+ All Categories
Home > Documents > Robust’Topology’Control’for’’...

Robust’Topology’Control’for’’...

Date post: 28-Aug-2020
Category:
Upload: others
View: 25 times
Download: 0 times
Share this document with a friend
28
Robust Topology Control for Indoor Wireless Sensor Networks Chenyang Lu Computer Science and Engineering
Transcript
Page 1: Robust’Topology’Control’for’’ Indoor’WirelessSensor’Networkslu/cse521s/Slides/art.pdf · 2012. 10. 17. · Robust’Topology’Control’for’’ Indoor’WirelessSensor’Networks

Robust  Topology  Control  for    Indoor  Wireless  Sensor  Networks  

Chenyang  Lu  Computer  Science  and  Engineering  

Page 2: Robust’Topology’Control’for’’ Indoor’WirelessSensor’Networkslu/cse521s/Slides/art.pdf · 2012. 10. 17. · Robust’Topology’Control’for’’ Indoor’WirelessSensor’Networks

Why  Do  We  Need  Topology  Control?    Reducing  transmission  power  can  reduce  power  

consump8on  and  reduce  channel  conten8on  

  But  it’s  challenging:    Links  have  irregular  and  probabilis8c  proper8es    Link  quality  can  vary  significantly  over  8me    Human  ac8vity  and  mul8-­‐path  effects  in    

indoor  networks  

3  

Page 3: Robust’Topology’Control’for’’ Indoor’WirelessSensor’Networkslu/cse521s/Slides/art.pdf · 2012. 10. 17. · Robust’Topology’Control’for’’ Indoor’WirelessSensor’Networks

Outline    Empirical  study    ART  algorithm    Implementa8on  and  evalua8on    Conclusion  

4  

Page 4: Robust’Topology’Control’for’’ Indoor’WirelessSensor’Networkslu/cse521s/Slides/art.pdf · 2012. 10. 17. · Robust’Topology’Control’for’’ Indoor’WirelessSensor’Networks

Existing  Empirical  Studies    Many  studies  explore  link  performance  at  a  fixed  

transmission  power  [Srinivasan  2006],  [Woo  2003],  [Reijers  2004],  [Zhou  2004],  [Lai  2003]  

  [Son  2004]  evaluates  older  Chipcon  CC1000  radios    [Lin  2006]  uses  a  simplified  indoor  environment  (all  nodes  

have  line-­‐of-­‐sight)  

  Our  study  considers  modern,  802.15.4-­‐compliant  CC2420  radios  in  a  complex  office  environment  

5  

Page 5: Robust’Topology’Control’for’’ Indoor’WirelessSensor’Networkslu/cse521s/Slides/art.pdf · 2012. 10. 17. · Robust’Topology’Control’for’’ Indoor’WirelessSensor’Networks

Is  Topology  Control  Bene;icial?   Testbed  Topology  

0  dBm  -­‐15  dBm  -­‐25  dBm  

6  

Page 6: Robust’Topology’Control’for’’ Indoor’WirelessSensor’Networkslu/cse521s/Slides/art.pdf · 2012. 10. 17. · Robust’Topology’Control’for’’ Indoor’WirelessSensor’Networks

Is  Topology  Control  Bene;icial?   Packet  Recep8on  Ra8o  (PRR)  Distribu8on  Across  Links  

368  links  (70.2%)  receive  NO  packets  at  -­‐25  dBm  

Compared  to  82  links  (15.6%)  @  -­‐5  dBm  

105  links  (20.2%)  receive  ≥  95%  of  packets  at  -­‐25  dBm  

7  

Page 7: Robust’Topology’Control’for’’ Indoor’WirelessSensor’Networkslu/cse521s/Slides/art.pdf · 2012. 10. 17. · Robust’Topology’Control’for’’ Indoor’WirelessSensor’Networks

Is  Topology  Control  Bene;icial?  

!!" !!# !$" !$# !" ##

#%$

#%!

#%&

#%'

#%"

#%(

#%)

#%*

#%+

$

,TX -./01,23456

788

,

,

$&(!9$!(

$#(!9$!+

$#"!9$!)

$#'!9$#"

Impact  of  TX  power  on  PRR  

3  of  4  links  fail  @  -­‐10  dBm  ...  

...  but  have  modest  performance  @  -­‐5  dBm  Insight  1:  Transmission  power  should  be  set  on  a  per-­‐

link  basis  to  improve  link  quality  and  save  energy.  

