applied Physics vol48 Article ID 09KD03 2009

[85] F Ni L Luo X Pan W Li and J Zhu ldquoEffects of A-sitevacancy on the electrical properties in lead-free non-stoichiometric ceramics Bi

05+119909(Na082

K018

)05minus3119909

TiO3

andBi05+119910

(Na082

K018

)05TiO3rdquo Journal of Alloys and Compounds

vol 541 pp 150ndash156 2012[86] F Ni L Luo W Lim and H Chen ldquoA-site vacancy-induced

giant strain and the electrical properties in non-stoichiometricceramics Bi

05+119909(Na1minus119910

K119910)05minus3119909

TiO3rdquo Journal of Physics D

Applied Physics vol 45 no 41 Article ID 415103 2012[87] A Ullah C W Ahn A Hussain S Y Lee H J Lee and I W

Kim ldquoPhase transitions and large electric field-induced strainin BiAlO

3-modified Bi

05(Na K)

05TiO3lead-free piezoelectric

ceramicsrdquo Current Applied Physics vol 10 pp 1174ndash1181 2010[88] A Ullah C W Ahn S Y Lee J S Kim and I W Kim ldquoStruc-

ture ferroelectric properties and electric field-induced largestrain in lead-free Bi

05(NaK)

05TiO3-(Bi05La05)AlO3piezo-

electric ceramicsrdquo Ceramics International vol 38 no 1 ppS363ndashS368 2012

[89] V DN Tran H S Han CH Yoon J S LeeW Jo and J RodelldquoLead-free electrostrictive bismuth perovskite ceramics withthermally stable field-induced strainsrdquoMaterials Letters vol 65pp 2607ndash2609 2011

[90] K Wang A Hussain W Jo and J Rodel ldquoTemperature-dependent properties of (Bi

12Na12)TiO3-(Bi12K12)TiO3-

SrTiO3

lead-free piezoceramicsrdquo Journal of the AmericanCeramic Society vol 95 no 7 pp 2241ndash2247 2012

[91] E A Patterson D P Cann J Pokomy and I M Reaney ldquoElec-tromechanical strain in Bi(Zn

12Ti12)O3-(Bi12Na12)TiO3-

(Bi12K12)TiO3solid solutionsrdquo Journal Of Applied Physics vol

111 Article ID 094105 2012[92] E A Patterson and D P Cann ldquoBipolar piezoelectric

fatigue of Bi(Zn05Ti05)O3-(Bi05K05)TiO3-(Bi05Na05)TiO3Pb-

free ceramicsrdquo Applied Physics Letters vol 101 Article ID042905 2012

[93] R Dittmer W Jo J Daniels S Schaab and JRodel ldquoRelaxor characteristics of morphotropic phaseboundary (Bi

12Na12)TiO3-(Bi12K12)TiO3

modified withBi(Zn

12Ti12)O3rdquo Journal of the American Ceramic Society vol

94 no 12 pp 4283ndash4290 2011[94] A Hussain C W Ahn A Ullah J S Lee and I W Kim

ldquoDielectric ferroelectric and field-induced strain behavior ofK05Na05NbO3-modified Bi

05(Na078

K022

)05TiO3

lead-freeceramicsrdquo Ceramics International vol 38 no 5 pp 4143ndash41492012

12 Advances in Materials Science and Engineering

[95] G Fan W Lu X Wang and F Liang ldquoMorphotropic phaseboundary and piezoelectric properties of (Bi

12Na12)TiO3ndash

(Bi12K12)TiO3ndashKNbO

3lead-free piezoelectric ceramicsrdquo

Applied Physics Letters vol 91 Article ID 202908 2007[96] N B Do H B Lee D T Le et al ldquoElectric field-induced strain

of lead-free Bi05Na05TiO3ndashBi05K05TiO3ceramics modified

with LiTaO3rdquoCurrent Applied Physics vol 11 no 3 supplement

pp S134ndashS137 2011[97] T V D Ngoc H S Han K J Kim et al ldquoRelaxor and field-

induced strain behavior in lead-free Bi05(Na082

K018

)05TiO3

ceramics modified with BaZrO3rdquo Journal of Ceramic Processing

Research vol 13 supplement 2 pp s177ndashs180 2012[98] V D N Tran A Hussain H S Han et al ldquoComparison of

ferroelectric and strain properties between BaTiO3- and

BaZrO3-modified Bi

12(Na082

K018

)12TiO3ceramicsrdquo Japanese

Journal of Applied Physics vol 51 Article ID 09MD02 2012[99] I KHongH SHan CH YoonHN JiW P Tai and J S Lee

ldquoStrain enhancement in lead-free Bi05(Na078

K022

)05TiO3

ceramics by CaZrO3

substitutionrdquo Journal of IntelligentMaterial Systems and Structures vol 24 no 11 pp 1343ndash13492013 (Swedish)

[100] J K Kang D J Heo V Q Nguyen H S Han J S Leeand K K Ahn ldquoLow-temperature sintering of lead-freeBi12(NaK)

12TiO3-based electrostrictive ceramics with CuO

additionrdquo Journal of the Korean Physical Society vol 61 no 6pp 899ndash902 2012

[101] V Q Nguyen H B Luong and D D Dang ldquoEnhancement ofelectrical field-induced strain in Bi

05(Na K)

05TiO3-based lead-

free piezoelectric ceramics role of phase transitionrdquo In press[102] A Zaman Y Iqbal A Hussain et al ldquoInfluence of zirconium

substitution on dielectric ferroelectric and field-induced strainbehaviors of lead-free 099[Bi

12(Na082

K018

)12(Ti1minus119909

Zr119909)O3]-

001LiSbO3ceramicsrdquo Journal of theKorean Physical Society vol

61 no 5 pp 773ndash778 2012[103] S Qiao J Wu B Wu B Zhang D Xiao and J Zhu ldquoEffect

of Ba085

Ca015

Ti090

Zr010

O3content on the microstructure and

electrical properties of Bi051

(Na082

K018

)050

TiO3ceramicsrdquo

Ceramics International vol 38 no 6 pp 4845ndash4851 2012[104] H Nagata M Yoshida Y Makiuchi and T Takenaka ldquoLarge

piezoelectric constant and high curie temperature of lead-freepiezoelectric ceramic ternary system based on bismuth sodiumtitanate-bismuth potassium titanate-barium titanate near themorphotropic phase boundaryrdquo Japanese Journal of AppliedPhysics vol 42 no 12 p 7401 2003

[105] Y Li W Chen Q Xu J Zhou X Gu and S Fang ldquoElec-tromechanical and dielectric properties of Na

05Bi05TiO3-

K05Bi05TiO3-BaTiO

3lead-free ceramicsrdquo Materials Chemistry

and Physics vol 94 no 2-3 pp 328ndash332 2005[106] Q Zhou C Zhou W Li J Cheng H Wang and C Yuan

Journal of Physics and Chemistry of Solids vol 72 p 909 2011[107] C Zhou X LiuW Lim andC Yuan ldquoMicrostructure and elec-

trical properties of Bi05Na05TiO3-Bi05K05TiO3-LiNbO

3lead-

free piezoelectric ceramicsrdquo Journal of Physics and Chemistry ofSolids vol 70 pp 541ndash545 2009

[108] C Zhou X Liu W Li C Yuan and G Chen ldquoStructure andelectrical properties of Bi

05(Na K)

05TiO3minusBiGaO

3lead-free

piezoelectric ceramicsrdquo Current Applied Physics vol 10 no 1pp 93ndash98 2010

[109] B Wu C Han D Xiao Z Wang J Zhu and J Wu ldquoInves-tigation of a new lead-free (089minus x)(Bi

05Na05)TiO3ndash011(Bi

05

K05)TiO3ndashxBa085

Ca015

Ti090

Zr010

O3ceramicsrdquo Materials Re-

search Bulletin vol 47 pp 3937ndash3940 2012

[110] M Zou H Fan L Chen and W Yang ldquoMicrostruc-ture and electrical properties of (1 minus 119909)[082Bi

05Na05TiO3ndash

018Bi05K05TiO3]ndashxBiFeO

3lead-free piezoelectric ceramicsrdquo

Journal of Alloys and Compounds vol 495 no 1 pp 280ndash2832010

[111] C ZhouX LiuW Li andCYuan ldquoDielectric andpiezoelectricproperties of Bi

05Na05TiO3ndashBi05K05TiO3ndashBiCrO

3lead-free

piezoelectric ceramicsrdquo Journal of Alloys and Compounds vol478 no 1-2 pp 381ndash385 2009

[112] H Yang X Shan C Zhou Q Zhou W Li and J ChengldquoMicrostructure dielectric and piezoelectric properties of lead-free Bi

05Na05

TiO3ndashBi05K05

TiO3ndashBiMnO

3ceramicsrdquo Bulletin

of Materials Science vol 36 pp 265ndash270 2013[113] M Bichurin V Petrov A Zakharov et al ldquoMagnetoelectric

interactions in lead-based and lead-free compositesrdquoMaterialsvol 4 no 4 pp 651ndash702 2011

[114] H S Han CW Ahn IW Kim A Hussain and J S Lee ldquoDes-tabilization of ferroelectric order in bismuth perovskite ceram-ics by A-site vacanciesrdquo Materials Letters vol 70 pp 98ndash1002012

[115] A Ullah CW Ahn A Hussain IW Kim H I Hwang andNK Cho ldquoStructural transition and large electric field-inducedstrain in BiAlO

3-modified Bi

05(Na08K02)05TiO3

lead-freepiezoelectric ceramicsrdquo Solid State Communications vol 150pp 1145ndash1149 2010

[116] A Ullah C W Ahn A Hussain S Y Lee J S Kim and I WKim ldquoEffect of potassium concentration on the structure andelectrical properties of lead-free Bi

05(NaK)

05TiO3ndashBiAlO

3

piezoelectric ceramicsrdquo Journal of Alloys and Compounds vol509 pp 3148ndash3154 2012

[117] K N Pham D T Hinh L H Yuong K Y Min and L SShin ldquoEffects of Bi(Mg12Sn 12)O3 modification on the dielec-tric and piezoelectric properties of Bi12(Na08K02)12TiO3ceramicsrdquo Journal of the Korean Ceramic Society vol 49 pp266ndash271 2012

[118] K N Pham H B Lee H S Han et al ldquoDielectric fer-roelectric and piezoelectric properties of Nb-substitutedBi12(Na082

K018

)12TiO3lead-free ceramicsrdquo Journal of the

Korean Ceramic Society vol 60 pp 207ndash211 2012[119] A Ullah C W Ahn and I W Kim ldquoDielectric

piezoelectric properties and field-induced large strain ofBi(Zn

05Ti05)O3-modified morphotropic phase boundary

Bi05(Na082

K018

)05TiO3

piezoelectric ceramicsrdquo JapaneseJournal of Applied Physics vol 51 Article ID 09MD07 2012

[120] H S Han W Jo J Rodel I K Hong W P Tai and J SLee ldquoCoexistence of ergodicity and nonergodicity in LaFeO

3-

modified Bi12(Na078

K022

)12TiO3relaxorsrdquo Journal of Physics

Condensed Matter vol 24 Article ID 365901 2012[121] H S Han W Jo J K Kang et al ldquoIncipient piezoelectrics and

electrostriction behavior in Sn-doped Bi12(Na082

K018

)12TiO3

lead-free ceramicsrdquo Journal of Applied Physics vol 113 ArticleID 154102 2013

[122] H B Lee D J Heo R A Malik C H Yoon H S Han and J SLee ldquoLead-free Bi

12(Na082

K018

)12TiO3ceramics exhibiting

large strain with small hysteresisrdquo Ceramics International vol39 pp S705ndashS708 2013

[123] D S Lee S J Jeong M S Kim and K H Kim ldquoEffectof sintering time on strain in ceramic composite con-sisting of 094Bi05(Na075K025)05TiO3ndash006BiAlO3 with(Bi05Na05)TiO3rdquo Japanese Journal of Applied Physics vol 52Article ID 021801 2013

Advances in Materials Science and Engineering 13

[124] J Hao W Bai W Li B Shen and J Zhai ldquoPhase transitionsrelaxor behavior and large strain response in LiNbO3-modifiedBi05(Na080K020)05TiO3 lead-free piezoceramicsrdquo Journalof Applied Physics vol 114 Article ID 044103 2013

[125] A Ullah C W Ahn A Ullah and I W Kim ldquoLarge strainunder a low electric field in lead-free bismuth-based piezo-electricsrdquo Applied Physics Letters vol 103 Article ID 0229062013

[126] N Kumar and D P Cann ldquoElectromechanical strainand bipolar fatigue in Bi(Mg

12Ti12)O3-(Bi12K12)TiO3-

(Bi12Na12)TiO3ceramicsrdquo Journal of Applied Physics vol 114

Article ID 054102 2013[127] T H Dinh H Y Lee C H Yoon et al ldquoEffect of lanthanum

doping on the structural ferroelectric and strain propertiesof Bi12(Na082

K018

)12TiO3lead-free ceramicsrdquo Journal of the

Korean Ceramic Society vol 62 pp 1004ndash1008 2013[128] P Jaita A Watcharapasorn D P Cann and S

Jiansirisomboon ldquoDielectric ferroelectric and electric field-induced strain behavior of Ba(Ti090Sn010)O3-modifiedBi05(Na080K020)05TiO3 lead-free piezoelectricsrdquo Journalof Alloys and Compounds vol 596 pp 98ndash106 2014

[129] AHussain J U Rahman A Zaman et al ldquoField-induced strainand polarization response in lead-free Bi12(Na080K020)12TiO3ndashSrZrO3 ceramicrdquo Materials Chemistry and Physics vol143 pp 1282ndash1288 2014

[130] A Ullah R A Malik D S Lee et al ldquoElectric-field-inducedphase transition and large strain in lead-free Nb-doped BNKT-BST ceramicsrdquo Journal of the European Ceramic Society vol 34pp 29ndash35 2014

[131] J Hao B Shen J Zhai and H Chen ldquoPhase transitionalbehavior and electric field-induced large strain in alkali niobate-modified Bi

05(Na080

K020

)05TiO3

lead-free piezoceramicsrdquoJournal of Applied Physics vol 115 Article ID 034101 2014

[132] A Zaman Y Iqbal A Hussain M H Kim and R A MalikldquoDielectric ferroelectric and field-induced strain properties ofTa-doped 099Bi

05(Na082

K018

)05TiO3ndash001LiSbO

3ceramicsrdquo

Journal of Materials Science vol 49 no 8 pp 3205ndash3214 2014[133] A Ullah A Ullah I W Kim D S Lee S J Jeong and C W

Ahn ldquoLarge electromechanical response in lead-free La-dopedBNKTBST piezoelectric ceramicsrdquo Journal of the AmericanCeramic Society vol 97 no 8 pp 2471ndash2478 2014

Submit your manuscripts athttpwwwhindawicom

ScientificaHindawi Publishing Corporationhttpwwwhindawicom Volume 2014

CorrosionInternational Journal of

Hindawi Publishing Corporationhttpwwwhindawicom Volume 2014

Polymer ScienceInternational Journal of

Hindawi Publishing Corporationhttpwwwhindawicom Volume 2014

Hindawi Publishing Corporationhttpwwwhindawicom Volume 2014

CeramicsJournal of

Hindawi Publishing Corporationhttpwwwhindawicom Volume 2014

CompositesJournal of

NanoparticlesJournal of

Hindawi Publishing Corporationhttpwwwhindawicom Volume 2014

Hindawi Publishing Corporationhttpwwwhindawicom Volume 2014

International Journal of

Biomaterials

Hindawi Publishing Corporationhttpwwwhindawicom Volume 2014

NanoscienceJournal of

TextilesHindawi Publishing Corporation httpwwwhindawicom Volume 2014

Journal of

NanotechnologyHindawi Publishing Corporationhttpwwwhindawicom Volume 2014

Journal of

CrystallographyJournal of

Hindawi Publishing Corporationhttpwwwhindawicom Volume 2014

The Scientific World JournalHindawi Publishing Corporation httpwwwhindawicom Volume 2014

Hindawi Publishing Corporationhttpwwwhindawicom Volume 2014

CoatingsJournal of

Advances in

Materials Science and EngineeringHindawi Publishing Corporationhttpwwwhindawicom Volume 2014

Smart Materials Research

Hindawi Publishing Corporationhttpwwwhindawicom Volume 2014

Hindawi Publishing Corporationhttpwwwhindawicom Volume 2014

MetallurgyJournal of

Hindawi Publishing Corporationhttpwwwhindawicom Volume 2014

BioMed Research International

MaterialsJournal of

Hindawi Publishing Corporationhttpwwwhindawicom Volume 2014

Nano

materials

Hindawi Publishing Corporationhttpwwwhindawicom Volume 2014

Journal ofNanomaterials

Page 4: Review Article Current Development in Lead-Free Bi (Na,K ...downloads.hindawi.com/journals/amse/2014/365391.pdf · Bi 2 O 3 and TiO 2 and alkali carbonate powder Na 2 CO 3 and K 2

4 Advances in Materials Science and Engineering

proportional to the applied field [40 41] However the effectis generally very small and thus limits its usefulness

In the search for lead-based materials with large electric-field-induced phase transition (EFIS) an alternative andapplicable approach for ceramics was reported by Uchinoet al and Pan et al based on thework of Berlicourt et al [5ndash7]They observed a large strain due to a change of the unit cell in(PbLa)(SnZrTi)O

3ceramic because of a transition from

antiferroelectric to ferroelectric phase which was induced bythe electric field

Zhang et al proposed that the high strain in lead-freeBi05Na05TiO3-BaTiO

3-K05Na05NbO3

system came bothfrom a significant volume change caused by the field-inducedantiferroelectric-ferroelectric phase transition and from thedomain contribution caused by the induced ferroelectricphase [42 43] Jo et al suggested that origin of the large strainin (K05Na05)NbO

3-modified (Bi

05Na05)TiO3-BaTiO

3lead-

free piezoceramics is due to the presence of a nonpolar phasethat brings the system back to its unpoled state once whenthe applied electric field is removed which leads to a largenonpolar strain [44] In addition Lee et al reported that thegiant EFIS was attributed to the transition from nonpolarto ferroelectric phases in BNKT-BiAlO

3small grains with

ferroelectric BNT large grains during external electric fieldexecution [45] Recently Lee et al suggested a model on thebasis of the coexistence of polar nanoregions and a nonpolarmatrix which can reversibly transform into a polar ferro-electric phase under cyclic fields via observation of giantEFIS in Sn doped BNKT [46] Ullah et al suggested that theorigin of the large electric-field-induced giant strain is aninherently large electrostrictive strain combined with anadditional strain introduced during electric-field-inducedphase transition [47] However the origin of phase transitionfrom polar to nonpolar due to doping is unclear because theexplanation based on the distorted tolerance factor resultsfromdifference radius of dopants but the tolerance factor justestimated the phase stability and could not predict the sta-bility of structural typeThe further mechanism understatingneeds to be further investigated

(2) Domain Switching The volume regions of the materialwith the same polarization orientation are referred to asferroelectric domains [48] When the sample is under zerofield and strain-free conditions all the domain states have thesame energy but if an electric field is applied the free energyof the system is lowered by aligning the polarization alongthe electric fieldThus large applied electric fields can perma-nently reorient the polarization between the allowed domainstates which are restricted by crystallography As a resultpolycrystals random orientation can be electrically poled toproduce net piezoelectric coefficients Recently Ren pointedout that the large EFIS in ferroelectric crystals is caused bypoint-defect-mediated reversible domain switching [49] Itis noted that the defect dipoles tend to align along the sponta-neous polarization direction which was suggested by electronparamagnetic resonance experiments [50 51] and theoret-ical modeling [52 53] The domain switched and alignedby the applied electric field The defects symmetry anddefects dipolemoment cannot be rotated in such diffusionless

process resulting in restoring force or reversing internal fieldthat favored reverse domain switching when electric field isremoved However theoretical calculation indicated that theultrahigh electromechanical response in single-crystal piezo-electrics resulted from polarization rotation during polingprocessing [54]

3 Role of Dopants in Bi05(NaK)05TiO3

31 Role of Substitution in A-Site and B-Site inBi05(NaK)

05TiO3 TheBi

05(NaK)

05TiO3is considered as a

typicalABO3perovskitewhere Bi3+ K+ andNa+ ions localize

at A-site and Ti4+ ions localize at B-site In this part thecurrent studies of the effect of dopants on BNKTrsquos propertieshave been presented

311 Rare-Earth Doped BNKT The rare earth elements aremultivalent when they were doped in BNKT which resultedin interesting and complicating phenomena Li et alreported that electromechanical coupling factor (119896

119901) of

Bi05Na044

K006

TiO3was increased from 254 to 278 with

02 wtCeO2dopant and then decreased with higher CeO

2

content [55] Liao et al also obtained enhancement in piezo-electric properties of Bi

05(Na1minus119909minus119910

K119909Li119910)05TiO3via CeO

2

doping [56] The Bi05(Na0725

K0175

Li01)05TiO3ceramics

doped with 01 wt CeO2show good performance with high

piezoelectric constant (11988933= 220 pCN) and high coupling

factor (119896119901= 393) [56] Wang et al reported the effects

of La substitution at Bi-site in (Bi1minusxNa08K02Lax)TiO3 which

were 119896119901maximumof 28with 05wtLa doping and bipolar

maximum strain of 016 with 2wt La doping [57] Yuanet al reported the strain enhanced up to 119896

119901= 35 in La-

doped [Bi05(Na075

K015

Li010

)05]TiO3[58 59] Yang et al

obtained the electromechanical coupling factor 119896119901= 27 by

substitution of 00125wt Nd2O3in 082Bi

05Na05TiO3-

018Bi05K05TiO3ceramics [60] The 03 wt Sm

2O3sub-

stitution in 082Bi05Na05TiO3-018Bi

05K05TiO3ceramics

exhibited the high planar coupling factor (119896119901= 224)which

were reported by Zhang et al [61] This group alsoobtained the enhancement of electromechanical couplingfactor 119896

119901= 2463 with 02 wt Gd

2O3doping in

082Bi05Na05TiO3-018Bi

05K05TiO3ceramics [62] Zhi-Hui

et al reported optimum value of 015 wt Dy2O3added in

Bi05(Na082

K018

)05TiO3for enhancement of electrical prop-

erties [63] Fu et al obtained the effect of Ho2O3and Er

2O3

dopants in 082Bi05Na05TiO3-018Bi

05K05TiO3where the 119896

119901

was 2426 and 2382 for 01 wt Ho2O3and 06wt Er

2O3

dopants respectively [64 65] Following this work Fu et alreported the effects of Eu

2O3on the structure and electrical

properties of 082Bi05Na05TiO3-018Bi

05K05TiO3lead-free

piezoelectric ceramics where the optimumdoping of 02wtEu2O3has displayed the highest planer coupling factor 119896

119901=

251 [66]

312 Transition Metal Doped Bi05(NaK)

05TiO3 Han et al

first reported that the adding CuO in Bi05(NaK)

05TiO3

ceramics resulted in decreasing the sintering temperature[67] Do et al reported that the 119896

119901of Bi05(Na082

K018

)05TiO3

Advances in Materials Science and Engineering 5

decreased when it was added with CuO [68] The 119878max119864maxwas 214 pmV for added 002mol CuO but it increased to427 pmV for added 002mol Nb

2O5[68] Jiang et al

obtained the best piezoelectric properties with 119896119901= 30

for 02 wt Mn2+ doped (Na05K02)05Bi05TiO3[69 70]

In addition the (Na05K02)05Bi05TiO3-05 wt Mn exhib-

ited strong ferroelectricity with remnant polarization 119875119903=

38 120583Ccm2 [69] Mn doping restrained the ferroelectricto antiferroelectric phase transition because of oxygenvacancy [69] Hu et al obtained the optimal electricproperties in 016 wt MnCO

3-added 74Bi

05Na05TiO3-

208Bi05K05TiO3-52BaTiO

3which displayed the piezoelec-

tric strain 11988933= 140 pCN mechanical coupling 119896

119901= 18

and mechanical quality 119876119898= 89 while the depolarization

temperature (119879119889) stays relatively high at 175∘C [71] The effect

of Mn and Co on electrostrains of Bi05Na05TiO3-BaTiO

3-

Bi05K05TiO3has been investigated by Shieh et al [72 73]

It was remarkable that Mn doping with an electrostrain ofabout 01 can bemaintainedwhen theMndoping amount isin between 05 and 15mol which were contrast for thecodoped Bi

05Na05TiO3-BaTiO

3-Bi05K05TiO3 the values of

electrostrain and 11988933

stay relatively constant regardless ofthe Co-doping level [72 73] The 030wt MnO-addedBi0485

Na0425

K006

Ba003

TiO3solid solutions were found to be

with optimal electrical properties of11988933= 109 pCNand 119896

119901=

32 [74] The highest 119896119901values for various dopants element

substitution in BNKThas been shown in Figure 1Thehighest119896

119901of 393 was reported for rare-earth Ce codoped with Li-

modification BNKT ceramics

313 Other Metal-Doped Bi05(NaK)

05TiO3 Do et al repo-

rted that Bi05(Na082

K018

)05TiO3ceramics had the value of

119878max119864max of 566 pmV when 2mol of Ta5+ substitutedon Ti4+ site which were compared to without dopants withvalue of 119878max119864max of 233 pmV [75] Pham et al obtainedthe enhancement 119878max119864max up to 641 pmV due to 3molNb5+ substitution on Ti4+ ions [76] Hussain et al reportedthe piezoelectric coefficient of 641 pmV for Zr4+ 043molconcentration substitution in Ti4+ site [77] In additionHussain et al found that Hf substitution with 3molat Ti-site resulted in enhancement of the electric-field-induced strain up to 475 pmV with corresponding strainof 038 at an applied electric field of 80 kVcm [78] Binhet al reported the EFIS of 278 pmV for 07 wt Y-dopedBi05(Na082

K018

)05TiO3which were higher than without

dopant of EFIS of 228 pmV [79] At this moment thehighest 119878max119864max was 727 pmV by codopant Li and Tain BNKT which was reported by Nguyen et al [80] The[Bi05(Na1minusxminusyKxLi119910)05]TiO3 ceramics show excellent piezo-

electric and ferroelectric properties and the optimum prop-erties were reported as follows piezoelectric constant 119889

33=

231 pCN planar and thickness electromechanical couplingfactors 119896

119901= 410 and 119896

119905= 505 remanent polarization

119875

119903= 402 120583Ccm2 and coercive field 119864

119888= 247 kVmm [81]

Recently Lee et al obtained 119878max119864max of 585 pmV for5mol Sn doped in Bi

05(Na082

K018

)05TiO3[46] Fur-

thermore Nguyen et al reported the enhancement EFISin Bi05(Na082

K018

)05Ti095

Sn005

O3by additives Li where

20

24

28

32

36

40

44

Ceramic compounds

Cou

plin

g fa

ctor

kp

()

[57]BNKT-(Li Ce)

[59]BNKT-(Li La)

[61]BNKT-Nd[58]BNKT-La[56]BNKT-Ce [63]BNKT-Gd

[65]BNKT-Ho

[66]BNKT-Er

[67]BNKT-Eu

[62]BNKT-Sm

Figure 1 The effect of electric coupling factor in case of variousdopants in BNKT

119878max119864max increased up to 646 pmV when 4mol Na wasreplaced with Li [82] Liao et al reported the effect of Kand Ag dopant concentrations in Bi

05Na05TiO3ceramics K-

and Ag-doped ceramics exhibited good performances withpiezoelectric constant 119889

33= 189 pCN electromechanical

coupling factor 119896119901= 350 remnant polarization 119875

119903=

395 120583Ccm2 and coercive field 119864119862= 23 kVmm [83]

Isikawa et al cosubstituted Ag into A-site and Ba into B-sitein BNKT and obtained enhancement in piezoelectric proper-ties [84] Moreover this group also pointed out that the addi-tion of La

2O3MnO to BNKAT-BT specimens displayed a

very large strain dynamic constant 119878max119864max of 415 pmVwhich results from the field-forced phase transition from theparaelectric phase to the ferroelectric phase [84]

314 Nonstoichiometric Effects in Bi05(NaK)

05TiO3 Ni et al

obtained the effects of A-site vacancy on the electricalproperties in lead-free nonstoichiometric ceramicsBi05+119909

(Na082

K018

)05minus3119909

TiO3and Bi

05+119910(Na082

K018

)05TiO3

[85 86] The generation of A-site vacancy leads to a randomdefect field which results in destroying the long-range orderphase induced by point field and makes the domain moveeasier However the effects of B-site vacancy or oxygenvacancy were not well-reported for BNKT system

32 Role of Solid Solution of Secondary 11986010158401198611015840O3Dopants in

Bi05(NaK)

05TiO3 At the MPB of BNK-BKT binary system

an electric-field-induced strain and dynamic piezoelectriccoefficient were 023 and 291 pmV respectively at anapplied electrical field of 80 kVcm which are the consideredvalue for application in electromechanical devices [87]Thesevalues were low as compared with PZT-based materialstherefore it is impossible to apply for real electronicdevices The recent researches tried to enhance the dynamicpiezoelectric coefficient by dopants via solid solution withother 11986010158401198611015840O

3perovskites In fact the solid solution with

small amount (simseveral mole percents) of 11986010158401198611015840O3perovskite

6 Advances in Materials Science and Engineering

to BNKT resulted in strong enhancement the 119878max119864maxvalues Ullah et al obtained large electric-field-induced strainin BiAlO

3-modified Bi

05(NaK)

05TiO3with 119878max119864max of

592 pmV at 3mol BiAlO3 near the tetragonal-pseudo-

cubic phase boundary [87] The 119878max119864max was slightlydecreased to 579 pmV via Bi

05La05AlO3-modified

Bi05(Na078

K022

)05TiO3

[88] Tran et al modifiedBi05(Na082

K018

)05TiO3ceramics with Sr(K

14Nb34

)O3and

got the significant temperature coefficient of 038 pmVK[89] Wang et al fabricated 5mol SrTiO

3-modified

Bi05(Na08K02)TiO3lead-free piezoceramic which had a

large unipolar strain of 036 (119878max119864max = 600 pmV)at a driving field of 60 kVcm at room temperature [90]The Bi(Zn

05Ti05)O3ceramic was found to enhance the

eletromechanical strain with 119878max119864max of 547 pmV and500 pmV for 5Bi(Zn

05Ti05)O3-40(Bi

05K05)TiO3-

55(Bi05Na05)TiO3and 2mol doped respectively [91ndash93]

Hussain et al obtained the 119878max119864max of 434 pmV with3mol K

05Na05NbO3-modified Bi

05(Na078

K022

)05TiO3

ceramic [94] The 82Bi05Na05TiO3-16Bi05K05TiO3-

3KNbO3ceramics had good performances with piezoelectric

constant 11988933= 138 pCN and electromechanical coupling

factor 119896119901= 38 [95] Do et al obtained the EFIS values of

443 pmV in 4mol LiTaO3-modified 78Bi

05Na05TiO3-

18Bi05K05TiO3[96] Ngoc et al reported that maximum

strain of 2mol BaZrO3-modified Bi

05(Na082

K018

)05TiO3

ceramics was two times higher than undoped case [97] Inaddition they pointed out that the modification EFISof BaZrO

3was better than that of BaTiO

3[98] The

electric-field-induced strain was significantly enhancedby the CaZrO

3-induced phase transition and reached

the highest value of 119878max119864max of 617 pmV whenBi05(Na078

K022

)05TiO3was doped with 3mol CaZrO

3

dopant [99] Kang et al obtained 119878max119864max of 333 pmVwith4mol additive Bi

05(Na082

K18)05TiO3 and it was further

increased to 363 pmV for 2mol CuO-added specimen[100] Recently we obtained the enhancement of 119878max119864maxup to 668 pmV due to modify A-site by Li in lead-freeBNKT-modified with CaZrO

3[101] Zaman et al obtained

119878max119864max of 500 pmV via codoped Zr and LiSbO3[102]

The Ba085

Ca015

Ti090

Zr010

O3 BaTiO

3 NaSbO

3 LiNbO

3

BiGaO3and Ba

085Ca015

Ti090

Zr010

O3were also found to

enhance the electromechanical properties when those weresolute in Bi

05(NaK)

05TiO3

[103ndash109] Interestinglythe multiferroics materials such as BiFeO

3 BiMnO

3

and BiCrO3-modified BNKT result in enhancement in

electromechanical properties [110ndash112] However solutionandor composite BNKT with ferromagnetic such asBNKT-CoFe

2O4and BNKT-Fe

3O4were not reported [113]

4 Discussion

The mechanism of giant electric-field-induced strain couldbe considered as (i) electric-field-induced phase transitionandor (ii) point-defect-mediated reversible domain switch-ing At room temperature the BNT system is in rhom-bohedral structure and BKT is in tetragonal structure

100

200

300

400

500

600

700

800

900

Ceramic compounds

[90]BNKT-Sr(K14Nb34)O3[99]BNKT-BaTiO3[101]BNKT-(Li CaZrO3)

[100]BNKT-CaZrO3[92]BNKT- Bi05Zn05Ti05O3[88]BNKT- BiAlO3

[102]BNKT-(Zr LiSbO3)[97]BNKT- LiTaO3

[95]BNKT- K05Na05NbO3

[88]BNKT- BiAlO3

BNKT-(LiTa)[81]

BNKT-Nb[77]BNKT-(Li Sn)[83]

BNKT-Zr[78]BNKT-Sn[47]

BNKT-Ta [76]

BNKT-Hf[79]

BNKT-La[58]

BNKT-Y[80]

Pure BNKT[80]

Sm

axE

max

(pm

V)

Figure 2 The effect of dopants and solid solution perovskite ABO3

to BNKT

Their solid solutions have rhombohedral-tetragonal mor-photropic phase boundary near 016ndash020 of BKT amount[14] The effects of elements dopants or codopants at A-or B-site of BNKT were found to be effective the piezo-electric properties by two mechanisms based on the dif-ference radii point of view Firstly the dopants distortedthe tolerance factor due to the difference the radii ofdopant in comparing with Na+ K+ Bi3+ or Ti4+ Thedistortion results in phase transition from tetragonal topseudocubic or tetragonal development from pseudocubicwhich was strongly related to electric-field-induced phasetransition mechanism Secondly the dopants created theoxygen vacancy due to difference the valence state when theradii were performed which were related to point-defect-mediated reversible domain switchingmechanismThe effectof dopants and solid solution11986010158401198611015840O

3to BNKThas been sum-

marized in Figure 2 The ceramics compositions displayedthe highest 119878max119864max values which were shown in detailsin Table 1 The highest 119878max119864max of each year was plottedat Figure 3 The result indicated that electric-field-inducedgiant strain of BNTK was comparable with that of PZT (suchas commercial PZT (PIC151)) and therefore these modifiedBNKT can become a promising piezoelectric ceramics toreplace the lead-based piezoelectric materials Actually the119878max119864max values of BNKT ceramics were increased whenthe element at B-site andor A-site of BNKT ceramics weremodified However the 119878max119864max values quickly increasedwith several percent of dopants and then decreased whenfurther dopants were added These phenomena were alsoobtained while 11986010158401198611015840O

3modified BNKT as solid solution

because 1198601015840 and 1198611015840 diffused as codopant at both A- and B-sites of BNKT with similar concentrationThe observation ofenhancement of dynamic piezoelectric coefficient was relatedto (i) distorted structure (ii) phase transition from polar tononpolar phase and (iii) polar phase growth inner nonpolarphase The recent explanation of phase transition due todopant based on distorted tolerance factor because radiusbetween host and dopants differed and oxygen vacancy

Advances in Materials Science and Engineering 7

Table 1 The detailed composition of BNKT-modified ceramics with highest electric-field-induced strain

Ceramic compounds 119878max119864max (pmV) References086Bi05Na05TiO3 minus 014Bi05K05TiO3 297 Izumi et al (2008) [31]La2O3MnO-added (1 minus y)(Bi05Na049minus119909K119909Ag001)TiO3 minus yBaTiO3 415 Isikawa et al (2009) [84]Bi05(Na082K018)05Ti097Nb003O3 641 Pham et al (2010) [76]Bi05(Na078K022)05TiO3 296 Ullah et al (2010) [87]097Bi05(Na078K022)05TiO3 minus 003BiAlO3 592 Ullah et al (2010) [87]095Bi05(Na08K02)05TiO3 minus 005BiAlO3 391 Ullah et al (2010) [115]099(K05Na05)095Li005NbO3 minus 001Bi05(K015Na085)05TiO3 330 Chen et al (2010) [33]Bi05(Na082K018)05TiO3 minus 07 wt Y2O3 278 Binh et al (2010) [79]Bi05(Na078K022)05Ti097Zr003O3 614 Hussain et al (2010) [77]Bi05(Na078K022)05(Ti097Hf003)O3 475 Hussain et al (2010) [78]Bi05(Na082K018)05Ti098Ta002O3 566 Do et al (2011) [75]Bi12Na12TiO3 minus Bi12K12TiO3 minus 002Bi(Zn12Ti12)O3 500 Dittmer et al (2011) [93]Bi05(Na075K025)05TiO3 minus BiAlO3 sim900 Lee et al (2011) [45]009Bi05(Na078K022)05TiO3 minus 001Bi05La05AlO3 579 Ullah et al (2012) [88]0975Bi05(Na078K022)05TiO3 minus 0025BiAlO3 533 Ullah et al (2012) [116]097Bi05(Na078K022)05TiO3 minus 003K05Na05NbO3 434 Hussain et al (2012) [94]Bi05Na0385Li0025K009Ti0975Ta0025O3 727 Nguyen et al (2012) [80]Bi05(Na082K018)05Ti095Sn005O3 585 Lee et al (2012) [46]094Bi12(Na08K02)12TiO3 minus 006Bi(Mg12Sn12)O3 633 Pham et al (2012) [117]Bi05(Na074Li08K018)05Ti095Sn005O3 646 Nguyen et al (2012) [82]Bi12(Na082K018)12(Ti097Nb003)O3 641 Pham et al (2012) [118]097Bi05(Na078K022)05TiO3 minus 003CaZrO3 617 Hong et al (2013) [99]095Bi05(Na08K02)05TiO3 minus 005SrTiO3 600 Wang et al (2012) [90]099Bi05(Na082K018)05Ti0980Zr0020O3 minus 001LiSbO3 500 Zaman et al (2012) [102]097Bi05(Na082K018)05 minus 003Bi(Zn05Ti05)O3 385 Ullah et al (2012) [119]5Bi(Zn05Ti05)O3 minus 40(Bi05K05)TiO3 minus 55(Bi05Na05)TiO3 547 Patterson et al (2012) [91]Bi05(Na082K018)05TiO3 minus 002CuO 214 Do et al (2012) [68]Bi05(Na082K018)05TiO3 minus 002CuO minus 002Nb2O5 427 Do et al (2012) [68]098Bi05(Na078K022)05TiO3 minus 002LaFeO3 sim500 Han et al (2012) [120]Bi05(Na082K018)05Ti095Sn005O3 sim600 Han et al (2013) [121]098Bi05(Na082K018)05TiO3 minus 002BaZrO3 437 Lee et al (2013) [122]097Bi05(Na082K018)05TiO3 minus 003CaZrO3 603 Lee et al (2013) [122]098Bi05(Na082K018)05TiO3 minus 002Ba08Ca02ZrO3 549 Lee et al (2013) [122]094Bi05(Na075K025)05TiO3 minus 006BiAlO3 930 Lee et al (2013) [123]0975Bi05(Na080K020)05TiO3 minus 0025LiNbO3 475 Hao et al (2013) [124]096Bi05(Na078K022)05TiO3 minus 004Bi(Mg05Ti05)O3 636 Ullah et al (2013) [125]40Bi05K05TiO3 minus 59Bi05Na05TiO3 minus 1Bi(Mg12Ti12)O3 422 Kumar and Cann (2013) [126][Bi12(Na082K018)12]097La003TiO3 715 Dinh et al (2013) [127]095Bi05(Na080K020)05TiO3 minus 005Ba(Ti090Sn010)O3 649 Jaita et al (2014) [128]097Bi05(Na080K020)05TiO3 minus 003SrZrO3 617 Hussain et al (2014) [129]099Bi05Na04K01Ti098Nb002O3 minus 001(Ba07Sr03)TiO3 634 Ullah et al (2014) [130]Bi05(Na080K020)05TiO3 minus (K119910Na1minus119910)NbO3 413ndash575 Hao et al (2014) [131]099Bi05(Na082K018)05Ti0987Ta0013O3 minus 001LiSbO3 650 Zaman et al (2014) [132]099[(Bi05Na04K01)0980La0020TiO3] minus 002[Ba07Sr03TiO3] 650 Ullah et al (2014) [133]

8 Advances in Materials Science and Engineering

2008 2009 2010 2011 2012 2013 20140

200

400

600

800

1000

1200

PZT (PIC151)

Year

Lead-free BNKT-based

PZT-based

Sm

axE

max

(pm

V)

Figure 3 The highest values 119878max119864max observation in years (from2008 to 2014) in lead-free BNKT-based ceramics

caused difference of valence states However the tolerancefactor has only estimated the range for stability of perovskitebut it was not showed for crystal symmetries Thus theseexplanations were unreliable The mechanism of electricalfield-induced strain was not well understood which stillrequired to further investigate Consequently the roles of A-and B-site on the electrical field-induced strain were uncleartill now However we expected that the 119878max119864max valueswere further increased by using multidopant with optimalconcentration of dopants for each position A- andor B-sitein BNKT ceramics

In case of rare-earth doped BNKT the enhancementof piezoelectric properties mostly resulted from the point-defect-mediated because rare-earth elements have variousvalences which was displayed by various radii of ion depend-ing on the valence stable state substitution For examplethe mechanism for the effect of CeO

2doped BNKT is

complicated because Ce ion possibly exists in the BNKTstructure in two valence states Ce4+ with radius of 092 Aand Ce3+ with radius of 103 A In view of the radius Ce3+is possible to fill in Bi3+ vacancies and Ce4+ can enter into theBi-site In this case Ce4+ functions as a donor dopant leadingto some vacancies of A-site in the lattice which facilitatesthe movement of domain wall to improve the piezoelectricproperties Another one is that Ce3+ and Ce4+ ions occupythe A-site of Na+ (119903Na+ = 097A) of BNKT compositionwhich are the same as the Ce4+ entering into Bi3+ [55 56] Inthese cases existing vacancies bring defect in lattice whichresults in an increasing in the dielectric loss and grain sizeand have some effects of piezoelectric properties In additionthe experiments demonstrated that rare-earth substitution inNa+ first leads to creation of oxygen vacancies and latticecontraction but when the dopants concentration is over acritical value then it begins to substitute for Bi3+ thus it leadsto lattice expansion [57ndash59]

In case of transitionmetal dopant inBNKT themost find-ings confirmed that dopants resulted in the lower sintering

temperature It is valuable inmarket due to reduction the costof electronic devices

In case of other metal dopant in BNKT there were mixedpoint-defect-mediated and electric-field-induced phase tran-sition mechanisms which depend on the valence and site-prefer to substitution For example the Ta5+ which replacedTi4+ at B-site leads to creation of A-site vacancies whichsignificantly contributed to the destabilization of ferroelectricphase in the Bi perovskite [75 80 114] These factors weresimilar to a case of nonstochiometric at A- and B-site ofBNKT where the vacancies were occurred

In case of solid solution between BNKT with other119860

1015840119861

1015840O3perovskites it is quite interesting because the ideal

was simple like tailor Some of 11986010158401198611015840O3perovskites were

unstable or hardly fabricated such as BiAlO3 but the theory

predicted that they should have goodpiezoelectric propertiesHowever interestingly they were stabled in solid solution inBNKT matrix and strong enhancement piezoelectric prop-erties Similarly the Bi

05Zn05TiO3(BZT) was a good ferro-

electric material and it was tailed their properties in BNKT-BZT as solid solution In addition BNKT-modified withBi05Li05TiO3has displayed the excellent piezoelectric con-

stant 11988933 Recently the multiferroic materials have rapidly

developed because they exhibited the electric field controlledferromagnetism and magnetic field controlled the electricpolarization However multiferroic properties of BNKT-based materials have not been reported Therefore we pro-posed that the solid solution andor composite of BNKTwith insulator ferromagnetism materials such as BiFeO

3and

CoFeO4could be a good display of multiferroics properties

which will promise candidate to develop new class of multi-ferroics materials

5 Conclusion

The current status of lead-free piezoelectric materials hasbeen introduced The lead-free BNKT-based ceramics werereviewed based on the fabrication method effect of dopantsand solid-solution with other 11986010158401198611015840O

3perovskite Most find-

ings confirmed that giant strain obtained in lead-free BNKT-based ceramics is due to phase transition from polar tononpolar phase and the highest 119878max119864max values werefound at theMPBHowever the origin of phase transitionwasstill debated The 119878max119864max values of lead-free BNKT-basedceramics are comparable with soft lead-based PZT-basedceramics which could be promising materials to readilyreplace the lead-based PZT-based materials in devices Inaddition the effects of secondary phase 11986010158401198611015840O

3as solid-

solution tailed the properties of BNKT matrix Our workreviewed current developments in lead-free BNKT-basedmaterials which were expected to understand current statusof researching about BNKT-based ceramics therefore to beguidance for designing new class materials and applications

Conflict of Interests

The authors declare that there is no conflict of interestsregarding the publication of this paper

Advances in Materials Science and Engineering 9

Acknowledgment

This work was financially supported by the Ministry of Edu-cation andTraining Vietnam under Project no B 20130155

References

[1] P K Panda ldquoReview environmental friendly lead-free piezo-electric materialsrdquo Journal of Materials Science vol 44 no 19pp 5049ndash5062 2009

[2] C A Randall R E Newnham and L E Cross History of theFirst Ferroelectric Oxide BaTiO

3 Materials Research Institute

The Pennsylvania State University University Park Pa USA2004

[3] E Ringgaard and T Wurlitzer ldquoLead-free piezoceramics basedon alkali niobatesrdquo Journal of the European Ceramic Society vol25 no 12 pp 2701ndash2706 2005

[4] T Takenaka and H Nagata ldquoCurrent status and prospects oflead-free piezoelectric ceramicsrdquo Journal of the EuropeanCeramic Society vol 25 no 12 pp 2693ndash2700 2005

[5] Ministry of Information Industry of the Peoplersquos Republic ofChina Industrial Standard of the peoplersquos Republich of China2006

[6] Japan Electronics and InformationTechnology Industries Asso-ciation Standard of Japan Electronics and Information Tech-nology Industries Association 1998

[7] TheEnvironment and Labor Committee of the National Assemblyof Korea 2007

[8] Y Li K S Moon and C P Wong ldquoElectronics without leadrdquoScience vol 308 no 5727 pp 1419ndash1420 2005

[9] E Cross ldquoLead-free at lastrdquoNature vol 432 no 7013 pp 24ndash252004

[10] G A Smolensky V A Isupov A I Agranovskaya and NN Krainic ldquoNew ferroelectrics with complex compounds IVrdquoFizika Tverdogo Tela vol 2 pp 2982ndash2985 1960

[11] G A Smolenskii and A I Agranovskaya ldquoDielectric polariza-tion of a series of compounds of complex compositionrdquo FizikaTverdogo Tela vol 1 pp 1562ndash1572 1959

[12] C F Buhrer ldquoSome properties of bismuth perovskitesrdquo TheJournal of Chemical Physics vol 36 pp 798ndash803 1962

[13] I P Pronin N N Parfenova N V Zaitseva V A Isupov andG A Smolenskii ldquoPhase transitions in solid solutions of sodi-umbismuth and potassiumbismuth titanatesrdquo Fizika TverdogoTela vol 24 pp 1060ndash1062 1982

[14] A Sasaki T Chiba Y Mamiya and E Otsuki ldquoDielectric andpiezoelectric properties of (Bi

05Na05)TiO3ndash(Bi05K05)TiO3sys-

temsrdquo Japanese Journal of Applied Physics vol 38 no 9 p 55641999

[15] G O Jones and P A Thomas ldquoInvestigation of the structureand phase transitions in the novel A-site substituted distortedperovskite compoundNa

05Bi05TiO3rdquoActa Crystallographica B

vol 58 pp 168ndash178 2002[16] PWoodward ldquoOctahedral tilting in perovskites I Geometrical

considerationsrdquo Acta Crystallographica B vol 53 pp 32ndash431997

[17] V A Isupov ldquoFerroelectric Na05Bi05TiO3and K

05Bi05TiO3

perovskites and their solid solutionsrdquo Ferroelectrics vol 315 no1 pp 123ndash147 2005

[18] I P Pronin P P Syrnikov V A Isupov V M Egorov N VZaitseva and A F Ioffe ldquoPeculiarities of phase transitions in

sodium-bismuth titanaterdquo Ferroelectrics vol 25 pp 395ndash3971980

[19] J A Zvirgzds P P Kapostis and J V Zvirgzde ldquoX-ray study ofphase transitions in efrroelectric Na

05Bi05TiO3rdquo Ferroelectrics

vol 40 no 1 pp 75ndash77 1982[20] J Suchanicz K Roleder A Kania and J Handerek ldquoElec-

trostrictive strain and pyroeffect in the region of phase coexis-tence in Na

05Bi05TiO3rdquo Ferroelectrics vol 77 pp 107ndash110 1988

[21] Y Chiang G W Farrey and A N Soukhojak ldquoLead-free high-strain single-crystal piezoelectrics in the alkaline-bismuth-titanate perovskite familyrdquo Applied Physics Letters vol 73 no25 pp 3683ndash3685 1998

[22] S M Emelyanov I P Raevskii V G Smotrakov and F ISavenko ldquoPiezoelectric and pyroelectric properties of sodium-bismuth titanate crystalsrdquo Fizika Tverdogo Tela vol 26 pp1897ndash1899 1984

[23] M L Zhao C LWangW L Zhong J FWang andHCChenldquoElectrical properties of (Bi

05Na05)TiO3ceramic prepared by

sol-gel methodrdquo Acta Physica Sinica vol 52 no 1 pp 229ndash2322003

[24] M L Zhao C L Wang W L Zhong J F Wang and Z F LildquoGrain-size effect on the dielectric properties of Bi

