+ All Categories
Home > Documents > Rogers 1985 Aquacultural-Engineering

Rogers 1985 Aquacultural-Engineering

Date post: 03-Apr-2018
Category:
Upload: jorge-rodriguez
View: 216 times
Download: 0 times
Share this document with a friend

of 20

Transcript
  • 7/28/2019 Rogers 1985 Aquacultural-Engineering

    1/20

    Aquacu l tura l Eng ineer ing 4 (1985) 135-154

    A m m o n i a R e m o v a l in S e le c t ed A q u a c u l t u r e W a t e rR e u s e B i o f i lt e r s

    Gary L. R ogersUniversity of Hawaii, Hawaii Institute of Marine Biology, PO Box 1346, Kaneohe,Hawaii 96744-1346, USA

    and 4Stanley L . KlemetsonDepartment of Civil Engineering, Brigham Young University, Provo,Utah 84602, USA

    A B S T R A C TFo ur f i xed - f i lm b io log ica l f i lt ers ( ro ta t ing b io log ica l con tac tor , b iodrum,tr ickl ing f il ter , and a subm erge d anaerobic f i l ter) w ere tes te d fo r ther em o va l o f a m m o n i a u s in g a s im u l a t ed w a r m w a t e r f is h a n d in ver teb r a tecu l ture wa ter supp ly . F i l t er design m ay be de t erm ined based on the resultso f am m onia remova l e f fi c i ency over a w ide range o f hydrau l i c l oads. Ther o t a t in g b io lo g ica l co n t a e t o r ( R BC ) p r o v i d ed t h e b e s t a m m o n i a r em o va l( o ver 9 0 % ) u p t o a b o u t O .0 6 m 3 m - 2 d a y < ( 1 .2 g p d f t- 2 ). T h e b i o d r u mr em o v ed o ver 8 0 % o f t h e a m m o n i a t o a h yd r a u l ic l o ad o f 0 .0 5 m 3 m -2d a y -1 (0 . 9 g p d f t - z ) . T h e t r ick l in g f i lt e r r em o ved 5 0 % o f t h e a m m o n i a a ta hydr aul ic loading o f O. O12 m 3 m -2 dav-1 (0 . 3 g pd f t -2 ) .

    INTRODUCTIONInterest in the commercial culture of warmwater aquatic animals issteadily moving in the direction of industrialization. This progress isdemonstrated in the advances in extensive fish farming resulting fromcontrolled application of feed and fertilizer, careful water qualitymonitoring, disease prevention and therapeutic treatment, as well ascontro lled aeration of ponds and raceways (Bardach, 1976). Limit ationto furthe r intens ification is posed by the ac cumul ation of toxic inorganicand organic compounds in the water.

    135Aquacu l tura l Eng ineer ing 0144-8609/85/$03.30 Elsevier Applied SciencePublishers Ltd, England, 1985. Printed in Great Britain

  • 7/28/2019 Rogers 1985 Aquacultural-Engineering

    2/20

    136 G. L . Roger s , S . L . K leme t sonT a b l e 1 p r e s e n t s w a t e r q u a l i t y c r i te r i a t h a t s h o u l d b e c o n s i d e r e d in

    e v a l u a ti n g a w a t e r s u p p l y f o r a q u a c u l t u r e d e v e l o p m e n t . T h e s u g g e s te dl ev e l f o r e a c h p a r a m e t e r i s b a s e d o n e v a l u a t i o n o f w a t e r q u a l i t y l e ve lsl i st e d in f iv e p u b l i c a t i o n s ( N i g h t i n g a le , 1 9 7 6 ; U S E P A , 1 9 7 6 ; R o b e r t s ,1 9 7 8 ; E n v i r o n m e n t C a n ad a , 1 9 79 ; K l o n t z e t a l . , 1 9 7 9 ) . T h e m o s tc r it ic a l p a r a m e t e r s f o r a q u a c u l t u r e d e v e l o p m e n t a re a m m o n i a , c a r b o nd i o x i d e , d i s s o lv e d o x y g e n , n i t r it e , p H , t e m p e r a t u r e a n d h e a v y m e t a l s.C o n t i n u a l m o n i t o r i n g o f t h o s e c ri tic a l p a ra m e t e r s t h r o u g h o u t o p e r a t i o no f t h e f i s h c u l t u r e f a c i l i t y w o u l d b e c o s t l y . A s a r e s u l t , w a t e r q u a l i t ym o n i t o r i n g d u r i n g p r o d u c t i o n h a s , i n m o s t e x t e n s i v e c u l t u r e f a c i l i t i e s ,b e e n l i m i t e d t o r ou J, n e a n a ly s i s o f p H , d i s s o lv e d o x y g e n a n d s u s p e n d e ds o li d s. I n r e c i r c u l a t i n g i n t e n s i v e c u l t u r e s y s t e m s , m a n y a d d i t i o n a lw a t e r q u a l i ty p a r a m e t e r s n e e d t o b e e v a l u a te d s in c e p r o d u c t i v i t y a n dm o r t a l i t y w o u l d b e a d v e rs e ly a f f e c t e d b y u n a c c e p t a b l e le ve ls o f t o x i co r g an i c a n d i n o r g a n ic c o m p o u n d s in t h e a q u a ti c e n v i r o n m e n t .

    T h e p r e s e n t s t u d y c o n s i d e r e d f o u r b i o l o g i c a l f i x e d - f i l m p r o c e s s e s( r o t a t i n g b i o lo g i ca l c o n t a c t o r , b i o d r u m , t r ic k l in g fi lt e r a n d s u b m e r g e df i lt e r ) t o e v a l u a t e s u i t a b i l it y f o r a q u a c u l t u r e w a s t e w a t e r t r e a t m e n t . T h eo b j e c ti v e i n t h is s t u d y w a s t o d e t e r m i n e , b y a lt e ri n g e n v i r o n m e n t a l a ndh y d r a u l i c c o n d i t i o n s , w h e t h e r f ix e d - fi lm b i o lo g i ca l p r o c e ss e s c o u ld b ea p p l i e d e f f i c i e n t l y t o c o m p l e t e l y r e c y c l e d a q u a c u l t u r e w a s t e w a t e r sw h e r e a m m o n i a a n d n i t r i t e r e m o v a l is c ri ti ca l f o r p r o d u c t i o n o f w a r m -w a t e r s p e c i e s o f f is h a n d i n v e r t e b r a t e s , i n c l u d i n g t h e f r e s h w a t e r p r a w nM a c r o b r a c h i u m r o s e n b e r g i i .

    L I T E R A T U R E R E V IE WW a te r qua l i t y m a na g e m e ntA m m o n i a p r o d u c t i o n b y f is h a n d i n v e r t e b r a te s h a s b e e n w e ll s t u d i e dt h o u g h m u c h o f t h e p h y s i o l o g y o f e x c r e t i o n is c o m p l e x a n d stil l l ar g el yu n c e r t a i n . I n f r e s h w a t e r p r a w n s , a n d t h e o r d e r d e c a p o d a in g e n er a l,a s e ri es o f g ill s a t t a c h e d t o e a c h o f t h e t h o r a c i c a p p e n d a g e s f u n c t i o n sb o t h i n r e s p i r a t io n a n d e x c r e t i o n o f w a s t es . A d d i t i o n a l l y , a la rg e p o r t i o no f a m m o n i a is r e m o v e d v ia f e c al m a t e r ia l . A n t e n n a l g l a n d s a ls o f u n c t i o ni n e x c r e t i o n ( M c L a u g h l i n , 1 9 8 0 ) .A m m o n i a p r o d u c t i o n r a te s an d b i o c he m i c a l o x y g e n d e m a n d (B O D )p r o d u c t i o n r a te s o f p r a w n s i n la rv a l, j u v e n i l e a n d a d u l t s ta g e s w e r e

  • 7/28/2019 Rogers 1985 Aquacultural-Engineering

    3/20

    A m m on ia remova l i n se l ec ted aquacu l ture w a ter reuse b io f i lt ers 137

    T A B L E 1Water Q ual i ty Cr i te r ia fo r Aquacu l tu re

    P a r a m e te r U S E P A R o b e r t s K l o n t z( 1 9 7 6 ) ( 1 9 7 8 ) e t a l.

