+ All Categories
Home > Documents > Robust Low Power VLSI ECE 7502 S2015 Effective IDDQ Testing method to identify the fault in...

Robust Low Power VLSI ECE 7502 S2015 Effective IDDQ Testing method to identify the fault in...

Date post: 02-Jan-2016
Category:
Upload: chastity-dickerson
View: 215 times
Download: 1 times
Share this document with a friend
Popular Tags:
20
Robu st Low Powe r VLSI ECE 7502 S2015 Effective IDDQ Testing method to identify the fault in Low- Voltage CMOS Circuits ECE 7502 Project Final Presentation W.P Manula Pathirana 21st April 2015
Transcript
Page 1: Robust Low Power VLSI ECE 7502 S2015 Effective IDDQ Testing method to identify the fault in Low-Voltage CMOS Circuits ECE 7502 Project Final Presentation.

Rob

ust

Low

Power

VLSI

ECE7502S2015

Effective IDDQ Testing method to identify the fault in Low-Voltage CMOS Circuits

ECE 7502 Project Final Presentation

W.P Manula Pathirana

21st April 2015

Page 2: Robust Low Power VLSI ECE 7502 S2015 Effective IDDQ Testing method to identify the fault in Low-Voltage CMOS Circuits ECE 7502 Project Final Presentation.

Rob

ust

Low

Power

VLSI

Requirements

Specification

Architecture

Logic / Circuits

Physical Design

Fabrication

Manufacturing Test

Packaging Test

PCB Test

System Test

PCB Architecture

PCB Circuits

PCB Physical Design

PCB Fabrication

Design and Test Development

Customer Validate

Verify

Verify

Test

Test

Page 3: Robust Low Power VLSI ECE 7502 S2015 Effective IDDQ Testing method to identify the fault in Low-Voltage CMOS Circuits ECE 7502 Project Final Presentation.

Rob

ust

Low

Power

VLSI 3

What is IDDQ testing? IDDQ testing is simple method to identify the

defects on IC based on the steady state power-supply current.

IDDQ(Measured)>IDDQ(Th) Defective

IDDQ flowing through inverter with and without defect[1]

Page 4: Robust Low Power VLSI ECE 7502 S2015 Effective IDDQ Testing method to identify the fault in Low-Voltage CMOS Circuits ECE 7502 Project Final Presentation.

Rob

ust

Low

Power

VLSI 4

Problem statement

Test escapes and yield loss

IDDQ(Fault Free)≈IDDQ(Defective)

Higher Leakage

Low threshold Transistors

For new Technologies (Deep submicron levels)

A-test escapesB-yield loss

Earlier Technologies[1]

Deep submicron Technologies[1]

[1]S. Sabade and D. M. Walker, “I DDX-based test methods: A survey,” ACM Trans. Des. Autom. Electron. Syst. TODAES, vol. 9, no. 2, pp. 159–198, 2004.

Page 5: Robust Low Power VLSI ECE 7502 S2015 Effective IDDQ Testing method to identify the fault in Low-Voltage CMOS Circuits ECE 7502 Project Final Presentation.

Rob

ust

Low

Power

VLSI 5

Proposed Method IDDQ versus Temperature[2]

ΔIDDQ(Faulty)<<IDDQ(Defect free)

Low temperature measurement is undesirable in production due to high cost

[2]A. Kaltchenko and O. Semenov, “Temperature dependence of IDDQ distribution: application for thermal delta IDDQ testing,” IET Circuits, Devices & Systems, vol. 1, no. 6, p. 509, 2007.

Page 6: Robust Low Power VLSI ECE 7502 S2015 Effective IDDQ Testing method to identify the fault in Low-Voltage CMOS Circuits ECE 7502 Project Final Presentation.

Rob

ust

Low

Power

VLSI 6

Proposed Method Expected out come

ΔIDDQ(Faulty)>> ∆IDDQ(Defect free)

Page 7: Robust Low Power VLSI ECE 7502 S2015 Effective IDDQ Testing method to identify the fault in Low-Voltage CMOS Circuits ECE 7502 Project Final Presentation.