05Na05TiO3rdquo

Chinese Physics Letters vol 20 article 290 2003[25] B Jaffe W R Cook and H Jaffe Piezoelectric Ceramics

Academic Press London UK 1971[26] J Suchanicz ldquoTime evolution of the phase transformation in

Na05Bi05TiO3rdquo Ferrolectrics vol 200 no 1 pp 319ndash325 1997

[27] O N Razumovskaya T B Kuleshova and L M RudkovskayaldquoReactions of formation of BiF

119890O3 K05

Bi05TiO3 and

Na05Bi05TiO3rdquo Neorganicheskie Materialy [Inorganic Mat-

erials] vol 19 pp 113ndash115 1983[28] V V Ivanova A G Kapishev Y N Venevtsev and G S

Zhdanov ldquoX-ray determination of the symmetry of elemen-tary cells of the ferroelectric materials (K05Bi05)TiO3 and(Na05Bi05)TiO3 and of high-temperature phase transitionsin (K05Bi05)TiO3rdquo Izvestiya Akademii Nauk SSSR SeriyaFizicheskaya vol 26 pp 354ndash356 1962

[29] Y Hiruma R Aoyagi H Nagata and T Takenaka ldquoSynthesisand properties of 1-Methyl-4-2-[4-(dimethylamino)phenyl]-ethenylpyridinium p-toluenesulfonate derivatives with isomor-phous crystal structurerdquo Japanese Journal of Applied Physics vol44 p 5231 2005

[30] M Zhu L Hou Y Hou J Liu HWang andH Yan ldquoLead-free(K05Bi05)TiO3powders and ceramics prepared by a solndashgel

methodrdquo Materials Chemistry and Physics vol 99 no 2-3 pp329ndash332 2006

[31] M Izumi K Yamamoto M Suzuki Y Noguchi andM Miyayama ldquoLarge electric-field-induced strain inBi05Na05TiO3-Bi05K05TiO3

solid solution single crystalsrdquoApplied Physics Letters vol 93 Article ID 242903 2008

[32] T Tani ldquoCrystalline-oriented piezoelectric bulk ceramics witha perovskite-type structurerdquo Journal of the Korean PhysicalSociety vol 32 no 3 pp S1217ndashS1220 1998

[33] X Chen Y Liao H Wang et al ldquoPhase structure and electricproperties of Bi

05(Na0825

K0175

)05TiO3ceramics prepared by a

sol-gel methodrdquo Journal of Alloys and Compounds vol 493 no1-2 pp 368ndash371 2010

[34] Y Q Chen X J Zheng and W Li ldquoSize effect of mechanicalbehavior for lead-free (Na

082K018

)05Bi05TiO3nanofibers by

nanoindentationrdquoMaterials Science and Engineering A vol 527pp 5462ndash5466 2010

10 Advances in Materials Science and Engineering

[35] D YWang DM Lin K SWong KW Kwok J Y Dai and HL W Chan ldquoPiezoresponse and ferroelectric properties oflead-free [Bi

05(Na07K02Li01)05]TiO3thin films by pulsed laser

depositionrdquo Applied Physics Letters vol 92 no 22 Article ID222909 2008

[36] J Kreisel A M Glazer G Jones P A Thomas L Abello andG Lucazeau ldquoAn x-ray diffraction and Raman spectroscopyinvestigation of A-site substituted perovskite compounds the(Na1minus119909

K119909)05Bi05TiO3(0le xle1) solid solutionrdquo Journal of

Physics Condensed Matter vol 12 p 3267 2000[37] H Xie L Jin D Shen X Wang and G Shen ldquoMorphotropic

phase boundary segregation effect and crystal growth in theNBT-KBT systemrdquo Journal of Crystal Growth vol 311 no 14pp 3626ndash3630 2009

[38] O Elkechai M Manier and I P Mercurio ldquoNa05Bi05TiO3ndash

K05Bi05TiO3(NBT-KBT) system a structural and electrical

studyrdquo Physica Status Solidi vol 157 no 2 pp 499ndash506 1996[39] K Yoshii Y Hiruma H Nagata and T Takenaka ldquoElectrical

properties and depolarization temperature of (Bi12Na12)TiO3-

(Bi12K12)TiO3lead-free piezoelectric ceramicsrdquo Japanese Jour-

nal of Applied Physics vol 45 part 1 no 5B pp 4493ndash44972006

[40] M E Lines and A M Glass Principles and Applications forFerroelectrics and Related Materials Oxford University PressOxford UK 1979

[41] K Uchino Piezoelectric Actuators and Ultrasonic MotorsKluwer Academic Publishers Boston Mass USA 1996

[42] S T Zhang A B Kounga E Aulbach et al ldquoLead-free piezoce-ramics with giant strain in the system Bi

05Na05TiO3ndashBaTiO

3ndash

K05Na05NbO3 II Temperature dependent propertiesrdquo Journal

of Applied Physics vol 103 no 3 Article ID 034108 2008[43] S T Zhang A B Kounga E Aulbach H Ehrenberg and J

Rodel ldquoGiant strain in lead-free piezoceramics Bi05Na05TiO3ndash

BaTiO3ndashK05Na05NbO3systemrdquo Applied Physics Letters vol 91

Article ID 112906 2007[44] W Jo T Granzow E Aulbach J Rodel and D Damjanovic

ldquoOrigin of the large strain response in (K05Na05)NbO

3-

modified (Bi05Na05)TiO3ndashBaTiO

3lead-free piezoceramicsrdquo

Journal of Applied Physics vol 105 no 9 Article ID 0941022009

[45] D S Lee D H Lim M S Kim K H Kim and S J JeongldquoElectric field-induced deformation behavior in mixedBi05Na05TiO3and Bi

05(Na075

K025

)05TiO3-BiAlO

3rdquo Applied

Physics Letters vol 99 Article ID 062906 2011[46] J S Lee K N Pham H S Han H B Lee and V D N Tran

ldquoStrain enhancement of lead-free Bi12(Na082

K018

)12TiO3

ceramics by Sn dopingrdquo Journal of the Korean Physical Societyvol 60 no 2 pp 212ndash215 2012

[47] A Ullah CW Ahn A Hussain S Y Lee and IW Kim ldquoPhasetransition electrical properties and temperature-insensitivelarge strain in BiAlO

3-modified Bi

05(Na075

K025

)05TiO3lead-

free piezoelectric ceramicsrdquo Journal of the American CeramicSociety vol 94 no 11 pp 3915ndash3921 2011

[48] L J Rigoberto G Federico and V C Maria-Elena ldquoLead-free ferroelectric ceramics with perovskite structurerdquo inFerroelectrics-Material Aspects M Lattart Ed InTech 2011

[49] X Ren ldquoLarge electric-field-induced strain in ferroelectriccrystals by point-defect-mediated reversible domain switchingrdquoNature Materials vol 3 pp 91ndash94 2004

[50] W LWarren G E Pike K Vanheusden D Dimos B A Tuttleand J Robertson ldquoDefect-dipole alignment and tetragonal

strain in ferroelectricsrdquo Journal of Applied Physics vol 79 no12 pp 9250ndash9257 1996

[51] W L Warren D Dimos G E Pike K Vanheusden and RRamesh ldquoAlignment of defect dipoles in polycrystalline ferro-electricsrdquo Applied Physics Letters vol 67 p 1689 1995

[52] R Lohkamper H Neumann and G Arlt ldquoInternal biasin acceptor-doped BaTiO

3ceramics numerical evaluation of

increase and decreaserdquo Journal of Applied Physics vol 68 p4220 1990

[53] U Robels and G Arlt ldquoDomain wall clamping in ferroelectricsby orientation of defectsrdquo Journal of Applied Physics vol 73 no7 pp 3454ndash3460 1993

[54] H Fu and R E Cohen ldquoPolarization rotation mechanism forultrahigh electromechanical response in single-crystal piezo-electricsrdquo Nature vol 403 no 6767 pp 281ndash283 2000

[55] Y Li W Chen Q Xu J Zhou Y Wang and H SunldquoPiezoelectric and dielectric properties of CeO

2-doped

Bi05Na044

K006

TiO3

lead-free ceramicsrdquo Ceramics Inter-national vol 33 no 1 pp 95ndash99 2007

[56] Y Liao D Xiao D Lin et al ldquoThe effects of CeO2-

doping on piezoelectric and dielectric properties ofBi05(Na1minus119909minus119910

K119909Li119910)05TiO3piezoelectric ceramicsrdquo Materials

Science and Engineering B vol 133 no 1ndash3 pp 172ndash176 2006[57] B Wang L Luo F Ni P Du W Li and H Chen ldquoPiezoelectric

and ferroelectric properties of (Bi1minus119909

Na08K02Lax)05TiO3lead-

free ceramicsrdquo Journal of Alloys and Compounds vol 526 pp79ndash84 2012

[58] Y Yuan S Zhang and X Zhou ldquoEffects of La occupa-tion site on the dielectric and piezoelectric properties of[Bi05(Na075

K015

L119894010

)05]TiO3ceramicsrdquo Journal of Materials

Science Materials in Electronics vol 20 no 11 pp 1090ndash10942009

[59] Y Yuan S R Zhang and X H Zhou ldquoPhasetransitions and electrical properties in La3+-substitutedBi05(Na075

K015

Li010

)05TiO3ceramicsrdquo Journal of Materials

Science Letters vol 41 pp 565ndash567 2006[60] Z Yang Y Hou B Liu and L Wei ldquoStructure and

electrical properties of Nd2O3-doped 082Bi

05Na05TiO3ndash

018Bi05K05TiO3ceramicsrdquo Ceramics International vol 35 pp

1423ndash1427 2009[61] Y Zhang R Chu Z Xu et al ldquoPiezoelectric and dielectric prop-

erties of Sm2O3-doped

082Bi05Na05TiO3-0 18Bi

05K05TiO3

ceramicsrdquo Journal of Alloys and Compounds vol 502 no 2 pp341ndash345 2010

[62] P Fu Z Xu R Chu W Li WWang and Y Liu ldquoGd2O3doped

082Bi05Na05TiO3ndash018Bi

05K05TiO3

lead-free piezoelectricceramicsrdquoMaterials amp Design vol 35 pp 267ndash280 2012

[63] C Zhi-Hui D Jian-Ning M Lin Y Ning-Yi and Z Wei-WeildquoPiezoelectric and dielectric properties of Dy

2O3-Doped Bi

05

(Na082

K018

)05TiO3lead-free ceramicsrdquo Ferroelectrics vol 425

no 1 pp 63ndash71 2011[64] P Fu Z Xu R Chu XWuW Li andH Zhang ldquoStructure and

electrical properties of the Ho2O3doped 082Bi

05Na05TiO3-

018Bi05K05TiO3lead-free piezoelectric ceramicsrdquo Journal of

Materials Science Materials in Electronics vol 23 no 12 pp2167ndash2172 2012

[65] P Fu Z Xu H Zhang R Chu W Li and M Zhao ldquoStructureand electrical properties of Er

2O3doped 082Bi

05Na05TiO3ndash

018Bi05K05TiO3lead-free piezoelectric ceramicsrdquoMaterials amp

Design vol 40 pp 373ndash377 2012

Advances in Materials Science and Engineering 11

[66] P Fu Z Xu R Chu W Li Q Xie and G Zhang ldquoEffectsof Eu

2O3

on the structure and electrical properties of082Bi

05Na05TiO3-018Bi

05K05TiO3

lead-free piezoelectricceramicsrdquo Current Applied Physics vol 11 pp 822ndash826 2011

[67] H Han N Do K Pham et al ldquoSintering behaviour andpiezoelectric properties of CuO-added lead-free Bi(NaK)TiO

3

ceramicsrdquo Ferroelectrics vol 421 no 1 pp 88ndash91 2011[68] N B Do H D Jang I Hong et al ldquoLow temperature sintering

of lead-free Bi05(Na082

K018

)05TiO3piezoelectric ceramics by

co-doping with CuO and Nb2O5rdquo Ceramics International vol

38S pp S359ndashS362 2012[69] X P Jiang L Z Li M Zeng and H L W Chan ldquoDielec-

tric properties of Mn-doped (Na08K02)05Bi05TiO3ceramicsrdquo

Materials Letters vol 60 no 15 pp 1786ndash1790 2006[70] J Xiangping L Longzhu J Fulan Z Yanyan and L Lihua

ldquoEffects of Mn-doping on the piezoelectric and ferroelectricproperties of (Na

08K02)05Bi05TiO3ceramicsrdquo Key Engineering

Materials vol 368-372 pp 69ndash71 2008[71] H Hu M Zhu Y Hou and H Yan ldquoDielectric piezoelectric

and ferroelectric properties of MnCO3-added 74(Bi

12Na12)

TiO3-208(Bi

12K12)TiO3-52BaTiO

3lead-free piezoelectric

ceramicsrdquo IEEE Transactions on Ultrasonics Ferroelectrics andFrequency Control vol 56 pp 897ndash905 2009

[72] J Shieh Y C Lin and C S Chen ldquoIntricate straining ofmanganese-doped (Bi

05Na05)TiO3-BaTiO

3-(Bi05K05)TiO3

lead-free ferroelectric ceramicsrdquo Journal of Physics D AppliedPhysics vol 43 no 2 Article ID 025404 2010

[73] J Shieh Y C Lin and S C Chen ldquoInfluence of phase com-position on electrostrains of doped (Bi

05Na05)TiO3ndashBaTiO

3ndash

(Bi05K05)TiO3lead-free ferroelectric ceramicsrdquo Smart Materi-

als and Structures vol 19 no 9 Article ID 094007 2010[74] M Zhu H Hu N Lei Y Hou and H YanInt ldquoMnO modifi-

cation on microstructure and electrical properties of lead-freeBi0485

Na0425

K006

Ba003

TiO3

solid solution around mor-photropic phase boundaryrdquo International Journal of AppliedCeramic Technology vol 7 pp E107ndashE113 2010

[75] N BDoH B Lee CHYoon J KKang and J S Lee ldquoEffect ofTa-substitution on the ferroelectric and piezoelectric propertiesof Bi05(Na082

K018

)05TiO3ceramicsrdquoTransactions on Electrical

and Electronic Materials vol 12 no 2 pp 64ndash67 2011[76] K N Pham A Hussain CW Ahn I W Kim S J Jeong and J

S Lee ldquoGiant strain in Nb-doped Bi05(Na082

K018

)05TiO3lead-

free electromechanical ceramicsrdquoMaterials Letters vol 64 no20 pp 2219ndash2222 2010

[77] A Hussain C W Ahn J S Lee A Ullah and I W KimldquoLarge electric-field-induced strain in Zr-modified lead-freeBi05(Na078

K022

)05TiO3piezoelectric ceramicsrdquo Sensors and

Actuators A vol 158 no 1 pp 84ndash89 2010[78] AHussain CWAhn AUllah J S Lee and IWKim ldquoEffects

of hafnium substitution on dielectric and electromechanicalproperties of lead-free Bi

05(Na078

K022

)05(Ti1minus119909

Hfx)O3Ceram-

icsrdquo Japanese Journal of Applied Physics vol 49 Article ID041504 2010

[79] D N Binh A Hussain H Lee et al ldquoEnhanced electric-field-induced strain at the ferroelectric-electrostrcitive phaseboundary of yttrium-doped Bi

05(Na082

K018

)05TiO3lead-free

piezoelectric ceramicsrdquo Journal of the Korean Physical Societyvol 57 no 41 pp 892ndash896 2010

[80] V Nguyen H Han K Kim D Dang K Ahn and J Lee ldquoStrainenhancement in Bi

12(Na082

K018

)12TiO3lead-free electrome-

chanical ceramics by co-dopingwith Li andTardquo Journal of Alloysand Compounds vol 511 no 1 pp 237ndash241 2012

[81] D Lin D Xiao J Zhu and P Yu ldquoPiezoelectric and ferroelectricproperties of lead-free piezoelectric ceramicsrdquo Applied PhysicsLetters vol 88 no 6 Article ID 062901 2006

[82] V Nguyen C Hong H Lee Y M Kong J Lee and K AhnldquoEnhancement in the microstructure and the strain propertiesof Bi12(NaK)

12TiO3-based lead-free ceramics by Li substitu-

tionrdquo Journal of the Korean Physical Society vol 61 no 6 pp895ndash898 2012

[83] Y Liao D Xiao and D Lin ldquoApplication of quantum cascadelasers to trace gas analysisrdquo Applied Physics B vol 90 pp 165ndash176 2008

[84] Y Isikawa Y Akiyama and T Hayashi ldquoPiezoelectric anddielectric properties of (BiNaKAg)TiO

3-BaTiO

3lead-free

piezoelectric ceramicsrdquo Japanese Journal of Applied Physics vol48 Article ID 09KD03 2009

[85] F Ni L Luo X Pan W Li and J Zhu ldquoEffects of A-sitevacancy on the electrical properties in lead-free non-stoichiometric ceramics Bi

05+119909(Na082

K018

)05minus3119909

TiO3

andBi05+119910

(Na082

K018

)05TiO3rdquo Journal of Alloys and Compounds

vol 541 pp 150ndash156 2012[86] F Ni L Luo W Lim and H Chen ldquoA-site vacancy-induced

giant strain and the electrical properties in non-stoichiometricceramics Bi

05+119909(Na1minus119910

K119910)05minus3119909

TiO3rdquo Journal of Physics D

Applied Physics vol 45 no 41 Article ID 415103 2012[87] A Ullah C W Ahn A Hussain S Y Lee H J Lee and I W

Kim ldquoPhase transitions and large electric field-induced strainin BiAlO

3-modified Bi

05(Na K)

05TiO3lead-free piezoelectric

ceramicsrdquo Current Applied Physics vol 10 pp 1174ndash1181 2010[88] A Ullah C W Ahn S Y Lee J S Kim and I W Kim ldquoStruc-

ture ferroelectric properties and electric field-induced largestrain in lead-free Bi

05(NaK)

05TiO3-(Bi05La05)AlO3piezo-

electric ceramicsrdquo Ceramics International vol 38 no 1 ppS363ndashS368 2012

[89] V DN Tran H S Han CH Yoon J S LeeW Jo and J RodelldquoLead-free electrostrictive bismuth perovskite ceramics withthermally stable field-induced strainsrdquoMaterials Letters vol 65pp 2607ndash2609 2011

[90] K Wang A Hussain W Jo and J Rodel ldquoTemperature-dependent properties of (Bi

12Na12)TiO3-(Bi12K12)TiO3-

SrTiO3

lead-free piezoceramicsrdquo Journal of the AmericanCeramic Society vol 95 no 7 pp 2241ndash2247 2012

[91] E A Patterson D P Cann J Pokomy and I M Reaney ldquoElec-tromechanical strain in Bi(Zn

12Ti12)O3-(Bi12Na12)TiO3-

(Bi12K12)TiO3solid solutionsrdquo Journal Of Applied Physics vol

111 Article ID 094105 2012[92] E A Patterson and D P Cann ldquoBipolar piezoelectric

fatigue of Bi(Zn05Ti05)O3-(Bi05K05)TiO3-(Bi05Na05)TiO3Pb-

free ceramicsrdquo Applied Physics Letters vol 101 Article ID042905 2012

[93] R Dittmer W Jo J Daniels S Schaab and JRodel ldquoRelaxor characteristics of morphotropic phaseboundary (Bi

12Na12)TiO3-(Bi12K12)TiO3

modified withBi(Zn

12Ti12)O3rdquo Journal of the American Ceramic Society vol

94 no 12 pp 4283ndash4290 2011[94] A Hussain C W Ahn A Ullah J S Lee and I W Kim

ldquoDielectric ferroelectric and field-induced strain behavior ofK05Na05NbO3-modified Bi

05(Na078

K022

)05TiO3

lead-freeceramicsrdquo Ceramics International vol 38 no 5 pp 4143ndash41492012

12 Advances in Materials Science and Engineering

[95] G Fan W Lu X Wang and F Liang ldquoMorphotropic phaseboundary and piezoelectric properties of (Bi

12Na12)TiO3ndash

(Bi12K12)TiO3ndashKNbO

3lead-free piezoelectric ceramicsrdquo

Applied Physics Letters vol 91 Article ID 202908 2007[96] N B Do H B Lee D T Le et al ldquoElectric field-induced strain

of lead-free Bi05Na05TiO3ndashBi05K05TiO3ceramics modified

with LiTaO3rdquoCurrent Applied Physics vol 11 no 3 supplement

pp S134ndashS137 2011[97] T V D Ngoc H S Han K J Kim et al ldquoRelaxor and field-

induced strain behavior in lead-free Bi05(Na082

K018

)05TiO3

ceramics modified with BaZrO3rdquo Journal of Ceramic Processing

Research vol 13 supplement 2 pp s177ndashs180 2012[98] V D N Tran A Hussain H S Han et al ldquoComparison of

ferroelectric and strain properties between BaTiO3- and

BaZrO3-modified Bi

12(Na082

K018

)12TiO3ceramicsrdquo Japanese

Journal of Applied Physics vol 51 Article ID 09MD02 2012[99] I KHongH SHan CH YoonHN JiW P Tai and J S Lee

ldquoStrain enhancement in lead-free Bi05(Na078

K022

)05TiO3

ceramics by CaZrO3

substitutionrdquo Journal of IntelligentMaterial Systems and Structures vol 24 no 11 pp 1343ndash13492013 (Swedish)

[100] J K Kang D J Heo V Q Nguyen H S Han J S Leeand K K Ahn ldquoLow-temperature sintering of lead-freeBi12(NaK)

12TiO3-based electrostrictive ceramics with CuO

additionrdquo Journal of the Korean Physical Society vol 61 no 6pp 899ndash902 2012

[101] V Q Nguyen H B Luong and D D Dang ldquoEnhancement ofelectrical field-induced strain in Bi

05(Na K)

05TiO3-based lead-

free piezoelectric ceramics role of phase transitionrdquo In press[102] A Zaman Y Iqbal A Hussain et al ldquoInfluence of zirconium

substitution on dielectric ferroelectric and field-induced strainbehaviors of lead-free 099[Bi

12(Na082

K018

)12(Ti1minus119909

Zr119909)O3]-

001LiSbO3ceramicsrdquo Journal of theKorean Physical Society vol

61 no 5 pp 773ndash778 2012[103] S Qiao J Wu B Wu B Zhang D Xiao and J Zhu ldquoEffect

of Ba085

Ca015

Ti090

Zr010

O3content on the microstructure and

electrical properties of Bi051

(Na082

K018

)050

TiO3ceramicsrdquo

Ceramics International vol 38 no 6 pp 4845ndash4851 2012[104] H Nagata M Yoshida Y Makiuchi and T Takenaka ldquoLarge

piezoelectric constant and high curie temperature of lead-freepiezoelectric ceramic ternary system based on bismuth sodiumtitanate-bismuth potassium titanate-barium titanate near themorphotropic phase boundaryrdquo Japanese Journal of AppliedPhysics vol 42 no 12 p 7401 2003

[105] Y Li W Chen Q Xu J Zhou X Gu and S Fang ldquoElec-tromechanical and dielectric properties of Na

05Bi05TiO3-

K05Bi05TiO3-BaTiO

3lead-free ceramicsrdquo Materials Chemistry

and Physics vol 94 no 2-3 pp 328ndash332 2005[106] Q Zhou C Zhou W Li J Cheng H Wang and C Yuan

Journal of Physics and Chemistry of Solids vol 72 p 909 2011[107] C Zhou X LiuW Lim andC Yuan ldquoMicrostructure and elec-

trical properties of Bi05Na05TiO3-Bi05K05TiO3-LiNbO

3lead-

free piezoelectric ceramicsrdquo Journal of Physics and Chemistry ofSolids vol 70 pp 541ndash545 2009

[108] C Zhou X Liu W Li C Yuan and G Chen ldquoStructure andelectrical properties of Bi

05(Na K)

05TiO3minusBiGaO

3lead-free

piezoelectric ceramicsrdquo Current Applied Physics vol 10 no 1pp 93ndash98 2010

[109] B Wu C Han D Xiao Z Wang J Zhu and J Wu ldquoInves-tigation of a new lead-free (089minus x)(Bi

05Na05)TiO3ndash011(Bi

05

K05)TiO3ndashxBa085

Ca015

Ti090

Zr010

O3ceramicsrdquo Materials Re-

search Bulletin vol 47 pp 3937ndash3940 2012

[110] M Zou H Fan L Chen and W Yang ldquoMicrostruc-ture and electrical properties of (1 minus 119909)[082Bi

05Na05TiO3ndash

018Bi05K05TiO3]ndashxBiFeO

3lead-free piezoelectric ceramicsrdquo

Journal of Alloys and Compounds vol 495 no 1 pp 280ndash2832010

[111] C ZhouX LiuW Li andCYuan ldquoDielectric andpiezoelectricproperties of Bi

05Na05TiO3ndashBi05K05TiO3ndashBiCrO

3lead-free

piezoelectric ceramicsrdquo Journal of Alloys and Compounds vol478 no 1-2 pp 381ndash385 2009

[112] H Yang X Shan C Zhou Q Zhou W Li and J ChengldquoMicrostructure dielectric and piezoelectric properties of lead-free Bi

05Na05

TiO3ndashBi05K05

TiO3ndashBiMnO

3ceramicsrdquo Bulletin

of Materials Science vol 36 pp 265ndash270 2013[113] M Bichurin V Petrov A Zakharov et al ldquoMagnetoelectric

interactions in lead-based and lead-free compositesrdquoMaterialsvol 4 no 4 pp 651ndash702 2011

[114] H S Han CW Ahn IW Kim A Hussain and J S Lee ldquoDes-tabilization of ferroelectric order in bismuth perovskite ceram-ics by A-site vacanciesrdquo Materials Letters vol 70 pp 98ndash1002012

[115] A Ullah CW Ahn A Hussain IW Kim H I Hwang andNK Cho ldquoStructural transition and large electric field-inducedstrain in BiAlO

3-modified Bi

05(Na08K02)05TiO3

lead-freepiezoelectric ceramicsrdquo Solid State Communications vol 150pp 1145ndash1149 2010

[116] A Ullah C W Ahn A Hussain S Y Lee J S Kim and I WKim ldquoEffect of potassium concentration on the structure andelectrical properties of lead-free Bi

05(NaK)

05TiO3ndashBiAlO

3

piezoelectric ceramicsrdquo Journal of Alloys and Compounds vol509 pp 3148ndash3154 2012

[117] K N Pham D T Hinh L H Yuong K Y Min and L SShin ldquoEffects of Bi(Mg12Sn 12)O3 modification on the dielec-tric and piezoelectric properties of Bi12(Na08K02)12TiO3ceramicsrdquo Journal of the Korean Ceramic Society vol 49 pp266ndash271 2012

[118] K N Pham H B Lee H S Han et al ldquoDielectric fer-roelectric and piezoelectric properties of Nb-substitutedBi12(Na082

K018

)12TiO3lead-free ceramicsrdquo Journal of the

Korean Ceramic Society vol 60 pp 207ndash211 2012[119] A Ullah C W Ahn and I W Kim ldquoDielectric

piezoelectric properties and field-induced large strain ofBi(Zn

05Ti05)O3-modified morphotropic phase boundary

Bi05(Na082

K018

)05TiO3

piezoelectric ceramicsrdquo JapaneseJournal of Applied Physics vol 51 Article ID 09MD07 2012

[120] H S Han W Jo J Rodel I K Hong W P Tai and J SLee ldquoCoexistence of ergodicity and nonergodicity in LaFeO

3-

modified Bi12(Na078

K022

)12TiO3relaxorsrdquo Journal of Physics

Condensed Matter vol 24 Article ID 365901 2012[121] H S Han W Jo J K Kang et al ldquoIncipient piezoelectrics and

electrostriction behavior in Sn-doped Bi12(Na082

K018

)12TiO3

lead-free ceramicsrdquo Journal of Applied Physics vol 113 ArticleID 154102 2013

[122] H B Lee D J Heo R A Malik C H Yoon H S Han and J SLee ldquoLead-free Bi

12(Na082

K018

)12TiO3ceramics exhibiting

large strain with small hysteresisrdquo Ceramics International vol39 pp S705ndashS708 2013

[123] D S Lee S J Jeong M S Kim and K H Kim ldquoEffectof sintering time on strain in ceramic composite con-sisting of 094Bi05(Na075K025)05TiO3ndash006BiAlO3 with(Bi05Na05)TiO3rdquo Japanese Journal of Applied Physics vol 52Article ID 021801 2013

Advances in Materials Science and Engineering 13

[124] J Hao W Bai W Li B Shen and J Zhai ldquoPhase transitionsrelaxor behavior and large strain response in LiNbO3-modifiedBi05(Na080K020)05TiO3 lead-free piezoceramicsrdquo Journalof Applied Physics vol 114 Article ID 044103 2013

[125] A Ullah C W Ahn A Ullah and I W Kim ldquoLarge strainunder a low electric field in lead-free bismuth-based piezo-electricsrdquo Applied Physics Letters vol 103 Article ID 0229062013

[126] N Kumar and D P Cann ldquoElectromechanical strainand bipolar fatigue in Bi(Mg

12Ti12)O3-(Bi12K12)TiO3-

(Bi12Na12)TiO3ceramicsrdquo Journal of Applied Physics vol 114

Article ID 054102 2013[127] T H Dinh H Y Lee C H Yoon et al ldquoEffect of lanthanum

doping on the structural ferroelectric and strain propertiesof Bi12(Na082

K018

)12TiO3lead-free ceramicsrdquo Journal of the

Korean Ceramic Society vol 62 pp 1004ndash1008 2013[128] P Jaita A Watcharapasorn D P Cann and S

Jiansirisomboon ldquoDielectric ferroelectric and electric field-induced strain behavior of Ba(Ti090Sn010)O3-modifiedBi05(Na080K020)05TiO3 lead-free piezoelectricsrdquo Journalof Alloys and Compounds vol 596 pp 98ndash106 2014

[129] AHussain J U Rahman A Zaman et al ldquoField-induced strainand polarization response in lead-free Bi12(Na080K020)12TiO3ndashSrZrO3 ceramicrdquo Materials Chemistry and Physics vol143 pp 1282ndash1288 2014

[130] A Ullah R A Malik D S Lee et al ldquoElectric-field-inducedphase transition and large strain in lead-free Nb-doped BNKT-BST ceramicsrdquo Journal of the European Ceramic Society vol 34pp 29ndash35 2014

[131] J Hao B Shen J Zhai and H Chen ldquoPhase transitionalbehavior and electric field-induced large strain in alkali niobate-modified Bi

05(Na080

K020

)05TiO3

lead-free piezoceramicsrdquoJournal of Applied Physics vol 115 Article ID 034101 2014

[132] A Zaman Y Iqbal A Hussain M H Kim and R A MalikldquoDielectric ferroelectric and field-induced strain properties ofTa-doped 099Bi

05(Na082

K018

)05TiO3ndash001LiSbO

3ceramicsrdquo

Journal of Materials Science vol 49 no 8 pp 3205ndash3214 2014[133] A Ullah A Ullah I W Kim D S Lee S J Jeong and C W

Ahn ldquoLarge electromechanical response in lead-free La-dopedBNKTBST piezoelectric ceramicsrdquo Journal of the AmericanCeramic Society vol 97 no 8 pp 2471ndash2478 2014

Submit your manuscripts athttpwwwhindawicom

ScientificaHindawi Publishing Corporationhttpwwwhindawicom Volume 2014

CorrosionInternational Journal of

Hindawi Publishing Corporationhttpwwwhindawicom Volume 2014

Polymer ScienceInternational Journal of

Hindawi Publishing Corporationhttpwwwhindawicom Volume 2014

Hindawi Publishing Corporationhttpwwwhindawicom Volume 2014

CeramicsJournal of

Hindawi Publishing Corporationhttpwwwhindawicom Volume 2014

CompositesJournal of

NanoparticlesJournal of

Hindawi Publishing Corporationhttpwwwhindawicom Volume 2014

Hindawi Publishing Corporationhttpwwwhindawicom Volume 2014

International Journal of

Biomaterials

Hindawi Publishing Corporationhttpwwwhindawicom Volume 2014

NanoscienceJournal of

TextilesHindawi Publishing Corporation httpwwwhindawicom Volume 2014

Journal of

NanotechnologyHindawi Publishing Corporationhttpwwwhindawicom Volume 2014

Journal of

CrystallographyJournal of

Hindawi Publishing Corporationhttpwwwhindawicom Volume 2014

The Scientific World JournalHindawi Publishing Corporation httpwwwhindawicom Volume 2014

Hindawi Publishing Corporationhttpwwwhindawicom Volume 2014

CoatingsJournal of

Advances in

Materials Science and EngineeringHindawi Publishing Corporationhttpwwwhindawicom Volume 2014

Smart Materials Research

Hindawi Publishing Corporationhttpwwwhindawicom Volume 2014

Hindawi Publishing Corporationhttpwwwhindawicom Volume 2014

MetallurgyJournal of

Hindawi Publishing Corporationhttpwwwhindawicom Volume 2014

BioMed Research International

MaterialsJournal of

Hindawi Publishing Corporationhttpwwwhindawicom Volume 2014

Nano

materials

Hindawi Publishing Corporationhttpwwwhindawicom Volume 2014

Journal ofNanomaterials

Page 5: Review Article Current Development in Lead-Free Bi (Na,K ...downloads.hindawi.com/journals/amse/2014/365391.pdf · Bi 2 O 3 and TiO 2 and alkali carbonate powder Na 2 CO 3 and K 2

Advances in Materials Science and Engineering 5

decreased when it was added with CuO [68] The 119878max119864maxwas 214 pmV for added 002mol CuO but it increased to427 pmV for added 002mol Nb

2O5[68] Jiang et al

obtained the best piezoelectric properties with 119896119901= 30

for 02 wt Mn2+ doped (Na05K02)05Bi05TiO3[69 70]

In addition the (Na05K02)05Bi05TiO3-05 wt Mn exhib-

ited strong ferroelectricity with remnant polarization 119875119903=

38 120583Ccm2 [69] Mn doping restrained the ferroelectricto antiferroelectric phase transition because of oxygenvacancy [69] Hu et al obtained the optimal electricproperties in 016 wt MnCO

3-added 74Bi

05Na05TiO3-

208Bi05K05TiO3-52BaTiO

3which displayed the piezoelec-

tric strain 11988933= 140 pCN mechanical coupling 119896

119901= 18

and mechanical quality 119876119898= 89 while the depolarization

temperature (119879119889) stays relatively high at 175∘C [71] The effect

of Mn and Co on electrostrains of Bi05Na05TiO3-BaTiO

3-

Bi05K05TiO3has been investigated by Shieh et al [72 73]

It was remarkable that Mn doping with an electrostrain ofabout 01 can bemaintainedwhen theMndoping amount isin between 05 and 15mol which were contrast for thecodoped Bi

05Na05TiO3-BaTiO

3-Bi05K05TiO3 the values of

electrostrain and 11988933

stay relatively constant regardless ofthe Co-doping level [72 73] The 030wt MnO-addedBi0485

Na0425

K006

Ba003

TiO3solid solutions were found to be

with optimal electrical properties of11988933= 109 pCNand 119896

119901=

32 [74] The highest 119896119901values for various dopants element

substitution in BNKThas been shown in Figure 1Thehighest119896

119901of 393 was reported for rare-earth Ce codoped with Li-

modification BNKT ceramics

313 Other Metal-Doped Bi05(NaK)

05TiO3 Do et al repo-

rted that Bi05(Na082

K018

)05TiO3ceramics had the value of

119878max119864max of 566 pmV when 2mol of Ta5+ substitutedon Ti4+ site which were compared to without dopants withvalue of 119878max119864max of 233 pmV [75] Pham et al obtainedthe enhancement 119878max119864max up to 641 pmV due to 3molNb5+ substitution on Ti4+ ions [76] Hussain et al reportedthe piezoelectric coefficient of 641 pmV for Zr4+ 043molconcentration substitution in Ti4+ site [77] In additionHussain et al found that Hf substitution with 3molat Ti-site resulted in enhancement of the electric-field-induced strain up to 475 pmV with corresponding strainof 038 at an applied electric field of 80 kVcm [78] Binhet al reported the EFIS of 278 pmV for 07 wt Y-dopedBi05(Na082

K018

)05TiO3which were higher than without

dopant of EFIS of 228 pmV [79] At this moment thehighest 119878max119864max was 727 pmV by codopant Li and Tain BNKT which was reported by Nguyen et al [80] The[Bi05(Na1minusxminusyKxLi119910)05]TiO3 ceramics show excellent piezo-

electric and ferroelectric properties and the optimum prop-erties were reported as follows piezoelectric constant 119889

33=

231 pCN planar and thickness electromechanical couplingfactors 119896

119901= 410 and 119896

119905= 505 remanent polarization

119875

119903= 402 120583Ccm2 and coercive field 119864

119888= 247 kVmm [81]

Recently Lee et al obtained 119878max119864max of 585 pmV for5mol Sn doped in Bi

05(Na082

K018

)05TiO3[46] Fur-

thermore Nguyen et al reported the enhancement EFISin Bi05(Na082

K018

)05Ti095

Sn005

O3by additives Li where

20

24

28

32

36

40

44

Ceramic compounds

Cou

plin

g fa

ctor

kp

()

[57]BNKT-(Li Ce)

[59]BNKT-(Li La)

[61]BNKT-Nd[58]BNKT-La[56]BNKT-Ce [63]BNKT-Gd

[65]BNKT-Ho

[66]BNKT-Er

[67]BNKT-Eu

[62]BNKT-Sm

Figure 1 The effect of electric coupling factor in case of variousdopants in BNKT

119878max119864max increased up to 646 pmV when 4mol Na wasreplaced with Li [82] Liao et al reported the effect of Kand Ag dopant concentrations in Bi

05Na05TiO3ceramics K-

and Ag-doped ceramics exhibited good performances withpiezoelectric constant 119889

33= 189 pCN electromechanical

coupling factor 119896119901= 350 remnant polarization 119875

119903=

395 120583Ccm2 and coercive field 119864119862= 23 kVmm [83]

Isikawa et al cosubstituted Ag into A-site and Ba into B-sitein BNKT and obtained enhancement in piezoelectric proper-ties [84] Moreover this group also pointed out that the addi-tion of La

2O3MnO to BNKAT-BT specimens displayed a

very large strain dynamic constant 119878max119864max of 415 pmVwhich results from the field-forced phase transition from theparaelectric phase to the ferroelectric phase [84]

314 Nonstoichiometric Effects in Bi05(NaK)

05TiO3 Ni et al

obtained the effects of A-site vacancy on the electricalproperties in lead-free nonstoichiometric ceramicsBi05+119909

(Na082

K018

)05minus3119909

TiO3and Bi

05+119910(Na082

K018

)05TiO3

[85 86] The generation of A-site vacancy leads to a randomdefect field which results in destroying the long-range orderphase induced by point field and makes the domain moveeasier However the effects of B-site vacancy or oxygenvacancy were not well-reported for BNKT system

32 Role of Solid Solution of Secondary 11986010158401198611015840O3Dopants in

Bi05(NaK)

05TiO3 At the MPB of BNK-BKT binary system

an electric-field-induced strain and dynamic piezoelectriccoefficient were 023 and 291 pmV respectively at anapplied electrical field of 80 kVcm which are the consideredvalue for application in electromechanical devices [87]Thesevalues were low as compared with PZT-based materialstherefore it is impossible to apply for real electronicdevices The recent researches tried to enhance the dynamicpiezoelectric coefficient by dopants via solid solution withother 11986010158401198611015840O

3perovskites In fact the solid solution with

small amount (simseveral mole percents) of 11986010158401198611015840O3perovskite

6 Advances in Materials Science and Engineering

to BNKT resulted in strong enhancement the 119878max119864maxvalues Ullah et al obtained large electric-field-induced strainin BiAlO

3-modified Bi

05(NaK)

05TiO3with 119878max119864max of

592 pmV at 3mol BiAlO3 near the tetragonal-pseudo-

cubic phase boundary [87] The 119878max119864max was slightlydecreased to 579 pmV via Bi

05La05AlO3-modified

Bi05(Na078

K022

)05TiO3

[88] Tran et al modifiedBi05(Na082

K018

)05TiO3ceramics with Sr(K

14Nb34

)O3and

got the significant temperature coefficient of 038 pmVK[89] Wang et al fabricated 5mol SrTiO

3-modified

Bi05(Na08K02)TiO3lead-free piezoceramic which had a

large unipolar strain of 036 (119878max119864max = 600 pmV)at a driving field of 60 kVcm at room temperature [90]The Bi(Zn

05Ti05)O3ceramic was found to enhance the

eletromechanical strain with 119878max119864max of 547 pmV and500 pmV for 5Bi(Zn

05Ti05)O3-40(Bi

05K05)TiO3-

55(Bi05Na05)TiO3and 2mol doped respectively [91ndash93]

Hussain et al obtained the 119878max119864max of 434 pmV with3mol K

05Na05NbO3-modified Bi

05(Na078

K022

)05TiO3

ceramic [94] The 82Bi05Na05TiO3-16Bi05K05TiO3-

3KNbO3ceramics had good performances with piezoelectric

constant 11988933= 138 pCN and electromechanical coupling

factor 119896119901= 38 [95] Do et al obtained the EFIS values of

443 pmV in 4mol LiTaO3-modified 78Bi

05Na05TiO3-

18Bi05K05TiO3[96] Ngoc et al reported that maximum

strain of 2mol BaZrO3-modified Bi

05(Na082

K018

)05TiO3

ceramics was two times higher than undoped case [97] Inaddition they pointed out that the modification EFISof BaZrO

3was better than that of BaTiO

3[98] The

electric-field-induced strain was significantly enhancedby the CaZrO

3-induced phase transition and reached

the highest value of 119878max119864max of 617 pmV whenBi05(Na078

K022

)05TiO3was doped with 3mol CaZrO

3

dopant [99] Kang et al obtained 119878max119864max of 333 pmVwith4mol additive Bi

05(Na082

K18)05TiO3 and it was further

increased to 363 pmV for 2mol CuO-added specimen[100] Recently we obtained the enhancement of 119878max119864maxup to 668 pmV due to modify A-site by Li in lead-freeBNKT-modified with CaZrO

3[101] Zaman et al obtained

119878max119864max of 500 pmV via codoped Zr and LiSbO3[102]

The Ba085

Ca015

Ti090

Zr010

O3 BaTiO

3 NaSbO

3 LiNbO

3

BiGaO3and Ba

085Ca015

Ti090

Zr010

O3were also found to

enhance the electromechanical properties when those weresolute in Bi

05(NaK)

05TiO3

[103ndash109] Interestinglythe multiferroics materials such as BiFeO

3 BiMnO

3

and BiCrO3-modified BNKT result in enhancement in

electromechanical properties [110ndash112] However solutionandor composite BNKT with ferromagnetic such asBNKT-CoFe

2O4and BNKT-Fe

3O4were not reported [113]

4 Discussion

The mechanism of giant electric-field-induced strain couldbe considered as (i) electric-field-induced phase transitionandor (ii) point-defect-mediated reversible domain switch-ing At room temperature the BNT system is in rhom-bohedral structure and BKT is in tetragonal structure

100

200

300

400

500

600

700

800

900

Ceramic compounds

[90]BNKT-Sr(K14Nb34)O3[99]BNKT-BaTiO3[101]BNKT-(Li CaZrO3)

[100]BNKT-CaZrO3[92]BNKT- Bi05Zn05Ti05O3[88]BNKT- BiAlO3

[102]BNKT-(Zr LiSbO3)[97]BNKT- LiTaO3

[95]BNKT- K05Na05NbO3

[88]BNKT- BiAlO3

BNKT-(LiTa)[81]

BNKT-Nb[77]BNKT-(Li Sn)[83]

BNKT-Zr[78]BNKT-Sn[47]

BNKT-Ta [76]

BNKT-Hf[79]

BNKT-La[58]

BNKT-Y[80]

Pure BNKT[80]

Sm

axE

max

(pm

V)

Figure 2 The effect of dopants and solid solution perovskite ABO3

to BNKT

Their solid solutions have rhombohedral-tetragonal mor-photropic phase boundary near 016ndash020 of BKT amount[14] The effects of elements dopants or codopants at A-or B-site of BNKT were found to be effective the piezo-electric properties by two mechanisms based on the dif-ference radii point of view Firstly the dopants distortedthe tolerance factor due to the difference the radii ofdopant in comparing with Na+ K+ Bi3+ or Ti4+ Thedistortion results in phase transition from tetragonal topseudocubic or tetragonal development from pseudocubicwhich was strongly related to electric-field-induced phasetransition mechanism Secondly the dopants created theoxygen vacancy due to difference the valence state when theradii were performed which were related to point-defect-mediated reversible domain switchingmechanismThe effectof dopants and solid solution11986010158401198611015840O

3to BNKThas been sum-

marized in Figure 2 The ceramics compositions displayedthe highest 119878max119864max values which were shown in detailsin Table 1 The highest 119878max119864max of each year was plottedat Figure 3 The result indicated that electric-field-inducedgiant strain of BNTK was comparable with that of PZT (suchas commercial PZT (PIC151)) and therefore these modifiedBNKT can become a promising piezoelectric ceramics toreplace the lead-based piezoelectric materials Actually the119878max119864max values of BNKT ceramics were increased whenthe element at B-site andor A-site of BNKT ceramics weremodified However the 119878max119864max values quickly increasedwith several percent of dopants and then decreased whenfurther dopants were added These phenomena were alsoobtained while 11986010158401198611015840O

3modified BNKT as solid solution

because 1198601015840 and 1198611015840 diffused as codopant at both A- and B-sites of BNKT with similar concentrationThe observation ofenhancement of dynamic piezoelectric coefficient was relatedto (i) distorted structure (ii) phase transition from polar tononpolar phase and (iii) polar phase growth inner nonpolarphase The recent explanation of phase transition due todopant based on distorted tolerance factor because radiusbetween host and dopants differed and oxygen vacancy

Advances in Materials Science and Engineering 7

Table 1 The detailed composition of BNKT-modified ceramics with highest electric-field-induced strain

Ceramic compounds 119878max119864max (pmV) References086Bi05Na05TiO3 minus 014Bi05K05TiO3 297 Izumi et al (2008) [31]La2O3MnO-added (1 minus y)(Bi05Na049minus119909K119909Ag001)TiO3 minus yBaTiO3 415 Isikawa et al (2009) [84]Bi05(Na082K018)05Ti097Nb003O3 641 Pham et al (2010) [76]Bi05(Na078K022)05TiO3 296 Ullah et al (2010) [87]097Bi05(Na078K022)05TiO3 minus 003BiAlO3 592 Ullah et al (2010) [87]095Bi05(Na08K02)05TiO3 minus 005BiAlO3 391 Ullah et al (2010) [115]099(K05Na05)095Li005NbO3 minus 001Bi05(K015Na085)05TiO3 330 Chen et al (2010) [33]Bi05(Na082K018)05TiO3 minus 07 wt Y2O3 278 Binh et al (2010) [79]Bi05(Na078K022)05Ti097Zr003O3 614 Hussain et al (2010) [77]Bi05(Na078K022)05(Ti097Hf003)O3 475 Hussain et al (2010) [78]Bi05(Na082K018)05Ti098Ta002O3 566 Do et al (2011) [75]Bi12Na12TiO3 minus Bi12K12TiO3 minus 002Bi(Zn12Ti12)O3 500 Dittmer et al (2011) [93]Bi05(Na075K025)05TiO3 minus BiAlO3 sim900 Lee et al (2011) [45]009Bi05(Na078K022)05TiO3 minus 001Bi05La05AlO3 579 Ullah et al (2012) [88]0975Bi05(Na078K022)05TiO3 minus 0025BiAlO3 533 Ullah et al (2012) [116]097Bi05(Na078K022)05TiO3 minus 003K05Na05NbO3 434 Hussain et al (2012) [94]Bi05Na0385Li0025K009Ti0975Ta0025O3 727 Nguyen et al (2012) [80]Bi05(Na082K018)05Ti095Sn005O3 585 Lee et al (2012) [46]094Bi12(Na08K02)12TiO3 minus 006Bi(Mg12Sn12)O3 633 Pham et al (2012) [117]Bi05(Na074Li08K018)05Ti095Sn005O3 646 Nguyen et al (2012) [82]Bi12(Na082K018)12(Ti097Nb003)O3 641 Pham et al (2012) [118]097Bi05(Na078K022)05TiO3 minus 003CaZrO3 617 Hong et al (2013) [99]095Bi05(Na08K02)05TiO3 minus 005SrTiO3 600 Wang et al (2012) [90]099Bi05(Na082K018)05Ti0980Zr0020O3 minus 001LiSbO3 500 Zaman et al (2012) [102]097Bi05(Na082K018)05 minus 003Bi(Zn05Ti05)O3 385 Ullah et al (2012) [119]5Bi(Zn05Ti05)O3 minus 40(Bi05K05)TiO3 minus 55(Bi05Na05)TiO3 547 Patterson et al (2012) [91]Bi05(Na082K018)05TiO3 minus 002CuO 214 Do et al (2012) [68]Bi05(Na082K018)05TiO3 minus 002CuO minus 002Nb2O5 427 Do et al (2012) [68]098Bi05(Na078K022)05TiO3 minus 002LaFeO3 sim500 Han et al (2012) [120]Bi05(Na082K018)05Ti095Sn005O3 sim600 Han et al (2013) [121]098Bi05(Na082K018)05TiO3 minus 002BaZrO3 437 Lee et al (2013) [122]097Bi05(Na082K018)05TiO3 minus 003CaZrO3 603 Lee et al (2013) [122]098Bi05(Na082K018)05TiO3 minus 002Ba08Ca02ZrO3 549 Lee et al (2013) [122]094Bi05(Na075K025)05TiO3 minus 006BiAlO3 930 Lee et al (2013) [123]0975Bi05(Na080K020)05TiO3 minus 0025LiNbO3 475 Hao et al (2013) [124]096Bi05(Na078K022)05TiO3 minus 004Bi(Mg05Ti05)O3 636 Ullah et al (2013) [125]40Bi05K05TiO3 minus 59Bi05Na05TiO3 minus 1Bi(Mg12Ti12)O3 422 Kumar and Cann (2013) [126][Bi12(Na082K018)12]097La003TiO3 715 Dinh et al (2013) [127]095Bi05(Na080K020)05TiO3 minus 005Ba(Ti090Sn010)O3 649 Jaita et al (2014) [128]097Bi05(Na080K020)05TiO3 minus 003SrZrO3 617 Hussain et al (2014) [129]099Bi05Na04K01Ti098Nb002O3 minus 001(Ba07Sr03)TiO3 634 Ullah et al (2014) [130]Bi05(Na080K020)05TiO3 minus (K119910Na1minus119910)NbO3 413ndash575 Hao et al (2014) [131]099Bi05(Na082K018)05Ti0987Ta0013O3 minus 001LiSbO3 650 Zaman et al (2014) [132]099[(Bi05Na04K01)0980La0020TiO3] minus 002[Ba07Sr03TiO3] 650 Ullah et al (2014) [133]