    ( 1 9 7 9 )N i g h t in g a l e En v i r o n m en t S u g g es t ed

    ( 19 76) Canada level( 1 9 7 9 )

    A l u m i n u m ( m gliter -a )

    Am m o n ia (r agliter -a )

    C a d m i u m ( m gliter -a )

    Calcium (mg l i ter -1)Carbon d iox ide(rag liter -1)C h r o m i u m ( m g

    liter -a)Col i fo rm (no . per

    1 0 0 m l)Color un i t sCo ppe r (rag li ter -a)Dissolved oxygen(rag liter -1)Iron (rag l i ter - l )Hard ness (rag

    liter -a )Lea d (rag li ter -a)Magnesium (mg

    l i te r - l )M ercury (rag l i ter -x)Manganese (mglite r -1 )N itrate (mg l i ter -1)N itrite (rag li ter -a)pHSulfate (rag l i ter - l )Sulf ide (mg l i ter -1)Spec i f ic conductanceTempera tu re (~C)

    0.02 0-021-2-12 0 .4-3 .0

    0.1 0.051475

    1 .0 0.01

    522 .0

    0-012

    0 . 0 0 65 .0

    1-0 1-0

    0.03

    0 . 0 5100

    0.1 0.556 .5 -9 6 -5 -8 .5 6 .7 -90 .002 0 .002 0 .002

    0.2 0 .1

  • 7/28/2019 Rogers 1985 Aquacultural-Engineering

    4/20

    138 G. L. Rogers , S . L. KlemetsonT A B L E 1 - ( co n t i n u ed )Water Quality Criteria for Aquaculture

    Parameter US E P A R o b er t s K lo n t z N ig h ti n ga l e E n v i r o n m en t S u g g es ted(1 9 7 6 ) (1 9 7 8 ) e t a l. (1 9 7 6 ) C a n a d a l eve l

    (1 9 7 9 ) { 1 9 7 9 )Total alkalinity 20 20-200 20 20-200(mg liter -l)Total dissolved gas 110% 110% 105% < 105%Total dissolved 250 400

  • 7/28/2019 Rogers 1985 Aquacultural-Engineering

    5/20

    A m m o n i a r e m o v a l in s e l e c t e d a q u a c u l t u r e w a t e r r e u s e b i o f il te r s 139unde r given conditions for the specified time period) for M a c r o b r a c h i u mr o s e n b e r g i i was determined by Armstrong e t a l . (1978), to be 0.80 mgliter -l ammonia at a pH of 7.6. Ranges of toxic ammonia concen trationsfrom 0-02 to 2.0 mg liter -1 unionized ammonia have been reported forfreshwater aquatic life (US EPA, 1976). Additiona l work is necessary toverify and establish these toxic limits of unionized ammonia especiallyfor the Malaysian prawn.

    Nitrite has also been shown to be toxic to fishes and invertebrates.Smith and Williams (1974) found salmonids to be ext remely sensitiveto nitrite. In their study, gross examination of gill tissue and bloodprovided evidence that the fish suffered from methemoglobinemiainvolving the oxidation of hemoglobin to methemoglobin by nitrite.The fish die from anoxia, since methemoglobin is unable to transpor toxygen. The criterion for nitrite was not considered in water qualitycriteria by the US EPA, since levels toxic to fishes are not usuallyfound in natural waters. However, levels of nitrite accumulation shouldbe considered in a reuse facility for production of fish and invertebrates.An LCso value o f 5 mg liter -1 nitrite during 168-h exposure was foundfor freshwater prawns (Kawaratani, 1978). The maximum level ofnitrite tested with no deaths ranged from 9.7 mg liter -1 for 24 h to 1-8mg liter -l at 168 h.Biof i l t ers

    Several investigators have described water recirculating systems usingbiofilters for intensive cultivation of salmon smolts (Burrows, 1964;Risa and Skjervold, 1975; Meade, no date), catfish (Broussard andSimco, 1976), trout (Speece, 1973; Mayo, 1976; Fyock, 1977; Harris,1977), shrimp (Siddal, 1974; Mock e t a l . , 1975; McSweeny, 1977),tilapia (Otte and Rosenthal, 1979; Allison e t a l . , 1980), polyculture(Van Gorder, 1980), carp (Meske, 1976; Bohl, 1977), mariculture ofclams and oysters (Forster, 1974), and the combination offish culturewith hydroponics in a single recirculation system (Lewis e t a l . , 1978).Few of the authors, however, discussed the basis for their choice ofbiofilter design parameters. There is little indication that the designsconform either to economic or resource minima for their declaredpurposes. Microbial population activity in the filter is essentiallyubiquitous in distribution, spontaneously colonizing new filters,although inoculation can be expedited by addition of gravel from

  • 7/28/2019 Rogers 1985 Aquacultural-Engineering

    6/20

    140 G. L. Rogers, S. L. Klemetsonpreexisting filters (Risa and Skjervold, 1975). The bacterial species thatpredominate at various depths of the filter are presumably self-selected,in response to environmental factors, such as the nutrient content,hydraulic flow and aeration of the filter bed, although their respectivenumbers are known to fluctuate until an equilibrium is established(Kawaii et al., 1964). Rapid start-up of biofilters is possible by seedingwith nitrifiers (Carmignani and Bennett , 1977).

    Few approaches to analysis of design standards for biofilters inaquacultural applications are given in the literature. Hirayama reportedon filter carrying capacity for a 300 liter marine aquarium containingone or two sea breams Chrysophrys major (Hirayama, 1966). Spotte(1970) cautioned that Hirayama's results need verification beforeaccepting validity in f reshwater, but there is reason to exercise a certainamount o f skepticism in generalizing the results even for marine aquaria.One should keep in mind the small numbers of fish on which the resultsare based. Harris considered use of biological filters in hatchery waterreuse systems. Submerged filters (Flexring and Flocor) were tested andfound satisfactory in control of fish wastes. The basis for design of thebiofilters used was presented by Speece (1973) for calculating substratevolume based on ammonia production rate divided by the nitrificationrate (Harris, 1977).

    The rotating biological contactor (RBC) has gained increased popu-larity over the past several years. This popularity is due to low powerconsumption and ease of operation. The transferability of designstandards to aquacultural biofilters is limited, however, since aqua-culture deals with a portion of the pollution spectrum far removedfrom domestic wastes. The effluent of treated sewage may contain asmuch as 5 mg liter -1 ammonia, some tenfold or more above the toxiclimit for aquatic crops, such as shrimp (Cohen et al., 1976).

    The wastewater undergoes progressively increasing degrees of treat-ment as it flows from stage to stage in the contactor. Organic con-stituents o f the wastewater are in high concentrat ions in the initialstages of the RBC. Cultures of filamentous and nonfilamentous bacteriadevelop that degrade the organic compounds. The concent ration oforganics decreases in the later stages, and higher life forms, includingnitrifying bacteria appear, along with various types of rotifers and otherpredators (Antonie, 1976).There are many reviews of biofilter use in the sanitary engineeringprofession. The annual literature review in the Journal Water Pollution

  • 7/28/2019 Rogers 1985 Aquacultural-Engineering

    7/20

    A m m o n i a r e m o v a l i n s e l e c t e d a q u a c u l t u r e w a t e r r e u s e b i o fi l te r s 1 41C o n t r o l F e d e r a t i o n p r e s e n t s c u r r e n t t h i n k i n g r e l a t e d to b i o f i l t e r s ine n v i r o n m e n t a l p r o b l e m s . T h e r e v i e w o f li t e r a tu r e f o r 1 98 1 r e p r e s e n t sa d o u b l i n g i n t h e k n o w l e d g e o f R B C t e c h n o l o g y , t h e r e s ul t o f a n R B Cc o n f e r e n c e i n P e n n s y l v a n i a i n 1 9 8 0 ( S m i t h e t a l . , 1 9 8 0 ) .