Rob

ust

Low

Power

VLSI 7

Proposed method Estimate IDDQ distribution at V1 for an inverter Estimate IDDQ distribution at V2 for an inverter V2 >> V1 Estimate IDDQ distribution with artificially introduced faults at V1

and V2 for a simple inverter. Each resistive path is injected with a resistor to the circuit under

test Intragate shorts(happen within a CMOS gate)

Determine the V1,V2 and faults resistor values Extend the proposed method from inverter to 1-bit adder Explore the dependency of voltage delta IDDQ testing method on

input logic using 1-bit adder Extend the proposed method to 100-bit adder circuit.

Page 8: Robust Low Power VLSI ECE 7502 S2015 Effective IDDQ Testing method to identify the fault in Low-Voltage CMOS Circuits ECE 7502 Project Final Presentation.

Rob

ust

Low

Power

VLSI 8

Result

0

0.2

0.4

0.6

0.8

1

1.2

0 100 200 300 400 500 600 700 800 900 1000

Vout

(V)

Fault resistance (Ω)

Fault can only be identified with current monitoring techniques Fault resistance value can be chosen as 5 kΩ The inverter Wp/Wn ratio is 432µm/236µm

Page 9: Robust Low Power VLSI ECE 7502 S2015 Effective IDDQ Testing method to identify the fault in Low-Voltage CMOS Circuits ECE 7502 Project Final Presentation.

Rob

ust

Low

Power

VLSI 9

Result

Monte Carlo simulation on inverter at different voltages

Test escape Yield lossIth Ith

Ith Ith

Page 10: Robust Low Power VLSI ECE 7502 S2015 Effective IDDQ Testing method to identify the fault in Low-Voltage CMOS Circuits ECE 7502 Project Final Presentation.

Rob

ust

Low

Power

VLSI 10

Result(voltage delta IDDQ testing)

The proposed method uses two samples. A lot –Faulty circuit (Inverter with source drain short (Fault strength is 5kΩ) B lot –Fault Free circuit

Monte Carlo simulation on Faulty Circuit at 0.1 V, 0.2 V and 0.25 V

Page 11: Robust Low Power VLSI ECE 7502 S2015 Effective IDDQ Testing method to identify the fault in Low-Voltage CMOS Circuits ECE 7502 Project Final Presentation.

Rob

ust

Low

Power

VLSI 11

Result(voltage delta IDDQ testing)The proposed method uses two samples. A lot –Faulty circuit (Inverter with source drain short (Fault strength is 5kΩ) B lot –Fault Free circuit

Monte Carlo simulation on Faulty Free Circuit at 0.1 V, 0.2 V and 0.25 V

Page 12: Robust Low Power VLSI ECE 7502 S2015 Effective IDDQ Testing method to identify the fault in Low-Voltage CMOS Circuits ECE 7502 Project Final Presentation.

Rob

ust

Low

Power

VLSI 12

Result(voltage delta IDDQ testing vs. Thermal delta IDDQ)

No overlapping

Illustration of voltage delta IDDQ testing Illustration of temperature delta IDDQ testing

Page 13: Robust Low Power VLSI ECE 7502 S2015 Effective IDDQ Testing method to identify the fault in Low-Voltage CMOS Circuits ECE 7502 Project Final Presentation.

Rob

ust

Low

Power

VLSI 13

Result(voltage delta IDDQ testing)(1-bit adder)

Fault free circuit Faulty circuit

Page 14: Robust Low Power VLSI ECE 7502 S2015 Effective IDDQ Testing method to identify the fault in Low-Voltage CMOS Circuits ECE 7502 Project Final Presentation.

Rob

ust

Low

Power

VLSI 14

Result(voltage delta IDDQ testing)(1-bit adder)(A=B=Cin= 1)

0

5

10

15

20

25

30

35

40

1E-09 1E-08 0.0000001 0.000001 0.00001 0.0001

Freq

uenc

y

IDDQ(A)

Vin=0.1 V_FaultFree Vin=0.25 V_FaultFree Vin=0.1 V_Faulty Vin=0.25 V_Faulty

Page 15: Robust Low Power VLSI ECE 7502 S2015 Effective IDDQ Testing method to identify the fault in Low-Voltage CMOS Circuits ECE 7502 Project Final Presentation.

Rob

ust

Low

Power

VLSI 15

Result(voltage delta IDDQ testing)(1-bit adder)(A=B=0,Cin= 1)

0

10

20

30

40

50

60

1E-09 1E-08 0.0000001 0.000001 0.00001 0.0001 0.001

Freq

uenc

y

IDDQ(A)

Vin=0.1 V_Faulty Vin=0.25 V_Faulty Vin=0.1 V_FaultFree Vin=0.25 V_FaultFree

Page 16: Robust Low Power VLSI ECE 7502 S2015 Effective IDDQ Testing method to identify the fault in Low-Voltage CMOS Circuits ECE 7502 Project Final Presentation.