8 Advances in Materials Science and Engineering

2008 2009 2010 2011 2012 2013 20140

200

400

600

800

1000

1200

PZT (PIC151)

Year

Lead-free BNKT-based

PZT-based

Sm

axE

max

(pm

V)

Figure 3 The highest values 119878max119864max observation in years (from2008 to 2014) in lead-free BNKT-based ceramics

caused difference of valence states However the tolerancefactor has only estimated the range for stability of perovskitebut it was not showed for crystal symmetries Thus theseexplanations were unreliable The mechanism of electricalfield-induced strain was not well understood which stillrequired to further investigate Consequently the roles of A-and B-site on the electrical field-induced strain were uncleartill now However we expected that the 119878max119864max valueswere further increased by using multidopant with optimalconcentration of dopants for each position A- andor B-sitein BNKT ceramics

In case of rare-earth doped BNKT the enhancementof piezoelectric properties mostly resulted from the point-defect-mediated because rare-earth elements have variousvalences which was displayed by various radii of ion depend-ing on the valence stable state substitution For examplethe mechanism for the effect of CeO

2doped BNKT is

complicated because Ce ion possibly exists in the BNKTstructure in two valence states Ce4+ with radius of 092 Aand Ce3+ with radius of 103 A In view of the radius Ce3+is possible to fill in Bi3+ vacancies and Ce4+ can enter into theBi-site In this case Ce4+ functions as a donor dopant leadingto some vacancies of A-site in the lattice which facilitatesthe movement of domain wall to improve the piezoelectricproperties Another one is that Ce3+ and Ce4+ ions occupythe A-site of Na+ (119903Na+ = 097A) of BNKT compositionwhich are the same as the Ce4+ entering into Bi3+ [55 56] Inthese cases existing vacancies bring defect in lattice whichresults in an increasing in the dielectric loss and grain sizeand have some effects of piezoelectric properties In additionthe experiments demonstrated that rare-earth substitution inNa+ first leads to creation of oxygen vacancies and latticecontraction but when the dopants concentration is over acritical value then it begins to substitute for Bi3+ thus it leadsto lattice expansion [57ndash59]

In case of transitionmetal dopant inBNKT themost find-ings confirmed that dopants resulted in the lower sintering

temperature It is valuable inmarket due to reduction the costof electronic devices

In case of other metal dopant in BNKT there were mixedpoint-defect-mediated and electric-field-induced phase tran-sition mechanisms which depend on the valence and site-prefer to substitution For example the Ta5+ which replacedTi4+ at B-site leads to creation of A-site vacancies whichsignificantly contributed to the destabilization of ferroelectricphase in the Bi perovskite [75 80 114] These factors weresimilar to a case of nonstochiometric at A- and B-site ofBNKT where the vacancies were occurred

In case of solid solution between BNKT with other119860

1015840119861

1015840O3perovskites it is quite interesting because the ideal

was simple like tailor Some of 11986010158401198611015840O3perovskites were

unstable or hardly fabricated such as BiAlO3 but the theory

predicted that they should have goodpiezoelectric propertiesHowever interestingly they were stabled in solid solution inBNKT matrix and strong enhancement piezoelectric prop-erties Similarly the Bi

05Zn05TiO3(BZT) was a good ferro-

electric material and it was tailed their properties in BNKT-BZT as solid solution In addition BNKT-modified withBi05Li05TiO3has displayed the excellent piezoelectric con-

stant 11988933 Recently the multiferroic materials have rapidly

developed because they exhibited the electric field controlledferromagnetism and magnetic field controlled the electricpolarization However multiferroic properties of BNKT-based materials have not been reported Therefore we pro-posed that the solid solution andor composite of BNKTwith insulator ferromagnetism materials such as BiFeO

3and

CoFeO4could be a good display of multiferroics properties

which will promise candidate to develop new class of multi-ferroics materials

5 Conclusion

The current status of lead-free piezoelectric materials hasbeen introduced The lead-free BNKT-based ceramics werereviewed based on the fabrication method effect of dopantsand solid-solution with other 11986010158401198611015840O

3perovskite Most find-

ings confirmed that giant strain obtained in lead-free BNKT-based ceramics is due to phase transition from polar tononpolar phase and the highest 119878max119864max values werefound at theMPBHowever the origin of phase transitionwasstill debated The 119878max119864max values of lead-free BNKT-basedceramics are comparable with soft lead-based PZT-basedceramics which could be promising materials to readilyreplace the lead-based PZT-based materials in devices Inaddition the effects of secondary phase 11986010158401198611015840O

3as solid-

solution tailed the properties of BNKT matrix Our workreviewed current developments in lead-free BNKT-basedmaterials which were expected to understand current statusof researching about BNKT-based ceramics therefore to beguidance for designing new class materials and applications

Conflict of Interests

The authors declare that there is no conflict of interestsregarding the publication of this paper

Advances in Materials Science and Engineering 9

Acknowledgment

This work was financially supported by the Ministry of Edu-cation andTraining Vietnam under Project no B 20130155

References

[1] P K Panda ldquoReview environmental friendly lead-free piezo-electric materialsrdquo Journal of Materials Science vol 44 no 19pp 5049ndash5062 2009

[2] C A Randall R E Newnham and L E Cross History of theFirst Ferroelectric Oxide BaTiO

3 Materials Research Institute

The Pennsylvania State University University Park Pa USA2004

[3] E Ringgaard and T Wurlitzer ldquoLead-free piezoceramics basedon alkali niobatesrdquo Journal of the European Ceramic Society vol25 no 12 pp 2701ndash2706 2005

[4] T Takenaka and H Nagata ldquoCurrent status and prospects oflead-free piezoelectric ceramicsrdquo Journal of the EuropeanCeramic Society vol 25 no 12 pp 2693ndash2700 2005

[5] Ministry of Information Industry of the Peoplersquos Republic ofChina Industrial Standard of the peoplersquos Republich of China2006

[6] Japan Electronics and InformationTechnology Industries Asso-ciation Standard of Japan Electronics and Information Tech-nology Industries Association 1998

[7] TheEnvironment and Labor Committee of the National Assemblyof Korea 2007

[8] Y Li K S Moon and C P Wong ldquoElectronics without leadrdquoScience vol 308 no 5727 pp 1419ndash1420 2005

[9] E Cross ldquoLead-free at lastrdquoNature vol 432 no 7013 pp 24ndash252004

[10] G A Smolensky V A Isupov A I Agranovskaya and NN Krainic ldquoNew ferroelectrics with complex compounds IVrdquoFizika Tverdogo Tela vol 2 pp 2982ndash2985 1960

[11] G A Smolenskii and A I Agranovskaya ldquoDielectric polariza-tion of a series of compounds of complex compositionrdquo FizikaTverdogo Tela vol 1 pp 1562ndash1572 1959

[12] C F Buhrer ldquoSome properties of bismuth perovskitesrdquo TheJournal of Chemical Physics vol 36 pp 798ndash803 1962

[13] I P Pronin N N Parfenova N V Zaitseva V A Isupov andG A Smolenskii ldquoPhase transitions in solid solutions of sodi-umbismuth and potassiumbismuth titanatesrdquo Fizika TverdogoTela vol 24 pp 1060ndash1062 1982

[14] A Sasaki T Chiba Y Mamiya and E Otsuki ldquoDielectric andpiezoelectric properties of (Bi

05Na05)TiO3ndash(Bi05K05)TiO3sys-

temsrdquo Japanese Journal of Applied Physics vol 38 no 9 p 55641999

[15] G O Jones and P A Thomas ldquoInvestigation of the structureand phase transitions in the novel A-site substituted distortedperovskite compoundNa

05Bi05TiO3rdquoActa Crystallographica B

vol 58 pp 168ndash178 2002[16] PWoodward ldquoOctahedral tilting in perovskites I Geometrical

considerationsrdquo Acta Crystallographica B vol 53 pp 32ndash431997

[17] V A Isupov ldquoFerroelectric Na05Bi05TiO3and K

05Bi05TiO3

perovskites and their solid solutionsrdquo Ferroelectrics vol 315 no1 pp 123ndash147 2005

[18] I P Pronin P P Syrnikov V A Isupov V M Egorov N VZaitseva and A F Ioffe ldquoPeculiarities of phase transitions in

sodium-bismuth titanaterdquo Ferroelectrics vol 25 pp 395ndash3971980

[19] J A Zvirgzds P P Kapostis and J V Zvirgzde ldquoX-ray study ofphase transitions in efrroelectric Na

05Bi05TiO3rdquo Ferroelectrics

vol 40 no 1 pp 75ndash77 1982[20] J Suchanicz K Roleder A Kania and J Handerek ldquoElec-

trostrictive strain and pyroeffect in the region of phase coexis-tence in Na

05Bi05TiO3rdquo Ferroelectrics vol 77 pp 107ndash110 1988

[21] Y Chiang G W Farrey and A N Soukhojak ldquoLead-free high-strain single-crystal piezoelectrics in the alkaline-bismuth-titanate perovskite familyrdquo Applied Physics Letters vol 73 no25 pp 3683ndash3685 1998

[22] S M Emelyanov I P Raevskii V G Smotrakov and F ISavenko ldquoPiezoelectric and pyroelectric properties of sodium-bismuth titanate crystalsrdquo Fizika Tverdogo Tela vol 26 pp1897ndash1899 1984

[23] M L Zhao C LWangW L Zhong J FWang andHCChenldquoElectrical properties of (Bi

05Na05)TiO3ceramic prepared by

sol-gel methodrdquo Acta Physica Sinica vol 52 no 1 pp 229ndash2322003

[24] M L Zhao C L Wang W L Zhong J F Wang and Z F LildquoGrain-size effect on the dielectric properties of Bi

05Na05TiO3rdquo

Chinese Physics Letters vol 20 article 290 2003[25] B Jaffe W R Cook and H Jaffe Piezoelectric Ceramics

Academic Press London UK 1971[26] J Suchanicz ldquoTime evolution of the phase transformation in

Na05Bi05TiO3rdquo Ferrolectrics vol 200 no 1 pp 319ndash325 1997

[27] O N Razumovskaya T B Kuleshova and L M RudkovskayaldquoReactions of formation of BiF

119890O3 K05

Bi05TiO3 and

Na05Bi05TiO3rdquo Neorganicheskie Materialy [Inorganic Mat-

erials] vol 19 pp 113ndash115 1983[28] V V Ivanova A G Kapishev Y N Venevtsev and G S

Zhdanov ldquoX-ray determination of the symmetry of elemen-tary cells of the ferroelectric materials (K05Bi05)TiO3 and(Na05Bi05)TiO3 and of high-temperature phase transitionsin (K05Bi05)TiO3rdquo Izvestiya Akademii Nauk SSSR SeriyaFizicheskaya vol 26 pp 354ndash356 1962

[29] Y Hiruma R Aoyagi H Nagata and T Takenaka ldquoSynthesisand properties of 1-Methyl-4-2-[4-(dimethylamino)phenyl]-ethenylpyridinium p-toluenesulfonate derivatives with isomor-phous crystal structurerdquo Japanese Journal of Applied Physics vol44 p 5231 2005

[30] M Zhu L Hou Y Hou J Liu HWang andH Yan ldquoLead-free(K05Bi05)TiO3powders and ceramics prepared by a solndashgel

methodrdquo Materials Chemistry and Physics vol 99 no 2-3 pp329ndash332 2006

[31] M Izumi K Yamamoto M Suzuki Y Noguchi andM Miyayama ldquoLarge electric-field-induced strain inBi05Na05TiO3-Bi05K05TiO3

solid solution single crystalsrdquoApplied Physics Letters vol 93 Article ID 242903 2008

[32] T Tani ldquoCrystalline-oriented piezoelectric bulk ceramics witha perovskite-type structurerdquo Journal of the Korean PhysicalSociety vol 32 no 3 pp S1217ndashS1220 1998

[33] X Chen Y Liao H Wang et al ldquoPhase structure and electricproperties of Bi

05(Na0825

K0175

)05TiO3ceramics prepared by a

sol-gel methodrdquo Journal of Alloys and Compounds vol 493 no1-2 pp 368ndash371 2010

[34] Y Q Chen X J Zheng and W Li ldquoSize effect of mechanicalbehavior for lead-free (Na

082K018

)05Bi05TiO3nanofibers by

nanoindentationrdquoMaterials Science and Engineering A vol 527pp 5462ndash5466 2010

10 Advances in Materials Science and Engineering

[35] D YWang DM Lin K SWong KW Kwok J Y Dai and HL W Chan ldquoPiezoresponse and ferroelectric properties oflead-free [Bi

05(Na07K02Li01)05]TiO3thin films by pulsed laser

depositionrdquo Applied Physics Letters vol 92 no 22 Article ID222909 2008

[36] J Kreisel A M Glazer G Jones P A Thomas L Abello andG Lucazeau ldquoAn x-ray diffraction and Raman spectroscopyinvestigation of A-site substituted perovskite compounds the(Na1minus119909

K119909)05Bi05TiO3(0le xle1) solid solutionrdquo Journal of

Physics Condensed Matter vol 12 p 3267 2000[37] H Xie L Jin D Shen X Wang and G Shen ldquoMorphotropic

phase boundary segregation effect and crystal growth in theNBT-KBT systemrdquo Journal of Crystal Growth vol 311 no 14pp 3626ndash3630 2009

[38] O Elkechai M Manier and I P Mercurio ldquoNa05Bi05TiO3ndash

K05Bi05TiO3(NBT-KBT) system a structural and electrical

studyrdquo Physica Status Solidi vol 157 no 2 pp 499ndash506 1996[39] K Yoshii Y Hiruma H Nagata and T Takenaka ldquoElectrical

properties and depolarization temperature of (Bi12Na12)TiO3-

(Bi12K12)TiO3lead-free piezoelectric ceramicsrdquo Japanese Jour-

nal of Applied Physics vol 45 part 1 no 5B pp 4493ndash44972006

[40] M E Lines and A M Glass Principles and Applications forFerroelectrics and Related Materials Oxford University PressOxford UK 1979

[41] K Uchino Piezoelectric Actuators and Ultrasonic MotorsKluwer Academic Publishers Boston Mass USA 1996

[42] S T Zhang A B Kounga E Aulbach et al ldquoLead-free piezoce-ramics with giant strain in the system Bi

05Na05TiO3ndashBaTiO

3ndash

K05Na05NbO3 II Temperature dependent propertiesrdquo Journal

of Applied Physics vol 103 no 3 Article ID 034108 2008[43] S T Zhang A B Kounga E Aulbach H Ehrenberg and J

Rodel ldquoGiant strain in lead-free piezoceramics Bi05Na05TiO3ndash

BaTiO3ndashK05Na05NbO3systemrdquo Applied Physics Letters vol 91

Article ID 112906 2007[44] W Jo T Granzow E Aulbach J Rodel and D Damjanovic

ldquoOrigin of the large strain response in (K05Na05)NbO

3-

modified (Bi05Na05)TiO3ndashBaTiO

3lead-free piezoceramicsrdquo

Journal of Applied Physics vol 105 no 9 Article ID 0941022009

[45] D S Lee D H Lim M S Kim K H Kim and S J JeongldquoElectric field-induced deformation behavior in mixedBi05Na05TiO3and Bi

05(Na075

K025

)05TiO3-BiAlO

3rdquo Applied

Physics Letters vol 99 Article ID 062906 2011[46] J S Lee K N Pham H S Han H B Lee and V D N Tran

ldquoStrain enhancement of lead-free Bi12(Na082

K018

)12TiO3

ceramics by Sn dopingrdquo Journal of the Korean Physical Societyvol 60 no 2 pp 212ndash215 2012

[47] A Ullah CW Ahn A Hussain S Y Lee and IW Kim ldquoPhasetransition electrical properties and temperature-insensitivelarge strain in BiAlO

3-modified Bi

05(Na075

K025

)05TiO3lead-

free piezoelectric ceramicsrdquo Journal of the American CeramicSociety vol 94 no 11 pp 3915ndash3921 2011

[48] L J Rigoberto G Federico and V C Maria-Elena ldquoLead-free ferroelectric ceramics with perovskite structurerdquo inFerroelectrics-Material Aspects M Lattart Ed InTech 2011

[49] X Ren ldquoLarge electric-field-induced strain in ferroelectriccrystals by point-defect-mediated reversible domain switchingrdquoNature Materials vol 3 pp 91ndash94 2004

[50] W LWarren G E Pike K Vanheusden D Dimos B A Tuttleand J Robertson ldquoDefect-dipole alignment and tetragonal

strain in ferroelectricsrdquo Journal of Applied Physics vol 79 no12 pp 9250ndash9257 1996

[51] W L Warren D Dimos G E Pike K Vanheusden and RRamesh ldquoAlignment of defect dipoles in polycrystalline ferro-electricsrdquo Applied Physics Letters vol 67 p 1689 1995

[52] R Lohkamper H Neumann and G Arlt ldquoInternal biasin acceptor-doped BaTiO

3ceramics numerical evaluation of

increase and decreaserdquo Journal of Applied Physics vol 68 p4220 1990

[53] U Robels and G Arlt ldquoDomain wall clamping in ferroelectricsby orientation of defectsrdquo Journal of Applied Physics vol 73 no7 pp 3454ndash3460 1993

[54] H Fu and R E Cohen ldquoPolarization rotation mechanism forultrahigh electromechanical response in single-crystal piezo-electricsrdquo Nature vol 403 no 6767 pp 281ndash283 2000

[55] Y Li W Chen Q Xu J Zhou Y Wang and H SunldquoPiezoelectric and dielectric properties of CeO

2-doped

Bi05Na044

K006

TiO3

lead-free ceramicsrdquo Ceramics Inter-national vol 33 no 1 pp 95ndash99 2007

[56] Y Liao D Xiao D Lin et al ldquoThe effects of CeO2-

doping on piezoelectric and dielectric properties ofBi05(Na1minus119909minus119910

K119909Li119910)05TiO3piezoelectric ceramicsrdquo Materials

Science and Engineering B vol 133 no 1ndash3 pp 172ndash176 2006[57] B Wang L Luo F Ni P Du W Li and H Chen ldquoPiezoelectric

and ferroelectric properties of (Bi1minus119909

Na08K02Lax)05TiO3lead-

free ceramicsrdquo Journal of Alloys and Compounds vol 526 pp79ndash84 2012

[58] Y Yuan S Zhang and X Zhou ldquoEffects of La occupa-tion site on the dielectric and piezoelectric properties of[Bi05(Na075

K015

L119894010

)05]TiO3ceramicsrdquo Journal of Materials

Science Materials in Electronics vol 20 no 11 pp 1090ndash10942009

[59] Y Yuan S R Zhang and X H Zhou ldquoPhasetransitions and electrical properties in La3+-substitutedBi05(Na075

K015

Li010

)05TiO3ceramicsrdquo Journal of Materials

Science Letters vol 41 pp 565ndash567 2006[60] Z Yang Y Hou B Liu and L Wei ldquoStructure and

electrical properties of Nd2O3-doped 082Bi

05Na05TiO3ndash

018Bi05K05TiO3ceramicsrdquo Ceramics International vol 35 pp

1423ndash1427 2009[61] Y Zhang R Chu Z Xu et al ldquoPiezoelectric and dielectric prop-

erties of Sm2O3-doped

082Bi05Na05TiO3-0 18Bi

05K05TiO3

ceramicsrdquo Journal of Alloys and Compounds vol 502 no 2 pp341ndash345 2010

[62] P Fu Z Xu R Chu W Li WWang and Y Liu ldquoGd2O3doped

082Bi05Na05TiO3ndash018Bi

05K05TiO3

lead-free piezoelectricceramicsrdquoMaterials amp Design vol 35 pp 267ndash280 2012

[63] C Zhi-Hui D Jian-Ning M Lin Y Ning-Yi and Z Wei-WeildquoPiezoelectric and dielectric properties of Dy

2O3-Doped Bi

05

(Na082

K018

)05TiO3lead-free ceramicsrdquo Ferroelectrics vol 425

no 1 pp 63ndash71 2011[64] P Fu Z Xu R Chu XWuW Li andH Zhang ldquoStructure and

electrical properties of the Ho2O3doped 082Bi

05Na05TiO3-

018Bi05K05TiO3lead-free piezoelectric ceramicsrdquo Journal of

Materials Science Materials in Electronics vol 23 no 12 pp2167ndash2172 2012

[65] P Fu Z Xu H Zhang R Chu W Li and M Zhao ldquoStructureand electrical properties of Er

2O3doped 082Bi

05Na05TiO3ndash

018Bi05K05TiO3lead-free piezoelectric ceramicsrdquoMaterials amp

Design vol 40 pp 373ndash377 2012

Advances in Materials Science and Engineering 11

[66] P Fu Z Xu R Chu W Li Q Xie and G Zhang ldquoEffectsof Eu

2O3

on the structure and electrical properties of082Bi

05Na05TiO3-018Bi

05K05TiO3

lead-free piezoelectricceramicsrdquo Current Applied Physics vol 11 pp 822ndash826 2011

[67] H Han N Do K Pham et al ldquoSintering behaviour andpiezoelectric properties of CuO-added lead-free Bi(NaK)TiO

3

ceramicsrdquo Ferroelectrics vol 421 no 1 pp 88ndash91 2011[68] N B Do H D Jang I Hong et al ldquoLow temperature sintering

of lead-free Bi05(Na082

K018

)05TiO3piezoelectric ceramics by

co-doping with CuO and Nb2O5rdquo Ceramics International vol

38S pp S359ndashS362 2012[69] X P Jiang L Z Li M Zeng and H L W Chan ldquoDielec-

tric properties of Mn-doped (Na08K02)05Bi05TiO3ceramicsrdquo

Materials Letters vol 60 no 15 pp 1786ndash1790 2006[70] J Xiangping L Longzhu J Fulan Z Yanyan and L Lihua

ldquoEffects of Mn-doping on the piezoelectric and ferroelectricproperties of (Na

08K02)05Bi05TiO3ceramicsrdquo Key Engineering

Materials vol 368-372 pp 69ndash71 2008[71] H Hu M Zhu Y Hou and H Yan ldquoDielectric piezoelectric

and ferroelectric properties of MnCO3-added 74(Bi

12Na12)

TiO3-208(Bi

12K12)TiO3-52BaTiO

3lead-free piezoelectric

ceramicsrdquo IEEE Transactions on Ultrasonics Ferroelectrics andFrequency Control vol 56 pp 897ndash905 2009

[72] J Shieh Y C Lin and C S Chen ldquoIntricate straining ofmanganese-doped (Bi

05Na05)TiO3-BaTiO

3-(Bi05K05)TiO3

lead-free ferroelectric ceramicsrdquo Journal of Physics D AppliedPhysics vol 43 no 2 Article ID 025404 2010

[73] J Shieh Y C Lin and S C Chen ldquoInfluence of phase com-position on electrostrains of doped (Bi

05Na05)TiO3ndashBaTiO

3ndash

(Bi05K05)TiO3lead-free ferroelectric ceramicsrdquo Smart Materi-

als and Structures vol 19 no 9 Article ID 094007 2010[74] M Zhu H Hu N Lei Y Hou and H YanInt ldquoMnO modifi-

cation on microstructure and electrical properties of lead-freeBi0485

Na0425

K006

Ba003

TiO3

solid solution around mor-photropic phase boundaryrdquo International Journal of AppliedCeramic Technology vol 7 pp E107ndashE113 2010

[75] N BDoH B Lee CHYoon J KKang and J S Lee ldquoEffect ofTa-substitution on the ferroelectric and piezoelectric propertiesof Bi05(Na082

K018

)05TiO3ceramicsrdquoTransactions on Electrical

and Electronic Materials vol 12 no 2 pp 64ndash67 2011[76] K N Pham A Hussain CW Ahn I W Kim S J Jeong and J

S Lee ldquoGiant strain in Nb-doped Bi05(Na082

K018

)05TiO3lead-

free electromechanical ceramicsrdquoMaterials Letters vol 64 no20 pp 2219ndash2222 2010

[77] A Hussain C W Ahn J S Lee A Ullah and I W KimldquoLarge electric-field-induced strain in Zr-modified lead-freeBi05(Na078

K022

)05TiO3piezoelectric ceramicsrdquo Sensors and

Actuators A vol 158 no 1 pp 84ndash89 2010[78] AHussain CWAhn AUllah J S Lee and IWKim ldquoEffects

of hafnium substitution on dielectric and electromechanicalproperties of lead-free Bi

05(Na078

K022

)05(Ti1minus119909

Hfx)O3Ceram-

icsrdquo Japanese Journal of Applied Physics vol 49 Article ID041504 2010

[79] D N Binh A Hussain H Lee et al ldquoEnhanced electric-field-induced strain at the ferroelectric-electrostrcitive phaseboundary of yttrium-doped Bi

05(Na082

K018

)05TiO3lead-free

piezoelectric ceramicsrdquo Journal of the Korean Physical Societyvol 57 no 41 pp 892ndash896 2010

[80] V Nguyen H Han K Kim D Dang K Ahn and J Lee ldquoStrainenhancement in Bi

12(Na082

K018

)12TiO3lead-free electrome-

chanical ceramics by co-dopingwith Li andTardquo Journal of Alloysand Compounds vol 511 no 1 pp 237ndash241 2012

[81] D Lin D Xiao J Zhu and P Yu ldquoPiezoelectric and ferroelectricproperties of lead-free piezoelectric ceramicsrdquo Applied PhysicsLetters vol 88 no 6 Article ID 062901 2006

[82] V Nguyen C Hong H Lee Y M Kong J Lee and K AhnldquoEnhancement in the microstructure and the strain propertiesof Bi12(NaK)

12TiO3-based lead-free ceramics by Li substitu-

tionrdquo Journal of the Korean Physical Society vol 61 no 6 pp895ndash898 2012

[83] Y Liao D Xiao and D Lin ldquoApplication of quantum cascadelasers to trace gas analysisrdquo Applied Physics B vol 90 pp 165ndash176 2008

[84] Y Isikawa Y Akiyama and T Hayashi ldquoPiezoelectric anddielectric properties of (BiNaKAg)TiO

3-BaTiO

3lead-free

piezoelectric ceramicsrdquo Japanese Journal of Applied Physics vol48 Article ID 09KD03 2009

[85] F Ni L Luo X Pan W Li and J Zhu ldquoEffects of A-sitevacancy on the electrical properties in lead-free non-stoichiometric ceramics Bi

05+119909(Na082

K018

)05minus3119909

TiO3

andBi05+119910

(Na082

K018

)05TiO3rdquo Journal of Alloys and Compounds

vol 541 pp 150ndash156 2012[86] F Ni L Luo W Lim and H Chen ldquoA-site vacancy-induced

giant strain and the electrical properties in non-stoichiometricceramics Bi

05+119909(Na1minus119910

K119910)05minus3119909

TiO3rdquo Journal of Physics D

Applied Physics vol 45 no 41 Article ID 415103 2012[87] A Ullah C W Ahn A Hussain S Y Lee H J Lee and I W

Kim ldquoPhase transitions and large electric field-induced strainin BiAlO

3-modified Bi

05(Na K)

05TiO3lead-free piezoelectric

ceramicsrdquo Current Applied Physics vol 10 pp 1174ndash1181 2010[88] A Ullah C W Ahn S Y Lee J S Kim and I W Kim ldquoStruc-

ture ferroelectric properties and electric field-induced largestrain in lead-free Bi

05(NaK)

05TiO3-(Bi05La05)AlO3piezo-

electric ceramicsrdquo Ceramics International vol 38 no 1 ppS363ndashS368 2012

[89] V DN Tran H S Han CH Yoon J S LeeW Jo and J RodelldquoLead-free electrostrictive bismuth perovskite ceramics withthermally stable field-induced strainsrdquoMaterials Letters vol 65pp 2607ndash2609 2011

[90] K Wang A Hussain W Jo and J Rodel ldquoTemperature-dependent properties of (Bi

12Na12)TiO3-(Bi12K12)TiO3-

SrTiO3

lead-free piezoceramicsrdquo Journal of the AmericanCeramic Society vol 95 no 7 pp 2241ndash2247 2012

[91] E A Patterson D P Cann J Pokomy and I M Reaney ldquoElec-tromechanical strain in Bi(Zn

12Ti12)O3-(Bi12Na12)TiO3-

(Bi12K12)TiO3solid solutionsrdquo Journal Of Applied Physics vol

111 Article ID 094105 2012[92] E A Patterson and D P Cann ldquoBipolar piezoelectric

fatigue of Bi(Zn05Ti05)O3-(Bi05K05)TiO3-(Bi05Na05)TiO3Pb-

free ceramicsrdquo Applied Physics Letters vol 101 Article ID042905 2012

[93] R Dittmer W Jo J Daniels S Schaab and JRodel ldquoRelaxor characteristics of morphotropic phaseboundary (Bi

12Na12)TiO3-(Bi12K12)TiO3

modified withBi(Zn

12Ti12)O3rdquo Journal of the American Ceramic Society vol

94 no 12 pp 4283ndash4290 2011[94] A Hussain C W Ahn A Ullah J S Lee and I W Kim

ldquoDielectric ferroelectric and field-induced strain behavior ofK05Na05NbO3-modified Bi

05(Na078

K022

)05TiO3

lead-freeceramicsrdquo Ceramics International vol 38 no 5 pp 4143ndash41492012

12 Advances in Materials Science and Engineering

[95] G Fan W Lu X Wang and F Liang ldquoMorphotropic phaseboundary and piezoelectric properties of (Bi

12Na12)TiO3ndash

(Bi12K12)TiO3ndashKNbO

3lead-free piezoelectric ceramicsrdquo

Applied Physics Letters vol 91 Article ID 202908 2007[96] N B Do H B Lee D T Le et al ldquoElectric field-induced strain

of lead-free Bi05Na05TiO3ndashBi05K05TiO3ceramics modified

with LiTaO3rdquoCurrent Applied Physics vol 11 no 3 supplement

pp S134ndashS137 2011[97] T V D Ngoc H S Han K J Kim et al ldquoRelaxor and field-

induced strain behavior in lead-free Bi05(Na082

K018

)05TiO3

ceramics modified with BaZrO3rdquo Journal of Ceramic Processing

Research vol 13 supplement 2 pp s177ndashs180 2012[98] V D N Tran A Hussain H S Han et al ldquoComparison of

ferroelectric and strain properties between BaTiO3- and

BaZrO3-modified Bi

12(Na082

K018

)12TiO3ceramicsrdquo Japanese

Journal of Applied Physics vol 51 Article ID 09MD02 2012[99] I KHongH SHan CH YoonHN JiW P Tai and J S Lee

ldquoStrain enhancement in lead-free Bi05(Na078

K022

)05TiO3

ceramics by CaZrO3

substitutionrdquo Journal of IntelligentMaterial Systems and Structures vol 24 no 11 pp 1343ndash13492013 (Swedish)

[100] J K Kang D J Heo V Q Nguyen H S Han J S Leeand K K Ahn ldquoLow-temperature sintering of lead-freeBi12(NaK)

12TiO3-based electrostrictive ceramics with CuO

additionrdquo Journal of the Korean Physical Society vol 61 no 6pp 899ndash902 2012

[101] V Q Nguyen H B Luong and D D Dang ldquoEnhancement ofelectrical field-induced strain in Bi

05(Na K)

05TiO3-based lead-

free piezoelectric ceramics role of phase transitionrdquo In press[102] A Zaman Y Iqbal A Hussain et al ldquoInfluence of zirconium

substitution on dielectric ferroelectric and field-induced strainbehaviors of lead-free 099[Bi

12(Na082

K018

)12(Ti1minus119909

Zr119909)O3]-

001LiSbO3ceramicsrdquo Journal of theKorean Physical Society vol

61 no 5 pp 773ndash778 2012[103] S Qiao J Wu B Wu B Zhang D Xiao and J Zhu ldquoEffect

of Ba085

Ca015

Ti090

Zr010

O3content on the microstructure and

electrical properties of Bi051

(Na082

K018

)050

TiO3ceramicsrdquo

Ceramics International vol 38 no 6 pp 4845ndash4851 2012[104] H Nagata M Yoshida Y Makiuchi and T Takenaka ldquoLarge

piezoelectric constant and high curie temperature of lead-freepiezoelectric ceramic ternary system based on bismuth sodiumtitanate-bismuth potassium titanate-barium titanate near themorphotropic phase boundaryrdquo Japanese Journal of AppliedPhysics vol 42 no 12 p 7401 2003

[105] Y Li W Chen Q Xu J Zhou X Gu and S Fang ldquoElec-tromechanical and dielectric properties of Na

05Bi05TiO3-

K05Bi05TiO3-BaTiO

3lead-free ceramicsrdquo Materials Chemistry

and Physics vol 94 no 2-3 pp 328ndash332 2005[106] Q Zhou C Zhou W Li J Cheng H Wang and C Yuan

Journal of Physics and Chemistry of Solids vol 72 p 909 2011[107] C Zhou X LiuW Lim andC Yuan ldquoMicrostructure and elec-

trical properties of Bi05Na05TiO3-Bi05K05TiO3-LiNbO

3lead-

free piezoelectric ceramicsrdquo Journal of Physics and Chemistry ofSolids vol 70 pp 541ndash545 2009

[108] C Zhou X Liu W Li C Yuan and G Chen ldquoStructure andelectrical properties of Bi

05(Na K)

05TiO3minusBiGaO

3lead-free

piezoelectric ceramicsrdquo Current Applied Physics vol 10 no 1pp 93ndash98 2010

[109] B Wu C Han D Xiao Z Wang J Zhu and J Wu ldquoInves-tigation of a new lead-free (089minus x)(Bi

05Na05)TiO3ndash011(Bi

05

K05)TiO3ndashxBa085

Ca015

Ti090

Zr010

O3ceramicsrdquo Materials Re-

search Bulletin vol 47 pp 3937ndash3940 2012

[110] M Zou H Fan L Chen and W Yang ldquoMicrostruc-ture and electrical properties of (1 minus 119909)[082Bi

05Na05TiO3ndash

018Bi05K05TiO3]ndashxBiFeO

3lead-free piezoelectric ceramicsrdquo

Journal of Alloys and Compounds vol 495 no 1 pp 280ndash2832010

[111] C ZhouX LiuW Li andCYuan ldquoDielectric andpiezoelectricproperties of Bi

05Na05TiO3ndashBi05K05TiO3ndashBiCrO

3lead-free

piezoelectric ceramicsrdquo Journal of Alloys and Compounds vol478 no 1-2 pp 381ndash385 2009

[112] H Yang X Shan C Zhou Q Zhou W Li and J ChengldquoMicrostructure dielectric and piezoelectric properties of lead-free Bi

05Na05

TiO3ndashBi05K05

TiO3ndashBiMnO

3ceramicsrdquo Bulletin

of Materials Science vol 36 pp 265ndash270 2013[113] M Bichurin V Petrov A Zakharov et al ldquoMagnetoelectric

interactions in lead-based and lead-free compositesrdquoMaterialsvol 4 no 4 pp 651ndash702 2011

[114] H S Han CW Ahn IW Kim A Hussain and J S Lee ldquoDes-tabilization of ferroelectric order in bismuth perovskite ceram-ics by A-site vacanciesrdquo Materials Letters vol 70 pp 98ndash1002012

[115] A Ullah CW Ahn A Hussain IW Kim H I Hwang andNK Cho ldquoStructural transition and large electric field-inducedstrain in BiAlO

3-modified Bi

05(Na08K02)05TiO3

lead-freepiezoelectric ceramicsrdquo Solid State Communications vol 150pp 1145ndash1149 2010

[116] A Ullah C W Ahn A Hussain S Y Lee J S Kim and I WKim ldquoEffect of potassium concentration on the structure andelectrical properties of lead-free Bi

05(NaK)

05TiO3ndashBiAlO

3

piezoelectric ceramicsrdquo Journal of Alloys and Compounds vol509 pp 3148ndash3154 2012

[117] K N Pham D T Hinh L H Yuong K Y Min and L SShin ldquoEffects of Bi(Mg12Sn 12)O3 modification on the dielec-tric and piezoelectric properties of Bi12(Na08K02)12TiO3ceramicsrdquo Journal of the Korean Ceramic Society vol 49 pp266ndash271 2012

[118] K N Pham H B Lee H S Han et al ldquoDielectric fer-roelectric and piezoelectric properties of Nb-substitutedBi12(Na082

K018

)12TiO3lead-free ceramicsrdquo Journal of the

Korean Ceramic Society vol 60 pp 207ndash211 2012[119] A Ullah C W Ahn and I W Kim ldquoDielectric

piezoelectric properties and field-induced large strain ofBi(Zn

05Ti05)O3-modified morphotropic phase boundary

Bi05(Na082

K018

)05TiO3

piezoelectric ceramicsrdquo JapaneseJournal of Applied Physics vol 51 Article ID 09MD07 2012

[120] H S Han W Jo J Rodel I K Hong W P Tai and J SLee ldquoCoexistence of ergodicity and nonergodicity in LaFeO

3-

modified Bi12(Na078

K022

)12TiO3relaxorsrdquo Journal of Physics

Condensed Matter vol 24 Article ID 365901 2012[121] H S Han W Jo J K Kang et al ldquoIncipient piezoelectrics and

electrostriction behavior in Sn-doped Bi12(Na082

K018

)12TiO3

lead-free ceramicsrdquo Journal of Applied Physics vol 113 ArticleID 154102 2013

[122] H B Lee D J Heo R A Malik C H Yoon H S Han and J SLee ldquoLead-free Bi

12(Na082

K018

)12TiO3ceramics exhibiting

large strain with small hysteresisrdquo Ceramics International vol39 pp S705ndashS708 2013

[123] D S Lee S J Jeong M S Kim and K H Kim ldquoEffectof sintering time on strain in ceramic composite con-sisting of 094Bi05(Na075K025)05TiO3ndash006BiAlO3 with(Bi05Na05)TiO3rdquo Japanese Journal of Applied Physics vol 52Article ID 021801 2013

Advances in Materials Science and Engineering 13

[124] J Hao W Bai W Li B Shen and J Zhai ldquoPhase transitionsrelaxor behavior and large strain response in LiNbO3-modifiedBi05(Na080K020)05TiO3 lead-free piezoceramicsrdquo Journalof Applied Physics vol 114 Article ID 044103 2013

[125] A Ullah C W Ahn A Ullah and I W Kim ldquoLarge strainunder a low electric field in lead-free bismuth-based piezo-electricsrdquo Applied Physics Letters vol 103 Article ID 0229062013

[126] N Kumar and D P Cann ldquoElectromechanical strainand bipolar fatigue in Bi(Mg

12Ti12)O3-(Bi12K12)TiO3-

(Bi12Na12)TiO3ceramicsrdquo Journal of Applied Physics vol 114

Article ID 054102 2013[127] T H Dinh H Y Lee C H Yoon et al ldquoEffect of lanthanum

doping on the structural ferroelectric and strain propertiesof Bi12(Na082

K018

)12TiO3lead-free ceramicsrdquo Journal of the

Korean Ceramic Society vol 62 pp 1004ndash1008 2013[128] P Jaita A Watcharapasorn D P Cann and S

Jiansirisomboon ldquoDielectric ferroelectric and electric field-induced strain behavior of Ba(Ti090Sn010)O3-modifiedBi05(Na080K020)05TiO3 lead-free piezoelectricsrdquo Journalof Alloys and Compounds vol 596 pp 98ndash106 2014

[129] AHussain J U Rahman A Zaman et al ldquoField-induced strainand polarization response in lead-free Bi12(Na080K020)12TiO3ndashSrZrO3 ceramicrdquo Materials Chemistry and Physics vol143 pp 1282ndash1288 2014

[130] A Ullah R A Malik D S Lee et al ldquoElectric-field-inducedphase transition and large strain in lead-free Nb-doped BNKT-BST ceramicsrdquo Journal of the European Ceramic Society vol 34pp 29ndash35 2014

[131] J Hao B Shen J Zhai and H Chen ldquoPhase transitionalbehavior and electric field-induced large strain in alkali niobate-modified Bi

05(Na080

K020

)05TiO3

lead-free piezoceramicsrdquoJournal of Applied Physics vol 115 Article ID 034101 2014

[132] A Zaman Y Iqbal A Hussain M H Kim and R A MalikldquoDielectric ferroelectric and field-induced strain properties ofTa-doped 099Bi

05(Na082

K018

)05TiO3ndash001LiSbO

3ceramicsrdquo

Journal of Materials Science vol 49 no 8 pp 3205ndash3214 2014[133] A Ullah A Ullah I W Kim D S Lee S J Jeong and C W

Ahn ldquoLarge electromechanical response in lead-free La-dopedBNKTBST piezoelectric ceramicsrdquo Journal of the AmericanCeramic Society vol 97 no 8 pp 2471ndash2478 2014

Submit your manuscripts athttpwwwhindawicom

ScientificaHindawi Publishing Corporationhttpwwwhindawicom Volume 2014

CorrosionInternational Journal of

Hindawi Publishing Corporationhttpwwwhindawicom Volume 2014

Polymer ScienceInternational Journal of

Hindawi Publishing Corporationhttpwwwhindawicom Volume 2014

Hindawi Publishing Corporationhttpwwwhindawicom Volume 2014

CeramicsJournal of

Hindawi Publishing Corporationhttpwwwhindawicom Volume 2014

CompositesJournal of

NanoparticlesJournal of

Hindawi Publishing Corporationhttpwwwhindawicom Volume 2014

Hindawi Publishing Corporationhttpwwwhindawicom Volume 2014

International Journal of

Biomaterials

Hindawi Publishing Corporationhttpwwwhindawicom Volume 2014

NanoscienceJournal of

TextilesHindawi Publishing Corporation httpwwwhindawicom Volume 2014

Journal of

NanotechnologyHindawi Publishing Corporationhttpwwwhindawicom Volume 2014

Journal of

CrystallographyJournal of

Hindawi Publishing Corporationhttpwwwhindawicom Volume 2014

The Scientific World JournalHindawi Publishing Corporation httpwwwhindawicom Volume 2014

Hindawi Publishing Corporationhttpwwwhindawicom Volume 2014

CoatingsJournal of

Advances in

Materials Science and EngineeringHindawi Publishing Corporationhttpwwwhindawicom Volume 2014

Smart Materials Research

Hindawi Publishing Corporationhttpwwwhindawicom Volume 2014

Hindawi Publishing Corporationhttpwwwhindawicom Volume 2014

MetallurgyJournal of

Hindawi Publishing Corporationhttpwwwhindawicom Volume 2014

BioMed Research International

MaterialsJournal of

Hindawi Publishing Corporationhttpwwwhindawicom Volume 2014

Nano

materials

Hindawi Publishing Corporationhttpwwwhindawicom Volume 2014

Journal ofNanomaterials

Page 6: Review Article Current Development in Lead-Free Bi (Na,K ...downloads.hindawi.com/journals/amse/2014/365391.pdf · Bi 2 O 3 and TiO 2 and alkali carbonate powder Na 2 CO 3 and K 2

6 Advances in Materials Science and Engineering

to BNKT resulted in strong enhancement the 119878max119864maxvalues Ullah et al obtained large electric-field-induced strainin BiAlO

3-modified Bi

05(NaK)

05TiO3with 119878max119864max of

592 pmV at 3mol BiAlO3 near the tetragonal-pseudo-

cubic phase boundary [87] The 119878max119864max was slightlydecreased to 579 pmV via Bi

05La05AlO3-modified

Bi05(Na078

K022

)05TiO3

[88] Tran et al modifiedBi05(Na082

K018

)05TiO3ceramics with Sr(K

14Nb34

)O3and

got the significant temperature coefficient of 038 pmVK[89] Wang et al fabricated 5mol SrTiO

3-modified

Bi05(Na08K02)TiO3lead-free piezoceramic which had a

large unipolar strain of 036 (119878max119864max = 600 pmV)at a driving field of 60 kVcm at room temperature [90]The Bi(Zn

05Ti05)O3ceramic was found to enhance the

eletromechanical strain with 119878max119864max of 547 pmV and500 pmV for 5Bi(Zn

05Ti05)O3-40(Bi

05K05)TiO3-

55(Bi05Na05)TiO3and 2mol doped respectively [91ndash93]

Hussain et al obtained the 119878max119864max of 434 pmV with3mol K

05Na05NbO3-modified Bi

05(Na078

K022

)05TiO3

ceramic [94] The 82Bi05Na05TiO3-16Bi05K05TiO3-

3KNbO3ceramics had good performances with piezoelectric

constant 11988933= 138 pCN and electromechanical coupling

factor 119896119901= 38 [95] Do et al obtained the EFIS values of

443 pmV in 4mol LiTaO3-modified 78Bi

05Na05TiO3-

18Bi05K05TiO3[96] Ngoc et al reported that maximum

strain of 2mol BaZrO3-modified Bi

05(Na082

K018

)05TiO3

ceramics was two times higher than undoped case [97] Inaddition they pointed out that the modification EFISof BaZrO

3was better than that of BaTiO

3[98] The

electric-field-induced strain was significantly enhancedby the CaZrO

3-induced phase transition and reached

the highest value of 119878max119864max of 617 pmV whenBi05(Na078

K022

)05TiO3was doped with 3mol CaZrO

3

dopant [99] Kang et al obtained 119878max119864max of 333 pmVwith4mol additive Bi

05(Na082

K18)05TiO3 and it was further

increased to 363 pmV for 2mol CuO-added specimen[100] Recently we obtained the enhancement of 119878max119864maxup to 668 pmV due to modify A-site by Li in lead-freeBNKT-modified with CaZrO

3[101] Zaman et al obtained

119878max119864max of 500 pmV via codoped Zr and LiSbO3[102]

The Ba085

Ca015

Ti090

Zr010

O3 BaTiO

3 NaSbO

3 LiNbO

3

BiGaO3and Ba

085Ca015

Ti090

Zr010

O3were also found to

enhance the electromechanical properties when those weresolute in Bi

05(NaK)

05TiO3

[103ndash109] Interestinglythe multiferroics materials such as BiFeO

3 BiMnO

3

and BiCrO3-modified BNKT result in enhancement in

electromechanical properties [110ndash112] However solutionandor composite BNKT with ferromagnetic such asBNKT-CoFe

2O4and BNKT-Fe

3O4were not reported [113]

4 Discussion

The mechanism of giant electric-field-induced strain couldbe considered as (i) electric-field-induced phase transitionandor (ii) point-defect-mediated reversible domain switch-ing At room temperature the BNT system is in rhom-bohedral structure and BKT is in tetragonal structure

100

200

300

400

500

600

700

800

900

Ceramic compounds

[90]BNKT-Sr(K14Nb34)O3[99]BNKT-BaTiO3[101]BNKT-(Li CaZrO3)

[100]BNKT-CaZrO3[92]BNKT- Bi05Zn05Ti05O3[88]BNKT- BiAlO3

[102]BNKT-(Zr LiSbO3)[97]BNKT- LiTaO3

[95]BNKT- K05Na05NbO3

[88]BNKT- BiAlO3

BNKT-(LiTa)[81]

BNKT-Nb[77]BNKT-(Li Sn)[83]

BNKT-Zr[78]BNKT-Sn[47]

BNKT-Ta [76]

BNKT-Hf[79]

BNKT-La[58]

BNKT-Y[80]

Pure BNKT[80]

Sm

axE

max

(pm

V)

Figure 2 The effect of dopants and solid solution perovskite ABO3

to BNKT

Their solid solutions have rhombohedral-tetragonal mor-photropic phase boundary near 016ndash020 of BKT amount[14] The effects of elements dopants or codopants at A-or B-site of BNKT were found to be effective the piezo-electric properties by two mechanisms based on the dif-ference radii point of view Firstly the dopants distortedthe tolerance factor due to the difference the radii ofdopant in comparing with Na+ K+ Bi3+ or Ti4+ Thedistortion results in phase transition from tetragonal topseudocubic or tetragonal development from pseudocubicwhich was strongly related to electric-field-induced phasetransition mechanism Secondly the dopants created theoxygen vacancy due to difference the valence state when theradii were performed which were related to point-defect-mediated reversible domain switchingmechanismThe effectof dopants and solid solution11986010158401198611015840O

3to BNKThas been sum-

marized in Figure 2 The ceramics compositions displayedthe highest 119878max119864max values which were shown in detailsin Table 1 The highest 119878max119864max of each year was plottedat Figure 3 The result indicated that electric-field-inducedgiant strain of BNTK was comparable with that of PZT (suchas commercial PZT (PIC151)) and therefore these modifiedBNKT can become a promising piezoelectric ceramics toreplace the lead-based piezoelectric materials Actually the119878max119864max values of BNKT ceramics were increased whenthe element at B-site andor A-site of BNKT ceramics weremodified However the 119878max119864max values quickly increasedwith several percent of dopants and then decreased whenfurther dopants were added These phenomena were alsoobtained while 11986010158401198611015840O

3modified BNKT as solid solution

because 1198601015840 and 1198611015840 diffused as codopant at both A- and B-sites of BNKT with similar concentrationThe observation ofenhancement of dynamic piezoelectric coefficient was relatedto (i) distorted structure (ii) phase transition from polar tononpolar phase and (iii) polar phase growth inner nonpolarphase The recent explanation of phase transition due todopant based on distorted tolerance factor because radiusbetween host and dopants differed and oxygen vacancy

Advances in Materials Science and Engineering 7

Table 1 The detailed composition of BNKT-modified ceramics with highest electric-field-induced strain