    I n a n o t h e r s t u d y , A n t o n i e e t a l . ( 1 9 7 4 ) s t a t e d t h a t n i t r i f i c a t i o ni n a n R B C b e g i n s w h e n t h e B O D is b e l o w 3 0 m g l it e r -1. N i t r i f y i n go r g a n i sm s a re a b le t o c o m p e t e a t t h is c o n c e n t r a t i o n w i t h t h e m o r er a p i d l y g r o w i n g h e t e r o t r o p h i c o r g a n i sm s a n d e s ta b l is h t h e m s e l v e si n t h e p r o c e s s . N i t r i f i c a t i o n is a l l o w e d t o p r o c e e d r a p i d l y , w i t h t h ee s t a b l i s h m e n t o f n it r if y i n g o r g a n i s m s , u n t i l a B O D c o n c e n t r a t i o n o fa p p r o x i m a t e l y 1 0 m g l i t er -1 is o b t a i n e d a n d n i t r if i c a t io n is c o m p l e t e .W e n g a n d M o l o f ( 1 9 7 4 ) f o u n d t h a t t h e c h e m i c a l o x y g e n d e m a n d( C O D ) m u s t b e b e l o w 5 0 m g l it e r -1 f o r n i t r i f i c a t i o n t o o c c u r . A n a r t if i-c ia l s u b s t r a t e w i t h 5 0 m g l i t e r -1 C O D c o r r e s p o n d e d t o a B O D c o n c e n t r a -t i o n o f a p p r o x i m a t e l y 1 4 m g l it e r -1. T h i s is le ss t h a n h a l f t h e c o n -c e n t r a t io n s t a te d b y A n t o n i e e t a l . ( 1 9 7 4 ) f o r n i tr i fi c a t io n .

    M E T H O D O L O G YD e s i g n a n d c o n s t r u c t i o n o f b i o f il t er sT h r e e b i o f i lt e r s w e r e d e s ig n e d a n d c o n s t r u c t e d f o r u se i n th is s t u d y .A f o u r t h f i lt e r w a s o b t a i n e d f o r u se f r o m t h e C l o w C o r p . i n B e a c o n ,N e w Y o r k . T h e u n i ts t e s t e d i n c l u d e d a r o t a t in g b i o l o g i ca l c o n t a c t o r( C l o w C o r p . ) w i th 16 dis cs o f 2 5 . 4 c m ( 1 0 i n ) d i a m e t e r , a 3 0 .5 c m( 1 2 in ) d i a m e t e r b i o d r u m , an a n a e r o b ic d o w n f l o w s u b m e r g e d f il te r2 5 . 4 c m ( 1 0 i n ) d i a m e t e r , a n d a t r i c k l i n g f i lt e r , a l s o 2 5 . 4 c m ( 1 0 i n ) i nd i a m e t e r . A l l o f t h e b i o f i l te r s w e r e l a b o r a t o r y - s c a l e u n it s. A s c h e m a t i cd i a g r a m o f th e b i o f i l te r s s y s t e m i s p r e s e n t e d i n F i g . 1. S y n t h e t i c f e e d -s t o c k w a s p u m p e d t o a c o n s t a n t h e a d t a n k s o t h a t f l o w ra t e s t o e a c hf i lt e r c o u l d b e c o n t r o l l e d . T h e e f f l u e n t f r o m t h e f o u r f il te r s w a sd i s c h a r g e d t o t h e d r a i n .

    T h e s u b m e r g e d f i lt e r a n d t r i ck l in g f i l te r e a ch h a d a c a p a c i t y o f0 . 0 4 m 3 ( 1 . 4 f t3 ) . T h e y w e r e f i ll e d w i t h 2 . 5 - 3 . 8 c m ( 1 - 1 . 5 i n) sl ag w i t ha s p e c i f i c s u r f a c e a r e a 1 8 . 3 m 2 m - a ( 6 0 f t 2 f t - 3 ) . T h e f i lt e r s w e r e f a b r i -c a t e d f r o m a s e c t io n o f 2 5 . 4 c m ( 1 0 in ) P V C p i p e w i t h e n d d is c s c u tf r o m p le x ig la s s. T h e o u t e r s h e ll o f t h e b i o d r u m w a s c o n s t r u c t e d f r o mp l a st ic n e t t i n g p r o v i d e d b y t h e C o n w e d C o r p . P l ex i gl as s d is c s o f 3 0 .5

  • 7/28/2019 Rogers 1985 Aquacultural-Engineering

    8/20

    1 4 2 G . L . R o g e r s , S . L . K l e m e t s o n

    Fig. 1.

    I n f l u e n tt] i l i f j j i ; j j i i o . . 0

    l I o . . , .

    RBC T r i c k l i n g F i l t e r

    B i o d ru m S u b m e r g e d F i l t e rSche ma t ic diagram o f labo rato ry scale bJof i lter setup.

    c m ( 1 2 in ) d i a m e t e r p r o v i d e d s u p p o r t a t t h e e n d s o f t h e s t r u c t u r e . T h eb i o d r u m w a s f i ll e d w i t h 2 -5 c m ( 1 i n ) P V C ri n g s t h a t w e r e c u t i n 2 . 5 c m( 1 i n) l e n g t h s f r o m P V C p i p e . T h e r o t a t i n g b i o lo g i c a l c o n t a c t o r o b t a i n e df r o m t h e C l o w C o r p . c o n s i s t e d o f 1 6 p l e x ig l a s s d i sc s i n f o u r s ta g e s . T h et o t a l s u r f a c e a r e a o f t h e R B C w a s 1 . 58 m 2 ( 1 7 f tz ) . T h e s p e c i f i c a t i o n so f t h e f o u r f i lt e r s a re g i ve n i n T a b l e 2 .

    T A B L E 2S p e c i f i c a t i o n s o f F o u r L a b o r a t o r y S c a le B i o f i l te r s

    B i o f i l t e r V o l u m e S u p p o r t B i o f i l m s u r f a cec o n t a i n e r ( m 3 ) m e d i u m a re a ( m 2

    R B C 0 - 0 0 6 1 6 - 2 5 - 4 c m d is c s 1 . 6 6B i o d r u m 0 . 0 5 7 2 0 0 0 - 2 . 5 c m r in g s 3 . 9 6S u b m e r g e d 0 . 0 3 9 2 . 5 - 3 . 8 c m s la g 7 . 6 0T r i c k l i n g 0 . 0 3 9 2 . 5 - 3 . 8 c m s la g 7 - 73N o t e : l m a = 3 5 .3 1 f t3 ; 1 m 2 = 1 0 .7 6 f t~ ; 1 cm = 0 .3 9 4 in .