8  

Page 8: Robust’Topology’Control’for’’ Indoor’WirelessSensor’Networkslu/cse521s/Slides/art.pdf · 2012. 10. 17. · Robust’Topology’Control’for’’ Indoor’WirelessSensor’Networks

What  is  the  Impact  of  Transmission  Power  on  Contention?  

High contention

Low signal strength

Insight  2:  Robust  topology  control  algorithms  must  avoid  increasing  conten8on  under  heavy  network  load.  

9  

Page 9: Robust’Topology’Control’for’’ Indoor’WirelessSensor’Networkslu/cse521s/Slides/art.pdf · 2012. 10. 17. · Robust’Topology’Control’for’’ Indoor’WirelessSensor’Networks

Is  Dynamic  Power  Adaptation  Necessary?  

Link  110  -­‐>  139  

10  

Page 10: Robust’Topology’Control’for’’ Indoor’WirelessSensor’Networkslu/cse521s/Slides/art.pdf · 2012. 10. 17. · Robust’Topology’Control’for’’ Indoor’WirelessSensor’Networks

Is  Dynamic  Power  Adaptation  Necessary?  

Long-­‐Term  Link  Stability  

Insight  3:  Robust  topology  control  algorithms  must  adapt  their  transmission  power  in  order  to  maintain  

good  link  quality  and  save  energy.  

11  

Page 11: Robust’Topology’Control’for’’ Indoor’WirelessSensor’Networkslu/cse521s/Slides/art.pdf · 2012. 10. 17. · Robust’Topology’Control’for’’ Indoor’WirelessSensor’Networks

Are  Link  Indicators  Robust  Indoors?    Two  instantaneous  metrics  are  ohen  proposed  as  

indicators  of  link  reliability:    Received  Signal  Strength  Indicator  (RSSI)    Link  Quality  Indicator  (LQI)  

  Disagreement  over  which  is  a  bejer  indicator  of  PRR      [Srinivasan  2006]:  “RSSI  is  under-­‐appreciated”    [Lin  2006]:  LQI  and  RSSI  are  both  good  proxies  for  PRR  (ATPC  alg.)    TinyOS  2.1:  LQI  used  to  es8mate  channel  quality  

  Can  you  pick  an  RSSI  or  LQI  threshold  that  predicts  whether  a  link  has  high  PRR  or  not?  

12  

Page 12: Robust’Topology’Control’for’’ Indoor’WirelessSensor’Networkslu/cse521s/Slides/art.pdf · 2012. 10. 17. · Robust’Topology’Control’for’’ Indoor’WirelessSensor’Networks

Are  Link  Indicators  Robust  Indoors?   Links  106  -­‐>  129  and  104  -­‐>  105  

RSSI  threshold  =  -­‐86  dBm,  PRR  threshold  =  0.9    

6%  false  posi8ve  rate  8%  false  nega8ve  rate  

RSSI  threshold  =  -­‐85  dBm,  PRR  threshold  =  0.9    

4%  false  posi8ve  rate  62%  false  nega8ve  rate  

RSSI  threshold  =  -­‐84  dBm,  PRR  threshold  =  0.9    

66%  false  posi8ve  rate  6%  false  nega8ve  rate  Insight  4:  Instantaneous  LQI  and  RSSI  are  not  robust  

es8mators  of  link  quality  in  all  environments.  

13  

Page 13: Robust’Topology’Control’for’’ Indoor’WirelessSensor’Networkslu/cse521s/Slides/art.pdf · 2012. 10. 17. · Robust’Topology’Control’for’’ Indoor’WirelessSensor’Networks

Adaptive  and  Robust  Topology  control  (ART)  

w=10  

Power  Level  =    7   6?  

Target  PRR  =  80%  

Ini8alizing  Steady  Trial  

6   7  

14  

Page 14: Robust’Topology’Control’for’’ Indoor’WirelessSensor’Networkslu/cse521s/Slides/art.pdf · 2012. 10. 17. · Robust’Topology’Control’for’’ Indoor’WirelessSensor’Networks

Avoiding  Contention    Naïve  policy:  When  #  of  transmission  failures  goes  above  

threshold,  then  increase  power  level    But  what  if  this  makes  things  worse?  