Ceramic compounds 119878max119864max (pmV) References086Bi05Na05TiO3 minus 014Bi05K05TiO3 297 Izumi et al (2008) [31]La2O3MnO-added (1 minus y)(Bi05Na049minus119909K119909Ag001)TiO3 minus yBaTiO3 415 Isikawa et al (2009) [84]Bi05(Na082K018)05Ti097Nb003O3 641 Pham et al (2010) [76]Bi05(Na078K022)05TiO3 296 Ullah et al (2010) [87]097Bi05(Na078K022)05TiO3 minus 003BiAlO3 592 Ullah et al (2010) [87]095Bi05(Na08K02)05TiO3 minus 005BiAlO3 391 Ullah et al (2010) [115]099(K05Na05)095Li005NbO3 minus 001Bi05(K015Na085)05TiO3 330 Chen et al (2010) [33]Bi05(Na082K018)05TiO3 minus 07 wt Y2O3 278 Binh et al (2010) [79]Bi05(Na078K022)05Ti097Zr003O3 614 Hussain et al (2010) [77]Bi05(Na078K022)05(Ti097Hf003)O3 475 Hussain et al (2010) [78]Bi05(Na082K018)05Ti098Ta002O3 566 Do et al (2011) [75]Bi12Na12TiO3 minus Bi12K12TiO3 minus 002Bi(Zn12Ti12)O3 500 Dittmer et al (2011) [93]Bi05(Na075K025)05TiO3 minus BiAlO3 sim900 Lee et al (2011) [45]009Bi05(Na078K022)05TiO3 minus 001Bi05La05AlO3 579 Ullah et al (2012) [88]0975Bi05(Na078K022)05TiO3 minus 0025BiAlO3 533 Ullah et al (2012) [116]097Bi05(Na078K022)05TiO3 minus 003K05Na05NbO3 434 Hussain et al (2012) [94]Bi05Na0385Li0025K009Ti0975Ta0025O3 727 Nguyen et al (2012) [80]Bi05(Na082K018)05Ti095Sn005O3 585 Lee et al (2012) [46]094Bi12(Na08K02)12TiO3 minus 006Bi(Mg12Sn12)O3 633 Pham et al (2012) [117]Bi05(Na074Li08K018)05Ti095Sn005O3 646 Nguyen et al (2012) [82]Bi12(Na082K018)12(Ti097Nb003)O3 641 Pham et al (2012) [118]097Bi05(Na078K022)05TiO3 minus 003CaZrO3 617 Hong et al (2013) [99]095Bi05(Na08K02)05TiO3 minus 005SrTiO3 600 Wang et al (2012) [90]099Bi05(Na082K018)05Ti0980Zr0020O3 minus 001LiSbO3 500 Zaman et al (2012) [102]097Bi05(Na082K018)05 minus 003Bi(Zn05Ti05)O3 385 Ullah et al (2012) [119]5Bi(Zn05Ti05)O3 minus 40(Bi05K05)TiO3 minus 55(Bi05Na05)TiO3 547 Patterson et al (2012) [91]Bi05(Na082K018)05TiO3 minus 002CuO 214 Do et al (2012) [68]Bi05(Na082K018)05TiO3 minus 002CuO minus 002Nb2O5 427 Do et al (2012) [68]098Bi05(Na078K022)05TiO3 minus 002LaFeO3 sim500 Han et al (2012) [120]Bi05(Na082K018)05Ti095Sn005O3 sim600 Han et al (2013) [121]098Bi05(Na082K018)05TiO3 minus 002BaZrO3 437 Lee et al (2013) [122]097Bi05(Na082K018)05TiO3 minus 003CaZrO3 603 Lee et al (2013) [122]098Bi05(Na082K018)05TiO3 minus 002Ba08Ca02ZrO3 549 Lee et al (2013) [122]094Bi05(Na075K025)05TiO3 minus 006BiAlO3 930 Lee et al (2013) [123]0975Bi05(Na080K020)05TiO3 minus 0025LiNbO3 475 Hao et al (2013) [124]096Bi05(Na078K022)05TiO3 minus 004Bi(Mg05Ti05)O3 636 Ullah et al (2013) [125]40Bi05K05TiO3 minus 59Bi05Na05TiO3 minus 1Bi(Mg12Ti12)O3 422 Kumar and Cann (2013) [126][Bi12(Na082K018)12]097La003TiO3 715 Dinh et al (2013) [127]095Bi05(Na080K020)05TiO3 minus 005Ba(Ti090Sn010)O3 649 Jaita et al (2014) [128]097Bi05(Na080K020)05TiO3 minus 003SrZrO3 617 Hussain et al (2014) [129]099Bi05Na04K01Ti098Nb002O3 minus 001(Ba07Sr03)TiO3 634 Ullah et al (2014) [130]Bi05(Na080K020)05TiO3 minus (K119910Na1minus119910)NbO3 413ndash575 Hao et al (2014) [131]099Bi05(Na082K018)05Ti0987Ta0013O3 minus 001LiSbO3 650 Zaman et al (2014) [132]099[(Bi05Na04K01)0980La0020TiO3] minus 002[Ba07Sr03TiO3] 650 Ullah et al (2014) [133]

8 Advances in Materials Science and Engineering

2008 2009 2010 2011 2012 2013 20140

200

400

600

800

1000

1200

PZT (PIC151)

Year

Lead-free BNKT-based

PZT-based

Sm

axE

max

(pm

V)

Figure 3 The highest values 119878max119864max observation in years (from2008 to 2014) in lead-free BNKT-based ceramics

caused difference of valence states However the tolerancefactor has only estimated the range for stability of perovskitebut it was not showed for crystal symmetries Thus theseexplanations were unreliable The mechanism of electricalfield-induced strain was not well understood which stillrequired to further investigate Consequently the roles of A-and B-site on the electrical field-induced strain were uncleartill now However we expected that the 119878max119864max valueswere further increased by using multidopant with optimalconcentration of dopants for each position A- andor B-sitein BNKT ceramics

In case of rare-earth doped BNKT the enhancementof piezoelectric properties mostly resulted from the point-defect-mediated because rare-earth elements have variousvalences which was displayed by various radii of ion depend-ing on the valence stable state substitution For examplethe mechanism for the effect of CeO

2doped BNKT is

complicated because Ce ion possibly exists in the BNKTstructure in two valence states Ce4+ with radius of 092 Aand Ce3+ with radius of 103 A In view of the radius Ce3+is possible to fill in Bi3+ vacancies and Ce4+ can enter into theBi-site In this case Ce4+ functions as a donor dopant leadingto some vacancies of A-site in the lattice which facilitatesthe movement of domain wall to improve the piezoelectricproperties Another one is that Ce3+ and Ce4+ ions occupythe A-site of Na+ (119903Na+ = 097A) of BNKT compositionwhich are the same as the Ce4+ entering into Bi3+ [55 56] Inthese cases existing vacancies bring defect in lattice whichresults in an increasing in the dielectric loss and grain sizeand have some effects of piezoelectric properties In additionthe experiments demonstrated that rare-earth substitution inNa+ first leads to creation of oxygen vacancies and latticecontraction but when the dopants concentration is over acritical value then it begins to substitute for Bi3+ thus it leadsto lattice expansion [57ndash59]

In case of transitionmetal dopant inBNKT themost find-ings confirmed that dopants resulted in the lower sintering

temperature It is valuable inmarket due to reduction the costof electronic devices

In case of other metal dopant in BNKT there were mixedpoint-defect-mediated and electric-field-induced phase tran-sition mechanisms which depend on the valence and site-prefer to substitution For example the Ta5+ which replacedTi4+ at B-site leads to creation of A-site vacancies whichsignificantly contributed to the destabilization of ferroelectricphase in the Bi perovskite [75 80 114] These factors weresimilar to a case of nonstochiometric at A- and B-site ofBNKT where the vacancies were occurred

In case of solid solution between BNKT with other119860

1015840119861

1015840O3perovskites it is quite interesting because the ideal

was simple like tailor Some of 11986010158401198611015840O3perovskites were

unstable or hardly fabricated such as BiAlO3 but the theory

predicted that they should have goodpiezoelectric propertiesHowever interestingly they were stabled in solid solution inBNKT matrix and strong enhancement piezoelectric prop-erties Similarly the Bi

05Zn05TiO3(BZT) was a good ferro-

electric material and it was tailed their properties in BNKT-BZT as solid solution In addition BNKT-modified withBi05Li05TiO3has displayed the excellent piezoelectric con-

stant 11988933 Recently the multiferroic materials have rapidly

developed because they exhibited the electric field controlledferromagnetism and magnetic field controlled the electricpolarization However multiferroic properties of BNKT-based materials have not been reported Therefore we pro-posed that the solid solution andor composite of BNKTwith insulator ferromagnetism materials such as BiFeO

3and

CoFeO4could be a good display of multiferroics properties

which will promise candidate to develop new class of multi-ferroics materials

5 Conclusion

The current status of lead-free piezoelectric materials hasbeen introduced The lead-free BNKT-based ceramics werereviewed based on the fabrication method effect of dopantsand solid-solution with other 11986010158401198611015840O

3perovskite Most find-

ings confirmed that giant strain obtained in lead-free BNKT-based ceramics is due to phase transition from polar tononpolar phase and the highest 119878max119864max values werefound at theMPBHowever the origin of phase transitionwasstill debated The 119878max119864max values of lead-free BNKT-basedceramics are comparable with soft lead-based PZT-basedceramics which could be promising materials to readilyreplace the lead-based PZT-based materials in devices Inaddition the effects of secondary phase 11986010158401198611015840O

3as solid-

solution tailed the properties of BNKT matrix Our workreviewed current developments in lead-free BNKT-basedmaterials which were expected to understand current statusof researching about BNKT-based ceramics therefore to beguidance for designing new class materials and applications

Conflict of Interests

The authors declare that there is no conflict of interestsregarding the publication of this paper

Advances in Materials Science and Engineering 9

Acknowledgment

This work was financially supported by the Ministry of Edu-cation andTraining Vietnam under Project no B 20130155

References

[1] P K Panda ldquoReview environmental friendly lead-free piezo-electric materialsrdquo Journal of Materials Science vol 44 no 19pp 5049ndash5062 2009

[2] C A Randall R E Newnham and L E Cross History of theFirst Ferroelectric Oxide BaTiO

3 Materials Research Institute

The Pennsylvania State University University Park Pa USA2004

[3] E Ringgaard and T Wurlitzer ldquoLead-free piezoceramics basedon alkali niobatesrdquo Journal of the European Ceramic Society vol25 no 12 pp 2701ndash2706 2005

[4] T Takenaka and H Nagata ldquoCurrent status and prospects oflead-free piezoelectric ceramicsrdquo Journal of the EuropeanCeramic Society vol 25 no 12 pp 2693ndash2700 2005

[5] Ministry of Information Industry of the Peoplersquos Republic ofChina Industrial Standard of the peoplersquos Republich of China2006

[6] Japan Electronics and InformationTechnology Industries Asso-ciation Standard of Japan Electronics and Information Tech-nology Industries Association 1998

[7] TheEnvironment and Labor Committee of the National Assemblyof Korea 2007

[8] Y Li K S Moon and C P Wong ldquoElectronics without leadrdquoScience vol 308 no 5727 pp 1419ndash1420 2005

[9] E Cross ldquoLead-free at lastrdquoNature vol 432 no 7013 pp 24ndash252004

[10] G A Smolensky V A Isupov A I Agranovskaya and NN Krainic ldquoNew ferroelectrics with complex compounds IVrdquoFizika Tverdogo Tela vol 2 pp 2982ndash2985 1960

[11] G A Smolenskii and A I Agranovskaya ldquoDielectric polariza-tion of a series of compounds of complex compositionrdquo FizikaTverdogo Tela vol 1 pp 1562ndash1572 1959

[12] C F Buhrer ldquoSome properties of bismuth perovskitesrdquo TheJournal of Chemical Physics vol 36 pp 798ndash803 1962

[13] I P Pronin N N Parfenova N V Zaitseva V A Isupov andG A Smolenskii ldquoPhase transitions in solid solutions of sodi-umbismuth and potassiumbismuth titanatesrdquo Fizika TverdogoTela vol 24 pp 1060ndash1062 1982

[14] A Sasaki T Chiba Y Mamiya and E Otsuki ldquoDielectric andpiezoelectric properties of (Bi

05Na05)TiO3ndash(Bi05K05)TiO3sys-

temsrdquo Japanese Journal of Applied Physics vol 38 no 9 p 55641999

[15] G O Jones and P A Thomas ldquoInvestigation of the structureand phase transitions in the novel A-site substituted distortedperovskite compoundNa

05Bi05TiO3rdquoActa Crystallographica B

vol 58 pp 168ndash178 2002[16] PWoodward ldquoOctahedral tilting in perovskites I Geometrical

considerationsrdquo Acta Crystallographica B vol 53 pp 32ndash431997

[17] V A Isupov ldquoFerroelectric Na05Bi05TiO3and K

05Bi05TiO3

perovskites and their solid solutionsrdquo Ferroelectrics vol 315 no1 pp 123ndash147 2005

[18] I P Pronin P P Syrnikov V A Isupov V M Egorov N VZaitseva and A F Ioffe ldquoPeculiarities of phase transitions in

sodium-bismuth titanaterdquo Ferroelectrics vol 25 pp 395ndash3971980

[19] J A Zvirgzds P P Kapostis and J V Zvirgzde ldquoX-ray study ofphase transitions in efrroelectric Na

05Bi05TiO3rdquo Ferroelectrics

vol 40 no 1 pp 75ndash77 1982[20] J Suchanicz K Roleder A Kania and J Handerek ldquoElec-

trostrictive strain and pyroeffect in the region of phase coexis-tence in Na

05Bi05TiO3rdquo Ferroelectrics vol 77 pp 107ndash110 1988

[21] Y Chiang G W Farrey and A N Soukhojak ldquoLead-free high-strain single-crystal piezoelectrics in the alkaline-bismuth-titanate perovskite familyrdquo Applied Physics Letters vol 73 no25 pp 3683ndash3685 1998

[22] S M Emelyanov I P Raevskii V G Smotrakov and F ISavenko ldquoPiezoelectric and pyroelectric properties of sodium-bismuth titanate crystalsrdquo Fizika Tverdogo Tela vol 26 pp1897ndash1899 1984

[23] M L Zhao C LWangW L Zhong J FWang andHCChenldquoElectrical properties of (Bi

05Na05)TiO3ceramic prepared by

sol-gel methodrdquo Acta Physica Sinica vol 52 no 1 pp 229ndash2322003

[24] M L Zhao C L Wang W L Zhong J F Wang and Z F LildquoGrain-size effect on the dielectric properties of Bi

05Na05TiO3rdquo

Chinese Physics Letters vol 20 article 290 2003[25] B Jaffe W R Cook and H Jaffe Piezoelectric Ceramics

Academic Press London UK 1971[26] J Suchanicz ldquoTime evolution of the phase transformation in

Na05Bi05TiO3rdquo Ferrolectrics vol 200 no 1 pp 319ndash325 1997

[27] O N Razumovskaya T B Kuleshova and L M RudkovskayaldquoReactions of formation of BiF

119890O3 K05

Bi05TiO3 and

Na05Bi05TiO3rdquo Neorganicheskie Materialy [Inorganic Mat-

erials] vol 19 pp 113ndash115 1983[28] V V Ivanova A G Kapishev Y N Venevtsev and G S

Zhdanov ldquoX-ray determination of the symmetry of elemen-tary cells of the ferroelectric materials (K05Bi05)TiO3 and(Na05Bi05)TiO3 and of high-temperature phase transitionsin (K05Bi05)TiO3rdquo Izvestiya Akademii Nauk SSSR SeriyaFizicheskaya vol 26 pp 354ndash356 1962

[29] Y Hiruma R Aoyagi H Nagata and T Takenaka ldquoSynthesisand properties of 1-Methyl-4-2-[4-(dimethylamino)phenyl]-ethenylpyridinium p-toluenesulfonate derivatives with isomor-phous crystal structurerdquo Japanese Journal of Applied Physics vol44 p 5231 2005

[30] M Zhu L Hou Y Hou J Liu HWang andH Yan ldquoLead-free(K05Bi05)TiO3powders and ceramics prepared by a solndashgel

methodrdquo Materials Chemistry and Physics vol 99 no 2-3 pp329ndash332 2006

[31] M Izumi K Yamamoto M Suzuki Y Noguchi andM Miyayama ldquoLarge electric-field-induced strain inBi05Na05TiO3-Bi05K05TiO3

solid solution single crystalsrdquoApplied Physics Letters vol 93 Article ID 242903 2008

[32] T Tani ldquoCrystalline-oriented piezoelectric bulk ceramics witha perovskite-type structurerdquo Journal of the Korean PhysicalSociety vol 32 no 3 pp S1217ndashS1220 1998

[33] X Chen Y Liao H Wang et al ldquoPhase structure and electricproperties of Bi

05(Na0825

K0175

)05TiO3ceramics prepared by a

sol-gel methodrdquo Journal of Alloys and Compounds vol 493 no1-2 pp 368ndash371 2010

[34] Y Q Chen X J Zheng and W Li ldquoSize effect of mechanicalbehavior for lead-free (Na

082K018

)05Bi05TiO3nanofibers by

nanoindentationrdquoMaterials Science and Engineering A vol 527pp 5462ndash5466 2010

10 Advances in Materials Science and Engineering

[35] D YWang DM Lin K SWong KW Kwok J Y Dai and HL W Chan ldquoPiezoresponse and ferroelectric properties oflead-free [Bi

05(Na07K02Li01)05]TiO3thin films by pulsed laser

depositionrdquo Applied Physics Letters vol 92 no 22 Article ID222909 2008

[36] J Kreisel A M Glazer G Jones P A Thomas L Abello andG Lucazeau ldquoAn x-ray diffraction and Raman spectroscopyinvestigation of A-site substituted perovskite compounds the(Na1minus119909

K119909)05Bi05TiO3(0le xle1) solid solutionrdquo Journal of

Physics Condensed Matter vol 12 p 3267 2000[37] H Xie L Jin D Shen X Wang and G Shen ldquoMorphotropic

phase boundary segregation effect and crystal growth in theNBT-KBT systemrdquo Journal of Crystal Growth vol 311 no 14pp 3626ndash3630 2009

[38] O Elkechai M Manier and I P Mercurio ldquoNa05Bi05TiO3ndash

K05Bi05TiO3(NBT-KBT) system a structural and electrical

studyrdquo Physica Status Solidi vol 157 no 2 pp 499ndash506 1996[39] K Yoshii Y Hiruma H Nagata and T Takenaka ldquoElectrical

properties and depolarization temperature of (Bi12Na12)TiO3-

(Bi12K12)TiO3lead-free piezoelectric ceramicsrdquo Japanese Jour-

nal of Applied Physics vol 45 part 1 no 5B pp 4493ndash44972006

[40] M E Lines and A M Glass Principles and Applications forFerroelectrics and Related Materials Oxford University PressOxford UK 1979

[41] K Uchino Piezoelectric Actuators and Ultrasonic MotorsKluwer Academic Publishers Boston Mass USA 1996

[42] S T Zhang A B Kounga E Aulbach et al ldquoLead-free piezoce-ramics with giant strain in the system Bi

05Na05TiO3ndashBaTiO

3ndash

K05Na05NbO3 II Temperature dependent propertiesrdquo Journal

of Applied Physics vol 103 no 3 Article ID 034108 2008[43] S T Zhang A B Kounga E Aulbach H Ehrenberg and J

Rodel ldquoGiant strain in lead-free piezoceramics Bi05Na05TiO3ndash

BaTiO3ndashK05Na05NbO3systemrdquo Applied Physics Letters vol 91

Article ID 112906 2007[44] W Jo T Granzow E Aulbach J Rodel and D Damjanovic

ldquoOrigin of the large strain response in (K05Na05)NbO

3-

modified (Bi05Na05)TiO3ndashBaTiO

3lead-free piezoceramicsrdquo

Journal of Applied Physics vol 105 no 9 Article ID 0941022009

[45] D S Lee D H Lim M S Kim K H Kim and S J JeongldquoElectric field-induced deformation behavior in mixedBi05Na05TiO3and Bi

05(Na075

K025

)05TiO3-BiAlO

3rdquo Applied

Physics Letters vol 99 Article ID 062906 2011[46] J S Lee K N Pham H S Han H B Lee and V D N Tran

ldquoStrain enhancement of lead-free Bi12(Na082

K018

)12TiO3

ceramics by Sn dopingrdquo Journal of the Korean Physical Societyvol 60 no 2 pp 212ndash215 2012

[47] A Ullah CW Ahn A Hussain S Y Lee and IW Kim ldquoPhasetransition electrical properties and temperature-insensitivelarge strain in BiAlO

3-modified Bi

05(Na075

K025

)05TiO3lead-

free piezoelectric ceramicsrdquo Journal of the American CeramicSociety vol 94 no 11 pp 3915ndash3921 2011

[48] L J Rigoberto G Federico and V C Maria-Elena ldquoLead-free ferroelectric ceramics with perovskite structurerdquo inFerroelectrics-Material Aspects M Lattart Ed InTech 2011

[49] X Ren ldquoLarge electric-field-induced strain in ferroelectriccrystals by point-defect-mediated reversible domain switchingrdquoNature Materials vol 3 pp 91ndash94 2004

[50] W LWarren G E Pike K Vanheusden D Dimos B A Tuttleand J Robertson ldquoDefect-dipole alignment and tetragonal

strain in ferroelectricsrdquo Journal of Applied Physics vol 79 no12 pp 9250ndash9257 1996

[51] W L Warren D Dimos G E Pike K Vanheusden and RRamesh ldquoAlignment of defect dipoles in polycrystalline ferro-electricsrdquo Applied Physics Letters vol 67 p 1689 1995

[52] R Lohkamper H Neumann and G Arlt ldquoInternal biasin acceptor-doped BaTiO

3ceramics numerical evaluation of

increase and decreaserdquo Journal of Applied Physics vol 68 p4220 1990

[53] U Robels and G Arlt ldquoDomain wall clamping in ferroelectricsby orientation of defectsrdquo Journal of Applied Physics vol 73 no7 pp 3454ndash3460 1993

[54] H Fu and R E Cohen ldquoPolarization rotation mechanism forultrahigh electromechanical response in single-crystal piezo-electricsrdquo Nature vol 403 no 6767 pp 281ndash283 2000

[55] Y Li W Chen Q Xu J Zhou Y Wang and H SunldquoPiezoelectric and dielectric properties of CeO

2-doped

Bi05Na044

K006

TiO3

lead-free ceramicsrdquo Ceramics Inter-national vol 33 no 1 pp 95ndash99 2007

[56] Y Liao D Xiao D Lin et al ldquoThe effects of CeO2-

doping on piezoelectric and dielectric properties ofBi05(Na1minus119909minus119910

K119909Li119910)05TiO3piezoelectric ceramicsrdquo Materials

Science and Engineering B vol 133 no 1ndash3 pp 172ndash176 2006[57] B Wang L Luo F Ni P Du W Li and H Chen ldquoPiezoelectric

and ferroelectric properties of (Bi1minus119909

Na08K02Lax)05TiO3lead-

free ceramicsrdquo Journal of Alloys and Compounds vol 526 pp79ndash84 2012

[58] Y Yuan S Zhang and X Zhou ldquoEffects of La occupa-tion site on the dielectric and piezoelectric properties of[Bi05(Na075

K015

L119894010

)05]TiO3ceramicsrdquo Journal of Materials

Science Materials in Electronics vol 20 no 11 pp 1090ndash10942009

[59] Y Yuan S R Zhang and X H Zhou ldquoPhasetransitions and electrical properties in La3+-substitutedBi05(Na075

K015

Li010

)05TiO3ceramicsrdquo Journal of Materials

Science Letters vol 41 pp 565ndash567 2006[60] Z Yang Y Hou B Liu and L Wei ldquoStructure and

electrical properties of Nd2O3-doped 082Bi

05Na05TiO3ndash

018Bi05K05TiO3ceramicsrdquo Ceramics International vol 35 pp

1423ndash1427 2009[61] Y Zhang R Chu Z Xu et al ldquoPiezoelectric and dielectric prop-

erties of Sm2O3-doped

082Bi05Na05TiO3-0 18Bi

05K05TiO3

ceramicsrdquo Journal of Alloys and Compounds vol 502 no 2 pp341ndash345 2010

[62] P Fu Z Xu R Chu W Li WWang and Y Liu ldquoGd2O3doped

082Bi05Na05TiO3ndash018Bi

05K05TiO3

lead-free piezoelectricceramicsrdquoMaterials amp Design vol 35 pp 267ndash280 2012

[63] C Zhi-Hui D Jian-Ning M Lin Y Ning-Yi and Z Wei-WeildquoPiezoelectric and dielectric properties of Dy

2O3-Doped Bi

05

(Na082

K018

)05TiO3lead-free ceramicsrdquo Ferroelectrics vol 425

no 1 pp 63ndash71 2011[64] P Fu Z Xu R Chu XWuW Li andH Zhang ldquoStructure and

electrical properties of the Ho2O3doped 082Bi

05Na05TiO3-

018Bi05K05TiO3lead-free piezoelectric ceramicsrdquo Journal of

Materials Science Materials in Electronics vol 23 no 12 pp2167ndash2172 2012

[65] P Fu Z Xu H Zhang R Chu W Li and M Zhao ldquoStructureand electrical properties of Er

2O3doped 082Bi

05Na05TiO3ndash

018Bi05K05TiO3lead-free piezoelectric ceramicsrdquoMaterials amp

Design vol 40 pp 373ndash377 2012

Advances in Materials Science and Engineering 11

[66] P Fu Z Xu R Chu W Li Q Xie and G Zhang ldquoEffectsof Eu

2O3

on the structure and electrical properties of082Bi

05Na05TiO3-018Bi

05K05TiO3

lead-free piezoelectricceramicsrdquo Current Applied Physics vol 11 pp 822ndash826 2011

[67] H Han N Do K Pham et al ldquoSintering behaviour andpiezoelectric properties of CuO-added lead-free Bi(NaK)TiO

3

ceramicsrdquo Ferroelectrics vol 421 no 1 pp 88ndash91 2011[68] N B Do H D Jang I Hong et al ldquoLow temperature sintering

of lead-free Bi05(Na082

K018

)05TiO3piezoelectric ceramics by

co-doping with CuO and Nb2O5rdquo Ceramics International vol

38S pp S359ndashS362 2012[69] X P Jiang L Z Li M Zeng and H L W Chan ldquoDielec-

tric properties of Mn-doped (Na08K02)05Bi05TiO3ceramicsrdquo

Materials Letters vol 60 no 15 pp 1786ndash1790 2006[70] J Xiangping L Longzhu J Fulan Z Yanyan and L Lihua

ldquoEffects of Mn-doping on the piezoelectric and ferroelectricproperties of (Na

08K02)05Bi05TiO3ceramicsrdquo Key Engineering

Materials vol 368-372 pp 69ndash71 2008[71] H Hu M Zhu Y Hou and H Yan ldquoDielectric piezoelectric

and ferroelectric properties of MnCO3-added 74(Bi

12Na12)

TiO3-208(Bi

12K12)TiO3-52BaTiO

3lead-free piezoelectric

ceramicsrdquo IEEE Transactions on Ultrasonics Ferroelectrics andFrequency Control vol 56 pp 897ndash905 2009

[72] J Shieh Y C Lin and C S Chen ldquoIntricate straining ofmanganese-doped (Bi

05Na05)TiO3-BaTiO

3-(Bi05K05)TiO3

lead-free ferroelectric ceramicsrdquo Journal of Physics D AppliedPhysics vol 43 no 2 Article ID 025404 2010

[73] J Shieh Y C Lin and S C Chen ldquoInfluence of phase com-position on electrostrains of doped (Bi

05Na05)TiO3ndashBaTiO

3ndash

(Bi05K05)TiO3lead-free ferroelectric ceramicsrdquo Smart Materi-

als and Structures vol 19 no 9 Article ID 094007 2010[74] M Zhu H Hu N Lei Y Hou and H YanInt ldquoMnO modifi-

cation on microstructure and electrical properties of lead-freeBi0485

Na0425

K006

Ba003

TiO3

solid solution around mor-photropic phase boundaryrdquo International Journal of AppliedCeramic Technology vol 7 pp E107ndashE113 2010

[75] N BDoH B Lee CHYoon J KKang and J S Lee ldquoEffect ofTa-substitution on the ferroelectric and piezoelectric propertiesof Bi05(Na082

K018

)05TiO3ceramicsrdquoTransactions on Electrical

and Electronic Materials vol 12 no 2 pp 64ndash67 2011[76] K N Pham A Hussain CW Ahn I W Kim S J Jeong and J

S Lee ldquoGiant strain in Nb-doped Bi05(Na082

K018

)05TiO3lead-

free electromechanical ceramicsrdquoMaterials Letters vol 64 no20 pp 2219ndash2222 2010

[77] A Hussain C W Ahn J S Lee A Ullah and I W KimldquoLarge electric-field-induced strain in Zr-modified lead-freeBi05(Na078

K022

)05TiO3piezoelectric ceramicsrdquo Sensors and

Actuators A vol 158 no 1 pp 84ndash89 2010[78] AHussain CWAhn AUllah J S Lee and IWKim ldquoEffects

of hafnium substitution on dielectric and electromechanicalproperties of lead-free Bi

05(Na078

K022

)05(Ti1minus119909

Hfx)O3Ceram-

icsrdquo Japanese Journal of Applied Physics vol 49 Article ID041504 2010

[79] D N Binh A Hussain H Lee et al ldquoEnhanced electric-field-induced strain at the ferroelectric-electrostrcitive phaseboundary of yttrium-doped Bi

05(Na082

K018

)05TiO3lead-free

piezoelectric ceramicsrdquo Journal of the Korean Physical Societyvol 57 no 41 pp 892ndash896 2010

[80] V Nguyen H Han K Kim D Dang K Ahn and J Lee ldquoStrainenhancement in Bi

12(Na082

K018

)12TiO3lead-free electrome-

chanical ceramics by co-dopingwith Li andTardquo Journal of Alloysand Compounds vol 511 no 1 pp 237ndash241 2012

[81] D Lin D Xiao J Zhu and P Yu ldquoPiezoelectric and ferroelectricproperties of lead-free piezoelectric ceramicsrdquo Applied PhysicsLetters vol 88 no 6 Article ID 062901 2006

[82] V Nguyen C Hong H Lee Y M Kong J Lee and K AhnldquoEnhancement in the microstructure and the strain propertiesof Bi12(NaK)

12TiO3-based lead-free ceramics by Li substitu-

tionrdquo Journal of the Korean Physical Society vol 61 no 6 pp895ndash898 2012

[83] Y Liao D Xiao and D Lin ldquoApplication of quantum cascadelasers to trace gas analysisrdquo Applied Physics B vol 90 pp 165ndash176 2008

[84] Y Isikawa Y Akiyama and T Hayashi ldquoPiezoelectric anddielectric properties of (BiNaKAg)TiO

3-BaTiO

3lead-free

piezoelectric ceramicsrdquo Japanese Journal of Applied Physics vol48 Article ID 09KD03 2009

[85] F Ni L Luo X Pan W Li and J Zhu ldquoEffects of A-sitevacancy on the electrical properties in lead-free non-stoichiometric ceramics Bi

05+119909(Na082

K018

)05minus3119909

TiO3

andBi05+119910

(Na082

K018

)05TiO3rdquo Journal of Alloys and Compounds

vol 541 pp 150ndash156 2012[86] F Ni L Luo W Lim and H Chen ldquoA-site vacancy-induced

giant strain and the electrical properties in non-stoichiometricceramics Bi

05+119909(Na1minus119910

K119910)05minus3119909

TiO3rdquo Journal of Physics D

Applied Physics vol 45 no 41 Article ID 415103 2012[87] A Ullah C W Ahn A Hussain S Y Lee H J Lee and I W

Kim ldquoPhase transitions and large electric field-induced strainin BiAlO

3-modified Bi

05(Na K)

05TiO3lead-free piezoelectric

ceramicsrdquo Current Applied Physics vol 10 pp 1174ndash1181 2010[88] A Ullah C W Ahn S Y Lee J S Kim and I W Kim ldquoStruc-

ture ferroelectric properties and electric field-induced largestrain in lead-free Bi

05(NaK)

05TiO3-(Bi05La05)AlO3piezo-

electric ceramicsrdquo Ceramics International vol 38 no 1 ppS363ndashS368 2012

[89] V DN Tran H S Han CH Yoon J S LeeW Jo and J RodelldquoLead-free electrostrictive bismuth perovskite ceramics withthermally stable field-induced strainsrdquoMaterials Letters vol 65pp 2607ndash2609 2011

[90] K Wang A Hussain W Jo and J Rodel ldquoTemperature-dependent properties of (Bi

12Na12)TiO3-(Bi12K12)TiO3-

SrTiO3

lead-free piezoceramicsrdquo Journal of the AmericanCeramic Society vol 95 no 7 pp 2241ndash2247 2012

[91] E A Patterson D P Cann J Pokomy and I M Reaney ldquoElec-tromechanical strain in Bi(Zn

12Ti12)O3-(Bi12Na12)TiO3-

(Bi12K12)TiO3solid solutionsrdquo Journal Of Applied Physics vol

111 Article ID 094105 2012[92] E A Patterson and D P Cann ldquoBipolar piezoelectric

fatigue of Bi(Zn05Ti05)O3-(Bi05K05)TiO3-(Bi05Na05)TiO3Pb-

free ceramicsrdquo Applied Physics Letters vol 101 Article ID042905 2012

[93] R Dittmer W Jo J Daniels S Schaab and JRodel ldquoRelaxor characteristics of morphotropic phaseboundary (Bi

12Na12)TiO3-(Bi12K12)TiO3

modified withBi(Zn

12Ti12)O3rdquo Journal of the American Ceramic Society vol

94 no 12 pp 4283ndash4290 2011[94] A Hussain C W Ahn A Ullah J S Lee and I W Kim

ldquoDielectric ferroelectric and field-induced strain behavior ofK05Na05NbO3-modified Bi

05(Na078

K022

)05TiO3

lead-freeceramicsrdquo Ceramics International vol 38 no 5 pp 4143ndash41492012

12 Advances in Materials Science and Engineering

[95] G Fan W Lu X Wang and F Liang ldquoMorphotropic phaseboundary and piezoelectric properties of (Bi

12Na12)TiO3ndash

(Bi12K12)TiO3ndashKNbO

3lead-free piezoelectric ceramicsrdquo

Applied Physics Letters vol 91 Article ID 202908 2007[96] N B Do H B Lee D T Le et al ldquoElectric field-induced strain

of lead-free Bi05Na05TiO3ndashBi05K05TiO3ceramics modified

with LiTaO3rdquoCurrent Applied Physics vol 11 no 3 supplement

pp S134ndashS137 2011[97] T V D Ngoc H S Han K J Kim et al ldquoRelaxor and field-

induced strain behavior in lead-free Bi05(Na082

K018

)05TiO3

ceramics modified with BaZrO3rdquo Journal of Ceramic Processing

Research vol 13 supplement 2 pp s177ndashs180 2012[98] V D N Tran A Hussain H S Han et al ldquoComparison of

ferroelectric and strain properties between BaTiO3- and

BaZrO3-modified Bi

12(Na082

K018

)12TiO3ceramicsrdquo Japanese

Journal of Applied Physics vol 51 Article ID 09MD02 2012[99] I KHongH SHan CH YoonHN JiW P Tai and J S Lee

ldquoStrain enhancement in lead-free Bi05(Na078

K022

)05TiO3

ceramics by CaZrO3

substitutionrdquo Journal of IntelligentMaterial Systems and Structures vol 24 no 11 pp 1343ndash13492013 (Swedish)

[100] J K Kang D J Heo V Q Nguyen H S Han J S Leeand K K Ahn ldquoLow-temperature sintering of lead-freeBi12(NaK)

12TiO3-based electrostrictive ceramics with CuO

additionrdquo Journal of the Korean Physical Society vol 61 no 6pp 899ndash902 2012

[101] V Q Nguyen H B Luong and D D Dang ldquoEnhancement ofelectrical field-induced strain in Bi

05(Na K)

05TiO3-based lead-

free piezoelectric ceramics role of phase transitionrdquo In press[102] A Zaman Y Iqbal A Hussain et al ldquoInfluence of zirconium

substitution on dielectric ferroelectric and field-induced strainbehaviors of lead-free 099[Bi

12(Na082

K018

)12(Ti1minus119909

Zr119909)O3]-

001LiSbO3ceramicsrdquo Journal of theKorean Physical Society vol

61 no 5 pp 773ndash778 2012[103] S Qiao J Wu B Wu B Zhang D Xiao and J Zhu ldquoEffect

of Ba085

Ca015

Ti090

Zr010

O3content on the microstructure and

electrical properties of Bi051

(Na082

K018

)050

TiO3ceramicsrdquo

Ceramics International vol 38 no 6 pp 4845ndash4851 2012[104] H Nagata M Yoshida Y Makiuchi and T Takenaka ldquoLarge

piezoelectric constant and high curie temperature of lead-freepiezoelectric ceramic ternary system based on bismuth sodiumtitanate-bismuth potassium titanate-barium titanate near themorphotropic phase boundaryrdquo Japanese Journal of AppliedPhysics vol 42 no 12 p 7401 2003

[105] Y Li W Chen Q Xu J Zhou X Gu and S Fang ldquoElec-tromechanical and dielectric properties of Na

05Bi05TiO3-

K05Bi05TiO3-BaTiO

3lead-free ceramicsrdquo Materials Chemistry

and Physics vol 94 no 2-3 pp 328ndash332 2005[106] Q Zhou C Zhou W Li J Cheng H Wang and C Yuan

Journal of Physics and Chemistry of Solids vol 72 p 909 2011[107] C Zhou X LiuW Lim andC Yuan ldquoMicrostructure and elec-

trical properties of Bi05Na05TiO3-Bi05K05TiO3-LiNbO

3lead-

free piezoelectric ceramicsrdquo Journal of Physics and Chemistry ofSolids vol 70 pp 541ndash545 2009

[108] C Zhou X Liu W Li C Yuan and G Chen ldquoStructure andelectrical properties of Bi

05(Na K)

05TiO3minusBiGaO

3lead-free

piezoelectric ceramicsrdquo Current Applied Physics vol 10 no 1pp 93ndash98 2010

[109] B Wu C Han D Xiao Z Wang J Zhu and J Wu ldquoInves-tigation of a new lead-free (089minus x)(Bi

05Na05)TiO3ndash011(Bi

05

K05)TiO3ndashxBa085

Ca015

Ti090

Zr010

O3ceramicsrdquo Materials Re-

search Bulletin vol 47 pp 3937ndash3940 2012

[110] M Zou H Fan L Chen and W Yang ldquoMicrostruc-ture and electrical properties of (1 minus 119909)[082Bi

05Na05TiO3ndash

018Bi05K05TiO3]ndashxBiFeO

3lead-free piezoelectric ceramicsrdquo

Journal of Alloys and Compounds vol 495 no 1 pp 280ndash2832010

[111] C ZhouX LiuW Li andCYuan ldquoDielectric andpiezoelectricproperties of Bi

05Na05TiO3ndashBi05K05TiO3ndashBiCrO

3lead-free

piezoelectric ceramicsrdquo Journal of Alloys and Compounds vol478 no 1-2 pp 381ndash385 2009

[112] H Yang X Shan C Zhou Q Zhou W Li and J ChengldquoMicrostructure dielectric and piezoelectric properties of lead-free Bi

05Na05

TiO3ndashBi05K05

TiO3ndashBiMnO

3ceramicsrdquo Bulletin

of Materials Science vol 36 pp 265ndash270 2013[113] M Bichurin V Petrov A Zakharov et al ldquoMagnetoelectric

interactions in lead-based and lead-free compositesrdquoMaterialsvol 4 no 4 pp 651ndash702 2011

[114] H S Han CW Ahn IW Kim A Hussain and J S Lee ldquoDes-tabilization of ferroelectric order in bismuth perovskite ceram-ics by A-site vacanciesrdquo Materials Letters vol 70 pp 98ndash1002012

[115] A Ullah CW Ahn A Hussain IW Kim H I Hwang andNK Cho ldquoStructural transition and large electric field-inducedstrain in BiAlO

3-modified Bi

05(Na08K02)05TiO3

lead-freepiezoelectric ceramicsrdquo Solid State Communications vol 150pp 1145ndash1149 2010

[116] A Ullah C W Ahn A Hussain S Y Lee J S Kim and I WKim ldquoEffect of potassium concentration on the structure andelectrical properties of lead-free Bi

05(NaK)

05TiO3ndashBiAlO

3

piezoelectric ceramicsrdquo Journal of Alloys and Compounds vol509 pp 3148ndash3154 2012

[117] K N Pham D T Hinh L H Yuong K Y Min and L SShin ldquoEffects of Bi(Mg12Sn 12)O3 modification on the dielec-tric and piezoelectric properties of Bi12(Na08K02)12TiO3ceramicsrdquo Journal of the Korean Ceramic Society vol 49 pp266ndash271 2012

[118] K N Pham H B Lee H S Han et al ldquoDielectric fer-roelectric and piezoelectric properties of Nb-substitutedBi12(Na082

K018

)12TiO3lead-free ceramicsrdquo Journal of the

Korean Ceramic Society vol 60 pp 207ndash211 2012[119] A Ullah C W Ahn and I W Kim ldquoDielectric

piezoelectric properties and field-induced large strain ofBi(Zn

05Ti05)O3-modified morphotropic phase boundary

Bi05(Na082

K018

)05TiO3

piezoelectric ceramicsrdquo JapaneseJournal of Applied Physics vol 51 Article ID 09MD07 2012

[120] H S Han W Jo J Rodel I K Hong W P Tai and J SLee ldquoCoexistence of ergodicity and nonergodicity in LaFeO

3-

modified Bi12(Na078

K022

)12TiO3relaxorsrdquo Journal of Physics

Condensed Matter vol 24 Article ID 365901 2012[121] H S Han W Jo J K Kang et al ldquoIncipient piezoelectrics and

electrostriction behavior in Sn-doped Bi12(Na082

K018

)12TiO3

lead-free ceramicsrdquo Journal of Applied Physics vol 113 ArticleID 154102 2013

[122] H B Lee D J Heo R A Malik C H Yoon H S Han and J SLee ldquoLead-free Bi

12(Na082

K018

)12TiO3ceramics exhibiting

large strain with small hysteresisrdquo Ceramics International vol39 pp S705ndashS708 2013

[123] D S Lee S J Jeong M S Kim and K H Kim ldquoEffectof sintering time on strain in ceramic composite con-sisting of 094Bi05(Na075K025)05TiO3ndash006BiAlO3 with(Bi05Na05)TiO3rdquo Japanese Journal of Applied Physics vol 52Article ID 021801 2013

Advances in Materials Science and Engineering 13

[124] J Hao W Bai W Li B Shen and J Zhai ldquoPhase transitionsrelaxor behavior and large strain response in LiNbO3-modifiedBi05(Na080K020)05TiO3 lead-free piezoceramicsrdquo Journalof Applied Physics vol 114 Article ID 044103 2013

[125] A Ullah C W Ahn A Ullah and I W Kim ldquoLarge strainunder a low electric field in lead-free bismuth-based piezo-electricsrdquo Applied Physics Letters vol 103 Article ID 0229062013

[126] N Kumar and D P Cann ldquoElectromechanical strainand bipolar fatigue in Bi(Mg

12Ti12)O3-(Bi12K12)TiO3-

(Bi12Na12)TiO3ceramicsrdquo Journal of Applied Physics vol 114

Article ID 054102 2013[127] T H Dinh H Y Lee C H Yoon et al ldquoEffect of lanthanum

doping on the structural ferroelectric and strain propertiesof Bi12(Na082

K018

)12TiO3lead-free ceramicsrdquo Journal of the

Korean Ceramic Society vol 62 pp 1004ndash1008 2013[128] P Jaita A Watcharapasorn D P Cann and S

Jiansirisomboon ldquoDielectric ferroelectric and electric field-induced strain behavior of Ba(Ti090Sn010)O3-modifiedBi05(Na080K020)05TiO3 lead-free piezoelectricsrdquo Journalof Alloys and Compounds vol 596 pp 98ndash106 2014

[129] AHussain J U Rahman A Zaman et al ldquoField-induced strainand polarization response in lead-free Bi12(Na080K020)12TiO3ndashSrZrO3 ceramicrdquo Materials Chemistry and Physics vol143 pp 1282ndash1288 2014

[130] A Ullah R A Malik D S Lee et al ldquoElectric-field-inducedphase transition and large strain in lead-free Nb-doped BNKT-BST ceramicsrdquo Journal of the European Ceramic Society vol 34pp 29ndash35 2014

[131] J Hao B Shen J Zhai and H Chen ldquoPhase transitionalbehavior and electric field-induced large strain in alkali niobate-modified Bi

05(Na080

K020

)05TiO3

lead-free piezoceramicsrdquoJournal of Applied Physics vol 115 Article ID 034101 2014

[132] A Zaman Y Iqbal A Hussain M H Kim and R A MalikldquoDielectric ferroelectric and field-induced strain properties ofTa-doped 099Bi

05(Na082

K018

)05TiO3ndash001LiSbO

3ceramicsrdquo

Journal of Materials Science vol 49 no 8 pp 3205ndash3214 2014[133] A Ullah A Ullah I W Kim D S Lee S J Jeong and C W

Ahn ldquoLarge electromechanical response in lead-free La-dopedBNKTBST piezoelectric ceramicsrdquo Journal of the AmericanCeramic Society vol 97 no 8 pp 2471ndash2478 2014

Submit your manuscripts athttpwwwhindawicom

ScientificaHindawi Publishing Corporationhttpwwwhindawicom Volume 2014

CorrosionInternational Journal of

Hindawi Publishing Corporationhttpwwwhindawicom Volume 2014

Polymer ScienceInternational Journal of

Hindawi Publishing Corporationhttpwwwhindawicom Volume 2014

Hindawi Publishing Corporationhttpwwwhindawicom Volume 2014

CeramicsJournal of

Hindawi Publishing Corporationhttpwwwhindawicom Volume 2014

CompositesJournal of

NanoparticlesJournal of

Hindawi Publishing Corporationhttpwwwhindawicom Volume 2014

Hindawi Publishing Corporationhttpwwwhindawicom Volume 2014

International Journal of

Biomaterials

Hindawi Publishing Corporationhttpwwwhindawicom Volume 2014

NanoscienceJournal of

TextilesHindawi Publishing Corporation httpwwwhindawicom Volume 2014

Journal of

NanotechnologyHindawi Publishing Corporationhttpwwwhindawicom Volume 2014

Journal of

CrystallographyJournal of

Hindawi Publishing Corporationhttpwwwhindawicom Volume 2014

The Scientific World JournalHindawi Publishing Corporation httpwwwhindawicom Volume 2014

Hindawi Publishing Corporationhttpwwwhindawicom Volume 2014

CoatingsJournal of

Advances in

Materials Science and EngineeringHindawi Publishing Corporationhttpwwwhindawicom Volume 2014

Smart Materials Research

Hindawi Publishing Corporationhttpwwwhindawicom Volume 2014

Hindawi Publishing Corporationhttpwwwhindawicom Volume 2014

MetallurgyJournal of

Hindawi Publishing Corporationhttpwwwhindawicom Volume 2014

BioMed Research International

MaterialsJournal of

Hindawi Publishing Corporationhttpwwwhindawicom Volume 2014

Nano

materials

Hindawi Publishing Corporationhttpwwwhindawicom Volume 2014

Journal ofNanomaterials

Page 7: Review Article Current Development in Lead-Free Bi (Na,K ...downloads.hindawi.com/journals/amse/2014/365391.pdf · Bi 2 O 3 and TiO 2 and alkali carbonate powder Na 2 CO 3 and K 2

Advances in Materials Science and Engineering 7

Table 1 The detailed composition of BNKT-modified ceramics with highest electric-field-induced strain