  • 7/28/2019 Rogers 1985 Aquacultural-Engineering

    9/20

    A m m o n i a r e m o v a l i n s e le c te d a q u a c u l t u r e w a t e r r eu s e b io f il te r s 14 3B i o f i l t e r s t u d i e s

    T h e f o u r b i o f i l te r s w e r e o p e r a t e d u n d e r a v a r ie t y o f c o n d i t i o n s t od e t e r m i n e e f f i c ie n c y o f a m m o n i a r e m o v a l , o p t i m u m h y d r a u l i c l o ad i n ga n d o p t i m u m c o n d i t i o n s f o r a p p li c a ti o n t o a q u a c u l t u r e . W h ile m o s tp a r a m e t e r s w e r e n o t v a r ie d , f l o w r a t e , a m m o n i a , s a l i n it y a n d t e m p e r a -t u r e w e r e a l t e r e d t o s i m u l a t e c o n d i t i o n s f o r p r a w n c u l t u re . T h e f e e d -s t o c k t o t h e f il te r s w a s f r e s h w a t e r , 5 % s e a w a t e r ( p r e p a r e d b y d il u ti n ga c o m m e r c i a l s e a s a lt s m i x w i t h f r e s h w a t e r ) , a n d 2 0 % s e a w a t e r , w h i c hc o r r e s p o n d s t o s a lt r e q u i r e m e n t s o f t h e a d u l t , j u v e n i le , a n d la rv a ls ta g e s o f g r o w t h , r e s p e c t iv e l y . T h e i n f l u e n t u s e d in th e s t u d y w a sa s y n t h e t i c f e e d s t o c k s o l u t i o n ( T a b l e 3 ). A t h ig h e r h y d r a u l i c l o a d i n g s,a d i l u ti o n s y s t e m w a s d e s ig n e d t o f a c i li ta t e l o a d i n g o f t hi s w a s t e w a t e rt o t h e f o u r f i lt er s a n d l e ss e n t h e r e q u i r e m e n t f o r c o m p o u n d i n g t h es o l u t io n . T h e i n f l u e n t w a s d e v e l o p e d b a s e d o n d a t a r e c e iv e d f r o mc o l l a b o r a t o rs a t th e H e b r e w U n i v e rs i t y in I sr ae l f o r w a s t e w a t e r p r o d u c e din p r a w n g r o w o u t f a c il it ie s w i t h r e u s e o f t h e w a t e r a n d t r e a t m e n t b yb i o lo g i c a l fi l t r a ti o n . T h e s y n t h e t i c f e e d s t o c k w a s a n a p p r o x i m a t i o n o fa c t u a l w a t e r q u a l i t y p a r a m e t e r s m e a s u r e d i n p r a w n p r o d u c t i o n .S a m p l i n g a n d a n a l y s i sS a m p l e s o f i n f l u e n t a n d e f f l u e n t t o t h e f o u r b io f i lt e r s w e r e t a k e n d a il ya t v a r ie d h y d r a u l i c l o a d in g s . P o r t i o n s o f th e s a m p l e w e r e f i x e d b y

    TABLE 3Syn thet ic F eeds tock Solut ion for Biofil ter S tudy

    m g l i te r -1Dextrose 100Yeast extra ct 10Urea 5Na2HP04 40NaHC03 125MnS04 2NH4C1 As need ed

  • 7/28/2019 Rogers 1985 Aquacultural-Engineering

    10/20

    144 G. L. Rogers, S. L. KlemetsonT A B L E 4Summary of Ranges of Biofilter Operational Conditions

    In luent EffluentBiodrum RBC Trickling Submerged

    Flow (m 3 m -2day -i )Ammonia (mg 0.08-9.3liter -1)Alkalinity (rag 146-246liter -l )BOD (mg 29-84liter -1)COD (mg 46-123liter -1)DO (mg liter -1) 0.1-6.5Hardness (mg 147-1010liter -1)Nitrate (rag 0-2.11liter -1)Nitrite (mg 0-0004-0.6liter-l)pH 7-1-8.4Temperature (C) 25-30.8

    0.006-0.03 0.002-0.07 0-003-0.03 0.001-0-050.09-0-73 0.02-1.3 0.06-2-36 0.05-10.3181-226 181-250 143-250 144-2461.7-6-5 2.3-5.2 15.8-25.7 27.1-71.02.6-19.9 2.9-15.6 23.5-45.2 29-8-71.61.9-5.4 3 -3-6.6 0.32-6.6 0-1-5.0161-974 161-1012 1 6 4 - 9 8 1 177 -98 5

    0.73-5.3 0.43-17.05 0.012-9.45 0.003-0.440-0-219 0.007-0.29 0.002-0.168 0-0.03

    7.9-8-4 7.8-8.4 7-1-8-5 7-1-8.224.5 -27.0 22.5-25.0 25-5-30.0 25.0-30.0

    Note: 1 m3 m ~ day-1 = 24.545 gpd ft -2.

    adding 2 ml con cen tra ted sulfuric acid per liter for COD analysis. Allsamples were stored at 4C until analyzed. Temp era ture, dissolvedoxygen, pH and ammo nia were determ ined immedi ately after samplingwhile the other parameters were completed within one week. The fixedsamples were used in the determination of COD. Other parametersanalyzed in each of the biofilter samples include alkalinity (bicarbonate,carbonate and total), nitrate and nitrite. Additional tests performed ona less frequent basis included specific conductance, calcium, totalhardness, chloride, sulfate and tota l non-filtrable residue. All of thetests were performed in an EPA certified laboratory to StandardMeth ods for the Examination of Water and Wastewater (APHA, 1976).

  • 7/28/2019 Rogers 1985 Aquacultural-Engineering

    11/20

    Ammo nia removal in selected aquaculture water reuse biofilters 14 5C a l c u l a ti o n o f u n i o n i z e d a m m o n i a w a s m a d e a c c o r d in g t o t h e p r o c e d u r e so f B o w e r an d B i d w e ll ( 1 9 7 8 ) a n d T h u r s t o n et al. ( 1 9 7 9 ) .

    R E S U L T SC o n s i d e r a b l e d a t a w e r e g e n e r a t e d i n th e a n a l y si s o f s e v e ra l w a t e r q u a l i t yp a r a m e t e r s c h a r a c t e r iz i n g t h e o p e r a t i o n o f t h e f o u r b i o f il te r s f e ds y n t h e t i c w a s t e w a t e r . T h e i n f l u e n t c o n d i t i o n s o f t h e b i o f i l te r s t u d y a r es u m m a r i z e d in T a b le 4 . T h e h y d r a u l i c l o a d in g , a m m o n i a c o n c e n t r a t i o n s ,s a li n it y a n d t e m p e r a t u r e w e r e a l t e r e d b y v a r ie d i n f l u e n t c o n d i t i o n s . T h eR B C p r o v i d e d th e b e s t t r e a t m e n t in te r m s o f a m m o n i a r e m o v a l an dB O D r e m o v a l o v e r t h e g r e a t e s t r a ng e o f h y d r a u l i c l o a d s. H i g h e r le v el so f h a r d n e s s w e r e d u e t o r u n s a t sa l in it ie s o f 5 a n d 2 0 % s e a w a t e r a n d n o td u e t o p r o b l e m s i n s a m p l i n g a n d a n a l y s i s .

    T a b l e 5 p r e s e n t s a v er a ge c o n c e n t r a t i o n s o f a m m o n i a , n i tr i te a n dn i t ra t e t h r o u g h o u t t h e s t u d y f o r v a r i o u s h y d r a u l i c lo a d s. A g a i n , i t m a yb e o b s e r v e d t h a t t h e R B C p e r f o r m e d b e s t f o r a m m o n i a r e m o v a l. T h ed a t a c o l l e c t e d a t h i g h e r s a li n it ie s s h o w e d l o w e r le v el s o f a m m o n i a , inp a r t d u e t o i n h e r e n t p r o b l e m s in th e a n a ly t ic a l p r o c e d u r e ( a m m o n i ap r o b e ) . T h e s u b m e r g e d f i l te r p e r f o r m e d w e l l a s a n a n a e r o b i c d e n i t r i f y -i n g f il te r , a s e v i d e n c e d b y v e r y l o w l e v e ls o f n i t r a t e i n t h e e f f l u e n t .