  Remember,  higher  power  → more  conten8on  

  Ini8ally  increase  power  when  #  of  failures  >  threshold,  but  remember  #  of  failures  in  last  window  

  If  #  of  failures  is  worse  than  last  8me,  then  flip  direc8on  and  decrease  power  instead  

  Cheaply  tracks  “gradient”  of  power-­‐to-­‐PRR  curve  

15  

Page 15: Robust’Topology’Control’for’’ Indoor’WirelessSensor’Networkslu/cse521s/Slides/art.pdf · 2012. 10. 17. · Robust’Topology’Control’for’’ Indoor’WirelessSensor’Networks

Experimental  Setup    ART  implemented  using  TinyOS  2.1  CVS  

  Adds  392  bytes  of  RAM  and  1582  bytes  of  ROM  

  Window  size  =  50,  PRR  threshold  =  95%    

  Three  experiments:    Link-­‐level    Data  collec8on    High  conten8on  

 

16  

Page 16: Robust’Topology’Control’for’’ Indoor’WirelessSensor’Networkslu/cse521s/Slides/art.pdf · 2012. 10. 17. · Robust’Topology’Control’for’’ Indoor’WirelessSensor’Networks

Link-­‐Level  Performance    Selected  29  links  at  random  from  524  detected  in  empirical  

study    Transmijed  packets  round-­‐robin  over  each  link  in  batches  

of  100,  cycled  for  24  hours  (15000  packets/link)    

PRR   Avg.  Current  

Max  Power   56.7%  (σ = 2.5%)   17.4  mA  (σ = 0)  ART   58.3%  (σ = 2.1%)   14.9  mA  (σ = 0.32)  

17  

Page 17: Robust’Topology’Control’for’’ Indoor’WirelessSensor’Networkslu/cse521s/Slides/art.pdf · 2012. 10. 17. · Robust’Topology’Control’for’’ Indoor’WirelessSensor’Networks

Link-­‐Level  Performance   Link  129  -­‐>  106  

18  

Page 18: Robust’Topology’Control’for’’ Indoor’WirelessSensor’Networkslu/cse521s/Slides/art.pdf · 2012. 10. 17. · Robust’Topology’Control’for’’ Indoor’WirelessSensor’Networks

Data  Collection    Deployed  Collec8on  Tree  Protocol  [Gnawali  2008]  rou8ng  

algorithm  and  selected  one  testbed  node  as  sink    All  27  other  nodes  take  turns  sending  batches  of  200  

packets    1800  total  packets/node  over  4  hours  

  Compare  against  maximum  power  and  PCBL  [Son  2004]    Collects  large  amount  of  bootstrapping  data  (2  hrs.  on  testbed)    Uses  lowest  power  sewng  with  PRR  ≥  98%    “Blacklists”  links  with  PRR  <  90%  

 19  

Page 19: Robust’Topology’Control’for’’ Indoor’WirelessSensor’Networkslu/cse521s/Slides/art.pdf · 2012. 10. 17. · Robust’Topology’Control’for’’ Indoor’WirelessSensor’Networks

Data  Collection  

0.7  

0.75  

0.8  

0.85  

0.9  

0.95  

1  

Max-­‐Power   PCBL   ART  

Packet  Delivery  Ra

te  

Packet  Delivery  Rate  

20  

Page 20: Robust’Topology’Control’for’’ Indoor’WirelessSensor’Networkslu/cse521s/Slides/art.pdf · 2012. 10. 17. · Robust’Topology’Control’for’’ Indoor’WirelessSensor’Networks

Data  Collection  

0  

0.2  

0.4  

0.6  

0.8  

1  

1.2  

1.4  

Max-­‐Power   PCBL   ART  

Rela=v

e  En

ergy  Con

sump=

on  

CTP  data   Protocol  overhead  

Energy  Consump8on  

21  

Page 21: Robust’Topology’Control’for’’ Indoor’WirelessSensor’Networkslu/cse521s/Slides/art.pdf · 2012. 10. 17. · Robust’Topology’Control’for’’ Indoor’WirelessSensor’Networks

Data  Collection     Hop-­‐Count  vs.  PRR  

Max-­‐power  starves  nodes  with  most  expensive  paths  

22  

Page 22: Robust’Topology’Control’for’’ Indoor’WirelessSensor’Networkslu/cse521s/Slides/art.pdf · 2012. 10. 17. · Robust’Topology’Control’for’’ Indoor’WirelessSensor’Networks

Handling  High  Contention    Select  10  links  at  random  from  testbed    Send  packets  over  all  10  links  simultaneously  as  possible  

(batches  of  200  packets  for  30  min.)  