Ceramic compounds 119878max119864max (pmV) References086Bi05Na05TiO3 minus 014Bi05K05TiO3 297 Izumi et al (2008) [31]La2O3MnO-added (1 minus y)(Bi05Na049minus119909K119909Ag001)TiO3 minus yBaTiO3 415 Isikawa et al (2009) [84]Bi05(Na082K018)05Ti097Nb003O3 641 Pham et al (2010) [76]Bi05(Na078K022)05TiO3 296 Ullah et al (2010) [87]097Bi05(Na078K022)05TiO3 minus 003BiAlO3 592 Ullah et al (2010) [87]095Bi05(Na08K02)05TiO3 minus 005BiAlO3 391 Ullah et al (2010) [115]099(K05Na05)095Li005NbO3 minus 001Bi05(K015Na085)05TiO3 330 Chen et al (2010) [33]Bi05(Na082K018)05TiO3 minus 07 wt Y2O3 278 Binh et al (2010) [79]Bi05(Na078K022)05Ti097Zr003O3 614 Hussain et al (2010) [77]Bi05(Na078K022)05(Ti097Hf003)O3 475 Hussain et al (2010) [78]Bi05(Na082K018)05Ti098Ta002O3 566 Do et al (2011) [75]Bi12Na12TiO3 minus Bi12K12TiO3 minus 002Bi(Zn12Ti12)O3 500 Dittmer et al (2011) [93]Bi05(Na075K025)05TiO3 minus BiAlO3 sim900 Lee et al (2011) [45]009Bi05(Na078K022)05TiO3 minus 001Bi05La05AlO3 579 Ullah et al (2012) [88]0975Bi05(Na078K022)05TiO3 minus 0025BiAlO3 533 Ullah et al (2012) [116]097Bi05(Na078K022)05TiO3 minus 003K05Na05NbO3 434 Hussain et al (2012) [94]Bi05Na0385Li0025K009Ti0975Ta0025O3 727 Nguyen et al (2012) [80]Bi05(Na082K018)05Ti095Sn005O3 585 Lee et al (2012) [46]094Bi12(Na08K02)12TiO3 minus 006Bi(Mg12Sn12)O3 633 Pham et al (2012) [117]Bi05(Na074Li08K018)05Ti095Sn005O3 646 Nguyen et al (2012) [82]Bi12(Na082K018)12(Ti097Nb003)O3 641 Pham et al (2012) [118]097Bi05(Na078K022)05TiO3 minus 003CaZrO3 617 Hong et al (2013) [99]095Bi05(Na08K02)05TiO3 minus 005SrTiO3 600 Wang et al (2012) [90]099Bi05(Na082K018)05Ti0980Zr0020O3 minus 001LiSbO3 500 Zaman et al (2012) [102]097Bi05(Na082K018)05 minus 003Bi(Zn05Ti05)O3 385 Ullah et al (2012) [119]5Bi(Zn05Ti05)O3 minus 40(Bi05K05)TiO3 minus 55(Bi05Na05)TiO3 547 Patterson et al (2012) [91]Bi05(Na082K018)05TiO3 minus 002CuO 214 Do et al (2012) [68]Bi05(Na082K018)05TiO3 minus 002CuO minus 002Nb2O5 427 Do et al (2012) [68]098Bi05(Na078K022)05TiO3 minus 002LaFeO3 sim500 Han et al (2012) [120]Bi05(Na082K018)05Ti095Sn005O3 sim600 Han et al (2013) [121]098Bi05(Na082K018)05TiO3 minus 002BaZrO3 437 Lee et al (2013) [122]097Bi05(Na082K018)05TiO3 minus 003CaZrO3 603 Lee et al (2013) [122]098Bi05(Na082K018)05TiO3 minus 002Ba08Ca02ZrO3 549 Lee et al (2013) [122]094Bi05(Na075K025)05TiO3 minus 006BiAlO3 930 Lee et al (2013) [123]0975Bi05(Na080K020)05TiO3 minus 0025LiNbO3 475 Hao et al (2013) [124]096Bi05(Na078K022)05TiO3 minus 004Bi(Mg05Ti05)O3 636 Ullah et al (2013) [125]40Bi05K05TiO3 minus 59Bi05Na05TiO3 minus 1Bi(Mg12Ti12)O3 422 Kumar and Cann (2013) [126][Bi12(Na082K018)12]097La003TiO3 715 Dinh et al (2013) [127]095Bi05(Na080K020)05TiO3 minus 005Ba(Ti090Sn010)O3 649 Jaita et al (2014) [128]097Bi05(Na080K020)05TiO3 minus 003SrZrO3 617 Hussain et al (2014) [129]099Bi05Na04K01Ti098Nb002O3 minus 001(Ba07Sr03)TiO3 634 Ullah et al (2014) [130]Bi05(Na080K020)05TiO3 minus (K119910Na1minus119910)NbO3 413ndash575 Hao et al (2014) [131]099Bi05(Na082K018)05Ti0987Ta0013O3 minus 001LiSbO3 650 Zaman et al (2014) [132]099[(Bi05Na04K01)0980La0020TiO3] minus 002[Ba07Sr03TiO3] 650 Ullah et al (2014) [133]

8 Advances in Materials Science and Engineering

2008 2009 2010 2011 2012 2013 20140

200

400

600

800

1000

1200

PZT (PIC151)

Year

Lead-free BNKT-based

PZT-based

Sm

axE

max

(pm

V)

Figure 3 The highest values 119878max119864max observation in years (from2008 to 2014) in lead-free BNKT-based ceramics

caused difference of valence states However the tolerancefactor has only estimated the range for stability of perovskitebut it was not showed for crystal symmetries Thus theseexplanations were unreliable The mechanism of electricalfield-induced strain was not well understood which stillrequired to further investigate Consequently the roles of A-and B-site on the electrical field-induced strain were uncleartill now However we expected that the 119878max119864max valueswere further increased by using multidopant with optimalconcentration of dopants for each position A- andor B-sitein BNKT ceramics

In case of rare-earth doped BNKT the enhancementof piezoelectric properties mostly resulted from the point-defect-mediated because rare-earth elements have variousvalences which was displayed by various radii of ion depend-ing on the valence stable state substitution For examplethe mechanism for the effect of CeO

2doped BNKT is

complicated because Ce ion possibly exists in the BNKTstructure in two valence states Ce4+ with radius of 092 Aand Ce3+ with radius of 103 A In view of the radius Ce3+is possible to fill in Bi3+ vacancies and Ce4+ can enter into theBi-site In this case Ce4+ functions as a donor dopant leadingto some vacancies of A-site in the lattice which facilitatesthe movement of domain wall to improve the piezoelectricproperties Another one is that Ce3+ and Ce4+ ions occupythe A-site of Na+ (119903Na+ = 097A) of BNKT compositionwhich are the same as the Ce4+ entering into Bi3+ [55 56] Inthese cases existing vacancies bring defect in lattice whichresults in an increasing in the dielectric loss and grain sizeand have some effects of piezoelectric properties In additionthe experiments demonstrated that rare-earth substitution inNa+ first leads to creation of oxygen vacancies and latticecontraction but when the dopants concentration is over acritical value then it begins to substitute for Bi3+ thus it leadsto lattice expansion [57ndash59]

In case of transitionmetal dopant inBNKT themost find-ings confirmed that dopants resulted in the lower sintering

temperature It is valuable inmarket due to reduction the costof electronic devices

In case of other metal dopant in BNKT there were mixedpoint-defect-mediated and electric-field-induced phase tran-sition mechanisms which depend on the valence and site-prefer to substitution For example the Ta5+ which replacedTi4+ at B-site leads to creation of A-site vacancies whichsignificantly contributed to the destabilization of ferroelectricphase in the Bi perovskite [75 80 114] These factors weresimilar to a case of nonstochiometric at A- and B-site ofBNKT where the vacancies were occurred

In case of solid solution between BNKT with other119860

1015840119861

1015840O3perovskites it is quite interesting because the ideal

was simple like tailor Some of 11986010158401198611015840O3perovskites were

unstable or hardly fabricated such as BiAlO3 but the theory

predicted that they should have goodpiezoelectric propertiesHowever interestingly they were stabled in solid solution inBNKT matrix and strong enhancement piezoelectric prop-erties Similarly the Bi

05Zn05TiO3(BZT) was a good ferro-

electric material and it was tailed their properties in BNKT-BZT as solid solution In addition BNKT-modified withBi05Li05TiO3has displayed the excellent piezoelectric con-

stant 11988933 Recently the multiferroic materials have rapidly

developed because they exhibited the electric field controlledferromagnetism and magnetic field controlled the electricpolarization However multiferroic properties of BNKT-based materials have not been reported Therefore we pro-posed that the solid solution andor composite of BNKTwith insulator ferromagnetism materials such as BiFeO

3and

CoFeO4could be a good display of multiferroics properties

which will promise candidate to develop new class of multi-ferroics materials

5 Conclusion

The current status of lead-free piezoelectric materials hasbeen introduced The lead-free BNKT-based ceramics werereviewed based on the fabrication method effect of dopantsand solid-solution with other 11986010158401198611015840O

3perovskite Most find-

ings confirmed that giant strain obtained in lead-free BNKT-based ceramics is due to phase transition from polar tononpolar phase and the highest 119878max119864max values werefound at theMPBHowever the origin of phase transitionwasstill debated The 119878max119864max values of lead-free BNKT-basedceramics are comparable with soft lead-based PZT-basedceramics which could be promising materials to readilyreplace the lead-based PZT-based materials in devices Inaddition the effects of secondary phase 11986010158401198611015840O

3as solid-

solution tailed the properties of BNKT matrix Our workreviewed current developments in lead-free BNKT-basedmaterials which were expected to understand current statusof researching about BNKT-based ceramics therefore to beguidance for designing new class materials and applications

Conflict of Interests

The authors declare that there is no conflict of interestsregarding the publication of this paper

Advances in Materials Science and Engineering 9

Acknowledgment

This work was financially supported by the Ministry of Edu-cation andTraining Vietnam under Project no B 20130155

References

[1] P K Panda ldquoReview environmental friendly lead-free piezo-electric materialsrdquo Journal of Materials Science vol 44 no 19pp 5049ndash5062 2009

[2] C A Randall R E Newnham and L E Cross History of theFirst Ferroelectric Oxide BaTiO

3 Materials Research Institute

The Pennsylvania State University University Park Pa USA2004

[3] E Ringgaard and T Wurlitzer ldquoLead-free piezoceramics basedon alkali niobatesrdquo Journal of the European Ceramic Society vol25 no 12 pp 2701ndash2706 2005

[4] T Takenaka and H Nagata ldquoCurrent status and prospects oflead-free piezoelectric ceramicsrdquo Journal of the EuropeanCeramic Society vol 25 no 12 pp 2693ndash2700 2005

[5] Ministry of Information Industry of the Peoplersquos Republic ofChina Industrial Standard of the peoplersquos Republich of China2006

[6] Japan Electronics and InformationTechnology Industries Asso-ciation Standard of Japan Electronics and Information Tech-nology Industries Association 1998

[7] TheEnvironment and Labor Committee of the National Assemblyof Korea 2007

[8] Y Li K S Moon and C P Wong ldquoElectronics without leadrdquoScience vol 308 no 5727 pp 1419ndash1420 2005

[9] E Cross ldquoLead-free at lastrdquoNature vol 432 no 7013 pp 24ndash252004

[10] G A Smolensky V A Isupov A I Agranovskaya and NN Krainic ldquoNew ferroelectrics with complex compounds IVrdquoFizika Tverdogo Tela vol 2 pp 2982ndash2985 1960

[11] G A Smolenskii and A I Agranovskaya ldquoDielectric polariza-tion of a series of compounds of complex compositionrdquo FizikaTverdogo Tela vol 1 pp 1562ndash1572 1959

[12] C F Buhrer ldquoSome properties of bismuth perovskitesrdquo TheJournal of Chemical Physics vol 36 pp 798ndash803 1962

[13] I P Pronin N N Parfenova N V Zaitseva V A Isupov andG A Smolenskii ldquoPhase transitions in solid solutions of sodi-umbismuth and potassiumbismuth titanatesrdquo Fizika TverdogoTela vol 24 pp 1060ndash1062 1982

[14] A Sasaki T Chiba Y Mamiya and E Otsuki ldquoDielectric andpiezoelectric properties of (Bi

05Na05)TiO3ndash(Bi05K05)TiO3sys-

temsrdquo Japanese Journal of Applied Physics vol 38 no 9 p 55641999

[15] G O Jones and P A Thomas ldquoInvestigation of the structureand phase transitions in the novel A-site substituted distortedperovskite compoundNa

05Bi05TiO3rdquoActa Crystallographica B

vol 58 pp 168ndash178 2002[16] PWoodward ldquoOctahedral tilting in perovskites I Geometrical

considerationsrdquo Acta Crystallographica B vol 53 pp 32ndash431997

[17] V A Isupov ldquoFerroelectric Na05Bi05TiO3and K

05Bi05TiO3

perovskites and their solid solutionsrdquo Ferroelectrics vol 315 no1 pp 123ndash147 2005

[18] I P Pronin P P Syrnikov V A Isupov V M Egorov N VZaitseva and A F Ioffe ldquoPeculiarities of phase transitions in

sodium-bismuth titanaterdquo Ferroelectrics vol 25 pp 395ndash3971980

[19] J A Zvirgzds P P Kapostis and J V Zvirgzde ldquoX-ray study ofphase transitions in efrroelectric Na

05Bi05TiO3rdquo Ferroelectrics

vol 40 no 1 pp 75ndash77 1982[20] J Suchanicz K Roleder A Kania and J Handerek ldquoElec-

trostrictive strain and pyroeffect in the region of phase coexis-tence in Na

05Bi05TiO3rdquo Ferroelectrics vol 77 pp 107ndash110 1988

[21] Y Chiang G W Farrey and A N Soukhojak ldquoLead-free high-strain single-crystal piezoelectrics in the alkaline-bismuth-titanate perovskite familyrdquo Applied Physics Letters vol 73 no25 pp 3683ndash3685 1998

[22] S M Emelyanov I P Raevskii V G Smotrakov and F ISavenko ldquoPiezoelectric and pyroelectric properties of sodium-bismuth titanate crystalsrdquo Fizika Tverdogo Tela vol 26 pp1897ndash1899 1984

[23] M L Zhao C LWangW L Zhong J FWang andHCChenldquoElectrical properties of (Bi

05Na05)TiO3ceramic prepared by

sol-gel methodrdquo Acta Physica Sinica vol 52 no 1 pp 229ndash2322003

[24] M L Zhao C L Wang W L Zhong J F Wang and Z F LildquoGrain-size effect on the dielectric properties of Bi

05Na05TiO3rdquo

Chinese Physics Letters vol 20 article 290 2003[25] B Jaffe W R Cook and H Jaffe Piezoelectric Ceramics

Academic Press London UK 1971[26] J Suchanicz ldquoTime evolution of the phase transformation in

Na05Bi05TiO3rdquo Ferrolectrics vol 200 no 1 pp 319ndash325 1997

[27] O N Razumovskaya T B Kuleshova and L M RudkovskayaldquoReactions of formation of BiF

119890O3 K05

Bi05TiO3 and

Na05Bi05TiO3rdquo Neorganicheskie Materialy [Inorganic Mat-

erials] vol 19 pp 113ndash115 1983[28] V V Ivanova A G Kapishev Y N Venevtsev and G S

Zhdanov ldquoX-ray determination of the symmetry of elemen-tary cells of the ferroelectric materials (K05Bi05)TiO3 and(Na05Bi05)TiO3 and of high-temperature phase transitionsin (K05Bi05)TiO3rdquo Izvestiya Akademii Nauk SSSR SeriyaFizicheskaya vol 26 pp 354ndash356 1962

[29] Y Hiruma R Aoyagi H Nagata and T Takenaka ldquoSynthesisand properties of 1-Methyl-4-2-[4-(dimethylamino)phenyl]-ethenylpyridinium p-toluenesulfonate derivatives with isomor-phous crystal structurerdquo Japanese Journal of Applied Physics vol44 p 5231 2005

[30] M Zhu L Hou Y Hou J Liu HWang andH Yan ldquoLead-free(K05Bi05)TiO3powders and ceramics prepared by a solndashgel

methodrdquo Materials Chemistry and Physics vol 99 no 2-3 pp329ndash332 2006

[31] M Izumi K Yamamoto M Suzuki Y Noguchi andM Miyayama ldquoLarge electric-field-induced strain inBi05Na05TiO3-Bi05K05TiO3

solid solution single crystalsrdquoApplied Physics Letters vol 93 Article ID 242903 2008

[32] T Tani ldquoCrystalline-oriented piezoelectric bulk ceramics witha perovskite-type structurerdquo Journal of the Korean PhysicalSociety vol 32 no 3 pp S1217ndashS1220 1998

[33] X Chen Y Liao H Wang et al ldquoPhase structure and electricproperties of Bi

05(Na0825

K0175

)05TiO3ceramics prepared by a

sol-gel methodrdquo Journal of Alloys and Compounds vol 493 no1-2 pp 368ndash371 2010

[34] Y Q Chen X J Zheng and W Li ldquoSize effect of mechanicalbehavior for lead-free (Na

082K018

)05Bi05TiO3nanofibers by

nanoindentationrdquoMaterials Science and Engineering A vol 527pp 5462ndash5466 2010

10 Advances in Materials Science and Engineering

[35] D YWang DM Lin K SWong KW Kwok J Y Dai and HL W Chan ldquoPiezoresponse and ferroelectric properties oflead-free [Bi

05(Na07K02Li01)05]TiO3thin films by pulsed laser

depositionrdquo Applied Physics Letters vol 92 no 22 Article ID222909 2008

[36] J Kreisel A M Glazer G Jones P A Thomas L Abello andG Lucazeau ldquoAn x-ray diffraction and Raman spectroscopyinvestigation of A-site substituted perovskite compounds the(Na1minus119909

K119909)05Bi05TiO3(0le xle1) solid solutionrdquo Journal of

Physics Condensed Matter vol 12 p 3267 2000[37] H Xie L Jin D Shen X Wang and G Shen ldquoMorphotropic

phase boundary segregation effect and crystal growth in theNBT-KBT systemrdquo Journal of Crystal Growth vol 311 no 14pp 3626ndash3630 2009

[38] O Elkechai M Manier and I P Mercurio ldquoNa05Bi05TiO3ndash

K05Bi05TiO3(NBT-KBT) system a structural and electrical

studyrdquo Physica Status Solidi vol 157 no 2 pp 499ndash506 1996[39] K Yoshii Y Hiruma H Nagata and T Takenaka ldquoElectrical

properties and depolarization temperature of (Bi12Na12)TiO3-

(Bi12K12)TiO3lead-free piezoelectric ceramicsrdquo Japanese Jour-

nal of Applied Physics vol 45 part 1 no 5B pp 4493ndash44972006

[40] M E Lines and A M Glass Principles and Applications forFerroelectrics and Related Materials Oxford University PressOxford UK 1979

[41] K Uchino Piezoelectric Actuators and Ultrasonic MotorsKluwer Academic Publishers Boston Mass USA 1996

[42] S T Zhang A B Kounga E Aulbach et al ldquoLead-free piezoce-ramics with giant strain in the system Bi

05Na05TiO3ndashBaTiO

3ndash

K05Na05NbO3 II Temperature dependent propertiesrdquo Journal

of Applied Physics vol 103 no 3 Article ID 034108 2008[43] S T Zhang A B Kounga E Aulbach H Ehrenberg and J

Rodel ldquoGiant strain in lead-free piezoceramics Bi05Na05TiO3ndash

BaTiO3ndashK05Na05NbO3systemrdquo Applied Physics Letters vol 91

Article ID 112906 2007[44] W Jo T Granzow E Aulbach J Rodel and D Damjanovic

ldquoOrigin of the large strain response in (K05Na05)NbO

3-

modified (Bi05Na05)TiO3ndashBaTiO

3lead-free piezoceramicsrdquo

Journal of Applied Physics vol 105 no 9 Article ID 0941022009

[45] D S Lee D H Lim M S Kim K H Kim and S J JeongldquoElectric field-induced deformation behavior in mixedBi05Na05TiO3and Bi

05(Na075

K025

)05TiO3-BiAlO

3rdquo Applied

Physics Letters vol 99 Article ID 062906 2011[46] J S Lee K N Pham H S Han H B Lee and V D N Tran

ldquoStrain enhancement of lead-free Bi12(Na082

K018

)12TiO3

ceramics by Sn dopingrdquo Journal of the Korean Physical Societyvol 60 no 2 pp 212ndash215 2012

[47] A Ullah CW Ahn A Hussain S Y Lee and IW Kim ldquoPhasetransition electrical properties and temperature-insensitivelarge strain in BiAlO

3-modified Bi

05(Na075

K025

)05TiO3lead-

free piezoelectric ceramicsrdquo Journal of the American CeramicSociety vol 94 no 11 pp 3915ndash3921 2011

[48] L J Rigoberto G Federico and V C Maria-Elena ldquoLead-free ferroelectric ceramics with perovskite structurerdquo inFerroelectrics-Material Aspects M Lattart Ed InTech 2011

[49] X Ren ldquoLarge electric-field-induced strain in ferroelectriccrystals by point-defect-mediated reversible domain switchingrdquoNature Materials vol 3 pp 91ndash94 2004

[50] W LWarren G E Pike K Vanheusden D Dimos B A Tuttleand J Robertson ldquoDefect-dipole alignment and tetragonal

strain in ferroelectricsrdquo Journal of Applied Physics vol 79 no12 pp 9250ndash9257 1996

[51] W L Warren D Dimos G E Pike K Vanheusden and RRamesh ldquoAlignment of defect dipoles in polycrystalline ferro-electricsrdquo Applied Physics Letters vol 67 p 1689 1995

[52] R Lohkamper H Neumann and G Arlt ldquoInternal biasin acceptor-doped BaTiO

3ceramics numerical evaluation of

increase and decreaserdquo Journal of Applied Physics vol 68 p4220 1990

[53] U Robels and G Arlt ldquoDomain wall clamping in ferroelectricsby orientation of defectsrdquo Journal of Applied Physics vol 73 no7 pp 3454ndash3460 1993

[54] H Fu and R E Cohen ldquoPolarization rotation mechanism forultrahigh electromechanical response in single-crystal piezo-electricsrdquo Nature vol 403 no 6767 pp 281ndash283 2000

[55] Y Li W Chen Q Xu J Zhou Y Wang and H SunldquoPiezoelectric and dielectric properties of CeO

2-doped

Bi05Na044

K006

TiO3

lead-free ceramicsrdquo Ceramics Inter-national vol 33 no 1 pp 95ndash99 2007

[56] Y Liao D Xiao D Lin et al ldquoThe effects of CeO2-

doping on piezoelectric and dielectric properties ofBi05(Na1minus119909minus119910

K119909Li119910)05TiO3piezoelectric ceramicsrdquo Materials

Science and Engineering B vol 133 no 1ndash3 pp 172ndash176 2006[57] B Wang L Luo F Ni P Du W Li and H Chen ldquoPiezoelectric

and ferroelectric properties of (Bi1minus119909

Na08K02Lax)05TiO3lead-

free ceramicsrdquo Journal of Alloys and Compounds vol 526 pp79ndash84 2012

[58] Y Yuan S Zhang and X Zhou ldquoEffects of La occupa-tion site on the dielectric and piezoelectric properties of[Bi05(Na075

K015

L119894010

)05]TiO3ceramicsrdquo Journal of Materials

Science Materials in Electronics vol 20 no 11 pp 1090ndash10942009

[59] Y Yuan S R Zhang and X H Zhou ldquoPhasetransitions and electrical properties in La3+-substitutedBi05(Na075

K015

Li010

)05TiO3ceramicsrdquo Journal of Materials

Science Letters vol 41 pp 565ndash567 2006[60] Z Yang Y Hou B Liu and L Wei ldquoStructure and

electrical properties of Nd2O3-doped 082Bi

05Na05TiO3ndash

018Bi05K05TiO3ceramicsrdquo Ceramics International vol 35 pp

1423ndash1427 2009[61] Y Zhang R Chu Z Xu et al ldquoPiezoelectric and dielectric prop-

erties of Sm2O3-doped

082Bi05Na05TiO3-0 18Bi

05K05TiO3

ceramicsrdquo Journal of Alloys and Compounds vol 502 no 2 pp341ndash345 2010

[62] P Fu Z Xu R Chu W Li WWang and Y Liu ldquoGd2O3doped

082Bi05Na05TiO3ndash018Bi

05K05TiO3

lead-free piezoelectricceramicsrdquoMaterials amp Design vol 35 pp 267ndash280 2012

[63] C Zhi-Hui D Jian-Ning M Lin Y Ning-Yi and Z Wei-WeildquoPiezoelectric and dielectric properties of Dy

2O3-Doped Bi

05

(Na082

K018

)05TiO3lead-free ceramicsrdquo Ferroelectrics vol 425

no 1 pp 63ndash71 2011[64] P Fu Z Xu R Chu XWuW Li andH Zhang ldquoStructure and

electrical properties of the Ho2O3doped 082Bi

05Na05TiO3-

018Bi05K05TiO3lead-free piezoelectric ceramicsrdquo Journal of

Materials Science Materials in Electronics vol 23 no 12 pp2167ndash2172 2012

[65] P Fu Z Xu H Zhang R Chu W Li and M Zhao ldquoStructureand electrical properties of Er

2O3doped 082Bi

05Na05TiO3ndash

018Bi05K05TiO3lead-free piezoelectric ceramicsrdquoMaterials amp

Design vol 40 pp 373ndash377 2012

Advances in Materials Science and Engineering 11

[66] P Fu Z Xu R Chu W Li Q Xie and G Zhang ldquoEffectsof Eu

2O3

on the structure and electrical properties of082Bi

05Na05TiO3-018Bi

05K05TiO3

lead-free piezoelectricceramicsrdquo Current Applied Physics vol 11 pp 822ndash826 2011

[67] H Han N Do K Pham et al ldquoSintering behaviour andpiezoelectric properties of CuO-added lead-free Bi(NaK)TiO

3

ceramicsrdquo Ferroelectrics vol 421 no 1 pp 88ndash91 2011[68] N B Do H D Jang I Hong et al ldquoLow temperature sintering

of lead-free Bi05(Na082

K018

)05TiO3piezoelectric ceramics by

co-doping with CuO and Nb2O5rdquo Ceramics International vol

38S pp S359ndashS362 2012[69] X P Jiang L Z Li M Zeng and H L W Chan ldquoDielec-

tric properties of Mn-doped (Na08K02)05Bi05TiO3ceramicsrdquo

Materials Letters vol 60 no 15 pp 1786ndash1790 2006[70] J Xiangping L Longzhu J Fulan Z Yanyan and L Lihua

ldquoEffects of Mn-doping on the piezoelectric and ferroelectricproperties of (Na

08K02)05Bi05TiO3ceramicsrdquo Key Engineering

Materials vol 368-372 pp 69ndash71 2008[71] H Hu M Zhu Y Hou and H Yan ldquoDielectric piezoelectric

and ferroelectric properties of MnCO3-added 74(Bi

12Na12)

TiO3-208(Bi

12K12)TiO3-52BaTiO

3lead-free piezoelectric

ceramicsrdquo IEEE Transactions on Ultrasonics Ferroelectrics andFrequency Control vol 56 pp 897ndash905 2009

[72] J Shieh Y C Lin and C S Chen ldquoIntricate straining ofmanganese-doped (Bi

05Na05)TiO3-BaTiO

3-(Bi05K05)TiO3

lead-free ferroelectric ceramicsrdquo Journal of Physics D AppliedPhysics vol 43 no 2 Article ID 025404 2010

[73] J Shieh Y C Lin and S C Chen ldquoInfluence of phase com-position on electrostrains of doped (Bi

05Na05)TiO3ndashBaTiO

3ndash

(Bi05K05)TiO3lead-free ferroelectric ceramicsrdquo Smart Materi-

als and Structures vol 19 no 9 Article ID 094007 2010[74] M Zhu H Hu N Lei Y Hou and H YanInt ldquoMnO modifi-

cation on microstructure and electrical properties of lead-freeBi0485

Na0425

K006

Ba003

TiO3

solid solution around mor-photropic phase boundaryrdquo International Journal of AppliedCeramic Technology vol 7 pp E107ndashE113 2010

[75] N BDoH B Lee CHYoon J KKang and J S Lee ldquoEffect ofTa-substitution on the ferroelectric and piezoelectric propertiesof Bi05(Na082

K018

)05TiO3ceramicsrdquoTransactions on Electrical

and Electronic Materials vol 12 no 2 pp 64ndash67 2011[76] K N Pham A Hussain CW Ahn I W Kim S J Jeong and J

S Lee ldquoGiant strain in Nb-doped Bi05(Na082

K018

)05TiO3lead-

free electromechanical ceramicsrdquoMaterials Letters vol 64 no20 pp 2219ndash2222 2010

[77] A Hussain C W Ahn J S Lee A Ullah and I W KimldquoLarge electric-field-induced strain in Zr-modified lead-freeBi05(Na078

K022

)05TiO3piezoelectric ceramicsrdquo Sensors and

Actuators A vol 158 no 1 pp 84ndash89 2010[78] AHussain CWAhn AUllah J S Lee and IWKim ldquoEffects

of hafnium substitution on dielectric and electromechanicalproperties of lead-free Bi

05(Na078

K022

)05(Ti1minus119909

Hfx)O3Ceram-

icsrdquo Japanese Journal of Applied Physics vol 49 Article ID041504 2010

[79] D N Binh A Hussain H Lee et al ldquoEnhanced electric-field-induced strain at the ferroelectric-electrostrcitive phaseboundary of yttrium-doped Bi

05(Na082

K018

)05TiO3lead-free

piezoelectric ceramicsrdquo Journal of the Korean Physical Societyvol 57 no 41 pp 892ndash896 2010

[80] V Nguyen H Han K Kim D Dang K Ahn and J Lee ldquoStrainenhancement in Bi

12(Na082

K018

)12TiO3lead-free electrome-

chanical ceramics by co-dopingwith Li andTardquo Journal of Alloysand Compounds vol 511 no 1 pp 237ndash241 2012

[81] D Lin D Xiao J Zhu and P Yu ldquoPiezoelectric and ferroelectricproperties of lead-free piezoelectric ceramicsrdquo Applied PhysicsLetters vol 88 no 6 Article ID 062901 2006

[82] V Nguyen C Hong H Lee Y M Kong J Lee and K AhnldquoEnhancement in the microstructure and the strain propertiesof Bi12(NaK)

12TiO3-based lead-free ceramics by Li substitu-

tionrdquo Journal of the Korean Physical Society vol 61 no 6 pp895ndash898 2012

[83] Y Liao D Xiao and D Lin ldquoApplication of quantum cascadelasers to trace gas analysisrdquo Applied Physics B vol 90 pp 165ndash176 2008

[84] Y Isikawa Y Akiyama and T Hayashi ldquoPiezoelectric anddielectric properties of (BiNaKAg)TiO

3-BaTiO

3lead-free

piezoelectric ceramicsrdquo Japanese Journal of Applied Physics vol48 Article ID 09KD03 2009

[85] F Ni L Luo X Pan W Li and J Zhu ldquoEffects of A-sitevacancy on the electrical properties in lead-free non-stoichiometric ceramics Bi

05+119909(Na082

K018

)05minus3119909

TiO3

andBi05+119910

(Na082

K018

)05TiO3rdquo Journal of Alloys and Compounds

vol 541 pp 150ndash156 2012[86] F Ni L Luo W Lim and H Chen ldquoA-site vacancy-induced

giant strain and the electrical properties in non-stoichiometricceramics Bi

05+119909(Na1minus119910

K119910)05minus3119909

TiO3rdquo Journal of Physics D

Applied Physics vol 45 no 41 Article ID 415103 2012[87] A Ullah C W Ahn A Hussain S Y Lee H J Lee and I W

Kim ldquoPhase transitions and large electric field-induced strainin BiAlO

3-modified Bi

05(Na K)

05TiO3lead-free piezoelectric

ceramicsrdquo Current Applied Physics vol 10 pp 1174ndash1181 2010[88] A Ullah C W Ahn S Y Lee J S Kim and I W Kim ldquoStruc-

ture ferroelectric properties and electric field-induced largestrain in lead-free Bi

05(NaK)

05TiO3-(Bi05La05)AlO3piezo-

electric ceramicsrdquo Ceramics International vol 38 no 1 ppS363ndashS368 2012

[89] V DN Tran H S Han CH Yoon J S LeeW Jo and J RodelldquoLead-free electrostrictive bismuth perovskite ceramics withthermally stable field-induced strainsrdquoMaterials Letters vol 65pp 2607ndash2609 2011

[90] K Wang A Hussain W Jo and J Rodel ldquoTemperature-dependent properties of (Bi

12Na12)TiO3-(Bi12K12)TiO3-

SrTiO3

lead-free piezoceramicsrdquo Journal of the AmericanCeramic Society vol 95 no 7 pp 2241ndash2247 2012

[91] E A Patterson D P Cann J Pokomy and I M Reaney ldquoElec-tromechanical strain in Bi(Zn

12Ti12)O3-(Bi12Na12)TiO3-

(Bi12K12)TiO3solid solutionsrdquo Journal Of Applied Physics vol

111 Article ID 094105 2012[92] E A Patterson and D P Cann ldquoBipolar piezoelectric

fatigue of Bi(Zn05Ti05)O3-(Bi05K05)TiO3-(Bi05Na05)TiO3Pb-

free ceramicsrdquo Applied Physics Letters vol 101 Article ID042905 2012

[93] R Dittmer W Jo J Daniels S Schaab and JRodel ldquoRelaxor characteristics of morphotropic phaseboundary (Bi

12Na12)TiO3-(Bi12K12)TiO3

modified withBi(Zn

12Ti12)O3rdquo Journal of the American Ceramic Society vol

94 no 12 pp 4283ndash4290 2011[94] A Hussain C W Ahn A Ullah J S Lee and I W Kim

ldquoDielectric ferroelectric and field-induced strain behavior ofK05Na05NbO3-modified Bi

05(Na078

K022

)05TiO3

lead-freeceramicsrdquo Ceramics International vol 38 no 5 pp 4143ndash41492012

12 Advances in Materials Science and Engineering

[95] G Fan W Lu X Wang and F Liang ldquoMorphotropic phaseboundary and piezoelectric properties of (Bi

12Na12)TiO3ndash

(Bi12K12)TiO3ndashKNbO

3lead-free piezoelectric ceramicsrdquo

Applied Physics Letters vol 91 Article ID 202908 2007[96] N B Do H B Lee D T Le et al ldquoElectric field-induced strain

of lead-free Bi05Na05TiO3ndashBi05K05TiO3ceramics modified

with LiTaO3rdquoCurrent Applied Physics vol 11 no 3 supplement

pp S134ndashS137 2011[97] T V D Ngoc H S Han K J Kim et al ldquoRelaxor and field-

induced strain behavior in lead-free Bi05(Na082

K018

)05TiO3

ceramics modified with BaZrO3rdquo Journal of Ceramic Processing

Research vol 13 supplement 2 pp s177ndashs180 2012[98] V D N Tran A Hussain H S Han et al ldquoComparison of

ferroelectric and strain properties between BaTiO3- and

BaZrO3-modified Bi

12(Na082

K018

)12TiO3ceramicsrdquo Japanese

Journal of Applied Physics vol 51 Article ID 09MD02 2012[99] I KHongH SHan CH YoonHN JiW P Tai and J S Lee

ldquoStrain enhancement in lead-free Bi05(Na078

K022

)05TiO3

ceramics by CaZrO3

substitutionrdquo Journal of IntelligentMaterial Systems and Structures vol 24 no 11 pp 1343ndash13492013 (Swedish)

[100] J K Kang D J Heo V Q Nguyen H S Han J S Leeand K K Ahn ldquoLow-temperature sintering of lead-freeBi12(NaK)

12TiO3-based electrostrictive ceramics with CuO

additionrdquo Journal of the Korean Physical Society vol 61 no 6pp 899ndash902 2012

[101] V Q Nguyen H B Luong and D D Dang ldquoEnhancement ofelectrical field-induced strain in Bi

05(Na K)

05TiO3-based lead-

free piezoelectric ceramics role of phase transitionrdquo In press[102] A Zaman Y Iqbal A Hussain et al ldquoInfluence of zirconium

substitution on dielectric ferroelectric and field-induced strainbehaviors of lead-free 099[Bi

12(Na082

K018

)12(Ti1minus119909

Zr119909)O3]-

001LiSbO3ceramicsrdquo Journal of theKorean Physical Society vol

61 no 5 pp 773ndash778 2012[103] S Qiao J Wu B Wu B Zhang D Xiao and J Zhu ldquoEffect

of Ba085

Ca015

Ti090

Zr010

O3content on the microstructure and

electrical properties of Bi051

(Na082

K018

)050

TiO3ceramicsrdquo

Ceramics International vol 38 no 6 pp 4845ndash4851 2012[104] H Nagata M Yoshida Y Makiuchi and T Takenaka ldquoLarge

piezoelectric constant and high curie temperature of lead-freepiezoelectric ceramic ternary system based on bismuth sodiumtitanate-bismuth potassium titanate-barium titanate near themorphotropic phase boundaryrdquo Japanese Journal of AppliedPhysics vol 42 no 12 p 7401 2003

[105] Y Li W Chen Q Xu J Zhou X Gu and S Fang ldquoElec-tromechanical and dielectric properties of Na

05Bi05TiO3-

K05Bi05TiO3-BaTiO

3lead-free ceramicsrdquo Materials Chemistry

and Physics vol 94 no 2-3 pp 328ndash332 2005[106] Q Zhou C Zhou W Li J Cheng H Wang and C Yuan

Journal of Physics and Chemistry of Solids vol 72 p 909 2011[107] C Zhou X LiuW Lim andC Yuan ldquoMicrostructure and elec-

trical properties of Bi05Na05TiO3-Bi05K05TiO3-LiNbO

3lead-

free piezoelectric ceramicsrdquo Journal of Physics and Chemistry ofSolids vol 70 pp 541ndash545 2009

[108] C Zhou X Liu W Li C Yuan and G Chen ldquoStructure andelectrical properties of Bi

05(Na K)

05TiO3minusBiGaO

3lead-free

piezoelectric ceramicsrdquo Current Applied Physics vol 10 no 1pp 93ndash98 2010

[109] B Wu C Han D Xiao Z Wang J Zhu and J Wu ldquoInves-tigation of a new lead-free (089minus x)(Bi

05Na05)TiO3ndash011(Bi

05

K05)TiO3ndashxBa085

Ca015

Ti090

Zr010

O3ceramicsrdquo Materials Re-

search Bulletin vol 47 pp 3937ndash3940 2012

[110] M Zou H Fan L Chen and W Yang ldquoMicrostruc-ture and electrical properties of (1 minus 119909)[082Bi

05Na05TiO3ndash

018Bi05K05TiO3]ndashxBiFeO

3lead-free piezoelectric ceramicsrdquo

Journal of Alloys and Compounds vol 495 no 1 pp 280ndash2832010

[111] C ZhouX LiuW Li andCYuan ldquoDielectric andpiezoelectricproperties of Bi

05Na05TiO3ndashBi05K05TiO3ndashBiCrO

3lead-free

piezoelectric ceramicsrdquo Journal of Alloys and Compounds vol478 no 1-2 pp 381ndash385 2009

[112] H Yang X Shan C Zhou Q Zhou W Li and J ChengldquoMicrostructure dielectric and piezoelectric properties of lead-free Bi

05Na05

TiO3ndashBi05K05

TiO3ndashBiMnO

3ceramicsrdquo Bulletin

of Materials Science vol 36 pp 265ndash270 2013[113] M Bichurin V Petrov A Zakharov et al ldquoMagnetoelectric

interactions in lead-based and lead-free compositesrdquoMaterialsvol 4 no 4 pp 651ndash702 2011

[114] H S Han CW Ahn IW Kim A Hussain and J S Lee ldquoDes-tabilization of ferroelectric order in bismuth perovskite ceram-ics by A-site vacanciesrdquo Materials Letters vol 70 pp 98ndash1002012

[115] A Ullah CW Ahn A Hussain IW Kim H I Hwang andNK Cho ldquoStructural transition and large electric field-inducedstrain in BiAlO

3-modified Bi

05(Na08K02)05TiO3

lead-freepiezoelectric ceramicsrdquo Solid State Communications vol 150pp 1145ndash1149 2010

[116] A Ullah C W Ahn A Hussain S Y Lee J S Kim and I WKim ldquoEffect of potassium concentration on the structure andelectrical properties of lead-free Bi

05(NaK)

05TiO3ndashBiAlO

3

piezoelectric ceramicsrdquo Journal of Alloys and Compounds vol509 pp 3148ndash3154 2012

[117] K N Pham D T Hinh L H Yuong K Y Min and L SShin ldquoEffects of Bi(Mg12Sn 12)O3 modification on the dielec-tric and piezoelectric properties of Bi12(Na08K02)12TiO3ceramicsrdquo Journal of the Korean Ceramic Society vol 49 pp266ndash271 2012

[118] K N Pham H B Lee H S Han et al ldquoDielectric fer-roelectric and piezoelectric properties of Nb-substitutedBi12(Na082

K018

)12TiO3lead-free ceramicsrdquo Journal of the

Korean Ceramic Society vol 60 pp 207ndash211 2012[119] A Ullah C W Ahn and I W Kim ldquoDielectric

piezoelectric properties and field-induced large strain ofBi(Zn

05Ti05)O3-modified morphotropic phase boundary

Bi05(Na082

K018

)05TiO3

piezoelectric ceramicsrdquo JapaneseJournal of Applied Physics vol 51 Article ID 09MD07 2012

[120] H S Han W Jo J Rodel I K Hong W P Tai and J SLee ldquoCoexistence of ergodicity and nonergodicity in LaFeO

3-

modified Bi12(Na078

K022

)12TiO3relaxorsrdquo Journal of Physics

Condensed Matter vol 24 Article ID 365901 2012[121] H S Han W Jo J K Kang et al ldquoIncipient piezoelectrics and

electrostriction behavior in Sn-doped Bi12(Na082

K018

)12TiO3

lead-free ceramicsrdquo Journal of Applied Physics vol 113 ArticleID 154102 2013

[122] H B Lee D J Heo R A Malik C H Yoon H S Han and J SLee ldquoLead-free Bi

12(Na082

K018

)12TiO3ceramics exhibiting

large strain with small hysteresisrdquo Ceramics International vol39 pp S705ndashS708 2013

[123] D S Lee S J Jeong M S Kim and K H Kim ldquoEffectof sintering time on strain in ceramic composite con-sisting of 094Bi05(Na075K025)05TiO3ndash006BiAlO3 with(Bi05Na05)TiO3rdquo Japanese Journal of Applied Physics vol 52Article ID 021801 2013

Advances in Materials Science and Engineering 13

[124] J Hao W Bai W Li B Shen and J Zhai ldquoPhase transitionsrelaxor behavior and large strain response in LiNbO3-modifiedBi05(Na080K020)05TiO3 lead-free piezoceramicsrdquo Journalof Applied Physics vol 114 Article ID 044103 2013

[125] A Ullah C W Ahn A Ullah and I W Kim ldquoLarge strainunder a low electric field in lead-free bismuth-based piezo-electricsrdquo Applied Physics Letters vol 103 Article ID 0229062013

[126] N Kumar and D P Cann ldquoElectromechanical strainand bipolar fatigue in Bi(Mg

12Ti12)O3-(Bi12K12)TiO3-

(Bi12Na12)TiO3ceramicsrdquo Journal of Applied Physics vol 114

Article ID 054102 2013[127] T H Dinh H Y Lee C H Yoon et al ldquoEffect of lanthanum

doping on the structural ferroelectric and strain propertiesof Bi12(Na082

K018

)12TiO3lead-free ceramicsrdquo Journal of the

Korean Ceramic Society vol 62 pp 1004ndash1008 2013[128] P Jaita A Watcharapasorn D P Cann and S

Jiansirisomboon ldquoDielectric ferroelectric and electric field-induced strain behavior of Ba(Ti090Sn010)O3-modifiedBi05(Na080K020)05TiO3 lead-free piezoelectricsrdquo Journalof Alloys and Compounds vol 596 pp 98ndash106 2014

[129] AHussain J U Rahman A Zaman et al ldquoField-induced strainand polarization response in lead-free Bi12(Na080K020)12TiO3ndashSrZrO3 ceramicrdquo Materials Chemistry and Physics vol143 pp 1282ndash1288 2014

[130] A Ullah R A Malik D S Lee et al ldquoElectric-field-inducedphase transition and large strain in lead-free Nb-doped BNKT-BST ceramicsrdquo Journal of the European Ceramic Society vol 34pp 29ndash35 2014

[131] J Hao B Shen J Zhai and H Chen ldquoPhase transitionalbehavior and electric field-induced large strain in alkali niobate-modified Bi

05(Na080

K020

)05TiO3

lead-free piezoceramicsrdquoJournal of Applied Physics vol 115 Article ID 034101 2014

[132] A Zaman Y Iqbal A Hussain M H Kim and R A MalikldquoDielectric ferroelectric and field-induced strain properties ofTa-doped 099Bi

05(Na082

K018

)05TiO3ndash001LiSbO

3ceramicsrdquo

Journal of Materials Science vol 49 no 8 pp 3205ndash3214 2014[133] A Ullah A Ullah I W Kim D S Lee S J Jeong and C W

Ahn ldquoLarge electromechanical response in lead-free La-dopedBNKTBST piezoelectric ceramicsrdquo Journal of the AmericanCeramic Society vol 97 no 8 pp 2471ndash2478 2014

Submit your manuscripts athttpwwwhindawicom

ScientificaHindawi Publishing Corporationhttpwwwhindawicom Volume 2014

CorrosionInternational Journal of

Hindawi Publishing Corporationhttpwwwhindawicom Volume 2014

Polymer ScienceInternational Journal of

Hindawi Publishing Corporationhttpwwwhindawicom Volume 2014

Hindawi Publishing Corporationhttpwwwhindawicom Volume 2014

CeramicsJournal of

Hindawi Publishing Corporationhttpwwwhindawicom Volume 2014

CompositesJournal of

NanoparticlesJournal of

Hindawi Publishing Corporationhttpwwwhindawicom Volume 2014

Hindawi Publishing Corporationhttpwwwhindawicom Volume 2014

International Journal of

Biomaterials

Hindawi Publishing Corporationhttpwwwhindawicom Volume 2014

NanoscienceJournal of

TextilesHindawi Publishing Corporation httpwwwhindawicom Volume 2014

Journal of

NanotechnologyHindawi Publishing Corporationhttpwwwhindawicom Volume 2014

Journal of

CrystallographyJournal of

Hindawi Publishing Corporationhttpwwwhindawicom Volume 2014

The Scientific World JournalHindawi Publishing Corporation httpwwwhindawicom Volume 2014

Hindawi Publishing Corporationhttpwwwhindawicom Volume 2014

CoatingsJournal of

Advances in

Materials Science and EngineeringHindawi Publishing Corporationhttpwwwhindawicom Volume 2014

Smart Materials Research

Hindawi Publishing Corporationhttpwwwhindawicom Volume 2014

Hindawi Publishing Corporationhttpwwwhindawicom Volume 2014

MetallurgyJournal of

Hindawi Publishing Corporationhttpwwwhindawicom Volume 2014

BioMed Research International

MaterialsJournal of

Hindawi Publishing Corporationhttpwwwhindawicom Volume 2014

Nano

materials

Hindawi Publishing Corporationhttpwwwhindawicom Volume 2014

Journal ofNanomaterials

Page 8: Review Article Current Development in Lead-Free Bi (Na,K ...downloads.hindawi.com/journals/amse/2014/365391.pdf · Bi 2 O 3 and TiO 2 and alkali carbonate powder Na 2 CO 3 and K 2

8 Advances in Materials Science and Engineering

2008 2009 2010 2011 2012 2013 20140

200

400

600

800

1000

1200

PZT (PIC151)

Year

Lead-free BNKT-based

PZT-based

Sm

axE

max

(pm

V)

Figure 3 The highest values 119878max119864max observation in years (from2008 to 2014) in lead-free BNKT-based ceramics

caused difference of valence states However the tolerancefactor has only estimated the range for stability of perovskitebut it was not showed for crystal symmetries Thus theseexplanations were unreliable The mechanism of electricalfield-induced strain was not well understood which stillrequired to further investigate Consequently the roles of A-and B-site on the electrical field-induced strain were uncleartill now However we expected that the 119878max119864max valueswere further increased by using multidopant with optimalconcentration of dopants for each position A- andor B-sitein BNKT ceramics

In case of rare-earth doped BNKT the enhancementof piezoelectric properties mostly resulted from the point-defect-mediated because rare-earth elements have variousvalences which was displayed by various radii of ion depend-ing on the valence stable state substitution For examplethe mechanism for the effect of CeO

2doped BNKT is

complicated because Ce ion possibly exists in the BNKTstructure in two valence states Ce4+ with radius of 092 Aand Ce3+ with radius of 103 A In view of the radius Ce3+is possible to fill in Bi3+ vacancies and Ce4+ can enter into theBi-site In this case Ce4+ functions as a donor dopant leadingto some vacancies of A-site in the lattice which facilitatesthe movement of domain wall to improve the piezoelectricproperties Another one is that Ce3+ and Ce4+ ions occupythe A-site of Na+ (119903Na+ = 097A) of BNKT compositionwhich are the same as the Ce4+ entering into Bi3+ [55 56] Inthese cases existing vacancies bring defect in lattice whichresults in an increasing in the dielectric loss and grain sizeand have some effects of piezoelectric properties In additionthe experiments demonstrated that rare-earth substitution inNa+ first leads to creation of oxygen vacancies and latticecontraction but when the dopants concentration is over acritical value then it begins to substitute for Bi3+ thus it leadsto lattice expansion [57ndash59]

In case of transitionmetal dopant inBNKT themost find-ings confirmed that dopants resulted in the lower sintering

temperature It is valuable inmarket due to reduction the costof electronic devices

In case of other metal dopant in BNKT there were mixedpoint-defect-mediated and electric-field-induced phase tran-sition mechanisms which depend on the valence and site-prefer to substitution For example the Ta5+ which replacedTi4+ at B-site leads to creation of A-site vacancies whichsignificantly contributed to the destabilization of ferroelectricphase in the Bi perovskite [75 80 114] These factors weresimilar to a case of nonstochiometric at A- and B-site ofBNKT where the vacancies were occurred

In case of solid solution between BNKT with other119860

1015840119861

1015840O3perovskites it is quite interesting because the ideal

was simple like tailor Some of 11986010158401198611015840O3perovskites were

unstable or hardly fabricated such as BiAlO3 but the theory

predicted that they should have goodpiezoelectric propertiesHowever interestingly they were stabled in solid solution inBNKT matrix and strong enhancement piezoelectric prop-erties Similarly the Bi

05Zn05TiO3(BZT) was a good ferro-

electric material and it was tailed their properties in BNKT-BZT as solid solution In addition BNKT-modified withBi05Li05TiO3has displayed the excellent piezoelectric con-

stant 11988933 Recently the multiferroic materials have rapidly

developed because they exhibited the electric field controlledferromagnetism and magnetic field controlled the electricpolarization However multiferroic properties of BNKT-based materials have not been reported Therefore we pro-posed that the solid solution andor composite of BNKTwith insulator ferromagnetism materials such as BiFeO

3and

CoFeO4could be a good display of multiferroics properties

which will promise candidate to develop new class of multi-ferroics materials

5 Conclusion

The current status of lead-free piezoelectric materials hasbeen introduced The lead-free BNKT-based ceramics werereviewed based on the fabrication method effect of dopantsand solid-solution with other 11986010158401198611015840O

3perovskite Most find-

ings confirmed that giant strain obtained in lead-free BNKT-based ceramics is due to phase transition from polar tononpolar phase and the highest 119878max119864max values werefound at theMPBHowever the origin of phase transitionwasstill debated The 119878max119864max values of lead-free BNKT-basedceramics are comparable with soft lead-based PZT-basedceramics which could be promising materials to readilyreplace the lead-based PZT-based materials in devices Inaddition the effects of secondary phase 11986010158401198611015840O