    A m m o n i a r e m o v a l , n i tr i t e p r o d u c t i o n a n d n i tr a te p r o d u c t i o n f o rv a r i o u s h y d r a u l i c l o a d i n g s a r e p r e s e n t e d i n T a b l e 6. F i g u r e 2 s h o w s t h er e l a t io n s h i p o f a m m o n i a r e m o v a l t o h y d r a u l i c l o a d f o r t h e t h r e e b i o-f il te rs t h a t r e m o v e d a m m o n i a . N o t e t h a t t h e R B C r e m o v e d o v e r 9 0% o ft h e a m m o n i a a t h y d r a u l i c l o a d s u p t o 0 . 0 5 m 3 m - z d a y - l ( 1 .2 g p d f t - 2 ) .T h e b i o d r u m e f f i c ie n c y o f a m m o n i a o x i d a t i o n f al ls to b e l o w 9 0% at0 . 0 2 4 m 3 m - z d a y -~ ( 0 . 6 g p d f t - 2 ) . N i t r i f i c a t i o n i n t h e t r i c k l in g f i l te r ist h e l ea s t e f f i c i e n t, w i t h a m m o n i a r e m o v a l s le ss t h a n 5 0 % a t h y d r a u l i cl o a d s a b o v e 0 . 0 1 2 m 3 m -2 d a y - l ( 0 . 3 g p d f t - 2 ). F r o m a r e m o v a l st a n d -p o i n t , t h e R B C s e e m s t o b e t h e b e s t p r o c e s s s i n c e h ig h r e m o v a l s a reo b s e r v e d a t a w i d e r a n g e o f h y d r a u l i c l o ad s .

    F i g u r e 3 p r e s e n t s t h e le v el s o f u n - i o n i z e d a m m o n i a c o n c e n t r a t i o n f o rt h e f o u r b i o f i l te r s a t v a r ie d h y d r a u l i c l o a d in g s . T h e d a t a h a v e b e e ns t a n d a r d i z e d f o r w a r m w a t e r a q u a c u l t u r e . I t w a s a s s u m e d t h a t , in allc a se s , t h e w a t e r t e m p e r a t u r e a n d p H w e r e 3 0 C an d 8 , r e s p e c t iv e l y .T h e r es u lt s s h o w t h a t t h e R B C w o u l d p r o v i d e a d e q u a t e w a t e r q u a li ty

  • 7/28/2019 Rogers 1985 Aquacultural-Engineering

    12/20

    7

    TABLE5

    AvaAmmoaNieaNiaeL

    saVaeHyacL

    n

    De

    Inu

    Boum

    R

    Tcn

    Smg

    (moh

    t~

    d

    NNNN3N2N3FowN3N:N3FowN3N:N3FowN3N:N3Fow

    o

    51

    3500

    000300

    0700

    00000400

    13000000

    75000000

    53

    4000

    000200

    3200

    00000900

    16000000

    50000000

    67

    3500

    000600

    2100

    0101

    1100

    21000000

    36000000

    62

    4000

    010702

    4100

    06021500

    23000000

    44000000

    t~

    76

    3600

    020201

    2300

    01001100

    18000100

    46000000

    71

    3600

    010501

    1800

    02001200

    16000200

    50000000

    71

    3800

    010100

    1200

    13000900

    .

    .

    .

    .

    53000000

    72

    3200

    020200

    1500

    02000700

    17010300

    370

    0000

    82

    1800

    020100

    0700

    01000500

    07010700

    32000000

    Amoanaeanevuaewyaanmge~

    Fowraesnn3m-2d-ohgvfe

    Daowo72wh5%swe

    Daowo82wh2%swe

    Ne1m3m-~d-=25gf

  • 7/28/2019 Rogers 1985 Aquacultural-Engineering

    13/20

    TABLE6

    Pc

    AmmoaRemo

    aNieaNiaePo

    oaVaoHyacL

    n

    Dae

    Bioum

    RBC

    Tcn

    Smeg

    (moh

    (d

    NH3NO2NO3FlowNH3NO2NOa

    bowNH3NO2NO3

    FlowNH3

    NO2

    NO3

    Flow

    ~~

    51

    9

    9

    9

    00

    9

    5

    9

    00

    3

    5

    6

    00

    -5

    -3

    -3

    00

    53

    9

    8

    9

    00

    9

    9

    9

    00

    4

    -3

    2

    00

    -2

    2

    5

    00

    ~

    67

    8

    9

    9

    00

    9

    9

    9

    00

    3

    -9

    -4

    00

    -3

    -7

    -8

    00

    62

    8

    9

    9

    00

    8

    9

    8

    00

    4

    6

    9

    00

    -8

    -1

    -7

    00

    76

    9

    9

    9

    00

    9

    7

    7

    00

    4

    -8

    3

    00

    -2

    -6

    -7

    00

    71

    8

    9

    9

    00

    9

    5

    8

    00

    5

    -8

    -2

    00

    -2

    -7

    -6

    00

    71

    9

    8

    8

    00

    6

    9

    8

    00

    .

    .

    .

    .

    2

    -8

    -7

    00

    ~

    72

    9

    8

    8

    00

    9

    6

    8

    00

    4

    9

    2

    00

    -1

    -1

    -6

    00

    82

    9

    7

    7

    00

    9

    7

    5

    00

    6

    7

    6

    00

    4

    -9

    -9

    00

    Pcammoaremo

    Pcnaepo

    o

    Pcnepo

    o

    Fowraesnm3m-2d-1

    Ne1m3m-2d-~=25gf-~

    7

    -2

  • 7/28/2019 Rogers 1985 Aquacultural-Engineering

    14/20

    148 G. L. Rogers, S. L. KlemetsonI O 09 0g 8o~ 70~ 6o~ 5o.~_ 40c~ 3o~. 2010

    Fig. 2.

    Biodrum Fi l ter ~ Ro tat ing Biological~ L Tr ick l ing Fi lter Contactor

    i I I I I0 . 0 2 0 . 0 4 0 . 0 6 0 . 0 8Hydraul ic Loading (cu m /sq m/d)

    R e l a t i o n s h i p b e t w e e n a m m o n i a r e m o v a l a n d h y d r a u l i c l o a d i n g .

    Fig. 3.

    0 . 4 0 [

    ' r = r 0

    ~ 0 .0 5~ i f / B io lo g ic a lo o , I0.005

    o . o 0 1 .~s.oi~.o24.0azb4.04sose.~4.072H y d r a u l i c L o a d in g c u m /s q m /d )C o m p a r i s o n o f f o u r f i x e d -f i lm p r o c e s se s f o r m a i n t e n a n c e o f u n i o n i z e d

    am m on ia l eve ls requ i red fo r f i sh cu l tu re .

    for warmw ater aquaculture (less than 0.02 mg unionized ammon ialiter -~) at hydra ul ic loading rates up to 0-04 ma m -2 day -~ (1-2 gpdft-2). The biodru m could be utilized up to a hydrauli c load of 0.016m 3 m -z day -1 (0.4 gpd ft-2). The oth er processes did not maint ain

  • 7/28/2019 Rogers 1985 Aquacultural-Engineering

    15/20

    A m mo nia remo val in selected aq uacultur e water reuse b iofilters 149

    u n i o n i z e d a m m o n i a l ev e ls b e l o w t h e 0 . 0 2 m g l it e r -a r e q u i r e d f o r w a r m -w a t e r a q u a c u l tu r e .

    D I S C U S S I O NT h e m a j o r c o n s i d e r a t i o n o f a q u a c u l t u r is t s is t h e e c o n o m i c p r o d u c t i o no f a n im a l s . A q u a c u l t u r i s t s a re , t h e r e f o r e , v e r y c o n c e r n e d a b o u t h o ww a t e r q u a l i t y m a y a f f e c t t h e r a t e o f r e tu r n o n i n v e s t m e n t . F e w p r i v a tev e n t u r e s h a v e i n c l u d e d b i o lo g i c a l p r o c e s s e s i n t h e i r t r e a t m e n t s c h e m e sf o r re a r in g f is h a n d / o r i n v e r t e b r a t e s . T h e c o n c e r n s a t p r e s e n t ar e t h eh i gh c a p i ta l c o s t s o f w a t e r t r e a t m e n t s y s t e m s , th e n e e d f o r b a c k - u pc h e m i c a l o r p h y s i c a l t r e a t m e n t s y s te m s , c o s t o f w a t e r q u a l it y m o n i t o r -i ng a n d t h e u n c e r t a i n t y o f m o r b i d i t y a n d m o r t a l i t y t o t h e f is h p o p u l a -t io n d u e t o t h e c o n t i n u a l r e u s e o f t h e w a t e r s u p p l y . T h e s e c o n c e r n sh a v e c a u s e d m o s t f is h c u l t u r i s t s t o d e v e l o p s i te s i n a r e a s w h e r e w a t e r isa b u n d a n t a n d a f l o w - t h r o u g h s y s t e m is w a r r a n t e d .