  Compare  again  against  PCBL  and  max-­‐power    Also  run  ART  without  “gradient”  op8miza8on  to  isolate  its  

effect  on  PRR  

23  

Page 23: Robust’Topology’Control’for’’ Indoor’WirelessSensor’Networkslu/cse521s/Slides/art.pdf · 2012. 10. 17. · Robust’Topology’Control’for’’ Indoor’WirelessSensor’Networks

Handling  High  Contention  

0  

0.1  

0.2  

0.3  

0.4  

0.5  

0.6  

0.7  

0.8  

0.9  

1  

Max-­‐Power   PCBL   ART   ART  (w/o  gradient)  

Packet  Recep

=on  Ra

te  

Packet  Recep8on  Rate  

24  

Page 24: Robust’Topology’Control’for’’ Indoor’WirelessSensor’Networkslu/cse521s/Slides/art.pdf · 2012. 10. 17. · Robust’Topology’Control’for’’ Indoor’WirelessSensor’Networks

Handling  High  Contention  

0  

0.1  

0.2  

0.3  

0.4  

0.5  

0.6  

0.7  

0.8  

0.9  

1  

Max-­‐Power   PCBL   ART   ART  (w/o  gradient)  

Rela=v

e  En

ergy  Con

sump=

on  

Energy  Consump8on  

25  

Page 25: Robust’Topology’Control’for’’ Indoor’WirelessSensor’Networkslu/cse521s/Slides/art.pdf · 2012. 10. 17. · Robust’Topology’Control’for’’ Indoor’WirelessSensor’Networks

Handling  High  Contention  

0  

0.1  

0.2  

0.3  

0.4  

0.5  

0.6  

0.7  

0.8  

0.9  

1  

Max-­‐Power   PCBL   ART   ART  (w/o  gradient)  

Rela=v

e  En

ergy/PRR

 

Energy  Efficiency  

50.9% more energy efficient than max-power

40.0% more energy efficient than max-power

26  

Page 26: Robust’Topology’Control’for’’ Indoor’WirelessSensor’Networkslu/cse521s/Slides/art.pdf · 2012. 10. 17. · Robust’Topology’Control’for’’ Indoor’WirelessSensor’Networks

Handling  High  Contention   Distribu8on  of  PRR  

0  0.1  0.2  0.3  0.4  0.5  0.6  0.7  0.8  0.9  1  

0  0.05  

0.1  

0.15  

0.2  

0.25  

0.3  

0.35  

0.4  

0.45  

0.5  

0.55  

0.6  

0.65  

0.7  

0.75  

0.8  

0.85  

0.9  

0.95   1  

CDF(Pa

cket  Recep

=on  Ra

te)  

Packet  Recep=on  Rate  

Max-­‐Power   PCBL   ART   ART  (w/o  gradient)  

27  

Page 27: Robust’Topology’Control’for’’ Indoor’WirelessSensor’Networkslu/cse521s/Slides/art.pdf · 2012. 10. 17. · Robust’Topology’Control’for’’ Indoor’WirelessSensor’Networks

Conclusions    Our  empirical  study  shows  important  new  nega8ve  results:    

  RSSI  and  LQI  are  not  always  robust  indicators  of  link  quality  indoors  

  Profiling  links  even  for  several  hours  is  insufficient  for  iden8fying  good  links  

  Inherent  assump8ons  of  exis8ng  protocols!  

  ART  is  a  new  topology  control  algorithm  which  is  robust  in  complex  indoor  environments  

  ART  achieves  bejer  energy  efficiency  than  max-­‐power  without  bootstrapping  or  link  starva8on  

28  

Page 28: Robust’Topology’Control’for’’ Indoor’WirelessSensor’Networkslu/cse521s/Slides/art.pdf · 2012. 10. 17. · Robust’Topology’Control’for’’ Indoor’WirelessSensor’Networks

References    G.  Hackmann,  O.  Chipara  and  C.  Lu,  Robust  Topology  Control  for  

Indoor  Wireless  Sensor  Networks,  ACM  Conference  on  Embedded  Networked  Sensor  Systems  (SenSys),  November  2008.  

  Y.  Fu,  M.  Sha,  G.  Hackmann  and  C.  Lu.  Prac8cal  Control  of  Transmission  Power  for  Wireless  Sensor  Networks,  IEEE  Interna8onal  Conference  on  Network  Protocols  (ICNP'12),  October  2012,  

29  


Recommended