3as solid-

solution tailed the properties of BNKT matrix Our workreviewed current developments in lead-free BNKT-basedmaterials which were expected to understand current statusof researching about BNKT-based ceramics therefore to beguidance for designing new class materials and applications

Conflict of Interests

The authors declare that there is no conflict of interestsregarding the publication of this paper

Advances in Materials Science and Engineering 9

Acknowledgment

This work was financially supported by the Ministry of Edu-cation andTraining Vietnam under Project no B 20130155

References

[1] P K Panda ldquoReview environmental friendly lead-free piezo-electric materialsrdquo Journal of Materials Science vol 44 no 19pp 5049ndash5062 2009

[2] C A Randall R E Newnham and L E Cross History of theFirst Ferroelectric Oxide BaTiO

3 Materials Research Institute

The Pennsylvania State University University Park Pa USA2004

[3] E Ringgaard and T Wurlitzer ldquoLead-free piezoceramics basedon alkali niobatesrdquo Journal of the European Ceramic Society vol25 no 12 pp 2701ndash2706 2005

[4] T Takenaka and H Nagata ldquoCurrent status and prospects oflead-free piezoelectric ceramicsrdquo Journal of the EuropeanCeramic Society vol 25 no 12 pp 2693ndash2700 2005

[5] Ministry of Information Industry of the Peoplersquos Republic ofChina Industrial Standard of the peoplersquos Republich of China2006

[6] Japan Electronics and InformationTechnology Industries Asso-ciation Standard of Japan Electronics and Information Tech-nology Industries Association 1998

[7] TheEnvironment and Labor Committee of the National Assemblyof Korea 2007

[8] Y Li K S Moon and C P Wong ldquoElectronics without leadrdquoScience vol 308 no 5727 pp 1419ndash1420 2005

[9] E Cross ldquoLead-free at lastrdquoNature vol 432 no 7013 pp 24ndash252004

[10] G A Smolensky V A Isupov A I Agranovskaya and NN Krainic ldquoNew ferroelectrics with complex compounds IVrdquoFizika Tverdogo Tela vol 2 pp 2982ndash2985 1960

[11] G A Smolenskii and A I Agranovskaya ldquoDielectric polariza-tion of a series of compounds of complex compositionrdquo FizikaTverdogo Tela vol 1 pp 1562ndash1572 1959

[12] C F Buhrer ldquoSome properties of bismuth perovskitesrdquo TheJournal of Chemical Physics vol 36 pp 798ndash803 1962

[13] I P Pronin N N Parfenova N V Zaitseva V A Isupov andG A Smolenskii ldquoPhase transitions in solid solutions of sodi-umbismuth and potassiumbismuth titanatesrdquo Fizika TverdogoTela vol 24 pp 1060ndash1062 1982

[14] A Sasaki T Chiba Y Mamiya and E Otsuki ldquoDielectric andpiezoelectric properties of (Bi

05Na05)TiO3ndash(Bi05K05)TiO3sys-

temsrdquo Japanese Journal of Applied Physics vol 38 no 9 p 55641999

[15] G O Jones and P A Thomas ldquoInvestigation of the structureand phase transitions in the novel A-site substituted distortedperovskite compoundNa

05Bi05TiO3rdquoActa Crystallographica B

vol 58 pp 168ndash178 2002[16] PWoodward ldquoOctahedral tilting in perovskites I Geometrical

considerationsrdquo Acta Crystallographica B vol 53 pp 32ndash431997

[17] V A Isupov ldquoFerroelectric Na05Bi05TiO3and K

05Bi05TiO3

perovskites and their solid solutionsrdquo Ferroelectrics vol 315 no1 pp 123ndash147 2005

[18] I P Pronin P P Syrnikov V A Isupov V M Egorov N VZaitseva and A F Ioffe ldquoPeculiarities of phase transitions in

sodium-bismuth titanaterdquo Ferroelectrics vol 25 pp 395ndash3971980

[19] J A Zvirgzds P P Kapostis and J V Zvirgzde ldquoX-ray study ofphase transitions in efrroelectric Na

05Bi05TiO3rdquo Ferroelectrics

vol 40 no 1 pp 75ndash77 1982[20] J Suchanicz K Roleder A Kania and J Handerek ldquoElec-

trostrictive strain and pyroeffect in the region of phase coexis-tence in Na

05Bi05TiO3rdquo Ferroelectrics vol 77 pp 107ndash110 1988

[21] Y Chiang G W Farrey and A N Soukhojak ldquoLead-free high-strain single-crystal piezoelectrics in the alkaline-bismuth-titanate perovskite familyrdquo Applied Physics Letters vol 73 no25 pp 3683ndash3685 1998

[22] S M Emelyanov I P Raevskii V G Smotrakov and F ISavenko ldquoPiezoelectric and pyroelectric properties of sodium-bismuth titanate crystalsrdquo Fizika Tverdogo Tela vol 26 pp1897ndash1899 1984

[23] M L Zhao C LWangW L Zhong J FWang andHCChenldquoElectrical properties of (Bi

05Na05)TiO3ceramic prepared by

sol-gel methodrdquo Acta Physica Sinica vol 52 no 1 pp 229ndash2322003

[24] M L Zhao C L Wang W L Zhong J F Wang and Z F LildquoGrain-size effect on the dielectric properties of Bi

05Na05TiO3rdquo

Chinese Physics Letters vol 20 article 290 2003[25] B Jaffe W R Cook and H Jaffe Piezoelectric Ceramics

Academic Press London UK 1971[26] J Suchanicz ldquoTime evolution of the phase transformation in

Na05Bi05TiO3rdquo Ferrolectrics vol 200 no 1 pp 319ndash325 1997

[27] O N Razumovskaya T B Kuleshova and L M RudkovskayaldquoReactions of formation of BiF

119890O3 K05

Bi05TiO3 and

Na05Bi05TiO3rdquo Neorganicheskie Materialy [Inorganic Mat-

erials] vol 19 pp 113ndash115 1983[28] V V Ivanova A G Kapishev Y N Venevtsev and G S

Zhdanov ldquoX-ray determination of the symmetry of elemen-tary cells of the ferroelectric materials (K05Bi05)TiO3 and(Na05Bi05)TiO3 and of high-temperature phase transitionsin (K05Bi05)TiO3rdquo Izvestiya Akademii Nauk SSSR SeriyaFizicheskaya vol 26 pp 354ndash356 1962

[29] Y Hiruma R Aoyagi H Nagata and T Takenaka ldquoSynthesisand properties of 1-Methyl-4-2-[4-(dimethylamino)phenyl]-ethenylpyridinium p-toluenesulfonate derivatives with isomor-phous crystal structurerdquo Japanese Journal of Applied Physics vol44 p 5231 2005

[30] M Zhu L Hou Y Hou J Liu HWang andH Yan ldquoLead-free(K05Bi05)TiO3powders and ceramics prepared by a solndashgel

methodrdquo Materials Chemistry and Physics vol 99 no 2-3 pp329ndash332 2006

[31] M Izumi K Yamamoto M Suzuki Y Noguchi andM Miyayama ldquoLarge electric-field-induced strain inBi05Na05TiO3-Bi05K05TiO3

solid solution single crystalsrdquoApplied Physics Letters vol 93 Article ID 242903 2008

[32] T Tani ldquoCrystalline-oriented piezoelectric bulk ceramics witha perovskite-type structurerdquo Journal of the Korean PhysicalSociety vol 32 no 3 pp S1217ndashS1220 1998

[33] X Chen Y Liao H Wang et al ldquoPhase structure and electricproperties of Bi

05(Na0825

K0175

)05TiO3ceramics prepared by a

sol-gel methodrdquo Journal of Alloys and Compounds vol 493 no1-2 pp 368ndash371 2010

[34] Y Q Chen X J Zheng and W Li ldquoSize effect of mechanicalbehavior for lead-free (Na

082K018

)05Bi05TiO3nanofibers by

nanoindentationrdquoMaterials Science and Engineering A vol 527pp 5462ndash5466 2010

10 Advances in Materials Science and Engineering

[35] D YWang DM Lin K SWong KW Kwok J Y Dai and HL W Chan ldquoPiezoresponse and ferroelectric properties oflead-free [Bi

05(Na07K02Li01)05]TiO3thin films by pulsed laser

depositionrdquo Applied Physics Letters vol 92 no 22 Article ID222909 2008

[36] J Kreisel A M Glazer G Jones P A Thomas L Abello andG Lucazeau ldquoAn x-ray diffraction and Raman spectroscopyinvestigation of A-site substituted perovskite compounds the(Na1minus119909

K119909)05Bi05TiO3(0le xle1) solid solutionrdquo Journal of

Physics Condensed Matter vol 12 p 3267 2000[37] H Xie L Jin D Shen X Wang and G Shen ldquoMorphotropic

phase boundary segregation effect and crystal growth in theNBT-KBT systemrdquo Journal of Crystal Growth vol 311 no 14pp 3626ndash3630 2009

[38] O Elkechai M Manier and I P Mercurio ldquoNa05Bi05TiO3ndash

K05Bi05TiO3(NBT-KBT) system a structural and electrical

studyrdquo Physica Status Solidi vol 157 no 2 pp 499ndash506 1996[39] K Yoshii Y Hiruma H Nagata and T Takenaka ldquoElectrical

properties and depolarization temperature of (Bi12Na12)TiO3-

(Bi12K12)TiO3lead-free piezoelectric ceramicsrdquo Japanese Jour-

nal of Applied Physics vol 45 part 1 no 5B pp 4493ndash44972006

[40] M E Lines and A M Glass Principles and Applications forFerroelectrics and Related Materials Oxford University PressOxford UK 1979

[41] K Uchino Piezoelectric Actuators and Ultrasonic MotorsKluwer Academic Publishers Boston Mass USA 1996

[42] S T Zhang A B Kounga E Aulbach et al ldquoLead-free piezoce-ramics with giant strain in the system Bi

05Na05TiO3ndashBaTiO

3ndash

K05Na05NbO3 II Temperature dependent propertiesrdquo Journal

of Applied Physics vol 103 no 3 Article ID 034108 2008[43] S T Zhang A B Kounga E Aulbach H Ehrenberg and J

Rodel ldquoGiant strain in lead-free piezoceramics Bi05Na05TiO3ndash

BaTiO3ndashK05Na05NbO3systemrdquo Applied Physics Letters vol 91

Article ID 112906 2007[44] W Jo T Granzow E Aulbach J Rodel and D Damjanovic

ldquoOrigin of the large strain response in (K05Na05)NbO

3-

modified (Bi05Na05)TiO3ndashBaTiO

3lead-free piezoceramicsrdquo

Journal of Applied Physics vol 105 no 9 Article ID 0941022009

[45] D S Lee D H Lim M S Kim K H Kim and S J JeongldquoElectric field-induced deformation behavior in mixedBi05Na05TiO3and Bi

05(Na075

K025

)05TiO3-BiAlO

3rdquo Applied

Physics Letters vol 99 Article ID 062906 2011[46] J S Lee K N Pham H S Han H B Lee and V D N Tran

ldquoStrain enhancement of lead-free Bi12(Na082

K018

)12TiO3

ceramics by Sn dopingrdquo Journal of the Korean Physical Societyvol 60 no 2 pp 212ndash215 2012

[47] A Ullah CW Ahn A Hussain S Y Lee and IW Kim ldquoPhasetransition electrical properties and temperature-insensitivelarge strain in BiAlO

3-modified Bi

05(Na075

K025

)05TiO3lead-

free piezoelectric ceramicsrdquo Journal of the American CeramicSociety vol 94 no 11 pp 3915ndash3921 2011

[48] L J Rigoberto G Federico and V C Maria-Elena ldquoLead-free ferroelectric ceramics with perovskite structurerdquo inFerroelectrics-Material Aspects M Lattart Ed InTech 2011

[49] X Ren ldquoLarge electric-field-induced strain in ferroelectriccrystals by point-defect-mediated reversible domain switchingrdquoNature Materials vol 3 pp 91ndash94 2004

[50] W LWarren G E Pike K Vanheusden D Dimos B A Tuttleand J Robertson ldquoDefect-dipole alignment and tetragonal

strain in ferroelectricsrdquo Journal of Applied Physics vol 79 no12 pp 9250ndash9257 1996

[51] W L Warren D Dimos G E Pike K Vanheusden and RRamesh ldquoAlignment of defect dipoles in polycrystalline ferro-electricsrdquo Applied Physics Letters vol 67 p 1689 1995

[52] R Lohkamper H Neumann and G Arlt ldquoInternal biasin acceptor-doped BaTiO

3ceramics numerical evaluation of

increase and decreaserdquo Journal of Applied Physics vol 68 p4220 1990

[53] U Robels and G Arlt ldquoDomain wall clamping in ferroelectricsby orientation of defectsrdquo Journal of Applied Physics vol 73 no7 pp 3454ndash3460 1993

[54] H Fu and R E Cohen ldquoPolarization rotation mechanism forultrahigh electromechanical response in single-crystal piezo-electricsrdquo Nature vol 403 no 6767 pp 281ndash283 2000

[55] Y Li W Chen Q Xu J Zhou Y Wang and H SunldquoPiezoelectric and dielectric properties of CeO

2-doped

Bi05Na044

K006

TiO3

lead-free ceramicsrdquo Ceramics Inter-national vol 33 no 1 pp 95ndash99 2007

[56] Y Liao D Xiao D Lin et al ldquoThe effects of CeO2-

doping on piezoelectric and dielectric properties ofBi05(Na1minus119909minus119910

K119909Li119910)05TiO3piezoelectric ceramicsrdquo Materials

Science and Engineering B vol 133 no 1ndash3 pp 172ndash176 2006[57] B Wang L Luo F Ni P Du W Li and H Chen ldquoPiezoelectric

and ferroelectric properties of (Bi1minus119909

Na08K02Lax)05TiO3lead-

free ceramicsrdquo Journal of Alloys and Compounds vol 526 pp79ndash84 2012

[58] Y Yuan S Zhang and X Zhou ldquoEffects of La occupa-tion site on the dielectric and piezoelectric properties of[Bi05(Na075

K015

L119894010

)05]TiO3ceramicsrdquo Journal of Materials

Science Materials in Electronics vol 20 no 11 pp 1090ndash10942009

[59] Y Yuan S R Zhang and X H Zhou ldquoPhasetransitions and electrical properties in La3+-substitutedBi05(Na075

K015

Li010

)05TiO3ceramicsrdquo Journal of Materials

Science Letters vol 41 pp 565ndash567 2006[60] Z Yang Y Hou B Liu and L Wei ldquoStructure and

electrical properties of Nd2O3-doped 082Bi

05Na05TiO3ndash

018Bi05K05TiO3ceramicsrdquo Ceramics International vol 35 pp

1423ndash1427 2009[61] Y Zhang R Chu Z Xu et al ldquoPiezoelectric and dielectric prop-

erties of Sm2O3-doped

082Bi05Na05TiO3-0 18Bi

05K05TiO3

ceramicsrdquo Journal of Alloys and Compounds vol 502 no 2 pp341ndash345 2010

[62] P Fu Z Xu R Chu W Li WWang and Y Liu ldquoGd2O3doped

082Bi05Na05TiO3ndash018Bi

05K05TiO3

lead-free piezoelectricceramicsrdquoMaterials amp Design vol 35 pp 267ndash280 2012

[63] C Zhi-Hui D Jian-Ning M Lin Y Ning-Yi and Z Wei-WeildquoPiezoelectric and dielectric properties of Dy

2O3-Doped Bi

05

(Na082

K018

)05TiO3lead-free ceramicsrdquo Ferroelectrics vol 425

no 1 pp 63ndash71 2011[64] P Fu Z Xu R Chu XWuW Li andH Zhang ldquoStructure and

electrical properties of the Ho2O3doped 082Bi

05Na05TiO3-

018Bi05K05TiO3lead-free piezoelectric ceramicsrdquo Journal of

Materials Science Materials in Electronics vol 23 no 12 pp2167ndash2172 2012

[65] P Fu Z Xu H Zhang R Chu W Li and M Zhao ldquoStructureand electrical properties of Er

2O3doped 082Bi

05Na05TiO3ndash

018Bi05K05TiO3lead-free piezoelectric ceramicsrdquoMaterials amp

Design vol 40 pp 373ndash377 2012

Advances in Materials Science and Engineering 11

[66] P Fu Z Xu R Chu W Li Q Xie and G Zhang ldquoEffectsof Eu

2O3

on the structure and electrical properties of082Bi

05Na05TiO3-018Bi

05K05TiO3

lead-free piezoelectricceramicsrdquo Current Applied Physics vol 11 pp 822ndash826 2011

[67] H Han N Do K Pham et al ldquoSintering behaviour andpiezoelectric properties of CuO-added lead-free Bi(NaK)TiO

3

ceramicsrdquo Ferroelectrics vol 421 no 1 pp 88ndash91 2011[68] N B Do H D Jang I Hong et al ldquoLow temperature sintering

of lead-free Bi05(Na082

K018

)05TiO3piezoelectric ceramics by

co-doping with CuO and Nb2O5rdquo Ceramics International vol

38S pp S359ndashS362 2012[69] X P Jiang L Z Li M Zeng and H L W Chan ldquoDielec-

tric properties of Mn-doped (Na08K02)05Bi05TiO3ceramicsrdquo

Materials Letters vol 60 no 15 pp 1786ndash1790 2006[70] J Xiangping L Longzhu J Fulan Z Yanyan and L Lihua

ldquoEffects of Mn-doping on the piezoelectric and ferroelectricproperties of (Na

08K02)05Bi05TiO3ceramicsrdquo Key Engineering

Materials vol 368-372 pp 69ndash71 2008[71] H Hu M Zhu Y Hou and H Yan ldquoDielectric piezoelectric

and ferroelectric properties of MnCO3-added 74(Bi

12Na12)

TiO3-208(Bi

12K12)TiO3-52BaTiO

3lead-free piezoelectric

ceramicsrdquo IEEE Transactions on Ultrasonics Ferroelectrics andFrequency Control vol 56 pp 897ndash905 2009

[72] J Shieh Y C Lin and C S Chen ldquoIntricate straining ofmanganese-doped (Bi

05Na05)TiO3-BaTiO

3-(Bi05K05)TiO3

lead-free ferroelectric ceramicsrdquo Journal of Physics D AppliedPhysics vol 43 no 2 Article ID 025404 2010

[73] J Shieh Y C Lin and S C Chen ldquoInfluence of phase com-position on electrostrains of doped (Bi

05Na05)TiO3ndashBaTiO

3ndash

(Bi05K05)TiO3lead-free ferroelectric ceramicsrdquo Smart Materi-

als and Structures vol 19 no 9 Article ID 094007 2010[74] M Zhu H Hu N Lei Y Hou and H YanInt ldquoMnO modifi-

cation on microstructure and electrical properties of lead-freeBi0485

Na0425

K006

Ba003

TiO3

solid solution around mor-photropic phase boundaryrdquo International Journal of AppliedCeramic Technology vol 7 pp E107ndashE113 2010

[75] N BDoH B Lee CHYoon J KKang and J S Lee ldquoEffect ofTa-substitution on the ferroelectric and piezoelectric propertiesof Bi05(Na082

K018

)05TiO3ceramicsrdquoTransactions on Electrical

and Electronic Materials vol 12 no 2 pp 64ndash67 2011[76] K N Pham A Hussain CW Ahn I W Kim S J Jeong and J

S Lee ldquoGiant strain in Nb-doped Bi05(Na082

K018

)05TiO3lead-

free electromechanical ceramicsrdquoMaterials Letters vol 64 no20 pp 2219ndash2222 2010

[77] A Hussain C W Ahn J S Lee A Ullah and I W KimldquoLarge electric-field-induced strain in Zr-modified lead-freeBi05(Na078

K022

)05TiO3piezoelectric ceramicsrdquo Sensors and

Actuators A vol 158 no 1 pp 84ndash89 2010[78] AHussain CWAhn AUllah J S Lee and IWKim ldquoEffects

of hafnium substitution on dielectric and electromechanicalproperties of lead-free Bi

05(Na078

K022

)05(Ti1minus119909

Hfx)O3Ceram-

icsrdquo Japanese Journal of Applied Physics vol 49 Article ID041504 2010

[79] D N Binh A Hussain H Lee et al ldquoEnhanced electric-field-induced strain at the ferroelectric-electrostrcitive phaseboundary of yttrium-doped Bi

05(Na082

K018

)05TiO3lead-free

piezoelectric ceramicsrdquo Journal of the Korean Physical Societyvol 57 no 41 pp 892ndash896 2010

[80] V Nguyen H Han K Kim D Dang K Ahn and J Lee ldquoStrainenhancement in Bi

12(Na082

K018

)12TiO3lead-free electrome-

chanical ceramics by co-dopingwith Li andTardquo Journal of Alloysand Compounds vol 511 no 1 pp 237ndash241 2012

[81] D Lin D Xiao J Zhu and P Yu ldquoPiezoelectric and ferroelectricproperties of lead-free piezoelectric ceramicsrdquo Applied PhysicsLetters vol 88 no 6 Article ID 062901 2006

[82] V Nguyen C Hong H Lee Y M Kong J Lee and K AhnldquoEnhancement in the microstructure and the strain propertiesof Bi12(NaK)

12TiO3-based lead-free ceramics by Li substitu-

tionrdquo Journal of the Korean Physical Society vol 61 no 6 pp895ndash898 2012

[83] Y Liao D Xiao and D Lin ldquoApplication of quantum cascadelasers to trace gas analysisrdquo Applied Physics B vol 90 pp 165ndash176 2008

[84] Y Isikawa Y Akiyama and T Hayashi ldquoPiezoelectric anddielectric properties of (BiNaKAg)TiO

3-BaTiO

3lead-free

piezoelectric ceramicsrdquo Japanese Journal of Applied Physics vol48 Article ID 09KD03 2009

[85] F Ni L Luo X Pan W Li and J Zhu ldquoEffects of A-sitevacancy on the electrical properties in lead-free non-stoichiometric ceramics Bi

05+119909(Na082

K018

)05minus3119909

TiO3

andBi05+119910

(Na082

K018

)05TiO3rdquo Journal of Alloys and Compounds

vol 541 pp 150ndash156 2012[86] F Ni L Luo W Lim and H Chen ldquoA-site vacancy-induced

giant strain and the electrical properties in non-stoichiometricceramics Bi

05+119909(Na1minus119910

K119910)05minus3119909

TiO3rdquo Journal of Physics D

Applied Physics vol 45 no 41 Article ID 415103 2012[87] A Ullah C W Ahn A Hussain S Y Lee H J Lee and I W

Kim ldquoPhase transitions and large electric field-induced strainin BiAlO

3-modified Bi

05(Na K)

05TiO3lead-free piezoelectric

ceramicsrdquo Current Applied Physics vol 10 pp 1174ndash1181 2010[88] A Ullah C W Ahn S Y Lee J S Kim and I W Kim ldquoStruc-

ture ferroelectric properties and electric field-induced largestrain in lead-free Bi

05(NaK)

05TiO3-(Bi05La05)AlO3piezo-

electric ceramicsrdquo Ceramics International vol 38 no 1 ppS363ndashS368 2012

[89] V DN Tran H S Han CH Yoon J S LeeW Jo and J RodelldquoLead-free electrostrictive bismuth perovskite ceramics withthermally stable field-induced strainsrdquoMaterials Letters vol 65pp 2607ndash2609 2011

[90] K Wang A Hussain W Jo and J Rodel ldquoTemperature-dependent properties of (Bi

12Na12)TiO3-(Bi12K12)TiO3-

SrTiO3

lead-free piezoceramicsrdquo Journal of the AmericanCeramic Society vol 95 no 7 pp 2241ndash2247 2012

[91] E A Patterson D P Cann J Pokomy and I M Reaney ldquoElec-tromechanical strain in Bi(Zn

12Ti12)O3-(Bi12Na12)TiO3-

(Bi12K12)TiO3solid solutionsrdquo Journal Of Applied Physics vol

111 Article ID 094105 2012[92] E A Patterson and D P Cann ldquoBipolar piezoelectric

fatigue of Bi(Zn05Ti05)O3-(Bi05K05)TiO3-(Bi05Na05)TiO3Pb-

free ceramicsrdquo Applied Physics Letters vol 101 Article ID042905 2012

[93] R Dittmer W Jo J Daniels S Schaab and JRodel ldquoRelaxor characteristics of morphotropic phaseboundary (Bi

12Na12)TiO3-(Bi12K12)TiO3

modified withBi(Zn

12Ti12)O3rdquo Journal of the American Ceramic Society vol

94 no 12 pp 4283ndash4290 2011[94] A Hussain C W Ahn A Ullah J S Lee and I W Kim

ldquoDielectric ferroelectric and field-induced strain behavior ofK05Na05NbO3-modified Bi

05(Na078

K022

)05TiO3

lead-freeceramicsrdquo Ceramics International vol 38 no 5 pp 4143ndash41492012

12 Advances in Materials Science and Engineering

[95] G Fan W Lu X Wang and F Liang ldquoMorphotropic phaseboundary and piezoelectric properties of (Bi

12Na12)TiO3ndash

(Bi12K12)TiO3ndashKNbO

3lead-free piezoelectric ceramicsrdquo

Applied Physics Letters vol 91 Article ID 202908 2007[96] N B Do H B Lee D T Le et al ldquoElectric field-induced strain

of lead-free Bi05Na05TiO3ndashBi05K05TiO3ceramics modified

with LiTaO3rdquoCurrent Applied Physics vol 11 no 3 supplement

pp S134ndashS137 2011[97] T V D Ngoc H S Han K J Kim et al ldquoRelaxor and field-

induced strain behavior in lead-free Bi05(Na082

K018

)05TiO3

ceramics modified with BaZrO3rdquo Journal of Ceramic Processing

Research vol 13 supplement 2 pp s177ndashs180 2012[98] V D N Tran A Hussain H S Han et al ldquoComparison of

ferroelectric and strain properties between BaTiO3- and

BaZrO3-modified Bi

12(Na082

K018

)12TiO3ceramicsrdquo Japanese

Journal of Applied Physics vol 51 Article ID 09MD02 2012[99] I KHongH SHan CH YoonHN JiW P Tai and J S Lee

ldquoStrain enhancement in lead-free Bi05(Na078

K022

)05TiO3

ceramics by CaZrO3

substitutionrdquo Journal of IntelligentMaterial Systems and Structures vol 24 no 11 pp 1343ndash13492013 (Swedish)

[100] J K Kang D J Heo V Q Nguyen H S Han J S Leeand K K Ahn ldquoLow-temperature sintering of lead-freeBi12(NaK)

12TiO3-based electrostrictive ceramics with CuO

additionrdquo Journal of the Korean Physical Society vol 61 no 6pp 899ndash902 2012

[101] V Q Nguyen H B Luong and D D Dang ldquoEnhancement ofelectrical field-induced strain in Bi

05(Na K)

05TiO3-based lead-

free piezoelectric ceramics role of phase transitionrdquo In press[102] A Zaman Y Iqbal A Hussain et al ldquoInfluence of zirconium

substitution on dielectric ferroelectric and field-induced strainbehaviors of lead-free 099[Bi

12(Na082

K018

)12(Ti1minus119909

Zr119909)O3]-

001LiSbO3ceramicsrdquo Journal of theKorean Physical Society vol

61 no 5 pp 773ndash778 2012[103] S Qiao J Wu B Wu B Zhang D Xiao and J Zhu ldquoEffect

of Ba085

Ca015

Ti090

Zr010

O3content on the microstructure and

electrical properties of Bi051

(Na082

K018

)050

TiO3ceramicsrdquo

Ceramics International vol 38 no 6 pp 4845ndash4851 2012[104] H Nagata M Yoshida Y Makiuchi and T Takenaka ldquoLarge

piezoelectric constant and high curie temperature of lead-freepiezoelectric ceramic ternary system based on bismuth sodiumtitanate-bismuth potassium titanate-barium titanate near themorphotropic phase boundaryrdquo Japanese Journal of AppliedPhysics vol 42 no 12 p 7401 2003

[105] Y Li W Chen Q Xu J Zhou X Gu and S Fang ldquoElec-tromechanical and dielectric properties of Na

05Bi05TiO3-

K05Bi05TiO3-BaTiO

3lead-free ceramicsrdquo Materials Chemistry

and Physics vol 94 no 2-3 pp 328ndash332 2005[106] Q Zhou C Zhou W Li J Cheng H Wang and C Yuan

Journal of Physics and Chemistry of Solids vol 72 p 909 2011[107] C Zhou X LiuW Lim andC Yuan ldquoMicrostructure and elec-

trical properties of Bi05Na05TiO3-Bi05K05TiO3-LiNbO

3lead-

free piezoelectric ceramicsrdquo Journal of Physics and Chemistry ofSolids vol 70 pp 541ndash545 2009

[108] C Zhou X Liu W Li C Yuan and G Chen ldquoStructure andelectrical properties of Bi

05(Na K)

05TiO3minusBiGaO

3lead-free

piezoelectric ceramicsrdquo Current Applied Physics vol 10 no 1pp 93ndash98 2010

[109] B Wu C Han D Xiao Z Wang J Zhu and J Wu ldquoInves-tigation of a new lead-free (089minus x)(Bi

05Na05)TiO3ndash011(Bi

05

K05)TiO3ndashxBa085

Ca015

Ti090

Zr010

O3ceramicsrdquo Materials Re-

search Bulletin vol 47 pp 3937ndash3940 2012

[110] M Zou H Fan L Chen and W Yang ldquoMicrostruc-ture and electrical properties of (1 minus 119909)[082Bi

05Na05TiO3ndash

018Bi05K05TiO3]ndashxBiFeO

3lead-free piezoelectric ceramicsrdquo

Journal of Alloys and Compounds vol 495 no 1 pp 280ndash2832010

[111] C ZhouX LiuW Li andCYuan ldquoDielectric andpiezoelectricproperties of Bi

05Na05TiO3ndashBi05K05TiO3ndashBiCrO

3lead-free

piezoelectric ceramicsrdquo Journal of Alloys and Compounds vol478 no 1-2 pp 381ndash385 2009

[112] H Yang X Shan C Zhou Q Zhou W Li and J ChengldquoMicrostructure dielectric and piezoelectric properties of lead-free Bi

05Na05

TiO3ndashBi05K05

TiO3ndashBiMnO

3ceramicsrdquo Bulletin

of Materials Science vol 36 pp 265ndash270 2013[113] M Bichurin V Petrov A Zakharov et al ldquoMagnetoelectric

interactions in lead-based and lead-free compositesrdquoMaterialsvol 4 no 4 pp 651ndash702 2011

[114] H S Han CW Ahn IW Kim A Hussain and J S Lee ldquoDes-tabilization of ferroelectric order in bismuth perovskite ceram-ics by A-site vacanciesrdquo Materials Letters vol 70 pp 98ndash1002012

[115] A Ullah CW Ahn A Hussain IW Kim H I Hwang andNK Cho ldquoStructural transition and large electric field-inducedstrain in BiAlO

3-modified Bi

05(Na08K02)05TiO3

lead-freepiezoelectric ceramicsrdquo Solid State Communications vol 150pp 1145ndash1149 2010

[116] A Ullah C W Ahn A Hussain S Y Lee J S Kim and I WKim ldquoEffect of potassium concentration on the structure andelectrical properties of lead-free Bi

05(NaK)

05TiO3ndashBiAlO

3

piezoelectric ceramicsrdquo Journal of Alloys and Compounds vol509 pp 3148ndash3154 2012

[117] K N Pham D T Hinh L H Yuong K Y Min and L SShin ldquoEffects of Bi(Mg12Sn 12)O3 modification on the dielec-tric and piezoelectric properties of Bi12(Na08K02)12TiO3ceramicsrdquo Journal of the Korean Ceramic Society vol 49 pp266ndash271 2012

[118] K N Pham H B Lee H S Han et al ldquoDielectric fer-roelectric and piezoelectric properties of Nb-substitutedBi12(Na082

K018

)12TiO3lead-free ceramicsrdquo Journal of the

Korean Ceramic Society vol 60 pp 207ndash211 2012[119] A Ullah C W Ahn and I W Kim ldquoDielectric

piezoelectric properties and field-induced large strain ofBi(Zn

05Ti05)O3-modified morphotropic phase boundary

Bi05(Na082

K018

)05TiO3

piezoelectric ceramicsrdquo JapaneseJournal of Applied Physics vol 51 Article ID 09MD07 2012

[120] H S Han W Jo J Rodel I K Hong W P Tai and J SLee ldquoCoexistence of ergodicity and nonergodicity in LaFeO

3-

modified Bi12(Na078

K022

)12TiO3relaxorsrdquo Journal of Physics

Condensed Matter vol 24 Article ID 365901 2012[121] H S Han W Jo J K Kang et al ldquoIncipient piezoelectrics and

electrostriction behavior in Sn-doped Bi12(Na082

K018

)12TiO3

lead-free ceramicsrdquo Journal of Applied Physics vol 113 ArticleID 154102 2013

[122] H B Lee D J Heo R A Malik C H Yoon H S Han and J SLee ldquoLead-free Bi

12(Na082

K018

)12TiO3ceramics exhibiting

large strain with small hysteresisrdquo Ceramics International vol39 pp S705ndashS708 2013

[123] D S Lee S J Jeong M S Kim and K H Kim ldquoEffectof sintering time on strain in ceramic composite con-sisting of 094Bi05(Na075K025)05TiO3ndash006BiAlO3 with(Bi05Na05)TiO3rdquo Japanese Journal of Applied Physics vol 52Article ID 021801 2013

Advances in Materials Science and Engineering 13

[124] J Hao W Bai W Li B Shen and J Zhai ldquoPhase transitionsrelaxor behavior and large strain response in LiNbO3-modifiedBi05(Na080K020)05TiO3 lead-free piezoceramicsrdquo Journalof Applied Physics vol 114 Article ID 044103 2013

[125] A Ullah C W Ahn A Ullah and I W Kim ldquoLarge strainunder a low electric field in lead-free bismuth-based piezo-electricsrdquo Applied Physics Letters vol 103 Article ID 0229062013

[126] N Kumar and D P Cann ldquoElectromechanical strainand bipolar fatigue in Bi(Mg

12Ti12)O3-(Bi12K12)TiO3-

(Bi12Na12)TiO3ceramicsrdquo Journal of Applied Physics vol 114

Article ID 054102 2013[127] T H Dinh H Y Lee C H Yoon et al ldquoEffect of lanthanum

doping on the structural ferroelectric and strain propertiesof Bi12(Na082

K018

)12TiO3lead-free ceramicsrdquo Journal of the

Korean Ceramic Society vol 62 pp 1004ndash1008 2013[128] P Jaita A Watcharapasorn D P Cann and S

Jiansirisomboon ldquoDielectric ferroelectric and electric field-induced strain behavior of Ba(Ti090Sn010)O3-modifiedBi05(Na080K020)05TiO3 lead-free piezoelectricsrdquo Journalof Alloys and Compounds vol 596 pp 98ndash106 2014

[129] AHussain J U Rahman A Zaman et al ldquoField-induced strainand polarization response in lead-free Bi12(Na080K020)12TiO3ndashSrZrO3 ceramicrdquo Materials Chemistry and Physics vol143 pp 1282ndash1288 2014

[130] A Ullah R A Malik D S Lee et al ldquoElectric-field-inducedphase transition and large strain in lead-free Nb-doped BNKT-BST ceramicsrdquo Journal of the European Ceramic Society vol 34pp 29ndash35 2014

[131] J Hao B Shen J Zhai and H Chen ldquoPhase transitionalbehavior and electric field-induced large strain in alkali niobate-modified Bi

05(Na080

K020

)05TiO3

lead-free piezoceramicsrdquoJournal of Applied Physics vol 115 Article ID 034101 2014

[132] A Zaman Y Iqbal A Hussain M H Kim and R A MalikldquoDielectric ferroelectric and field-induced strain properties ofTa-doped 099Bi

05(Na082

K018

)05TiO3ndash001LiSbO

3ceramicsrdquo

Journal of Materials Science vol 49 no 8 pp 3205ndash3214 2014[133] A Ullah A Ullah I W Kim D S Lee S J Jeong and C W

Ahn ldquoLarge electromechanical response in lead-free La-dopedBNKTBST piezoelectric ceramicsrdquo Journal of the AmericanCeramic Society vol 97 no 8 pp 2471ndash2478 2014

Submit your manuscripts athttpwwwhindawicom

ScientificaHindawi Publishing Corporationhttpwwwhindawicom Volume 2014

CorrosionInternational Journal of

Hindawi Publishing Corporationhttpwwwhindawicom Volume 2014

Polymer ScienceInternational Journal of

Hindawi Publishing Corporationhttpwwwhindawicom Volume 2014

Hindawi Publishing Corporationhttpwwwhindawicom Volume 2014

CeramicsJournal of

Hindawi Publishing Corporationhttpwwwhindawicom Volume 2014

CompositesJournal of

NanoparticlesJournal of

Hindawi Publishing Corporationhttpwwwhindawicom Volume 2014

Hindawi Publishing Corporationhttpwwwhindawicom Volume 2014

International Journal of

Biomaterials

Hindawi Publishing Corporationhttpwwwhindawicom Volume 2014

NanoscienceJournal of

TextilesHindawi Publishing Corporation httpwwwhindawicom Volume 2014

Journal of

NanotechnologyHindawi Publishing Corporationhttpwwwhindawicom Volume 2014

Journal of

CrystallographyJournal of

Hindawi Publishing Corporationhttpwwwhindawicom Volume 2014

The Scientific World JournalHindawi Publishing Corporation httpwwwhindawicom Volume 2014

Hindawi Publishing Corporationhttpwwwhindawicom Volume 2014

CoatingsJournal of

Advances in

Materials Science and EngineeringHindawi Publishing Corporationhttpwwwhindawicom Volume 2014

Smart Materials Research

Hindawi Publishing Corporationhttpwwwhindawicom Volume 2014

Hindawi Publishing Corporationhttpwwwhindawicom Volume 2014

MetallurgyJournal of

Hindawi Publishing Corporationhttpwwwhindawicom Volume 2014

BioMed Research International

MaterialsJournal of

Hindawi Publishing Corporationhttpwwwhindawicom Volume 2014

Nano

materials

Hindawi Publishing Corporationhttpwwwhindawicom Volume 2014

Journal ofNanomaterials

Page 9: Review Article Current Development in Lead-Free Bi (Na,K ...downloads.hindawi.com/journals/amse/2014/365391.pdf · Bi 2 O 3 and TiO 2 and alkali carbonate powder Na 2 CO 3 and K 2

Advances in Materials Science and Engineering 9

Acknowledgment

This work was financially supported by the Ministry of Edu-cation andTraining Vietnam under Project no B 20130155

References

[1] P K Panda ldquoReview environmental friendly lead-free piezo-electric materialsrdquo Journal of Materials Science vol 44 no 19pp 5049ndash5062 2009

[2] C A Randall R E Newnham and L E Cross History of theFirst Ferroelectric Oxide BaTiO

3 Materials Research Institute

The Pennsylvania State University University Park Pa USA2004

[3] E Ringgaard and T Wurlitzer ldquoLead-free piezoceramics basedon alkali niobatesrdquo Journal of the European Ceramic Society vol25 no 12 pp 2701ndash2706 2005

[4] T Takenaka and H Nagata ldquoCurrent status and prospects oflead-free piezoelectric ceramicsrdquo Journal of the EuropeanCeramic Society vol 25 no 12 pp 2693ndash2700 2005

[5] Ministry of Information Industry of the Peoplersquos Republic ofChina Industrial Standard of the peoplersquos Republich of China2006

[6] Japan Electronics and InformationTechnology Industries Asso-ciation Standard of Japan Electronics and Information Tech-nology Industries Association 1998

[7] TheEnvironment and Labor Committee of the National Assemblyof Korea 2007

[8] Y Li K S Moon and C P Wong ldquoElectronics without leadrdquoScience vol 308 no 5727 pp 1419ndash1420 2005

[9] E Cross ldquoLead-free at lastrdquoNature vol 432 no 7013 pp 24ndash252004

[10] G A Smolensky V A Isupov A I Agranovskaya and NN Krainic ldquoNew ferroelectrics with complex compounds IVrdquoFizika Tverdogo Tela vol 2 pp 2982ndash2985 1960

[11] G A Smolenskii and A I Agranovskaya ldquoDielectric polariza-tion of a series of compounds of complex compositionrdquo FizikaTverdogo Tela vol 1 pp 1562ndash1572 1959

[12] C F Buhrer ldquoSome properties of bismuth perovskitesrdquo TheJournal of Chemical Physics vol 36 pp 798ndash803 1962

[13] I P Pronin N N Parfenova N V Zaitseva V A Isupov andG A Smolenskii ldquoPhase transitions in solid solutions of sodi-umbismuth and potassiumbismuth titanatesrdquo Fizika TverdogoTela vol 24 pp 1060ndash1062 1982

[14] A Sasaki T Chiba Y Mamiya and E Otsuki ldquoDielectric andpiezoelectric properties of (Bi

05Na05)TiO3ndash(Bi05K05)TiO3sys-

temsrdquo Japanese Journal of Applied Physics vol 38 no 9 p 55641999

[15] G O Jones and P A Thomas ldquoInvestigation of the structureand phase transitions in the novel A-site substituted distortedperovskite compoundNa

05Bi05TiO3rdquoActa Crystallographica B

vol 58 pp 168ndash178 2002[16] PWoodward ldquoOctahedral tilting in perovskites I Geometrical

considerationsrdquo Acta Crystallographica B vol 53 pp 32ndash431997

[17] V A Isupov ldquoFerroelectric Na05Bi05TiO3and K

05Bi05TiO3

perovskites and their solid solutionsrdquo Ferroelectrics vol 315 no1 pp 123ndash147 2005

[18] I P Pronin P P Syrnikov V A Isupov V M Egorov N VZaitseva and A F Ioffe ldquoPeculiarities of phase transitions in

sodium-bismuth titanaterdquo Ferroelectrics vol 25 pp 395ndash3971980

[19] J A Zvirgzds P P Kapostis and J V Zvirgzde ldquoX-ray study ofphase transitions in efrroelectric Na

05Bi05TiO3rdquo Ferroelectrics

vol 40 no 1 pp 75ndash77 1982[20] J Suchanicz K Roleder A Kania and J Handerek ldquoElec-

trostrictive strain and pyroeffect in the region of phase coexis-tence in Na

05Bi05TiO3rdquo Ferroelectrics vol 77 pp 107ndash110 1988

[21] Y Chiang G W Farrey and A N Soukhojak ldquoLead-free high-strain single-crystal piezoelectrics in the alkaline-bismuth-titanate perovskite familyrdquo Applied Physics Letters vol 73 no25 pp 3683ndash3685 1998

[22] S M Emelyanov I P Raevskii V G Smotrakov and F ISavenko ldquoPiezoelectric and pyroelectric properties of sodium-bismuth titanate crystalsrdquo Fizika Tverdogo Tela vol 26 pp1897ndash1899 1984

[23] M L Zhao C LWangW L Zhong J FWang andHCChenldquoElectrical properties of (Bi

05Na05)TiO3ceramic prepared by

sol-gel methodrdquo Acta Physica Sinica vol 52 no 1 pp 229ndash2322003

[24] M L Zhao C L Wang W L Zhong J F Wang and Z F LildquoGrain-size effect on the dielectric properties of Bi

05Na05TiO3rdquo

Chinese Physics Letters vol 20 article 290 2003[25] B Jaffe W R Cook and H Jaffe Piezoelectric Ceramics

Academic Press London UK 1971[26] J Suchanicz ldquoTime evolution of the phase transformation in

Na05Bi05TiO3rdquo Ferrolectrics vol 200 no 1 pp 319ndash325 1997

[27] O N Razumovskaya T B Kuleshova and L M RudkovskayaldquoReactions of formation of BiF

119890O3 K05

Bi05TiO3 and

Na05Bi05TiO3rdquo Neorganicheskie Materialy [Inorganic Mat-

erials] vol 19 pp 113ndash115 1983[28] V V Ivanova A G Kapishev Y N Venevtsev and G S

Zhdanov ldquoX-ray determination of the symmetry of elemen-tary cells of the ferroelectric materials (K05Bi05)TiO3 and(Na05Bi05)TiO3 and of high-temperature phase transitionsin (K05Bi05)TiO3rdquo Izvestiya Akademii Nauk SSSR SeriyaFizicheskaya vol 26 pp 354ndash356 1962

[29] Y Hiruma R Aoyagi H Nagata and T Takenaka ldquoSynthesisand properties of 1-Methyl-4-2-[4-(dimethylamino)phenyl]-ethenylpyridinium p-toluenesulfonate derivatives with isomor-phous crystal structurerdquo Japanese Journal of Applied Physics vol44 p 5231 2005

[30] M Zhu L Hou Y Hou J Liu HWang andH Yan ldquoLead-free(K05Bi05)TiO3powders and ceramics prepared by a solndashgel

methodrdquo Materials Chemistry and Physics vol 99 no 2-3 pp329ndash332 2006

[31] M Izumi K Yamamoto M Suzuki Y Noguchi andM Miyayama ldquoLarge electric-field-induced strain inBi05Na05TiO3-Bi05K05TiO3

solid solution single crystalsrdquoApplied Physics Letters vol 93 Article ID 242903 2008

[32] T Tani ldquoCrystalline-oriented piezoelectric bulk ceramics witha perovskite-type structurerdquo Journal of the Korean PhysicalSociety vol 32 no 3 pp S1217ndashS1220 1998

[33] X Chen Y Liao H Wang et al ldquoPhase structure and electricproperties of Bi

05(Na0825

K0175

)05TiO3ceramics prepared by a

sol-gel methodrdquo Journal of Alloys and Compounds vol 493 no1-2 pp 368ndash371 2010

[34] Y Q Chen X J Zheng and W Li ldquoSize effect of mechanicalbehavior for lead-free (Na

082K018

)05Bi05TiO3nanofibers by

nanoindentationrdquoMaterials Science and Engineering A vol 527pp 5462ndash5466 2010

10 Advances in Materials Science and Engineering

[35] D YWang DM Lin K SWong KW Kwok J Y Dai and HL W Chan ldquoPiezoresponse and ferroelectric properties oflead-free [Bi

05(Na07K02Li01)05]TiO3thin films by pulsed laser

depositionrdquo Applied Physics Letters vol 92 no 22 Article ID222909 2008

[36] J Kreisel A M Glazer G Jones P A Thomas L Abello andG Lucazeau ldquoAn x-ray diffraction and Raman spectroscopyinvestigation of A-site substituted perovskite compounds the(Na1minus119909

K119909)05Bi05TiO3(0le xle1) solid solutionrdquo Journal of

Physics Condensed Matter vol 12 p 3267 2000[37] H Xie L Jin D Shen X Wang and G Shen ldquoMorphotropic

phase boundary segregation effect and crystal growth in theNBT-KBT systemrdquo Journal of Crystal Growth vol 311 no 14pp 3626ndash3630 2009

[38] O Elkechai M Manier and I P Mercurio ldquoNa05Bi05TiO3ndash

K05Bi05TiO3(NBT-KBT) system a structural and electrical

studyrdquo Physica Status Solidi vol 157 no 2 pp 499ndash506 1996[39] K Yoshii Y Hiruma H Nagata and T Takenaka ldquoElectrical

properties and depolarization temperature of (Bi12Na12)TiO3-

(Bi12K12)TiO3lead-free piezoelectric ceramicsrdquo Japanese Jour-

nal of Applied Physics vol 45 part 1 no 5B pp 4493ndash44972006

[40] M E Lines and A M Glass Principles and Applications forFerroelectrics and Related Materials Oxford University PressOxford UK 1979

[41] K Uchino Piezoelectric Actuators and Ultrasonic MotorsKluwer Academic Publishers Boston Mass USA 1996

[42] S T Zhang A B Kounga E Aulbach et al ldquoLead-free piezoce-ramics with giant strain in the system Bi

05Na05TiO3ndashBaTiO

3ndash

K05Na05NbO3 II Temperature dependent propertiesrdquo Journal

of Applied Physics vol 103 no 3 Article ID 034108 2008[43] S T Zhang A B Kounga E Aulbach H Ehrenberg and J

Rodel ldquoGiant strain in lead-free piezoceramics Bi05Na05TiO3ndash

BaTiO3ndashK05Na05NbO3systemrdquo Applied Physics Letters vol 91

Article ID 112906 2007[44] W Jo T Granzow E Aulbach J Rodel and D Damjanovic

ldquoOrigin of the large strain response in (K05Na05)NbO

3-

modified (Bi05Na05)TiO3ndashBaTiO

3lead-free piezoceramicsrdquo

Journal of Applied Physics vol 105 no 9 Article ID 0941022009

[45] D S Lee D H Lim M S Kim K H Kim and S J JeongldquoElectric field-induced deformation behavior in mixedBi05Na05TiO3and Bi

05(Na075

K025

)05TiO3-BiAlO

3rdquo Applied

Physics Letters vol 99 Article ID 062906 2011[46] J S Lee K N Pham H S Han H B Lee and V D N Tran

ldquoStrain enhancement of lead-free Bi12(Na082

K018

)12TiO3

ceramics by Sn dopingrdquo Journal of the Korean Physical Societyvol 60 no 2 pp 212ndash215 2012

[47] A Ullah CW Ahn A Hussain S Y Lee and IW Kim ldquoPhasetransition electrical properties and temperature-insensitivelarge strain in BiAlO

3-modified Bi

05(Na075

K025

)05TiO3lead-

free piezoelectric ceramicsrdquo Journal of the American CeramicSociety vol 94 no 11 pp 3915ndash3921 2011

[48] L J Rigoberto G Federico and V C Maria-Elena ldquoLead-free ferroelectric ceramics with perovskite structurerdquo inFerroelectrics-Material Aspects M Lattart Ed InTech 2011

[49] X Ren ldquoLarge electric-field-induced strain in ferroelectriccrystals by point-defect-mediated reversible domain switchingrdquoNature Materials vol 3 pp 91ndash94 2004

[50] W LWarren G E Pike K Vanheusden D Dimos B A Tuttleand J Robertson ldquoDefect-dipole alignment and tetragonal

strain in ferroelectricsrdquo Journal of Applied Physics vol 79 no12 pp 9250ndash9257 1996