    T h e d a t a g a t h e r e d in t h is s t u d y w il l a id t h e e n g i n e e r a n d a q u a c u l t u r i s tin d e si gn a n d m a i n t e n a n c e o f b i o lo g i c a l f i l t r a t i o n s y s t e m s a p p l ie d i nr e u s e f a c i li ti es f o r p r o d u c t i o n o f f is h a n d i n v e r t e b r a t e s . T h e r e m o v a l o fa m m o n i a a n d s u b s e q u e n t p r o d u c t i o n o f n i tr i t e a n d n i tr a te h a ve b e e np r e s e n t e d f o r d i f f e r e n t c o n d i t i o n s . T h e r e s u lt s o f t h is s t u d y m a y b eu s e d t o s iz e f i x e d fi lm p r o c e s s e s f o r w a r m w a t e r a q u a c u l t u r e . S p e e c e( 1 9 7 3 ) a n d F y o c k ( 1 9 7 7 ) s u g g e s te d th a t f i lt e rs b e s iz e d b a s e d o n th ea m m o n i a p r o d u c t i o n r a te s ( A P R ) o f th e c u l t u r e d s p ec ie s . I n th e c a se o ft r o u t c u l t u r e , t h e A P R w a s 0 - 0 1 8 k g a m m o n i a 1 0 0 k g t r o u t d a y - l . I ns im i l ar w o r k d o n e b y th e a u t h o r a n d r e p o r t e d e a r l ie r ( R o g e r s a n dK l e m e t s o n , 1 9 8 1 ), f o r f r e s h w a t e r p r a w n s , a m m o n i a p r o d u c t i o n w a s0 . 0 2 1 k g a m m o n i a / k g p r a w n s d a y -a . T h e s p e c if i c s u r f a c e a r e a r e q u i r e din F y o c k ' s c a l c u la t io n s w a s d e t e r m i n e d b y t h e f o l l o w i n g e q u a t i o n :

    A m m o n i a p r o d u c t i o n ra teS p e c i f i c s u r f a c e a r e a = N i t r i f i c a t i o n r a t ew h e r e t h e n i t r if i c a t io n r a te o r a m m o n i a r e m o v a l r a te w a s 0 . 5 6 g t o t a la m m o n i a m - 2 d a y -1 ( 0 - 0 0 0 1 5 l b a m m o n i a f t -2 d a y - a ) . T h e d a t a o b t a i n e din t h e p r e s e n t s t u d y f r o m a m m o n i a r e m o v a l y i e l d e d a n i t r if i c a t io n r a teo f 2 . 8 3 g m - 2 d a y -1 ( 0 - 0 0 0 5 8 l b f t - 2 d a y - 1) f o r t h e R B C . T h i s h i g h e rv a lu e w o u l d b e e x p e c t e d s in c e S p e e c e ' s w o r k is f o r t r o u t r e a r e d a t4 . 4 - 1 6 C ( 4 0 - 6 0 F ) a n d t h e p r e s e n t s t u d y is f o r p r a w n c u l t u r e at 3 1 C( 8 7 F ) .

  • 7/28/2019 Rogers 1985 Aquacultural-Engineering

    16/20

    15o G. L. Rogers, S. L. KlemetsonW a te r q u a l i t y m a n a g e m e n tB i o f i l t e r s ca n p r o v i d e a d e q u a t e r e m o v a l o f a m m o n i a a n d o rg a n i cs f r o ma q u a c u l t u r e w a s t e w a t e r s . T h e R B C a n d b i o d r u m w e r e s h o w n c a p ab l eo f p r o vi d in g a c c e p t a b l e w a t e r q u a l i t y f o r w a r m w a t e r a q u a c u l t u r e i na re u s e s y s t e m . T h o s e p r o c e s s e s s h o u l d b e i n c l u d e d i n h a t c h e r y a n dg r o w o u t s y s t e m s t h a t e i t h e r r eq u i re o r a re s u it e d t o c o m p l e t e r e us e o ft h e a v a i la b l e w a t e r s u p p l y . O n t h e o t h e r h a n d , t h e t r i c k l in g f i l te r a n ds u b m e r g e d f i l te r w e r e n o t c a p a b le o f p r o v id i n g n e e d e d w a t e r q u a li tyu n d e r t e s t e d c o n d i t i o n s . T h i s o b s e r v a t i o n c o r r e l a te s w i t h th e w o r k o fa q u a c u l t u r e e n g i n e e rs a n d h a t c h e r y s u p e r v i so r s w h o h a v e f o u n d t h a ts o m e b i o l o g ic a l f i l t ra t i o n p r o c e s s e s a r e u n r e li a b l e ( D a v id O w s l e y ,p e r s o n a l c o m m u n i c a t i o n , D w o r s h a k N a t i o n a l F i sh H a t c h e r y , Id a h o ) .T h e b i o f i lt e r s t h e y u s e d w e r e d o w n f l o w t r ic k l in g o r s u b m e r g e d f il te r sw i t h s u p p o r t m e d i a i n c l u d i n g o y s t e r s he ll , s t o n e , o r sla g.

    A n i m p o r t a n t c o n s i d e r a t io n f o r a q u a c u l t u r e r e us e s y s t e m s is m a n a g e -m e n t a n d o p e r a t i o n o f t h e b i o l o g ic a l f il te r . V e r y l i tt le w o r k h a s b e e nd o n e i n t h i s a re a . T h e r e s u l ts o f th i s s t u d y in d i c a t e d t h a t a r t i fi c ia lc o n t r o l o f w a s t e s tr e a m c h e m i c a l c h a r a c t e r is t ic s c o u l d e n h a n c e t h en i tr i f i ca t io n p r o c e ss . S u p p l e m e n t a l a d d i t i o n o f a m m o n i u m s al t s t om a i n t a in a c o n s t a n t l ev e l o f u n i o n i z e d a m m o n i a i n t h e fi lt e r i n f l u e n tc o u l d i m p r o v e t h e p r oc e s s . A m m o n i a r e m o v a l s in t h e R B C , b i o d r u ma n d t r ic k l in g f i l te r w e r e h i g h e s t w h e n s t e a d y s t a te a m m o n i a l ev e ls w e r em a i n t a i n e d .

    A n o t h e r c o n s i d e r a t i o n is t h e d is s o lv e d o x y g e n l ev e l t h r o u g h t h eb i o l o g i c a l f i lt e r a n d i n t h e f i sh re a r i n g t a n k s o r r a c e w a y s . B i o l o g i c a la m m o n i a r e m o v a l w a s s h o w n t o b e r e d u c e d g r e at ly i f t h e c o n c e n t r a t i o n so f o x y g e n a re a l l o w e d t o d r o p b e l o w 2 m g l it e r -1 a s e v i d e n c e d i n t h es u b m e r g e d f i lt e r a n d t o a l i m i t e d e x t e n t i n t h e t r i c k l in g f i l te r . S u p p l e -m e n t a l a e r a t i o n o f t h e b i o f i l te r t h r o u g h a d d i t i o n o f d i f f u s e d air m a y b er e q u i r e d t o o p t i m i z e t h e o x i d a t io n o f a m m o n i a .