Rob

ust

Low

Power

VLSI 16

Result(voltage delta IDDQ testing)(1-bit adder)(A=Cin= 1,B=0)

0

5

10

15

20

25

30

35

40

45

50

1E-09 1E-08 0.0000001 0.000001 0.00001 0.0001

Freq

uenc

y

IDDQ(A)

Vin=0.1 V_FaultFree Vin=0.25 V_FaultFree Vin=0.1 V_Faulty Vin=0.25 V_Faulty

Page 17: Robust Low Power VLSI ECE 7502 S2015 Effective IDDQ Testing method to identify the fault in Low-Voltage CMOS Circuits ECE 7502 Project Final Presentation.

Rob

ust

Low

Power

VLSI 17

Result(voltage delta IDDQ testing)(1-bit adder)(A=0,B=Cin= 1)

0

10

20

30

40

50

60

1E-09 1E-08 0.0000001 0.000001 0.00001 0.0001

Freq

uenc

y

IDDQ(A)

Vin=0.1 V_FaultFree Vin=0.25 V_FaultFree Vin=0.1 V_Faulty Vin=0.25 V_Faulty

Still ∆IDDQFaulty>> ∆IDDQFaultFree where ∆IDDQFaulty=1.3x10-6 A and ∆IDDQFaultFree = 5x10-7 A

Page 18: Robust Low Power VLSI ECE 7502 S2015 Effective IDDQ Testing method to identify the fault in Low-Voltage CMOS Circuits ECE 7502 Project Final Presentation.

Rob

ust

Low

Power

VLSI 18

Result(voltage delta IDDQ testing)(100-bit adder) )(A=B=Cin= 1)

0

5

10

15

20

25

30

35

40

45

50

0.0000001 0.000001 0.00001 0.0001 0.001

Freq

uenc

y

IDDQ(A)

Vin=0.1 V_FaultFree Vin=0.25 V_FaultFree Vin=0.1 V_Faulty Vin=0.25 V_Faulty

Page 19: Robust Low Power VLSI ECE 7502 S2015 Effective IDDQ Testing method to identify the fault in Low-Voltage CMOS Circuits ECE 7502 Project Final Presentation.

Rob

ust

Low

Power

VLSI 19

Conclusion Voltage delta IDDQ testing method is

introduced. The method is implemented on inverter,1-bit

adder and 100-bit adder circuit. By looking at ∆IDDQ on different voltage

defected chip can be identified.(Usually ∆IDDQFaulty>> ∆IDDQFaultFree)

Page 20: Robust Low Power VLSI ECE 7502 S2015 Effective IDDQ Testing method to identify the fault in Low-Voltage CMOS Circuits ECE 7502 Project Final Presentation.

Rob

ust

Low

Power

VLSI 20

References [1] . S. Sabade and D. M. Walker, “I DDX-based test methods: A survey,” ACM Trans. Des.

Autom. Electron. Syst. TODAES, vol. 9, no. 2, pp. 159–198, 2004. [2]. A. Kaltchenko and O. Semenov, “Temperature dependence of IDDQ distribution:

application for thermal delta IDDQ testing,” IET Circuits, Devices & Systems, vol. 1, no. 6, p. 509, 2007.

[3]. A. Abdollahi, F. Fallah, and M. Pedram, “Leakage current reduction in CMOS VLSI circuits by input vector control,” IEEE Transactions on Very Large Scale Integration (VLSI) Systems, vol. 12, no. 2, pp. 140–154, Feb. 2004.

[4]. Z. Chen, L. Wei, and K. Roy, “On effective I/sub DDQ/testing of low-voltage CMOS circuits using leakage control techniques,” Very Large Scale Integration (VLSI) Systems, IEEE Transactions on, vol. 9, no. 5, pp. 718–725, 2001.

[5].M. Karmani, C. Khedhiri, and B. Hamdi, “Design and test challenges in Nano-scale analog and mixed CMOS technology,” International Journal of VLSI design & Communication Systems (VLSICS) Vol, vol. 2, 2011.


Recommended