[51] W L Warren D Dimos G E Pike K Vanheusden and RRamesh ldquoAlignment of defect dipoles in polycrystalline ferro-electricsrdquo Applied Physics Letters vol 67 p 1689 1995

[52] R Lohkamper H Neumann and G Arlt ldquoInternal biasin acceptor-doped BaTiO

3ceramics numerical evaluation of

increase and decreaserdquo Journal of Applied Physics vol 68 p4220 1990

[53] U Robels and G Arlt ldquoDomain wall clamping in ferroelectricsby orientation of defectsrdquo Journal of Applied Physics vol 73 no7 pp 3454ndash3460 1993

[54] H Fu and R E Cohen ldquoPolarization rotation mechanism forultrahigh electromechanical response in single-crystal piezo-electricsrdquo Nature vol 403 no 6767 pp 281ndash283 2000

[55] Y Li W Chen Q Xu J Zhou Y Wang and H SunldquoPiezoelectric and dielectric properties of CeO

2-doped

Bi05Na044

K006

TiO3

lead-free ceramicsrdquo Ceramics Inter-national vol 33 no 1 pp 95ndash99 2007

[56] Y Liao D Xiao D Lin et al ldquoThe effects of CeO2-

doping on piezoelectric and dielectric properties ofBi05(Na1minus119909minus119910

K119909Li119910)05TiO3piezoelectric ceramicsrdquo Materials

Science and Engineering B vol 133 no 1ndash3 pp 172ndash176 2006[57] B Wang L Luo F Ni P Du W Li and H Chen ldquoPiezoelectric

and ferroelectric properties of (Bi1minus119909

Na08K02Lax)05TiO3lead-

free ceramicsrdquo Journal of Alloys and Compounds vol 526 pp79ndash84 2012

[58] Y Yuan S Zhang and X Zhou ldquoEffects of La occupa-tion site on the dielectric and piezoelectric properties of[Bi05(Na075

K015

L119894010

)05]TiO3ceramicsrdquo Journal of Materials

Science Materials in Electronics vol 20 no 11 pp 1090ndash10942009

[59] Y Yuan S R Zhang and X H Zhou ldquoPhasetransitions and electrical properties in La3+-substitutedBi05(Na075

K015

Li010

)05TiO3ceramicsrdquo Journal of Materials

Science Letters vol 41 pp 565ndash567 2006[60] Z Yang Y Hou B Liu and L Wei ldquoStructure and

electrical properties of Nd2O3-doped 082Bi

05Na05TiO3ndash

018Bi05K05TiO3ceramicsrdquo Ceramics International vol 35 pp

1423ndash1427 2009[61] Y Zhang R Chu Z Xu et al ldquoPiezoelectric and dielectric prop-

erties of Sm2O3-doped

082Bi05Na05TiO3-0 18Bi

05K05TiO3

ceramicsrdquo Journal of Alloys and Compounds vol 502 no 2 pp341ndash345 2010

[62] P Fu Z Xu R Chu W Li WWang and Y Liu ldquoGd2O3doped

082Bi05Na05TiO3ndash018Bi

05K05TiO3

lead-free piezoelectricceramicsrdquoMaterials amp Design vol 35 pp 267ndash280 2012

[63] C Zhi-Hui D Jian-Ning M Lin Y Ning-Yi and Z Wei-WeildquoPiezoelectric and dielectric properties of Dy

2O3-Doped Bi

05

(Na082

K018

)05TiO3lead-free ceramicsrdquo Ferroelectrics vol 425

no 1 pp 63ndash71 2011[64] P Fu Z Xu R Chu XWuW Li andH Zhang ldquoStructure and

electrical properties of the Ho2O3doped 082Bi

05Na05TiO3-

018Bi05K05TiO3lead-free piezoelectric ceramicsrdquo Journal of

Materials Science Materials in Electronics vol 23 no 12 pp2167ndash2172 2012

[65] P Fu Z Xu H Zhang R Chu W Li and M Zhao ldquoStructureand electrical properties of Er

2O3doped 082Bi

05Na05TiO3ndash

018Bi05K05TiO3lead-free piezoelectric ceramicsrdquoMaterials amp

Design vol 40 pp 373ndash377 2012

Advances in Materials Science and Engineering 11

[66] P Fu Z Xu R Chu W Li Q Xie and G Zhang ldquoEffectsof Eu

2O3

on the structure and electrical properties of082Bi

05Na05TiO3-018Bi

05K05TiO3

lead-free piezoelectricceramicsrdquo Current Applied Physics vol 11 pp 822ndash826 2011

[67] H Han N Do K Pham et al ldquoSintering behaviour andpiezoelectric properties of CuO-added lead-free Bi(NaK)TiO

3

ceramicsrdquo Ferroelectrics vol 421 no 1 pp 88ndash91 2011[68] N B Do H D Jang I Hong et al ldquoLow temperature sintering

of lead-free Bi05(Na082

K018

)05TiO3piezoelectric ceramics by

co-doping with CuO and Nb2O5rdquo Ceramics International vol

38S pp S359ndashS362 2012[69] X P Jiang L Z Li M Zeng and H L W Chan ldquoDielec-

tric properties of Mn-doped (Na08K02)05Bi05TiO3ceramicsrdquo

Materials Letters vol 60 no 15 pp 1786ndash1790 2006[70] J Xiangping L Longzhu J Fulan Z Yanyan and L Lihua

ldquoEffects of Mn-doping on the piezoelectric and ferroelectricproperties of (Na

08K02)05Bi05TiO3ceramicsrdquo Key Engineering

Materials vol 368-372 pp 69ndash71 2008[71] H Hu M Zhu Y Hou and H Yan ldquoDielectric piezoelectric

and ferroelectric properties of MnCO3-added 74(Bi

12Na12)

TiO3-208(Bi

12K12)TiO3-52BaTiO

3lead-free piezoelectric

ceramicsrdquo IEEE Transactions on Ultrasonics Ferroelectrics andFrequency Control vol 56 pp 897ndash905 2009

[72] J Shieh Y C Lin and C S Chen ldquoIntricate straining ofmanganese-doped (Bi

05Na05)TiO3-BaTiO

3-(Bi05K05)TiO3

lead-free ferroelectric ceramicsrdquo Journal of Physics D AppliedPhysics vol 43 no 2 Article ID 025404 2010

[73] J Shieh Y C Lin and S C Chen ldquoInfluence of phase com-position on electrostrains of doped (Bi

05Na05)TiO3ndashBaTiO

3ndash

(Bi05K05)TiO3lead-free ferroelectric ceramicsrdquo Smart Materi-

als and Structures vol 19 no 9 Article ID 094007 2010[74] M Zhu H Hu N Lei Y Hou and H YanInt ldquoMnO modifi-

cation on microstructure and electrical properties of lead-freeBi0485

Na0425

K006

Ba003

TiO3

solid solution around mor-photropic phase boundaryrdquo International Journal of AppliedCeramic Technology vol 7 pp E107ndashE113 2010

[75] N BDoH B Lee CHYoon J KKang and J S Lee ldquoEffect ofTa-substitution on the ferroelectric and piezoelectric propertiesof Bi05(Na082

K018

)05TiO3ceramicsrdquoTransactions on Electrical

and Electronic Materials vol 12 no 2 pp 64ndash67 2011[76] K N Pham A Hussain CW Ahn I W Kim S J Jeong and J

S Lee ldquoGiant strain in Nb-doped Bi05(Na082

K018

)05TiO3lead-

free electromechanical ceramicsrdquoMaterials Letters vol 64 no20 pp 2219ndash2222 2010

[77] A Hussain C W Ahn J S Lee A Ullah and I W KimldquoLarge electric-field-induced strain in Zr-modified lead-freeBi05(Na078

K022

)05TiO3piezoelectric ceramicsrdquo Sensors and

Actuators A vol 158 no 1 pp 84ndash89 2010[78] AHussain CWAhn AUllah J S Lee and IWKim ldquoEffects

of hafnium substitution on dielectric and electromechanicalproperties of lead-free Bi

05(Na078

K022

)05(Ti1minus119909

Hfx)O3Ceram-

icsrdquo Japanese Journal of Applied Physics vol 49 Article ID041504 2010

[79] D N Binh A Hussain H Lee et al ldquoEnhanced electric-field-induced strain at the ferroelectric-electrostrcitive phaseboundary of yttrium-doped Bi

05(Na082

K018

)05TiO3lead-free

piezoelectric ceramicsrdquo Journal of the Korean Physical Societyvol 57 no 41 pp 892ndash896 2010

[80] V Nguyen H Han K Kim D Dang K Ahn and J Lee ldquoStrainenhancement in Bi

12(Na082

K018

)12TiO3lead-free electrome-

chanical ceramics by co-dopingwith Li andTardquo Journal of Alloysand Compounds vol 511 no 1 pp 237ndash241 2012

[81] D Lin D Xiao J Zhu and P Yu ldquoPiezoelectric and ferroelectricproperties of lead-free piezoelectric ceramicsrdquo Applied PhysicsLetters vol 88 no 6 Article ID 062901 2006

[82] V Nguyen C Hong H Lee Y M Kong J Lee and K AhnldquoEnhancement in the microstructure and the strain propertiesof Bi12(NaK)

12TiO3-based lead-free ceramics by Li substitu-

tionrdquo Journal of the Korean Physical Society vol 61 no 6 pp895ndash898 2012

[83] Y Liao D Xiao and D Lin ldquoApplication of quantum cascadelasers to trace gas analysisrdquo Applied Physics B vol 90 pp 165ndash176 2008

[84] Y Isikawa Y Akiyama and T Hayashi ldquoPiezoelectric anddielectric properties of (BiNaKAg)TiO

3-BaTiO

3lead-free

piezoelectric ceramicsrdquo Japanese Journal of Applied Physics vol48 Article ID 09KD03 2009

[85] F Ni L Luo X Pan W Li and J Zhu ldquoEffects of A-sitevacancy on the electrical properties in lead-free non-stoichiometric ceramics Bi

05+119909(Na082

K018

)05minus3119909

TiO3

andBi05+119910

(Na082

K018

)05TiO3rdquo Journal of Alloys and Compounds

vol 541 pp 150ndash156 2012[86] F Ni L Luo W Lim and H Chen ldquoA-site vacancy-induced

giant strain and the electrical properties in non-stoichiometricceramics Bi

05+119909(Na1minus119910

K119910)05minus3119909

TiO3rdquo Journal of Physics D

Applied Physics vol 45 no 41 Article ID 415103 2012[87] A Ullah C W Ahn A Hussain S Y Lee H J Lee and I W

Kim ldquoPhase transitions and large electric field-induced strainin BiAlO

3-modified Bi

05(Na K)

05TiO3lead-free piezoelectric

ceramicsrdquo Current Applied Physics vol 10 pp 1174ndash1181 2010[88] A Ullah C W Ahn S Y Lee J S Kim and I W Kim ldquoStruc-

ture ferroelectric properties and electric field-induced largestrain in lead-free Bi

05(NaK)

05TiO3-(Bi05La05)AlO3piezo-

electric ceramicsrdquo Ceramics International vol 38 no 1 ppS363ndashS368 2012

[89] V DN Tran H S Han CH Yoon J S LeeW Jo and J RodelldquoLead-free electrostrictive bismuth perovskite ceramics withthermally stable field-induced strainsrdquoMaterials Letters vol 65pp 2607ndash2609 2011

[90] K Wang A Hussain W Jo and J Rodel ldquoTemperature-dependent properties of (Bi

12Na12)TiO3-(Bi12K12)TiO3-

SrTiO3

lead-free piezoceramicsrdquo Journal of the AmericanCeramic Society vol 95 no 7 pp 2241ndash2247 2012

[91] E A Patterson D P Cann J Pokomy and I M Reaney ldquoElec-tromechanical strain in Bi(Zn

12Ti12)O3-(Bi12Na12)TiO3-

(Bi12K12)TiO3solid solutionsrdquo Journal Of Applied Physics vol

111 Article ID 094105 2012[92] E A Patterson and D P Cann ldquoBipolar piezoelectric

fatigue of Bi(Zn05Ti05)O3-(Bi05K05)TiO3-(Bi05Na05)TiO3Pb-

free ceramicsrdquo Applied Physics Letters vol 101 Article ID042905 2012

[93] R Dittmer W Jo J Daniels S Schaab and JRodel ldquoRelaxor characteristics of morphotropic phaseboundary (Bi

12Na12)TiO3-(Bi12K12)TiO3

modified withBi(Zn

12Ti12)O3rdquo Journal of the American Ceramic Society vol

94 no 12 pp 4283ndash4290 2011[94] A Hussain C W Ahn A Ullah J S Lee and I W Kim

ldquoDielectric ferroelectric and field-induced strain behavior ofK05Na05NbO3-modified Bi

05(Na078

K022

)05TiO3

lead-freeceramicsrdquo Ceramics International vol 38 no 5 pp 4143ndash41492012

12 Advances in Materials Science and Engineering

[95] G Fan W Lu X Wang and F Liang ldquoMorphotropic phaseboundary and piezoelectric properties of (Bi

12Na12)TiO3ndash

(Bi12K12)TiO3ndashKNbO

3lead-free piezoelectric ceramicsrdquo

Applied Physics Letters vol 91 Article ID 202908 2007[96] N B Do H B Lee D T Le et al ldquoElectric field-induced strain

of lead-free Bi05Na05TiO3ndashBi05K05TiO3ceramics modified

with LiTaO3rdquoCurrent Applied Physics vol 11 no 3 supplement

pp S134ndashS137 2011[97] T V D Ngoc H S Han K J Kim et al ldquoRelaxor and field-

induced strain behavior in lead-free Bi05(Na082

K018

)05TiO3

ceramics modified with BaZrO3rdquo Journal of Ceramic Processing

Research vol 13 supplement 2 pp s177ndashs180 2012[98] V D N Tran A Hussain H S Han et al ldquoComparison of

ferroelectric and strain properties between BaTiO3- and

BaZrO3-modified Bi

12(Na082

K018

)12TiO3ceramicsrdquo Japanese

Journal of Applied Physics vol 51 Article ID 09MD02 2012[99] I KHongH SHan CH YoonHN JiW P Tai and J S Lee

ldquoStrain enhancement in lead-free Bi05(Na078

K022

)05TiO3

ceramics by CaZrO3

substitutionrdquo Journal of IntelligentMaterial Systems and Structures vol 24 no 11 pp 1343ndash13492013 (Swedish)

[100] J K Kang D J Heo V Q Nguyen H S Han J S Leeand K K Ahn ldquoLow-temperature sintering of lead-freeBi12(NaK)

12TiO3-based electrostrictive ceramics with CuO

additionrdquo Journal of the Korean Physical Society vol 61 no 6pp 899ndash902 2012

[101] V Q Nguyen H B Luong and D D Dang ldquoEnhancement ofelectrical field-induced strain in Bi

05(Na K)

05TiO3-based lead-

free piezoelectric ceramics role of phase transitionrdquo In press[102] A Zaman Y Iqbal A Hussain et al ldquoInfluence of zirconium

substitution on dielectric ferroelectric and field-induced strainbehaviors of lead-free 099[Bi

12(Na082

K018

)12(Ti1minus119909

Zr119909)O3]-

001LiSbO3ceramicsrdquo Journal of theKorean Physical Society vol

61 no 5 pp 773ndash778 2012[103] S Qiao J Wu B Wu B Zhang D Xiao and J Zhu ldquoEffect

of Ba085

Ca015

Ti090

Zr010

O3content on the microstructure and

electrical properties of Bi051

(Na082

K018

)050

TiO3ceramicsrdquo

Ceramics International vol 38 no 6 pp 4845ndash4851 2012[104] H Nagata M Yoshida Y Makiuchi and T Takenaka ldquoLarge

piezoelectric constant and high curie temperature of lead-freepiezoelectric ceramic ternary system based on bismuth sodiumtitanate-bismuth potassium titanate-barium titanate near themorphotropic phase boundaryrdquo Japanese Journal of AppliedPhysics vol 42 no 12 p 7401 2003

[105] Y Li W Chen Q Xu J Zhou X Gu and S Fang ldquoElec-tromechanical and dielectric properties of Na

05Bi05TiO3-

K05Bi05TiO3-BaTiO

3lead-free ceramicsrdquo Materials Chemistry

and Physics vol 94 no 2-3 pp 328ndash332 2005[106] Q Zhou C Zhou W Li J Cheng H Wang and C Yuan

Journal of Physics and Chemistry of Solids vol 72 p 909 2011[107] C Zhou X LiuW Lim andC Yuan ldquoMicrostructure and elec-

trical properties of Bi05Na05TiO3-Bi05K05TiO3-LiNbO

3lead-

free piezoelectric ceramicsrdquo Journal of Physics and Chemistry ofSolids vol 70 pp 541ndash545 2009

[108] C Zhou X Liu W Li C Yuan and G Chen ldquoStructure andelectrical properties of Bi

05(Na K)

05TiO3minusBiGaO

3lead-free

piezoelectric ceramicsrdquo Current Applied Physics vol 10 no 1pp 93ndash98 2010

[109] B Wu C Han D Xiao Z Wang J Zhu and J Wu ldquoInves-tigation of a new lead-free (089minus x)(Bi

05Na05)TiO3ndash011(Bi

05

K05)TiO3ndashxBa085

Ca015

Ti090

Zr010

O3ceramicsrdquo Materials Re-

search Bulletin vol 47 pp 3937ndash3940 2012

[110] M Zou H Fan L Chen and W Yang ldquoMicrostruc-ture and electrical properties of (1 minus 119909)[082Bi

05Na05TiO3ndash

018Bi05K05TiO3]ndashxBiFeO

3lead-free piezoelectric ceramicsrdquo

Journal of Alloys and Compounds vol 495 no 1 pp 280ndash2832010

[111] C ZhouX LiuW Li andCYuan ldquoDielectric andpiezoelectricproperties of Bi

05Na05TiO3ndashBi05K05TiO3ndashBiCrO

3lead-free

piezoelectric ceramicsrdquo Journal of Alloys and Compounds vol478 no 1-2 pp 381ndash385 2009

[112] H Yang X Shan C Zhou Q Zhou W Li and J ChengldquoMicrostructure dielectric and piezoelectric properties of lead-free Bi

05Na05

TiO3ndashBi05K05

TiO3ndashBiMnO

3ceramicsrdquo Bulletin

of Materials Science vol 36 pp 265ndash270 2013[113] M Bichurin V Petrov A Zakharov et al ldquoMagnetoelectric

interactions in lead-based and lead-free compositesrdquoMaterialsvol 4 no 4 pp 651ndash702 2011

[114] H S Han CW Ahn IW Kim A Hussain and J S Lee ldquoDes-tabilization of ferroelectric order in bismuth perovskite ceram-ics by A-site vacanciesrdquo Materials Letters vol 70 pp 98ndash1002012

[115] A Ullah CW Ahn A Hussain IW Kim H I Hwang andNK Cho ldquoStructural transition and large electric field-inducedstrain in BiAlO

3-modified Bi

05(Na08K02)05TiO3

lead-freepiezoelectric ceramicsrdquo Solid State Communications vol 150pp 1145ndash1149 2010

[116] A Ullah C W Ahn A Hussain S Y Lee J S Kim and I WKim ldquoEffect of potassium concentration on the structure andelectrical properties of lead-free Bi

05(NaK)

05TiO3ndashBiAlO

3

piezoelectric ceramicsrdquo Journal of Alloys and Compounds vol509 pp 3148ndash3154 2012

[117] K N Pham D T Hinh L H Yuong K Y Min and L SShin ldquoEffects of Bi(Mg12Sn 12)O3 modification on the dielec-tric and piezoelectric properties of Bi12(Na08K02)12TiO3ceramicsrdquo Journal of the Korean Ceramic Society vol 49 pp266ndash271 2012

[118] K N Pham H B Lee H S Han et al ldquoDielectric fer-roelectric and piezoelectric properties of Nb-substitutedBi12(Na082

K018

)12TiO3lead-free ceramicsrdquo Journal of the

Korean Ceramic Society vol 60 pp 207ndash211 2012[119] A Ullah C W Ahn and I W Kim ldquoDielectric

piezoelectric properties and field-induced large strain ofBi(Zn

05Ti05)O3-modified morphotropic phase boundary

Bi05(Na082

K018

)05TiO3

piezoelectric ceramicsrdquo JapaneseJournal of Applied Physics vol 51 Article ID 09MD07 2012

[120] H S Han W Jo J Rodel I K Hong W P Tai and J SLee ldquoCoexistence of ergodicity and nonergodicity in LaFeO

3-

modified Bi12(Na078

K022

)12TiO3relaxorsrdquo Journal of Physics

Condensed Matter vol 24 Article ID 365901 2012[121] H S Han W Jo J K Kang et al ldquoIncipient piezoelectrics and

electrostriction behavior in Sn-doped Bi12(Na082

K018

)12TiO3

lead-free ceramicsrdquo Journal of Applied Physics vol 113 ArticleID 154102 2013

[122] H B Lee D J Heo R A Malik C H Yoon H S Han and J SLee ldquoLead-free Bi

12(Na082

K018

)12TiO3ceramics exhibiting

large strain with small hysteresisrdquo Ceramics International vol39 pp S705ndashS708 2013

[123] D S Lee S J Jeong M S Kim and K H Kim ldquoEffectof sintering time on strain in ceramic composite con-sisting of 094Bi05(Na075K025)05TiO3ndash006BiAlO3 with(Bi05Na05)TiO3rdquo Japanese Journal of Applied Physics vol 52Article ID 021801 2013

Advances in Materials Science and Engineering 13

[124] J Hao W Bai W Li B Shen and J Zhai ldquoPhase transitionsrelaxor behavior and large strain response in LiNbO3-modifiedBi05(Na080K020)05TiO3 lead-free piezoceramicsrdquo Journalof Applied Physics vol 114 Article ID 044103 2013

[125] A Ullah C W Ahn A Ullah and I W Kim ldquoLarge strainunder a low electric field in lead-free bismuth-based piezo-electricsrdquo Applied Physics Letters vol 103 Article ID 0229062013

[126] N Kumar and D P Cann ldquoElectromechanical strainand bipolar fatigue in Bi(Mg

12Ti12)O3-(Bi12K12)TiO3-

(Bi12Na12)TiO3ceramicsrdquo Journal of Applied Physics vol 114

Article ID 054102 2013[127] T H Dinh H Y Lee C H Yoon et al ldquoEffect of lanthanum

doping on the structural ferroelectric and strain propertiesof Bi12(Na082

K018

)12TiO3lead-free ceramicsrdquo Journal of the

Korean Ceramic Society vol 62 pp 1004ndash1008 2013[128] P Jaita A Watcharapasorn D P Cann and S

Jiansirisomboon ldquoDielectric ferroelectric and electric field-induced strain behavior of Ba(Ti090Sn010)O3-modifiedBi05(Na080K020)05TiO3 lead-free piezoelectricsrdquo Journalof Alloys and Compounds vol 596 pp 98ndash106 2014

[129] AHussain J U Rahman A Zaman et al ldquoField-induced strainand polarization response in lead-free Bi12(Na080K020)12TiO3ndashSrZrO3 ceramicrdquo Materials Chemistry and Physics vol143 pp 1282ndash1288 2014

[130] A Ullah R A Malik D S Lee et al ldquoElectric-field-inducedphase transition and large strain in lead-free Nb-doped BNKT-BST ceramicsrdquo Journal of the European Ceramic Society vol 34pp 29ndash35 2014

[131] J Hao B Shen J Zhai and H Chen ldquoPhase transitionalbehavior and electric field-induced large strain in alkali niobate-modified Bi

05(Na080

K020

)05TiO3

lead-free piezoceramicsrdquoJournal of Applied Physics vol 115 Article ID 034101 2014

[132] A Zaman Y Iqbal A Hussain M H Kim and R A MalikldquoDielectric ferroelectric and field-induced strain properties ofTa-doped 099Bi

05(Na082

K018

)05TiO3ndash001LiSbO

3ceramicsrdquo

Journal of Materials Science vol 49 no 8 pp 3205ndash3214 2014[133] A Ullah A Ullah I W Kim D S Lee S J Jeong and C W

Ahn ldquoLarge electromechanical response in lead-free La-dopedBNKTBST piezoelectric ceramicsrdquo Journal of the AmericanCeramic Society vol 97 no 8 pp 2471ndash2478 2014

Submit your manuscripts athttpwwwhindawicom

ScientificaHindawi Publishing Corporationhttpwwwhindawicom Volume 2014

CorrosionInternational Journal of

Hindawi Publishing Corporationhttpwwwhindawicom Volume 2014

Polymer ScienceInternational Journal of

Hindawi Publishing Corporationhttpwwwhindawicom Volume 2014

Hindawi Publishing Corporationhttpwwwhindawicom Volume 2014

CeramicsJournal of

Hindawi Publishing Corporationhttpwwwhindawicom Volume 2014

CompositesJournal of

NanoparticlesJournal of

Hindawi Publishing Corporationhttpwwwhindawicom Volume 2014

Hindawi Publishing Corporationhttpwwwhindawicom Volume 2014

International Journal of

Biomaterials

Hindawi Publishing Corporationhttpwwwhindawicom Volume 2014

NanoscienceJournal of

TextilesHindawi Publishing Corporation httpwwwhindawicom Volume 2014

Journal of

NanotechnologyHindawi Publishing Corporationhttpwwwhindawicom Volume 2014

Journal of

CrystallographyJournal of

Hindawi Publishing Corporationhttpwwwhindawicom Volume 2014

The Scientific World JournalHindawi Publishing Corporation httpwwwhindawicom Volume 2014

Hindawi Publishing Corporationhttpwwwhindawicom Volume 2014

CoatingsJournal of

Advances in

Materials Science and EngineeringHindawi Publishing Corporationhttpwwwhindawicom Volume 2014

Smart Materials Research

Hindawi Publishing Corporationhttpwwwhindawicom Volume 2014

Hindawi Publishing Corporationhttpwwwhindawicom Volume 2014

MetallurgyJournal of

Hindawi Publishing Corporationhttpwwwhindawicom Volume 2014

BioMed Research International

MaterialsJournal of

Hindawi Publishing Corporationhttpwwwhindawicom Volume 2014

Nano

materials

Hindawi Publishing Corporationhttpwwwhindawicom Volume 2014

Journal ofNanomaterials

Page 10: Review Article Current Development in Lead-Free Bi (Na,K ...downloads.hindawi.com/journals/amse/2014/365391.pdf · Bi 2 O 3 and TiO 2 and alkali carbonate powder Na 2 CO 3 and K 2

10 Advances in Materials Science and Engineering

[35] D YWang DM Lin K SWong KW Kwok J Y Dai and HL W Chan ldquoPiezoresponse and ferroelectric properties oflead-free [Bi

05(Na07K02Li01)05]TiO3thin films by pulsed laser

depositionrdquo Applied Physics Letters vol 92 no 22 Article ID222909 2008

[36] J Kreisel A M Glazer G Jones P A Thomas L Abello andG Lucazeau ldquoAn x-ray diffraction and Raman spectroscopyinvestigation of A-site substituted perovskite compounds the(Na1minus119909

K119909)05Bi05TiO3(0le xle1) solid solutionrdquo Journal of

Physics Condensed Matter vol 12 p 3267 2000[37] H Xie L Jin D Shen X Wang and G Shen ldquoMorphotropic

phase boundary segregation effect and crystal growth in theNBT-KBT systemrdquo Journal of Crystal Growth vol 311 no 14pp 3626ndash3630 2009

[38] O Elkechai M Manier and I P Mercurio ldquoNa05Bi05TiO3ndash

K05Bi05TiO3(NBT-KBT) system a structural and electrical

studyrdquo Physica Status Solidi vol 157 no 2 pp 499ndash506 1996[39] K Yoshii Y Hiruma H Nagata and T Takenaka ldquoElectrical

properties and depolarization temperature of (Bi12Na12)TiO3-

(Bi12K12)TiO3lead-free piezoelectric ceramicsrdquo Japanese Jour-

nal of Applied Physics vol 45 part 1 no 5B pp 4493ndash44972006

[40] M E Lines and A M Glass Principles and Applications forFerroelectrics and Related Materials Oxford University PressOxford UK 1979

[41] K Uchino Piezoelectric Actuators and Ultrasonic MotorsKluwer Academic Publishers Boston Mass USA 1996

[42] S T Zhang A B Kounga E Aulbach et al ldquoLead-free piezoce-ramics with giant strain in the system Bi

05Na05TiO3ndashBaTiO

3ndash

K05Na05NbO3 II Temperature dependent propertiesrdquo Journal

of Applied Physics vol 103 no 3 Article ID 034108 2008[43] S T Zhang A B Kounga E Aulbach H Ehrenberg and J

Rodel ldquoGiant strain in lead-free piezoceramics Bi05Na05TiO3ndash

BaTiO3ndashK05Na05NbO3systemrdquo Applied Physics Letters vol 91

Article ID 112906 2007[44] W Jo T Granzow E Aulbach J Rodel and D Damjanovic

ldquoOrigin of the large strain response in (K05Na05)NbO

3-

modified (Bi05Na05)TiO3ndashBaTiO

3lead-free piezoceramicsrdquo

Journal of Applied Physics vol 105 no 9 Article ID 0941022009

[45] D S Lee D H Lim M S Kim K H Kim and S J JeongldquoElectric field-induced deformation behavior in mixedBi05Na05TiO3and Bi

05(Na075

K025

)05TiO3-BiAlO

3rdquo Applied

Physics Letters vol 99 Article ID 062906 2011[46] J S Lee K N Pham H S Han H B Lee and V D N Tran

ldquoStrain enhancement of lead-free Bi12(Na082

K018

)12TiO3

ceramics by Sn dopingrdquo Journal of the Korean Physical Societyvol 60 no 2 pp 212ndash215 2012

[47] A Ullah CW Ahn A Hussain S Y Lee and IW Kim ldquoPhasetransition electrical properties and temperature-insensitivelarge strain in BiAlO

3-modified Bi

05(Na075

K025

)05TiO3lead-

free piezoelectric ceramicsrdquo Journal of the American CeramicSociety vol 94 no 11 pp 3915ndash3921 2011

[48] L J Rigoberto G Federico and V C Maria-Elena ldquoLead-free ferroelectric ceramics with perovskite structurerdquo inFerroelectrics-Material Aspects M Lattart Ed InTech 2011

[49] X Ren ldquoLarge electric-field-induced strain in ferroelectriccrystals by point-defect-mediated reversible domain switchingrdquoNature Materials vol 3 pp 91ndash94 2004

[50] W LWarren G E Pike K Vanheusden D Dimos B A Tuttleand J Robertson ldquoDefect-dipole alignment and tetragonal

strain in ferroelectricsrdquo Journal of Applied Physics vol 79 no12 pp 9250ndash9257 1996

[51] W L Warren D Dimos G E Pike K Vanheusden and RRamesh ldquoAlignment of defect dipoles in polycrystalline ferro-electricsrdquo Applied Physics Letters vol 67 p 1689 1995

[52] R Lohkamper H Neumann and G Arlt ldquoInternal biasin acceptor-doped BaTiO

3ceramics numerical evaluation of

increase and decreaserdquo Journal of Applied Physics vol 68 p4220 1990

[53] U Robels and G Arlt ldquoDomain wall clamping in ferroelectricsby orientation of defectsrdquo Journal of Applied Physics vol 73 no7 pp 3454ndash3460 1993

[54] H Fu and R E Cohen ldquoPolarization rotation mechanism forultrahigh electromechanical response in single-crystal piezo-electricsrdquo Nature vol 403 no 6767 pp 281ndash283 2000

[55] Y Li W Chen Q Xu J Zhou Y Wang and H SunldquoPiezoelectric and dielectric properties of CeO

2-doped

Bi05Na044

K006

TiO3

lead-free ceramicsrdquo Ceramics Inter-national vol 33 no 1 pp 95ndash99 2007

[56] Y Liao D Xiao D Lin et al ldquoThe effects of CeO2-

doping on piezoelectric and dielectric properties ofBi05(Na1minus119909minus119910

K119909Li119910)05TiO3piezoelectric ceramicsrdquo Materials

Science and Engineering B vol 133 no 1ndash3 pp 172ndash176 2006[57] B Wang L Luo F Ni P Du W Li and H Chen ldquoPiezoelectric

and ferroelectric properties of (Bi1minus119909

Na08K02Lax)05TiO3lead-

free ceramicsrdquo Journal of Alloys and Compounds vol 526 pp79ndash84 2012

[58] Y Yuan S Zhang and X Zhou ldquoEffects of La occupa-tion site on the dielectric and piezoelectric properties of[Bi05(Na075

K015

L119894010

)05]TiO3ceramicsrdquo Journal of Materials

Science Materials in Electronics vol 20 no 11 pp 1090ndash10942009

[59] Y Yuan S R Zhang and X H Zhou ldquoPhasetransitions and electrical properties in La3+-substitutedBi05(Na075

K015

Li010

)05TiO3ceramicsrdquo Journal of Materials

Science Letters vol 41 pp 565ndash567 2006[60] Z Yang Y Hou B Liu and L Wei ldquoStructure and

electrical properties of Nd2O3-doped 082Bi

05Na05TiO3ndash

018Bi05K05TiO3ceramicsrdquo Ceramics International vol 35 pp

1423ndash1427 2009[61] Y Zhang R Chu Z Xu et al ldquoPiezoelectric and dielectric prop-

erties of Sm2O3-doped

082Bi05Na05TiO3-0 18Bi

05K05TiO3

ceramicsrdquo Journal of Alloys and Compounds vol 502 no 2 pp341ndash345 2010

[62] P Fu Z Xu R Chu W Li WWang and Y Liu ldquoGd2O3doped

082Bi05Na05TiO3ndash018Bi

05K05TiO3

lead-free piezoelectricceramicsrdquoMaterials amp Design vol 35 pp 267ndash280 2012

[63] C Zhi-Hui D Jian-Ning M Lin Y Ning-Yi and Z Wei-WeildquoPiezoelectric and dielectric properties of Dy

2O3-Doped Bi

05

(Na082

K018

)05TiO3lead-free ceramicsrdquo Ferroelectrics vol 425

no 1 pp 63ndash71 2011[64] P Fu Z Xu R Chu XWuW Li andH Zhang ldquoStructure and

electrical properties of the Ho2O3doped 082Bi

05Na05TiO3-

018Bi05K05TiO3lead-free piezoelectric ceramicsrdquo Journal of

Materials Science Materials in Electronics vol 23 no 12 pp2167ndash2172 2012

[65] P Fu Z Xu H Zhang R Chu W Li and M Zhao ldquoStructureand electrical properties of Er

2O3doped 082Bi

05Na05TiO3ndash

018Bi05K05TiO3lead-free piezoelectric ceramicsrdquoMaterials amp

Design vol 40 pp 373ndash377 2012

Advances in Materials Science and Engineering 11

[66] P Fu Z Xu R Chu W Li Q Xie and G Zhang ldquoEffectsof Eu

2O3

on the structure and electrical properties of082Bi

05Na05TiO3-018Bi

05K05TiO3

lead-free piezoelectricceramicsrdquo Current Applied Physics vol 11 pp 822ndash826 2011

[67] H Han N Do K Pham et al ldquoSintering behaviour andpiezoelectric properties of CuO-added lead-free Bi(NaK)TiO

3

ceramicsrdquo Ferroelectrics vol 421 no 1 pp 88ndash91 2011[68] N B Do H D Jang I Hong et al ldquoLow temperature sintering

of lead-free Bi05(Na082

K018

)05TiO3piezoelectric ceramics by

co-doping with CuO and Nb2O5rdquo Ceramics International vol

38S pp S359ndashS362 2012[69] X P Jiang L Z Li M Zeng and H L W Chan ldquoDielec-

tric properties of Mn-doped (Na08K02)05Bi05TiO3ceramicsrdquo

Materials Letters vol 60 no 15 pp 1786ndash1790 2006[70] J Xiangping L Longzhu J Fulan Z Yanyan and L Lihua

ldquoEffects of Mn-doping on the piezoelectric and ferroelectricproperties of (Na

08K02)05Bi05TiO3ceramicsrdquo Key Engineering

Materials vol 368-372 pp 69ndash71 2008[71] H Hu M Zhu Y Hou and H Yan ldquoDielectric piezoelectric

and ferroelectric properties of MnCO3-added 74(Bi

12Na12)

TiO3-208(Bi

12K12)TiO3-52BaTiO

3lead-free piezoelectric

ceramicsrdquo IEEE Transactions on Ultrasonics Ferroelectrics andFrequency Control vol 56 pp 897ndash905 2009

[72] J Shieh Y C Lin and C S Chen ldquoIntricate straining ofmanganese-doped (Bi

05Na05)TiO3-BaTiO

3-(Bi05K05)TiO3

lead-free ferroelectric ceramicsrdquo Journal of Physics D AppliedPhysics vol 43 no 2 Article ID 025404 2010

[73] J Shieh Y C Lin and S C Chen ldquoInfluence of phase com-position on electrostrains of doped (Bi

05Na05)TiO3ndashBaTiO

3ndash

(Bi05K05)TiO3lead-free ferroelectric ceramicsrdquo Smart Materi-

als and Structures vol 19 no 9 Article ID 094007 2010[74] M Zhu H Hu N Lei Y Hou and H YanInt ldquoMnO modifi-

cation on microstructure and electrical properties of lead-freeBi0485

Na0425

K006

Ba003

TiO3

solid solution around mor-photropic phase boundaryrdquo International Journal of AppliedCeramic Technology vol 7 pp E107ndashE113 2010

[75] N BDoH B Lee CHYoon J KKang and J S Lee ldquoEffect ofTa-substitution on the ferroelectric and piezoelectric propertiesof Bi05(Na082

K018

)05TiO3ceramicsrdquoTransactions on Electrical

and Electronic Materials vol 12 no 2 pp 64ndash67 2011[76] K N Pham A Hussain CW Ahn I W Kim S J Jeong and J

S Lee ldquoGiant strain in Nb-doped Bi05(Na082

K018

)05TiO3lead-

free electromechanical ceramicsrdquoMaterials Letters vol 64 no20 pp 2219ndash2222 2010

[77] A Hussain C W Ahn J S Lee A Ullah and I W KimldquoLarge electric-field-induced strain in Zr-modified lead-freeBi05(Na078

K022

)05TiO3piezoelectric ceramicsrdquo Sensors and

Actuators A vol 158 no 1 pp 84ndash89 2010[78] AHussain CWAhn AUllah J S Lee and IWKim ldquoEffects

of hafnium substitution on dielectric and electromechanicalproperties of lead-free Bi

05(Na078

K022

)05(Ti1minus119909

Hfx)O3Ceram-

icsrdquo Japanese Journal of Applied Physics vol 49 Article ID041504 2010

[79] D N Binh A Hussain H Lee et al ldquoEnhanced electric-field-induced strain at the ferroelectric-electrostrcitive phaseboundary of yttrium-doped Bi

05(Na082

K018

)05TiO3lead-free

piezoelectric ceramicsrdquo Journal of the Korean Physical Societyvol 57 no 41 pp 892ndash896 2010

[80] V Nguyen H Han K Kim D Dang K Ahn and J Lee ldquoStrainenhancement in Bi

12(Na082

K018

)12TiO3lead-free electrome-

chanical ceramics by co-dopingwith Li andTardquo Journal of Alloysand Compounds vol 511 no 1 pp 237ndash241 2012

[81] D Lin D Xiao J Zhu and P Yu ldquoPiezoelectric and ferroelectricproperties of lead-free piezoelectric ceramicsrdquo Applied PhysicsLetters vol 88 no 6 Article ID 062901 2006

[82] V Nguyen C Hong H Lee Y M Kong J Lee and K AhnldquoEnhancement in the microstructure and the strain propertiesof Bi12(NaK)

12TiO3-based lead-free ceramics by Li substitu-

tionrdquo Journal of the Korean Physical Society vol 61 no 6 pp895ndash898 2012

[83] Y Liao D Xiao and D Lin ldquoApplication of quantum cascadelasers to trace gas analysisrdquo Applied Physics B vol 90 pp 165ndash176 2008

[84] Y Isikawa Y Akiyama and T Hayashi ldquoPiezoelectric anddielectric properties of (BiNaKAg)TiO

3-BaTiO

3lead-free

piezoelectric ceramicsrdquo Japanese Journal of Applied Physics vol48 Article ID 09KD03 2009

[85] F Ni L Luo X Pan W Li and J Zhu ldquoEffects of A-sitevacancy on the electrical properties in lead-free non-stoichiometric ceramics Bi

05+119909(Na082

K018

)05minus3119909

TiO3

andBi05+119910

(Na082

K018

)05TiO3rdquo Journal of Alloys and Compounds

vol 541 pp 150ndash156 2012[86] F Ni L Luo W Lim and H Chen ldquoA-site vacancy-induced

giant strain and the electrical properties in non-stoichiometricceramics Bi

05+119909(Na1minus119910

K119910)05minus3119909

TiO3rdquo Journal of Physics D

Applied Physics vol 45 no 41 Article ID 415103 2012[87] A Ullah C W Ahn A Hussain S Y Lee H J Lee and I W

Kim ldquoPhase transitions and large electric field-induced strainin BiAlO

3-modified Bi

05(Na K)

05TiO3lead-free piezoelectric

ceramicsrdquo Current Applied Physics vol 10 pp 1174ndash1181 2010[88] A Ullah C W Ahn S Y Lee J S Kim and I W Kim ldquoStruc-

ture ferroelectric properties and electric field-induced largestrain in lead-free Bi

05(NaK)

05TiO3-(Bi05La05)AlO3piezo-

electric ceramicsrdquo Ceramics International vol 38 no 1 ppS363ndashS368 2012

[89] V DN Tran H S Han CH Yoon J S LeeW Jo and J RodelldquoLead-free electrostrictive bismuth perovskite ceramics withthermally stable field-induced strainsrdquoMaterials Letters vol 65pp 2607ndash2609 2011

[90] K Wang A Hussain W Jo and J Rodel ldquoTemperature-dependent properties of (Bi

12Na12)TiO3-(Bi12K12)TiO3-

SrTiO3

lead-free piezoceramicsrdquo Journal of the AmericanCeramic Society vol 95 no 7 pp 2241ndash2247 2012

[91] E A Patterson D P Cann J Pokomy and I M Reaney ldquoElec-tromechanical strain in Bi(Zn

12Ti12)O3-(Bi12Na12)TiO3-

(Bi12K12)TiO3solid solutionsrdquo Journal Of Applied Physics vol

111 Article ID 094105 2012[92] E A Patterson and D P Cann ldquoBipolar piezoelectric

fatigue of Bi(Zn05Ti05)O3-(Bi05K05)TiO3-(Bi05Na05)TiO3Pb-

free ceramicsrdquo Applied Physics Letters vol 101 Article ID042905 2012

[93] R Dittmer W Jo J Daniels S Schaab and JRodel ldquoRelaxor characteristics of morphotropic phaseboundary (Bi

12Na12)TiO3-(Bi12K12)TiO3

modified withBi(Zn

12Ti12)O3rdquo Journal of the American Ceramic Society vol

94 no 12 pp 4283ndash4290 2011[94] A Hussain C W Ahn A Ullah J S Lee and I W Kim

ldquoDielectric ferroelectric and field-induced strain behavior ofK05Na05NbO3-modified Bi

05(Na078

K022

)05TiO3

lead-freeceramicsrdquo Ceramics International vol 38 no 5 pp 4143ndash41492012

12 Advances in Materials Science and Engineering

[95] G Fan W Lu X Wang and F Liang ldquoMorphotropic phaseboundary and piezoelectric properties of (Bi

12Na12)TiO3ndash

(Bi12K12)TiO3ndashKNbO

3lead-free piezoelectric ceramicsrdquo

Applied Physics Letters vol 91 Article ID 202908 2007[96] N B Do H B Lee D T Le et al ldquoElectric field-induced strain

of lead-free Bi05Na05TiO3ndashBi05K05TiO3ceramics modified

with LiTaO3rdquoCurrent Applied Physics vol 11 no 3 supplement

pp S134ndashS137 2011[97] T V D Ngoc H S Han K J Kim et al ldquoRelaxor and field-

induced strain behavior in lead-free Bi05(Na082

K018

)05TiO3

ceramics modified with BaZrO3rdquo Journal of Ceramic Processing

Research vol 13 supplement 2 pp s177ndashs180 2012[98] V D N Tran A Hussain H S Han et al ldquoComparison of

ferroelectric and strain properties between BaTiO3- and

BaZrO3-modified Bi

12(Na082

K018

)12TiO3ceramicsrdquo Japanese

Journal of Applied Physics vol 51 Article ID 09MD02 2012[99] I KHongH SHan CH YoonHN JiW P Tai and J S Lee

ldquoStrain enhancement in lead-free Bi05(Na078

K022

)05TiO3

ceramics by CaZrO3

substitutionrdquo Journal of IntelligentMaterial Systems and Structures vol 24 no 11 pp 1343ndash13492013 (Swedish)

[100] J K Kang D J Heo V Q Nguyen H S Han J S Leeand K K Ahn ldquoLow-temperature sintering of lead-freeBi12(NaK)

12TiO3-based electrostrictive ceramics with CuO

additionrdquo Journal of the Korean Physical Society vol 61 no 6pp 899ndash902 2012

[101] V Q Nguyen H B Luong and D D Dang ldquoEnhancement ofelectrical field-induced strain in Bi

05(Na K)

05TiO3-based lead-

free piezoelectric ceramics role of phase transitionrdquo In press[102] A Zaman Y Iqbal A Hussain et al ldquoInfluence of zirconium

substitution on dielectric ferroelectric and field-induced strainbehaviors of lead-free 099[Bi

12(Na082

K018

)12(Ti1minus119909

Zr119909)O3]-

001LiSbO3ceramicsrdquo Journal of theKorean Physical Society vol

61 no 5 pp 773ndash778 2012[103] S Qiao J Wu B Wu B Zhang D Xiao and J Zhu ldquoEffect

of Ba085

Ca015

Ti090

Zr010

O3content on the microstructure and

electrical properties of Bi051

(Na082

K018

)050

TiO3ceramicsrdquo

Ceramics International vol 38 no 6 pp 4845ndash4851 2012[104] H Nagata M Yoshida Y Makiuchi and T Takenaka ldquoLarge

piezoelectric constant and high curie temperature of lead-freepiezoelectric ceramic ternary system based on bismuth sodiumtitanate-bismuth potassium titanate-barium titanate near themorphotropic phase boundaryrdquo Japanese Journal of AppliedPhysics vol 42 no 12 p 7401 2003

[105] Y Li W Chen Q Xu J Zhou X Gu and S Fang ldquoElec-tromechanical and dielectric properties of Na

05Bi05TiO3-

K05Bi05TiO3-BaTiO

3lead-free ceramicsrdquo Materials Chemistry

and Physics vol 94 no 2-3 pp 328ndash332 2005[106] Q Zhou C Zhou W Li J Cheng H Wang and C Yuan

Journal of Physics and Chemistry of Solids vol 72 p 909 2011[107] C Zhou X LiuW Lim andC Yuan ldquoMicrostructure and elec-

trical properties of Bi05Na05TiO3-Bi05K05TiO3-LiNbO

3lead-

free piezoelectric ceramicsrdquo Journal of Physics and Chemistry ofSolids vol 70 pp 541ndash545 2009

[108] C Zhou X Liu W Li C Yuan and G Chen ldquoStructure andelectrical properties of Bi

05(Na K)

05TiO3minusBiGaO

3lead-free

piezoelectric ceramicsrdquo Current Applied Physics vol 10 no 1pp 93ndash98 2010

[109] B Wu C Han D Xiao Z Wang J Zhu and J Wu ldquoInves-tigation of a new lead-free (089minus x)(Bi

05Na05)TiO3ndash011(Bi

05

K05)TiO3ndashxBa085

Ca015

Ti090

Zr010

O3ceramicsrdquo Materials Re-

search Bulletin vol 47 pp 3937ndash3940 2012

[110] M Zou H Fan L Chen and W Yang ldquoMicrostruc-ture and electrical properties of (1 minus 119909)[082Bi

05Na05TiO3ndash

018Bi05K05TiO3]ndashxBiFeO

3lead-free piezoelectric ceramicsrdquo

Journal of Alloys and Compounds vol 495 no 1 pp 280ndash2832010

[111] C ZhouX LiuW Li andCYuan ldquoDielectric andpiezoelectricproperties of Bi

05Na05TiO3ndashBi05K05TiO3ndashBiCrO

3lead-free

piezoelectric ceramicsrdquo Journal of Alloys and Compounds vol478 no 1-2 pp 381ndash385 2009

[112] H Yang X Shan C Zhou Q Zhou W Li and J ChengldquoMicrostructure dielectric and piezoelectric properties of lead-free Bi

05Na05

TiO3ndashBi05K05

TiO3ndashBiMnO

3ceramicsrdquo Bulletin

of Materials Science vol 36 pp 265ndash270 2013[113] M Bichurin V Petrov A Zakharov et al ldquoMagnetoelectric

interactions in lead-based and lead-free compositesrdquoMaterialsvol 4 no 4 pp 651ndash702 2011

[114] H S Han CW Ahn IW Kim A Hussain and J S Lee ldquoDes-tabilization of ferroelectric order in bismuth perovskite ceram-ics by A-site vacanciesrdquo Materials Letters vol 70 pp 98ndash1002012

[115] A Ullah CW Ahn A Hussain IW Kim H I Hwang andNK Cho ldquoStructural transition and large electric field-inducedstrain in BiAlO

3-modified Bi

05(Na08K02)05TiO3

lead-freepiezoelectric ceramicsrdquo Solid State Communications vol 150pp 1145ndash1149 2010

[116] A Ullah C W Ahn A Hussain S Y Lee J S Kim and I WKim ldquoEffect of potassium concentration on the structure andelectrical properties of lead-free Bi

05(NaK)

05TiO3ndashBiAlO

3

piezoelectric ceramicsrdquo Journal of Alloys and Compounds vol509 pp 3148ndash3154 2012