    S U M M A R Y A N D C O N C L U S I O N SF i x e d - f i l m b i o lo g i c a l f il te r s ar e c a p a b l e o f p r o v i d i n g a d e q u a t e r e m o v a lo f n i t r o g e n c o m p o u n d s f r o m a q u a c u l t u r e w a s t e w a t e rs . T h e y s h o u l d b ec o n s i d e r e d f o r f a c i li ti e s w h e r e t h e r e is p a r ti a l o r c o m p l e t e r e u s e o f t h ew a t e r s u p p l y . T h e p r e s e n t s t u d y h as e x a m i n e d f o u r b i o f i lt r a t i o n p r o -

  • 7/28/2019 Rogers 1985 Aquacultural-Engineering

    17/20

    A m m o n i a r e m o v a l in s e l e c te d a q u a c u l tu r e w a t e r r e u se b i o f il te r s 15 1c e ss es f r o m t h e s t a n d p o i n t o f a m m o n i a r e m o v a l a n d t h e p r o c e s s o fn i t r if i c a ti o n a s i t r e la t e s t o t h e c o n c e n t r a t i o n o f a m m o n i u m a n d n i t ri tein t r e a t e d w a t e r . T h e m a j o r f in d i n g s a n d c o n c l u s i o n s o f t h e p r o j e c t a reg i v e n b e l o w :

    1. T h r e e f i x e d - f i lm b i o l o g i c a l f i l te r s ( r o t a t i n g b i o l o g i c a l c o n t a c t o r ,b i o d r u m a n d t r i c kl in g f il te r ) w e r e c a p a b l e o f r e m o v i n g a m m o n i aa n d n i t r i t e .

    2 . T h e r o t a t in g b i o l o g ic a l c o n t a c t o r p r o v i d e d t h e h ig h e s t a m m o n i ar e m o v a l s ( a b o v e 9 0 % ) o v e r a w i d e r a ng e o f h y d r a u l i c l o a d s t o0 . 0 5 m 3 m - 2 d a y - I ( 1 . 2 g p d f t - z ) .

    3 . T h e t r ic k l i n g f i l t e r w a s , i n c o m p a r i s o n t o t h e R B C , m u c h l e sse f f ic i e n t . O n l y 5 0 % o f t h e a m m o n i a w a s r e m o v e d a t a l o a d i n g o f0 . 0 1 2 m 3 m - Z d a y -1 ( 0 . 3 0 g p d f t - 2 d a y - ~ ) . A v e ry l a rg e f il t e rw o u l d b e r e q u ir e d t o p r o v id e th e s a m e t r e a t m e n t t h a t m a y b ea c h i e v e d b y a s m a l l R B C .

    4 . T h e b i o d r u m p r o v i d e d a m m o n i a r e m o v a l e f f ic i e nc i e s o f o v e r 8 0%u p t o a h y d r a u l i c l o a d o f a b o u t 0 - 0 4 m 3 m - z d a y -~ ( 0 . 9 g p d f t - 2 ) .

    5 . T h e s u b m e r g e d a n a e r o b i c f i lt e r w a s e f f e c t i v e in r e m o v i n g n i t r a te( d e n i t r i fi c a t i o n ) . T h e p r o c e s s c o u l d b e c o u p l e d w i t h a n y o f th ea e r o b i c f il te r s f o r c o m p l e t e r e m o v a l o f t h e i n o r g a n ic n i t r o g e n int h e w a s t e s t r e a m .

    A C K N O W L E D G E M E N T ST h i s w o r k w a s f u n d e d b y th e B i n a t i o n a l A g r i c u lt u r a l R e s e a r c h a n dD e v e l o p m e n t A g e n c y ( B A R D ) w h i ch s p o ns o rs p r o je c t s b e t w e e n th eU n i t e d S t a t e s a n d I sr ae l . S p e c i a l t h a n k s a re gi ve n f o r t h e n e e d e d s u p p o r tin m a t e r i a ls , s u p p l ie s an d s t ip e n d t h r o u g h p r o j e c t n u m b e r U S - 6 0 - 8 0 .

    R E F E R E N C E SAllison, R. , Ra koc y, J . E. & M oss , D. D. (1980 ). A comparison of two closed

    systems for the culture of t i lapia, I n t er n a t io n a l S y m p o s i u m f o r A d v a n c e in F o o dP r o d u ci n g S y s t e m s f o r A r M a n d S e m i - ar id L a n d s , Kuwai t Ci ty , Kuwai t .Antonie, R. L. (1976). F i x e d B i o lo g i ca l S u r f a c e s -W a s t e w a t e r T r e a t m e n t : T h e

  • 7/28/2019 Rogers 1985 Aquacultural-Engineering

    18/20

    152 G. L. Rogers, S. L. KlemetsonRo tatin g Biological Contactor, CR C Press Inc. , Cleveland, O hio . 1976.An ton ie , R . L . , Kluge , D. L . & Mielke , J . H . (1974) . Evalua t ion o f a ro ta t ing d iskwas t ewa te r t r ea tm en t p l an t , Jou rnal Water Pollution Co ntrol Federation, 4 6 ,2 9 8 - 5 1 1 .

    A P H A ( 1 9 7 6 ) . Standard Methods fo r the Exam ina tion o f W ater and W astewater,14 th e dn , A PH A, AW WA, WPCF, Wash ing ton DC, 1976 .Arm st rong , D . A . , Ch ippendale , D ,, K n igh t , A. W. & Col t , J . E . (1978) . In te rac t ion

    of ion ized and u n ion ized am mo nia on shor t - te rm surv iva l and g row th o f p rawnlarvae Macrobrachium rosenbergiL Th e Biological Bu lletin, 154, 15-31.

    Bardach, J . E . (1976). Aquacul ture revis i ted , J . Fish Res. Board Canada, 3 3 , 8 8 0 - 7 .Bohl , M. (1977) . Some in i ti a l aquacu l tu re exper im en ts in rec i rcu la ting wa ter

    s y s t em s , Aquacu l ture , 1 1 , 3 2 3 - 8 .Bow er , C . E . & Bidwel l, J . P . (1978) . Ion iza t ion o f am mo nia in seawater and e f fec t so f t em p era tu re , p H an d s a l in i t y, J . Fish. Res. Board Canada, 35 , 1012-16 .

    Broussard , M. C . & S imco , B . A. (1976) . High dens i ty cu l tu re o f channel ca t f ish ina rec i rcu la t ion sys tem , Prog. Fish Culturist, 3 8 , 1 3 8 -4 1 .

    Burrows , R . E . (1964) . Con t ro l led env i ronm ents fo r sa lmon p ropaga t ion , Prog. FishCulturist, 30 , 123-36 .

    Carm ignan i , G. M. & B enn et t , J . P . (1977) . Rap id s ta r t-up o f a b io log ica l f i l te r ina c losed aquacu l tu re sys tem , Aquacu l ture , 11, 85-8.

    Co hen , D. , F inke l , A. & Sussman , M. (1976) . On the ro le o f a lgae in the la rv icu ltu reo f Macrobrachium rosenbergii, Aq ua cultu re, 8 , 199-207 .

    E n v i ro n m en t C an ad a (1 9 7 9 ) . Water Quality Sou rceb ook , A Guide to Water QualityParameters, In land Waters D i rec to ra te , W ater Qu al i ty Branch , Ot tawa.

    Euro pean In land F isheries Comm iss ion (1973) . W ater qua l i ty fo r Europ ean f resh-water f i sh , Wa ter Research, 7 , 1 0 1 1 - 2 2 .

    Fo rs ter , J . R. M. (1974). Stu dies on ni t r i f ic at ion in m arine biological f i l ters , Aqua-culture, 4 , 3 8 7 - 9 7 .Fy oc k , O . L . (1977) . Ni t r i f i ca t ion requ i rements o f water reuse sys tems fo r ra inbow

    t r o u t , Colorado Division o f WiM life Special Re po rt , No . 4 1 .Harri s, L . E . (19 77) . N i t r i fy ing bac te r ia l subs t ra tes fo r ha tch ery water reuse ,Colorado Division o f WiM life Special Re po rt , No . 4 0 .Hi ray am a , K . (1 9 6 6 ) . S tu d ie s o n wa t e r co n t ro l b y f i l tr a t i o n t h ro u g h s an d b ed i n

    a m ar ine aquar ium w i th c losed c i rcu la ting sys tem , IV, R ate o f po l lu t ion o fwater by f i sh and the poss ib le number and weigh t o f f i sh kep t in an aquar ium,Bul. Japan Soc. Sci. Fish., 3 2 , 2 7 -3 0 .

    Kaw ai i , A. , Yo sh ida , Y. and K ina ta , M. (1964) . Biochemica l s tud ies on the bac te r iain aq uar ium w i th c i rcu la ting sys tem, I . Changes o f the qua l i ty o f b reed ing wa terand bac te r ia l pop u la t ion o f the aqu ar ium dur ing f ish cu l t iva t ion , Bul. Japan Soc.Sci. Fish., 3 0 , 5 5 -6 2 .Kawara tan i , R . K. (1978) . State o f the A rt : W aste Hea t U t il ization f or Agricultureand Aquacu l ture , T en n ess ee Va l l ey A u th o r i t y ,

  • 7/28/2019 Rogers 1985 Aquacultural-Engineering

    19/20

    A mmonia removal in selected aquaculture water reuse biofilters 153Klemet son , S . L . & Rogers , G . L . (1981) . Aquaculture Water Quality and Tempera-ture Maintenance, R ep o r t ( 9 p a r t s ) f o r C o u r y an d A s s o c ia t es , D en v e r , C o l o r ad o

    an d S o u t h e r n C o l o r ad o Eco n o mi c D ev e l o p men t D i s t r i c t .K l o n t z , G . W . , D o w n ey , P . C . & F o c h t , R . L . ( 1 9 7 9 ) . A g o o d d ea l f r o m egg s ac t ocreel , A Manual For Trout and Salmon Production, Ster li ng H. Nel son and Sons ,M u r r ay , U t ah .

    Lew i s , W . H ., Y o p p , J . H . , S ch r amm & B r an d en b e r g , A . M . ( 1 9 7 8 ) . U s e o f h y d r o -pon ics t o main t a in qua l i t y o f r ec i r cu l a t ed water i n a f i sh cu l tu re sys t em, Trans.Am. Fish. Soc., 1 0 7 , 9 2 - 9 .

    M ay o , R . D . ( 1 9 7 6 ) . A t ech n i ca l an d e co n o mi c r ev iew o f t h e u s e o f r eco n d i t i o n edw a t e r i n aq u acu l t u r e . In : Advances in Aquaculture, eds T . V . R . P i l lay and W . A.Di l l , pp . 508-20 .McLaugh l in , P . A . (1980) . Comparative Morphology of Recent Crustacea, W. H.F r eem an an d C o . , S an F r an c i s co .

    McSweeny , D . S . (1977) . In t ens ive cu l tu re sys t ems , In : Shrimp and Prawn Farmingin the Western Hemisphere, ed s J . A . H an s en an d H . L . G o o d w i n , D o w d en ,H u t ch i n s o n an d R o s s , In c . , S tr o u d s b u r g , P en n s y l v an ia , p p . 2 5 5 - 7 2 , 1 9 7 7 .

    M ead e , T . L . Th e t ech n o l o g y o f c l os ed s y s t em cu l t u re o f s a l mo n i d s , Animal Science/NOAA Sea Grant University of Rhode Island, Mar. Technol. Rep., N o . 3 0 .

    Meske, C . H . (197 6) . F i sh cu l tu re i n a r ec ir cu l a t ing sys tem wi th wa ter t r ea tm en t b yact ivated sludge. In: Advances in Aquaculture, eds T. V . R . Pi l lay and W . A. Di ll ,p p . 5 2 7 - 3 1 .M ock , C . R . , R oss , L . R . & Sal ser, B . R . (1975 ) . Des ign and eva lua t ion o f was t eremoval sys t ems fo r sh r imp cu l tu re i n c losed r aceways , World MaricultureSociety 6th Ann. Workshop, J an u a r y .

    Nel son , S . G . , Kn igh t , A . W. & Li , H . W. (1977 ) . T he m etabo l i c cos t o f food u t il iza-t io n an d am mo n i a p r o d u c t i o n b y j u v en i l e Macrobrachium rosenbergiL Comp.Biochem. Physiol., 5 7 A , 6 7 - 7 2 .

    Nigh t inga l e , J . W. (1976 ) . De velop m ent o f b io log i ca l des ign c r it e r i a fo r in t ens ivecu l t u re o f w a r m an d co o l w a t e r s p ec ie s , Tech n i ca l R ep o r t o f K r am er , C h i n an dM ayo Inc . , Sea t t l e , Wash ing ton .

    O t t e , G . & R o s en t h a l , H . ( 1 9 7 9 ) . M an ag emen t o f a c l o sed b r ack is h w a t e r s y s t em f o rh igh dens i t y f ish cu l tu re b y b io log i ca l and chem ica l wa ter t r ea tm en t , Aqua-culture, 1 8 , 1 6 9 - 8 1 .

    R i sa , S . & Sk jervo ld , H . (1975) . Water r euse sys t em fo r smol t p roduct ion , Aqua-culture, 6 , 1 9 1 - 5 .

    Rober t s , R . J . (1978) . Fish Pathology, Bal li e re and Tinda l l , Lon don .R o g e r s , G . L . & K l em e t s o n , S . L . ( 1 9 8 1 ) . Ev a l u a t i o n o f a b io f i l te r w a t e r r eu s e

    s y s t em f o r Macrobrachium rosenbergii p r aw n aq u acu l t u r e p o n d s , Second WaterReuse Symposium, Washing ton DC.Sidda l , J . (1974) . S tud i es o f c losed m ar ine cu l tu re sys t ems , Prog. Fish. Culturist,3 6 , 8 - 1 5 .

  • 7/28/2019 Rogers 1985 Aquacultural-Engineering

    20/20

    154 G. L. Rogers, S. L. Klemetson,Sinderman, C. J. (1977). Diseases and disease control, In: Shrimp and PrawnFarming in the Western Hemisphere, eds J. A. Hanson and H. L. Goodwin,

    Dowden, Hutchinson and Ross Inc., Stroudsburg, Pennsylvania.Smith, C. E. & Williams~ W. G. (1974). Experimental nitrite toxicity in rainbowtrout and chinook salmon, Trans. Amer. Fish. Soc., 2,389-90.Smith, E. D., MiUer, R. D. & Wu, Y. C. (1980). Proc. 1st. National Symposium/Workshop on RBC Technology.

    Speece, R. E. (1973). Trout metabolism characteristics and the rational design of"nitrification facilities for water reuse in hatcheries, Trans. Amer. Fish. Soc.,102,323-34.Spotte, S. H. (1970). Fish and Invertebrate Culture, Water Management in Closed

    Systems, Wiley, London.Thurston, R. V., Russo, R. C. & Emerson, K. (1979). Aqueous ammonia equilibriumtabulation of percent of unionized ammonia, US EPA 600/3- 79-091.US EPA (1976). Quality Criteria or Water, US EPA, Washington DC.Van Gorder, S. (1980). Small scale fish culture systems, Rodale Press ResearchReport 80-12.Weng, C. & Molof, A. H. (1974). Nitrification in the biological fixed film rotatingdisk system, Journal Water Pollution Con trol Federation, 46, 1674-85.Wuhrman, K., Zeenderh, F. & Woker, H. (1947). Uber die fischeriebiologische

    Bedeutung des Ammonium und Ammoniakgehaltes fliessender Gewasser, Vjschr.Naturf Ges. Zurich, 92,198.


Recommended