[117] K N Pham D T Hinh L H Yuong K Y Min and L SShin ldquoEffects of Bi(Mg12Sn 12)O3 modification on the dielec-tric and piezoelectric properties of Bi12(Na08K02)12TiO3ceramicsrdquo Journal of the Korean Ceramic Society vol 49 pp266ndash271 2012

[118] K N Pham H B Lee H S Han et al ldquoDielectric fer-roelectric and piezoelectric properties of Nb-substitutedBi12(Na082

K018

)12TiO3lead-free ceramicsrdquo Journal of the

Korean Ceramic Society vol 60 pp 207ndash211 2012[119] A Ullah C W Ahn and I W Kim ldquoDielectric

piezoelectric properties and field-induced large strain ofBi(Zn

05Ti05)O3-modified morphotropic phase boundary

Bi05(Na082

K018

)05TiO3

piezoelectric ceramicsrdquo JapaneseJournal of Applied Physics vol 51 Article ID 09MD07 2012

[120] H S Han W Jo J Rodel I K Hong W P Tai and J SLee ldquoCoexistence of ergodicity and nonergodicity in LaFeO

3-

modified Bi12(Na078

K022

)12TiO3relaxorsrdquo Journal of Physics

Condensed Matter vol 24 Article ID 365901 2012[121] H S Han W Jo J K Kang et al ldquoIncipient piezoelectrics and

electrostriction behavior in Sn-doped Bi12(Na082

K018

)12TiO3

lead-free ceramicsrdquo Journal of Applied Physics vol 113 ArticleID 154102 2013

[122] H B Lee D J Heo R A Malik C H Yoon H S Han and J SLee ldquoLead-free Bi

12(Na082

K018

)12TiO3ceramics exhibiting

large strain with small hysteresisrdquo Ceramics International vol39 pp S705ndashS708 2013

[123] D S Lee S J Jeong M S Kim and K H Kim ldquoEffectof sintering time on strain in ceramic composite con-sisting of 094Bi05(Na075K025)05TiO3ndash006BiAlO3 with(Bi05Na05)TiO3rdquo Japanese Journal of Applied Physics vol 52Article ID 021801 2013

Advances in Materials Science and Engineering 13

[124] J Hao W Bai W Li B Shen and J Zhai ldquoPhase transitionsrelaxor behavior and large strain response in LiNbO3-modifiedBi05(Na080K020)05TiO3 lead-free piezoceramicsrdquo Journalof Applied Physics vol 114 Article ID 044103 2013

[125] A Ullah C W Ahn A Ullah and I W Kim ldquoLarge strainunder a low electric field in lead-free bismuth-based piezo-electricsrdquo Applied Physics Letters vol 103 Article ID 0229062013

[126] N Kumar and D P Cann ldquoElectromechanical strainand bipolar fatigue in Bi(Mg

12Ti12)O3-(Bi12K12)TiO3-

(Bi12Na12)TiO3ceramicsrdquo Journal of Applied Physics vol 114

Article ID 054102 2013[127] T H Dinh H Y Lee C H Yoon et al ldquoEffect of lanthanum

doping on the structural ferroelectric and strain propertiesof Bi12(Na082

K018

)12TiO3lead-free ceramicsrdquo Journal of the

Korean Ceramic Society vol 62 pp 1004ndash1008 2013[128] P Jaita A Watcharapasorn D P Cann and S

Jiansirisomboon ldquoDielectric ferroelectric and electric field-induced strain behavior of Ba(Ti090Sn010)O3-modifiedBi05(Na080K020)05TiO3 lead-free piezoelectricsrdquo Journalof Alloys and Compounds vol 596 pp 98ndash106 2014

[129] AHussain J U Rahman A Zaman et al ldquoField-induced strainand polarization response in lead-free Bi12(Na080K020)12TiO3ndashSrZrO3 ceramicrdquo Materials Chemistry and Physics vol143 pp 1282ndash1288 2014

[130] A Ullah R A Malik D S Lee et al ldquoElectric-field-inducedphase transition and large strain in lead-free Nb-doped BNKT-BST ceramicsrdquo Journal of the European Ceramic Society vol 34pp 29ndash35 2014

[131] J Hao B Shen J Zhai and H Chen ldquoPhase transitionalbehavior and electric field-induced large strain in alkali niobate-modified Bi

05(Na080

K020

)05TiO3

lead-free piezoceramicsrdquoJournal of Applied Physics vol 115 Article ID 034101 2014

[132] A Zaman Y Iqbal A Hussain M H Kim and R A MalikldquoDielectric ferroelectric and field-induced strain properties ofTa-doped 099Bi

05(Na082

K018

)05TiO3ndash001LiSbO

3ceramicsrdquo

Journal of Materials Science vol 49 no 8 pp 3205ndash3214 2014[133] A Ullah A Ullah I W Kim D S Lee S J Jeong and C W

Ahn ldquoLarge electromechanical response in lead-free La-dopedBNKTBST piezoelectric ceramicsrdquo Journal of the AmericanCeramic Society vol 97 no 8 pp 2471ndash2478 2014

Submit your manuscripts athttpwwwhindawicom

ScientificaHindawi Publishing Corporationhttpwwwhindawicom Volume 2014

CorrosionInternational Journal of

Hindawi Publishing Corporationhttpwwwhindawicom Volume 2014

Polymer ScienceInternational Journal of

Hindawi Publishing Corporationhttpwwwhindawicom Volume 2014

Hindawi Publishing Corporationhttpwwwhindawicom Volume 2014

CeramicsJournal of

Hindawi Publishing Corporationhttpwwwhindawicom Volume 2014

CompositesJournal of

NanoparticlesJournal of

Hindawi Publishing Corporationhttpwwwhindawicom Volume 2014

Hindawi Publishing Corporationhttpwwwhindawicom Volume 2014

International Journal of

Biomaterials

Hindawi Publishing Corporationhttpwwwhindawicom Volume 2014

NanoscienceJournal of

TextilesHindawi Publishing Corporation httpwwwhindawicom Volume 2014

Journal of

NanotechnologyHindawi Publishing Corporationhttpwwwhindawicom Volume 2014

Journal of

CrystallographyJournal of

Hindawi Publishing Corporationhttpwwwhindawicom Volume 2014

The Scientific World JournalHindawi Publishing Corporation httpwwwhindawicom Volume 2014

Hindawi Publishing Corporationhttpwwwhindawicom Volume 2014

CoatingsJournal of

Advances in

Materials Science and EngineeringHindawi Publishing Corporationhttpwwwhindawicom Volume 2014

Smart Materials Research

Hindawi Publishing Corporationhttpwwwhindawicom Volume 2014

Hindawi Publishing Corporationhttpwwwhindawicom Volume 2014

MetallurgyJournal of

Hindawi Publishing Corporationhttpwwwhindawicom Volume 2014

BioMed Research International

MaterialsJournal of

Hindawi Publishing Corporationhttpwwwhindawicom Volume 2014

Nano

materials

Hindawi Publishing Corporationhttpwwwhindawicom Volume 2014

Journal ofNanomaterials

Page 11: Review Article Current Development in Lead-Free Bi (Na,K ...downloads.hindawi.com/journals/amse/2014/365391.pdf · Bi 2 O 3 and TiO 2 and alkali carbonate powder Na 2 CO 3 and K 2

Advances in Materials Science and Engineering 11

[66] P Fu Z Xu R Chu W Li Q Xie and G Zhang ldquoEffectsof Eu

2O3

on the structure and electrical properties of082Bi

05Na05TiO3-018Bi

05K05TiO3

lead-free piezoelectricceramicsrdquo Current Applied Physics vol 11 pp 822ndash826 2011

[67] H Han N Do K Pham et al ldquoSintering behaviour andpiezoelectric properties of CuO-added lead-free Bi(NaK)TiO

3

ceramicsrdquo Ferroelectrics vol 421 no 1 pp 88ndash91 2011[68] N B Do H D Jang I Hong et al ldquoLow temperature sintering

of lead-free Bi05(Na082

K018

)05TiO3piezoelectric ceramics by

co-doping with CuO and Nb2O5rdquo Ceramics International vol

38S pp S359ndashS362 2012[69] X P Jiang L Z Li M Zeng and H L W Chan ldquoDielec-

tric properties of Mn-doped (Na08K02)05Bi05TiO3ceramicsrdquo

Materials Letters vol 60 no 15 pp 1786ndash1790 2006[70] J Xiangping L Longzhu J Fulan Z Yanyan and L Lihua

ldquoEffects of Mn-doping on the piezoelectric and ferroelectricproperties of (Na

08K02)05Bi05TiO3ceramicsrdquo Key Engineering

Materials vol 368-372 pp 69ndash71 2008[71] H Hu M Zhu Y Hou and H Yan ldquoDielectric piezoelectric

and ferroelectric properties of MnCO3-added 74(Bi

12Na12)

TiO3-208(Bi

12K12)TiO3-52BaTiO

3lead-free piezoelectric

ceramicsrdquo IEEE Transactions on Ultrasonics Ferroelectrics andFrequency Control vol 56 pp 897ndash905 2009

[72] J Shieh Y C Lin and C S Chen ldquoIntricate straining ofmanganese-doped (Bi

05Na05)TiO3-BaTiO

3-(Bi05K05)TiO3

lead-free ferroelectric ceramicsrdquo Journal of Physics D AppliedPhysics vol 43 no 2 Article ID 025404 2010

[73] J Shieh Y C Lin and S C Chen ldquoInfluence of phase com-position on electrostrains of doped (Bi

05Na05)TiO3ndashBaTiO

3ndash

(Bi05K05)TiO3lead-free ferroelectric ceramicsrdquo Smart Materi-

als and Structures vol 19 no 9 Article ID 094007 2010[74] M Zhu H Hu N Lei Y Hou and H YanInt ldquoMnO modifi-

cation on microstructure and electrical properties of lead-freeBi0485

Na0425

K006

Ba003

TiO3

solid solution around mor-photropic phase boundaryrdquo International Journal of AppliedCeramic Technology vol 7 pp E107ndashE113 2010

[75] N BDoH B Lee CHYoon J KKang and J S Lee ldquoEffect ofTa-substitution on the ferroelectric and piezoelectric propertiesof Bi05(Na082

K018

)05TiO3ceramicsrdquoTransactions on Electrical

and Electronic Materials vol 12 no 2 pp 64ndash67 2011[76] K N Pham A Hussain CW Ahn I W Kim S J Jeong and J

S Lee ldquoGiant strain in Nb-doped Bi05(Na082

K018

)05TiO3lead-

free electromechanical ceramicsrdquoMaterials Letters vol 64 no20 pp 2219ndash2222 2010

[77] A Hussain C W Ahn J S Lee A Ullah and I W KimldquoLarge electric-field-induced strain in Zr-modified lead-freeBi05(Na078

K022

)05TiO3piezoelectric ceramicsrdquo Sensors and

Actuators A vol 158 no 1 pp 84ndash89 2010[78] AHussain CWAhn AUllah J S Lee and IWKim ldquoEffects

of hafnium substitution on dielectric and electromechanicalproperties of lead-free Bi

05(Na078

K022

)05(Ti1minus119909

Hfx)O3Ceram-

icsrdquo Japanese Journal of Applied Physics vol 49 Article ID041504 2010

[79] D N Binh A Hussain H Lee et al ldquoEnhanced electric-field-induced strain at the ferroelectric-electrostrcitive phaseboundary of yttrium-doped Bi

05(Na082

K018

)05TiO3lead-free

piezoelectric ceramicsrdquo Journal of the Korean Physical Societyvol 57 no 41 pp 892ndash896 2010

[80] V Nguyen H Han K Kim D Dang K Ahn and J Lee ldquoStrainenhancement in Bi

12(Na082

K018

)12TiO3lead-free electrome-

chanical ceramics by co-dopingwith Li andTardquo Journal of Alloysand Compounds vol 511 no 1 pp 237ndash241 2012

[81] D Lin D Xiao J Zhu and P Yu ldquoPiezoelectric and ferroelectricproperties of lead-free piezoelectric ceramicsrdquo Applied PhysicsLetters vol 88 no 6 Article ID 062901 2006

[82] V Nguyen C Hong H Lee Y M Kong J Lee and K AhnldquoEnhancement in the microstructure and the strain propertiesof Bi12(NaK)

12TiO3-based lead-free ceramics by Li substitu-

tionrdquo Journal of the Korean Physical Society vol 61 no 6 pp895ndash898 2012

[83] Y Liao D Xiao and D Lin ldquoApplication of quantum cascadelasers to trace gas analysisrdquo Applied Physics B vol 90 pp 165ndash176 2008

[84] Y Isikawa Y Akiyama and T Hayashi ldquoPiezoelectric anddielectric properties of (BiNaKAg)TiO

3-BaTiO

3lead-free

piezoelectric ceramicsrdquo Japanese Journal of Applied Physics vol48 Article ID 09KD03 2009

[85] F Ni L Luo X Pan W Li and J Zhu ldquoEffects of A-sitevacancy on the electrical properties in lead-free non-stoichiometric ceramics Bi

05+119909(Na082

K018

)05minus3119909

TiO3

andBi05+119910

(Na082

K018

)05TiO3rdquo Journal of Alloys and Compounds

vol 541 pp 150ndash156 2012[86] F Ni L Luo W Lim and H Chen ldquoA-site vacancy-induced

giant strain and the electrical properties in non-stoichiometricceramics Bi

05+119909(Na1minus119910

K119910)05minus3119909

TiO3rdquo Journal of Physics D

Applied Physics vol 45 no 41 Article ID 415103 2012[87] A Ullah C W Ahn A Hussain S Y Lee H J Lee and I W

Kim ldquoPhase transitions and large electric field-induced strainin BiAlO

3-modified Bi

05(Na K)

05TiO3lead-free piezoelectric

ceramicsrdquo Current Applied Physics vol 10 pp 1174ndash1181 2010[88] A Ullah C W Ahn S Y Lee J S Kim and I W Kim ldquoStruc-

ture ferroelectric properties and electric field-induced largestrain in lead-free Bi

05(NaK)

05TiO3-(Bi05La05)AlO3piezo-

electric ceramicsrdquo Ceramics International vol 38 no 1 ppS363ndashS368 2012

[89] V DN Tran H S Han CH Yoon J S LeeW Jo and J RodelldquoLead-free electrostrictive bismuth perovskite ceramics withthermally stable field-induced strainsrdquoMaterials Letters vol 65pp 2607ndash2609 2011

[90] K Wang A Hussain W Jo and J Rodel ldquoTemperature-dependent properties of (Bi

12Na12)TiO3-(Bi12K12)TiO3-

SrTiO3

lead-free piezoceramicsrdquo Journal of the AmericanCeramic Society vol 95 no 7 pp 2241ndash2247 2012

[91] E A Patterson D P Cann J Pokomy and I M Reaney ldquoElec-tromechanical strain in Bi(Zn

12Ti12)O3-(Bi12Na12)TiO3-

(Bi12K12)TiO3solid solutionsrdquo Journal Of Applied Physics vol

111 Article ID 094105 2012[92] E A Patterson and D P Cann ldquoBipolar piezoelectric

fatigue of Bi(Zn05Ti05)O3-(Bi05K05)TiO3-(Bi05Na05)TiO3Pb-

free ceramicsrdquo Applied Physics Letters vol 101 Article ID042905 2012

[93] R Dittmer W Jo J Daniels S Schaab and JRodel ldquoRelaxor characteristics of morphotropic phaseboundary (Bi

12Na12)TiO3-(Bi12K12)TiO3

modified withBi(Zn

12Ti12)O3rdquo Journal of the American Ceramic Society vol

94 no 12 pp 4283ndash4290 2011[94] A Hussain C W Ahn A Ullah J S Lee and I W Kim

ldquoDielectric ferroelectric and field-induced strain behavior ofK05Na05NbO3-modified Bi

05(Na078

K022

)05TiO3

lead-freeceramicsrdquo Ceramics International vol 38 no 5 pp 4143ndash41492012

12 Advances in Materials Science and Engineering

[95] G Fan W Lu X Wang and F Liang ldquoMorphotropic phaseboundary and piezoelectric properties of (Bi

12Na12)TiO3ndash

(Bi12K12)TiO3ndashKNbO

3lead-free piezoelectric ceramicsrdquo

Applied Physics Letters vol 91 Article ID 202908 2007[96] N B Do H B Lee D T Le et al ldquoElectric field-induced strain

of lead-free Bi05Na05TiO3ndashBi05K05TiO3ceramics modified

with LiTaO3rdquoCurrent Applied Physics vol 11 no 3 supplement

pp S134ndashS137 2011[97] T V D Ngoc H S Han K J Kim et al ldquoRelaxor and field-

induced strain behavior in lead-free Bi05(Na082

K018

)05TiO3

ceramics modified with BaZrO3rdquo Journal of Ceramic Processing

Research vol 13 supplement 2 pp s177ndashs180 2012[98] V D N Tran A Hussain H S Han et al ldquoComparison of

ferroelectric and strain properties between BaTiO3- and

BaZrO3-modified Bi

12(Na082

K018

)12TiO3ceramicsrdquo Japanese

Journal of Applied Physics vol 51 Article ID 09MD02 2012[99] I KHongH SHan CH YoonHN JiW P Tai and J S Lee

ldquoStrain enhancement in lead-free Bi05(Na078

K022

)05TiO3

ceramics by CaZrO3

substitutionrdquo Journal of IntelligentMaterial Systems and Structures vol 24 no 11 pp 1343ndash13492013 (Swedish)

[100] J K Kang D J Heo V Q Nguyen H S Han J S Leeand K K Ahn ldquoLow-temperature sintering of lead-freeBi12(NaK)

12TiO3-based electrostrictive ceramics with CuO

additionrdquo Journal of the Korean Physical Society vol 61 no 6pp 899ndash902 2012

[101] V Q Nguyen H B Luong and D D Dang ldquoEnhancement ofelectrical field-induced strain in Bi

05(Na K)

05TiO3-based lead-

free piezoelectric ceramics role of phase transitionrdquo In press[102] A Zaman Y Iqbal A Hussain et al ldquoInfluence of zirconium

substitution on dielectric ferroelectric and field-induced strainbehaviors of lead-free 099[Bi

12(Na082

K018

)12(Ti1minus119909

Zr119909)O3]-

001LiSbO3ceramicsrdquo Journal of theKorean Physical Society vol

61 no 5 pp 773ndash778 2012[103] S Qiao J Wu B Wu B Zhang D Xiao and J Zhu ldquoEffect

of Ba085

Ca015

Ti090

Zr010

O3content on the microstructure and

electrical properties of Bi051

(Na082

K018

)050

TiO3ceramicsrdquo

Ceramics International vol 38 no 6 pp 4845ndash4851 2012[104] H Nagata M Yoshida Y Makiuchi and T Takenaka ldquoLarge

piezoelectric constant and high curie temperature of lead-freepiezoelectric ceramic ternary system based on bismuth sodiumtitanate-bismuth potassium titanate-barium titanate near themorphotropic phase boundaryrdquo Japanese Journal of AppliedPhysics vol 42 no 12 p 7401 2003

[105] Y Li W Chen Q Xu J Zhou X Gu and S Fang ldquoElec-tromechanical and dielectric properties of Na

05Bi05TiO3-

K05Bi05TiO3-BaTiO

3lead-free ceramicsrdquo Materials Chemistry

and Physics vol 94 no 2-3 pp 328ndash332 2005[106] Q Zhou C Zhou W Li J Cheng H Wang and C Yuan

Journal of Physics and Chemistry of Solids vol 72 p 909 2011[107] C Zhou X LiuW Lim andC Yuan ldquoMicrostructure and elec-

trical properties of Bi05Na05TiO3-Bi05K05TiO3-LiNbO

3lead-

free piezoelectric ceramicsrdquo Journal of Physics and Chemistry ofSolids vol 70 pp 541ndash545 2009

[108] C Zhou X Liu W Li C Yuan and G Chen ldquoStructure andelectrical properties of Bi

05(Na K)

05TiO3minusBiGaO

3lead-free

piezoelectric ceramicsrdquo Current Applied Physics vol 10 no 1pp 93ndash98 2010

[109] B Wu C Han D Xiao Z Wang J Zhu and J Wu ldquoInves-tigation of a new lead-free (089minus x)(Bi

05Na05)TiO3ndash011(Bi

05

K05)TiO3ndashxBa085

Ca015

Ti090

Zr010

O3ceramicsrdquo Materials Re-

search Bulletin vol 47 pp 3937ndash3940 2012

[110] M Zou H Fan L Chen and W Yang ldquoMicrostruc-ture and electrical properties of (1 minus 119909)[082Bi

05Na05TiO3ndash

018Bi05K05TiO3]ndashxBiFeO

3lead-free piezoelectric ceramicsrdquo

Journal of Alloys and Compounds vol 495 no 1 pp 280ndash2832010

[111] C ZhouX LiuW Li andCYuan ldquoDielectric andpiezoelectricproperties of Bi

05Na05TiO3ndashBi05K05TiO3ndashBiCrO

3lead-free

piezoelectric ceramicsrdquo Journal of Alloys and Compounds vol478 no 1-2 pp 381ndash385 2009

[112] H Yang X Shan C Zhou Q Zhou W Li and J ChengldquoMicrostructure dielectric and piezoelectric properties of lead-free Bi

05Na05

TiO3ndashBi05K05

TiO3ndashBiMnO

3ceramicsrdquo Bulletin

of Materials Science vol 36 pp 265ndash270 2013[113] M Bichurin V Petrov A Zakharov et al ldquoMagnetoelectric

interactions in lead-based and lead-free compositesrdquoMaterialsvol 4 no 4 pp 651ndash702 2011

[114] H S Han CW Ahn IW Kim A Hussain and J S Lee ldquoDes-tabilization of ferroelectric order in bismuth perovskite ceram-ics by A-site vacanciesrdquo Materials Letters vol 70 pp 98ndash1002012

[115] A Ullah CW Ahn A Hussain IW Kim H I Hwang andNK Cho ldquoStructural transition and large electric field-inducedstrain in BiAlO

3-modified Bi

05(Na08K02)05TiO3

lead-freepiezoelectric ceramicsrdquo Solid State Communications vol 150pp 1145ndash1149 2010

[116] A Ullah C W Ahn A Hussain S Y Lee J S Kim and I WKim ldquoEffect of potassium concentration on the structure andelectrical properties of lead-free Bi

05(NaK)

05TiO3ndashBiAlO

3

piezoelectric ceramicsrdquo Journal of Alloys and Compounds vol509 pp 3148ndash3154 2012

[117] K N Pham D T Hinh L H Yuong K Y Min and L SShin ldquoEffects of Bi(Mg12Sn 12)O3 modification on the dielec-tric and piezoelectric properties of Bi12(Na08K02)12TiO3ceramicsrdquo Journal of the Korean Ceramic Society vol 49 pp266ndash271 2012

[118] K N Pham H B Lee H S Han et al ldquoDielectric fer-roelectric and piezoelectric properties of Nb-substitutedBi12(Na082

K018

)12TiO3lead-free ceramicsrdquo Journal of the

Korean Ceramic Society vol 60 pp 207ndash211 2012[119] A Ullah C W Ahn and I W Kim ldquoDielectric

piezoelectric properties and field-induced large strain ofBi(Zn

05Ti05)O3-modified morphotropic phase boundary

Bi05(Na082

K018

)05TiO3

piezoelectric ceramicsrdquo JapaneseJournal of Applied Physics vol 51 Article ID 09MD07 2012

[120] H S Han W Jo J Rodel I K Hong W P Tai and J SLee ldquoCoexistence of ergodicity and nonergodicity in LaFeO

3-

modified Bi12(Na078

K022

)12TiO3relaxorsrdquo Journal of Physics

Condensed Matter vol 24 Article ID 365901 2012[121] H S Han W Jo J K Kang et al ldquoIncipient piezoelectrics and

electrostriction behavior in Sn-doped Bi12(Na082

K018

)12TiO3

lead-free ceramicsrdquo Journal of Applied Physics vol 113 ArticleID 154102 2013

[122] H B Lee D J Heo R A Malik C H Yoon H S Han and J SLee ldquoLead-free Bi

12(Na082

K018

)12TiO3ceramics exhibiting

large strain with small hysteresisrdquo Ceramics International vol39 pp S705ndashS708 2013

[123] D S Lee S J Jeong M S Kim and K H Kim ldquoEffectof sintering time on strain in ceramic composite con-sisting of 094Bi05(Na075K025)05TiO3ndash006BiAlO3 with(Bi05Na05)TiO3rdquo Japanese Journal of Applied Physics vol 52Article ID 021801 2013

Advances in Materials Science and Engineering 13

[124] J Hao W Bai W Li B Shen and J Zhai ldquoPhase transitionsrelaxor behavior and large strain response in LiNbO3-modifiedBi05(Na080K020)05TiO3 lead-free piezoceramicsrdquo Journalof Applied Physics vol 114 Article ID 044103 2013

[125] A Ullah C W Ahn A Ullah and I W Kim ldquoLarge strainunder a low electric field in lead-free bismuth-based piezo-electricsrdquo Applied Physics Letters vol 103 Article ID 0229062013

[126] N Kumar and D P Cann ldquoElectromechanical strainand bipolar fatigue in Bi(Mg

12Ti12)O3-(Bi12K12)TiO3-

(Bi12Na12)TiO3ceramicsrdquo Journal of Applied Physics vol 114

Article ID 054102 2013[127] T H Dinh H Y Lee C H Yoon et al ldquoEffect of lanthanum

doping on the structural ferroelectric and strain propertiesof Bi12(Na082

K018

)12TiO3lead-free ceramicsrdquo Journal of the

Korean Ceramic Society vol 62 pp 1004ndash1008 2013[128] P Jaita A Watcharapasorn D P Cann and S

Jiansirisomboon ldquoDielectric ferroelectric and electric field-induced strain behavior of Ba(Ti090Sn010)O3-modifiedBi05(Na080K020)05TiO3 lead-free piezoelectricsrdquo Journalof Alloys and Compounds vol 596 pp 98ndash106 2014

[129] AHussain J U Rahman A Zaman et al ldquoField-induced strainand polarization response in lead-free Bi12(Na080K020)12TiO3ndashSrZrO3 ceramicrdquo Materials Chemistry and Physics vol143 pp 1282ndash1288 2014

[130] A Ullah R A Malik D S Lee et al ldquoElectric-field-inducedphase transition and large strain in lead-free Nb-doped BNKT-BST ceramicsrdquo Journal of the European Ceramic Society vol 34pp 29ndash35 2014

[131] J Hao B Shen J Zhai and H Chen ldquoPhase transitionalbehavior and electric field-induced large strain in alkali niobate-modified Bi

05(Na080

K020

)05TiO3

lead-free piezoceramicsrdquoJournal of Applied Physics vol 115 Article ID 034101 2014

[132] A Zaman Y Iqbal A Hussain M H Kim and R A MalikldquoDielectric ferroelectric and field-induced strain properties ofTa-doped 099Bi

05(Na082

K018

)05TiO3ndash001LiSbO

3ceramicsrdquo

Journal of Materials Science vol 49 no 8 pp 3205ndash3214 2014[133] A Ullah A Ullah I W Kim D S Lee S J Jeong and C W

Ahn ldquoLarge electromechanical response in lead-free La-dopedBNKTBST piezoelectric ceramicsrdquo Journal of the AmericanCeramic Society vol 97 no 8 pp 2471ndash2478 2014

Submit your manuscripts athttpwwwhindawicom

ScientificaHindawi Publishing Corporationhttpwwwhindawicom Volume 2014

CorrosionInternational Journal of

Hindawi Publishing Corporationhttpwwwhindawicom Volume 2014

Polymer ScienceInternational Journal of

Hindawi Publishing Corporationhttpwwwhindawicom Volume 2014

Hindawi Publishing Corporationhttpwwwhindawicom Volume 2014

CeramicsJournal of

Hindawi Publishing Corporationhttpwwwhindawicom Volume 2014

CompositesJournal of

NanoparticlesJournal of

Hindawi Publishing Corporationhttpwwwhindawicom Volume 2014

Hindawi Publishing Corporationhttpwwwhindawicom Volume 2014

International Journal of

Biomaterials

Hindawi Publishing Corporationhttpwwwhindawicom Volume 2014

NanoscienceJournal of

TextilesHindawi Publishing Corporation httpwwwhindawicom Volume 2014

Journal of

NanotechnologyHindawi Publishing Corporationhttpwwwhindawicom Volume 2014

Journal of

CrystallographyJournal of

Hindawi Publishing Corporationhttpwwwhindawicom Volume 2014

The Scientific World JournalHindawi Publishing Corporation httpwwwhindawicom Volume 2014

Hindawi Publishing Corporationhttpwwwhindawicom Volume 2014

CoatingsJournal of

Advances in

Materials Science and EngineeringHindawi Publishing Corporationhttpwwwhindawicom Volume 2014

Smart Materials Research

Hindawi Publishing Corporationhttpwwwhindawicom Volume 2014

Hindawi Publishing Corporationhttpwwwhindawicom Volume 2014

MetallurgyJournal of

Hindawi Publishing Corporationhttpwwwhindawicom Volume 2014

BioMed Research International

MaterialsJournal of

Hindawi Publishing Corporationhttpwwwhindawicom Volume 2014

Nano

materials

Hindawi Publishing Corporationhttpwwwhindawicom Volume 2014

Journal ofNanomaterials

Page 12: Review Article Current Development in Lead-Free Bi (Na,K ...downloads.hindawi.com/journals/amse/2014/365391.pdf · Bi 2 O 3 and TiO 2 and alkali carbonate powder Na 2 CO 3 and K 2

12 Advances in Materials Science and Engineering

[95] G Fan W Lu X Wang and F Liang ldquoMorphotropic phaseboundary and piezoelectric properties of (Bi

12Na12)TiO3ndash

(Bi12K12)TiO3ndashKNbO

3lead-free piezoelectric ceramicsrdquo

Applied Physics Letters vol 91 Article ID 202908 2007[96] N B Do H B Lee D T Le et al ldquoElectric field-induced strain

of lead-free Bi05Na05TiO3ndashBi05K05TiO3ceramics modified

with LiTaO3rdquoCurrent Applied Physics vol 11 no 3 supplement

pp S134ndashS137 2011[97] T V D Ngoc H S Han K J Kim et al ldquoRelaxor and field-

induced strain behavior in lead-free Bi05(Na082

K018

)05TiO3

ceramics modified with BaZrO3rdquo Journal of Ceramic Processing

Research vol 13 supplement 2 pp s177ndashs180 2012[98] V D N Tran A Hussain H S Han et al ldquoComparison of

ferroelectric and strain properties between BaTiO3- and

BaZrO3-modified Bi

12(Na082

K018

)12TiO3ceramicsrdquo Japanese

Journal of Applied Physics vol 51 Article ID 09MD02 2012[99] I KHongH SHan CH YoonHN JiW P Tai and J S Lee

ldquoStrain enhancement in lead-free Bi05(Na078

K022

)05TiO3

ceramics by CaZrO3

substitutionrdquo Journal of IntelligentMaterial Systems and Structures vol 24 no 11 pp 1343ndash13492013 (Swedish)

[100] J K Kang D J Heo V Q Nguyen H S Han J S Leeand K K Ahn ldquoLow-temperature sintering of lead-freeBi12(NaK)

12TiO3-based electrostrictive ceramics with CuO

additionrdquo Journal of the Korean Physical Society vol 61 no 6pp 899ndash902 2012

[101] V Q Nguyen H B Luong and D D Dang ldquoEnhancement ofelectrical field-induced strain in Bi

05(Na K)

05TiO3-based lead-

free piezoelectric ceramics role of phase transitionrdquo In press[102] A Zaman Y Iqbal A Hussain et al ldquoInfluence of zirconium

substitution on dielectric ferroelectric and field-induced strainbehaviors of lead-free 099[Bi

12(Na082

K018

)12(Ti1minus119909

Zr119909)O3]-

001LiSbO3ceramicsrdquo Journal of theKorean Physical Society vol

61 no 5 pp 773ndash778 2012[103] S Qiao J Wu B Wu B Zhang D Xiao and J Zhu ldquoEffect

of Ba085

Ca015

Ti090

Zr010

O3content on the microstructure and

electrical properties of Bi051

(Na082

K018

)050

TiO3ceramicsrdquo

Ceramics International vol 38 no 6 pp 4845ndash4851 2012[104] H Nagata M Yoshida Y Makiuchi and T Takenaka ldquoLarge

piezoelectric constant and high curie temperature of lead-freepiezoelectric ceramic ternary system based on bismuth sodiumtitanate-bismuth potassium titanate-barium titanate near themorphotropic phase boundaryrdquo Japanese Journal of AppliedPhysics vol 42 no 12 p 7401 2003

[105] Y Li W Chen Q Xu J Zhou X Gu and S Fang ldquoElec-tromechanical and dielectric properties of Na

05Bi05TiO3-

K05Bi05TiO3-BaTiO

3lead-free ceramicsrdquo Materials Chemistry

and Physics vol 94 no 2-3 pp 328ndash332 2005[106] Q Zhou C Zhou W Li J Cheng H Wang and C Yuan

Journal of Physics and Chemistry of Solids vol 72 p 909 2011[107] C Zhou X LiuW Lim andC Yuan ldquoMicrostructure and elec-

trical properties of Bi05Na05TiO3-Bi05K05TiO3-LiNbO

3lead-

free piezoelectric ceramicsrdquo Journal of Physics and Chemistry ofSolids vol 70 pp 541ndash545 2009

[108] C Zhou X Liu W Li C Yuan and G Chen ldquoStructure andelectrical properties of Bi

05(Na K)

05TiO3minusBiGaO

3lead-free

piezoelectric ceramicsrdquo Current Applied Physics vol 10 no 1pp 93ndash98 2010

[109] B Wu C Han D Xiao Z Wang J Zhu and J Wu ldquoInves-tigation of a new lead-free (089minus x)(Bi

05Na05)TiO3ndash011(Bi

05

K05)TiO3ndashxBa085

Ca015

Ti090

Zr010

O3ceramicsrdquo Materials Re-

search Bulletin vol 47 pp 3937ndash3940 2012

[110] M Zou H Fan L Chen and W Yang ldquoMicrostruc-ture and electrical properties of (1 minus 119909)[082Bi

05Na05TiO3ndash

018Bi05K05TiO3]ndashxBiFeO

3lead-free piezoelectric ceramicsrdquo

Journal of Alloys and Compounds vol 495 no 1 pp 280ndash2832010

[111] C ZhouX LiuW Li andCYuan ldquoDielectric andpiezoelectricproperties of Bi

05Na05TiO3ndashBi05K05TiO3ndashBiCrO

3lead-free

piezoelectric ceramicsrdquo Journal of Alloys and Compounds vol478 no 1-2 pp 381ndash385 2009

[112] H Yang X Shan C Zhou Q Zhou W Li and J ChengldquoMicrostructure dielectric and piezoelectric properties of lead-free Bi

05Na05

TiO3ndashBi05K05

TiO3ndashBiMnO

3ceramicsrdquo Bulletin

of Materials Science vol 36 pp 265ndash270 2013[113] M Bichurin V Petrov A Zakharov et al ldquoMagnetoelectric

interactions in lead-based and lead-free compositesrdquoMaterialsvol 4 no 4 pp 651ndash702 2011

[114] H S Han CW Ahn IW Kim A Hussain and J S Lee ldquoDes-tabilization of ferroelectric order in bismuth perovskite ceram-ics by A-site vacanciesrdquo Materials Letters vol 70 pp 98ndash1002012

[115] A Ullah CW Ahn A Hussain IW Kim H I Hwang andNK Cho ldquoStructural transition and large electric field-inducedstrain in BiAlO

3-modified Bi

05(Na08K02)05TiO3

lead-freepiezoelectric ceramicsrdquo Solid State Communications vol 150pp 1145ndash1149 2010

[116] A Ullah C W Ahn A Hussain S Y Lee J S Kim and I WKim ldquoEffect of potassium concentration on the structure andelectrical properties of lead-free Bi

05(NaK)

05TiO3ndashBiAlO

3

piezoelectric ceramicsrdquo Journal of Alloys and Compounds vol509 pp 3148ndash3154 2012

[117] K N Pham D T Hinh L H Yuong K Y Min and L SShin ldquoEffects of Bi(Mg12Sn 12)O3 modification on the dielec-tric and piezoelectric properties of Bi12(Na08K02)12TiO3ceramicsrdquo Journal of the Korean Ceramic Society vol 49 pp266ndash271 2012

[118] K N Pham H B Lee H S Han et al ldquoDielectric fer-roelectric and piezoelectric properties of Nb-substitutedBi12(Na082

K018

)12TiO3lead-free ceramicsrdquo Journal of the

Korean Ceramic Society vol 60 pp 207ndash211 2012[119] A Ullah C W Ahn and I W Kim ldquoDielectric

piezoelectric properties and field-induced large strain ofBi(Zn

05Ti05)O3-modified morphotropic phase boundary

Bi05(Na082

K018

)05TiO3

piezoelectric ceramicsrdquo JapaneseJournal of Applied Physics vol 51 Article ID 09MD07 2012

[120] H S Han W Jo J Rodel I K Hong W P Tai and J SLee ldquoCoexistence of ergodicity and nonergodicity in LaFeO

3-

modified Bi12(Na078

K022

)12TiO3relaxorsrdquo Journal of Physics

Condensed Matter vol 24 Article ID 365901 2012[121] H S Han W Jo J K Kang et al ldquoIncipient piezoelectrics and

electrostriction behavior in Sn-doped Bi12(Na082

K018

)12TiO3

lead-free ceramicsrdquo Journal of Applied Physics vol 113 ArticleID 154102 2013

[122] H B Lee D J Heo R A Malik C H Yoon H S Han and J SLee ldquoLead-free Bi

12(Na082

K018

)12TiO3ceramics exhibiting

large strain with small hysteresisrdquo Ceramics International vol39 pp S705ndashS708 2013

[123] D S Lee S J Jeong M S Kim and K H Kim ldquoEffectof sintering time on strain in ceramic composite con-sisting of 094Bi05(Na075K025)05TiO3ndash006BiAlO3 with(Bi05Na05)TiO3rdquo Japanese Journal of Applied Physics vol 52Article ID 021801 2013

Advances in Materials Science and Engineering 13

[124] J Hao W Bai W Li B Shen and J Zhai ldquoPhase transitionsrelaxor behavior and large strain response in LiNbO3-modifiedBi05(Na080K020)05TiO3 lead-free piezoceramicsrdquo Journalof Applied Physics vol 114 Article ID 044103 2013

[125] A Ullah C W Ahn A Ullah and I W Kim ldquoLarge strainunder a low electric field in lead-free bismuth-based piezo-electricsrdquo Applied Physics Letters vol 103 Article ID 0229062013

[126] N Kumar and D P Cann ldquoElectromechanical strainand bipolar fatigue in Bi(Mg

12Ti12)O3-(Bi12K12)TiO3-

(Bi12Na12)TiO3ceramicsrdquo Journal of Applied Physics vol 114

Article ID 054102 2013[127] T H Dinh H Y Lee C H Yoon et al ldquoEffect of lanthanum

doping on the structural ferroelectric and strain propertiesof Bi12(Na082

K018

)12TiO3lead-free ceramicsrdquo Journal of the

Korean Ceramic Society vol 62 pp 1004ndash1008 2013[128] P Jaita A Watcharapasorn D P Cann and S

Jiansirisomboon ldquoDielectric ferroelectric and electric field-induced strain behavior of Ba(Ti090Sn010)O3-modifiedBi05(Na080K020)05TiO3 lead-free piezoelectricsrdquo Journalof Alloys and Compounds vol 596 pp 98ndash106 2014

[129] AHussain J U Rahman A Zaman et al ldquoField-induced strainand polarization response in lead-free Bi12(Na080K020)12TiO3ndashSrZrO3 ceramicrdquo Materials Chemistry and Physics vol143 pp 1282ndash1288 2014

[130] A Ullah R A Malik D S Lee et al ldquoElectric-field-inducedphase transition and large strain in lead-free Nb-doped BNKT-BST ceramicsrdquo Journal of the European Ceramic Society vol 34pp 29ndash35 2014

[131] J Hao B Shen J Zhai and H Chen ldquoPhase transitionalbehavior and electric field-induced large strain in alkali niobate-modified Bi

05(Na080

K020

)05TiO3

lead-free piezoceramicsrdquoJournal of Applied Physics vol 115 Article ID 034101 2014

[132] A Zaman Y Iqbal A Hussain M H Kim and R A MalikldquoDielectric ferroelectric and field-induced strain properties ofTa-doped 099Bi

05(Na082

K018

)05TiO3ndash001LiSbO

3ceramicsrdquo

Journal of Materials Science vol 49 no 8 pp 3205ndash3214 2014[133] A Ullah A Ullah I W Kim D S Lee S J Jeong and C W

Ahn ldquoLarge electromechanical response in lead-free La-dopedBNKTBST piezoelectric ceramicsrdquo Journal of the AmericanCeramic Society vol 97 no 8 pp 2471ndash2478 2014

Submit your manuscripts athttpwwwhindawicom

ScientificaHindawi Publishing Corporationhttpwwwhindawicom Volume 2014

CorrosionInternational Journal of

Hindawi Publishing Corporationhttpwwwhindawicom Volume 2014

Polymer ScienceInternational Journal of

Hindawi Publishing Corporationhttpwwwhindawicom Volume 2014

Hindawi Publishing Corporationhttpwwwhindawicom Volume 2014

CeramicsJournal of

Hindawi Publishing Corporationhttpwwwhindawicom Volume 2014

CompositesJournal of

NanoparticlesJournal of

Hindawi Publishing Corporationhttpwwwhindawicom Volume 2014

Hindawi Publishing Corporationhttpwwwhindawicom Volume 2014

International Journal of

Biomaterials

Hindawi Publishing Corporationhttpwwwhindawicom Volume 2014

NanoscienceJournal of

TextilesHindawi Publishing Corporation httpwwwhindawicom Volume 2014

Journal of

NanotechnologyHindawi Publishing Corporationhttpwwwhindawicom Volume 2014

Journal of

CrystallographyJournal of

Hindawi Publishing Corporationhttpwwwhindawicom Volume 2014

The Scientific World JournalHindawi Publishing Corporation httpwwwhindawicom Volume 2014

Hindawi Publishing Corporationhttpwwwhindawicom Volume 2014

CoatingsJournal of

Advances in

Materials Science and EngineeringHindawi Publishing Corporationhttpwwwhindawicom Volume 2014

Smart Materials Research

Hindawi Publishing Corporationhttpwwwhindawicom Volume 2014

Hindawi Publishing Corporationhttpwwwhindawicom Volume 2014

MetallurgyJournal of

Hindawi Publishing Corporationhttpwwwhindawicom Volume 2014

BioMed Research International

MaterialsJournal of

Hindawi Publishing Corporationhttpwwwhindawicom Volume 2014

Nano

materials

Hindawi Publishing Corporationhttpwwwhindawicom Volume 2014

Journal ofNanomaterials

Page 13: Review Article Current Development in Lead-Free Bi (Na,K ...downloads.hindawi.com/journals/amse/2014/365391.pdf · Bi 2 O 3 and TiO 2 and alkali carbonate powder Na 2 CO 3 and K 2

Advances in Materials Science and Engineering 13

[124] J Hao W Bai W Li B Shen and J Zhai ldquoPhase transitionsrelaxor behavior and large strain response in LiNbO3-modifiedBi05(Na080K020)05TiO3 lead-free piezoceramicsrdquo Journalof Applied Physics vol 114 Article ID 044103 2013

[125] A Ullah C W Ahn A Ullah and I W Kim ldquoLarge strainunder a low electric field in lead-free bismuth-based piezo-electricsrdquo Applied Physics Letters vol 103 Article ID 0229062013

[126] N Kumar and D P Cann ldquoElectromechanical strainand bipolar fatigue in Bi(Mg

12Ti12)O3-(Bi12K12)TiO3-

(Bi12Na12)TiO3ceramicsrdquo Journal of Applied Physics vol 114

Article ID 054102 2013[127] T H Dinh H Y Lee C H Yoon et al ldquoEffect of lanthanum

doping on the structural ferroelectric and strain propertiesof Bi12(Na082

K018

)12TiO3lead-free ceramicsrdquo Journal of the

Korean Ceramic Society vol 62 pp 1004ndash1008 2013[128] P Jaita A Watcharapasorn D P Cann and S

Jiansirisomboon ldquoDielectric ferroelectric and electric field-induced strain behavior of Ba(Ti090Sn010)O3-modifiedBi05(Na080K020)05TiO3 lead-free piezoelectricsrdquo Journalof Alloys and Compounds vol 596 pp 98ndash106 2014

[129] AHussain J U Rahman A Zaman et al ldquoField-induced strainand polarization response in lead-free Bi12(Na080K020)12TiO3ndashSrZrO3 ceramicrdquo Materials Chemistry and Physics vol143 pp 1282ndash1288 2014

[130] A Ullah R A Malik D S Lee et al ldquoElectric-field-inducedphase transition and large strain in lead-free Nb-doped BNKT-BST ceramicsrdquo Journal of the European Ceramic Society vol 34pp 29ndash35 2014

[131] J Hao B Shen J Zhai and H Chen ldquoPhase transitionalbehavior and electric field-induced large strain in alkali niobate-modified Bi

05(Na080

K020

)05TiO3

lead-free piezoceramicsrdquoJournal of Applied Physics vol 115 Article ID 034101 2014

[132] A Zaman Y Iqbal A Hussain M H Kim and R A MalikldquoDielectric ferroelectric and field-induced strain properties ofTa-doped 099Bi

05(Na082

K018

)05TiO3ndash001LiSbO

3ceramicsrdquo

Journal of Materials Science vol 49 no 8 pp 3205ndash3214 2014[133] A Ullah A Ullah I W Kim D S Lee S J Jeong and C W

Ahn ldquoLarge electromechanical response in lead-free La-dopedBNKTBST piezoelectric ceramicsrdquo Journal of the AmericanCeramic Society vol 97 no 8 pp 2471ndash2478 2014

Submit your manuscripts athttpwwwhindawicom

ScientificaHindawi Publishing Corporationhttpwwwhindawicom Volume 2014

CorrosionInternational Journal of

Hindawi Publishing Corporationhttpwwwhindawicom Volume 2014

Polymer ScienceInternational Journal of

Hindawi Publishing Corporationhttpwwwhindawicom Volume 2014

Hindawi Publishing Corporationhttpwwwhindawicom Volume 2014

CeramicsJournal of

Hindawi Publishing Corporationhttpwwwhindawicom Volume 2014

CompositesJournal of

NanoparticlesJournal of

Hindawi Publishing Corporationhttpwwwhindawicom Volume 2014

Hindawi Publishing Corporationhttpwwwhindawicom Volume 2014

International Journal of

Biomaterials

Hindawi Publishing Corporationhttpwwwhindawicom Volume 2014

NanoscienceJournal of

TextilesHindawi Publishing Corporation httpwwwhindawicom Volume 2014

Journal of

NanotechnologyHindawi Publishing Corporationhttpwwwhindawicom Volume 2014

Journal of

CrystallographyJournal of

Hindawi Publishing Corporationhttpwwwhindawicom Volume 2014

The Scientific World JournalHindawi Publishing Corporation httpwwwhindawicom Volume 2014

Hindawi Publishing Corporationhttpwwwhindawicom Volume 2014

CoatingsJournal of

Advances in

Materials Science and EngineeringHindawi Publishing Corporationhttpwwwhindawicom Volume 2014

Smart Materials Research

Hindawi Publishing Corporationhttpwwwhindawicom Volume 2014

Hindawi Publishing Corporationhttpwwwhindawicom Volume 2014

MetallurgyJournal of

Hindawi Publishing Corporationhttpwwwhindawicom Volume 2014

BioMed Research International

MaterialsJournal of

Hindawi Publishing Corporationhttpwwwhindawicom Volume 2014

Nano

materials

Hindawi Publishing Corporationhttpwwwhindawicom Volume 2014

Journal ofNanomaterials

Page 14: Review Article Current Development in Lead-Free Bi (Na,K ...downloads.hindawi.com/journals/amse/2014/365391.pdf · Bi 2 O 3 and TiO 2 and alkali carbonate powder Na 2 CO 3 and K 2

Submit your manuscripts athttpwwwhindawicom

ScientificaHindawi Publishing Corporationhttpwwwhindawicom Volume 2014

CorrosionInternational Journal of

Hindawi Publishing Corporationhttpwwwhindawicom Volume 2014

Polymer ScienceInternational Journal of

Hindawi Publishing Corporationhttpwwwhindawicom Volume 2014

Hindawi Publishing Corporationhttpwwwhindawicom Volume 2014

CeramicsJournal of

Hindawi Publishing Corporationhttpwwwhindawicom Volume 2014

CompositesJournal of

NanoparticlesJournal of

Hindawi Publishing Corporationhttpwwwhindawicom Volume 2014

Hindawi Publishing Corporationhttpwwwhindawicom Volume 2014

International Journal of

Biomaterials

Hindawi Publishing Corporationhttpwwwhindawicom Volume 2014

NanoscienceJournal of

TextilesHindawi Publishing Corporation httpwwwhindawicom Volume 2014

Journal of

NanotechnologyHindawi Publishing Corporationhttpwwwhindawicom Volume 2014

Journal of

CrystallographyJournal of

Hindawi Publishing Corporationhttpwwwhindawicom Volume 2014

The Scientific World JournalHindawi Publishing Corporation httpwwwhindawicom Volume 2014

Hindawi Publishing Corporationhttpwwwhindawicom Volume 2014

CoatingsJournal of

Advances in

Materials Science and EngineeringHindawi Publishing Corporationhttpwwwhindawicom Volume 2014

Smart Materials Research

Hindawi Publishing Corporationhttpwwwhindawicom Volume 2014

Hindawi Publishing Corporationhttpwwwhindawicom Volume 2014

MetallurgyJournal of

Hindawi Publishing Corporationhttpwwwhindawicom Volume 2014

BioMed Research International

MaterialsJournal of

Hindawi Publishing Corporationhttpwwwhindawicom Volume 2014

Nano

materials

Hindawi Publishing Corporationhttpwwwhindawicom Volume 2014

Journal ofNanomaterials


Recommended