+ All Categories
Home > Documents > Morales 1985 Aquacultural-Engineering

Morales 1985 Aquacultural-Engineering

Date post: 03-Apr-2018
Category:
Upload: jorge-rodriguez
View: 215 times
Download: 0 times
Share this document with a friend

of 14

Transcript
  • 7/28/2019 Morales 1985 Aquacultural-Engineering

    1/14

    A q u a c u l t u r a l E n g i n e er in g 4 (1985) 257-270

    H arvest ing Marine M icroaigae Species by ChitosanFlocculationJ . M o r a l e s , J . d e la N o i i e * a n d G . P i c a r d ?

    Centre de recherche en nutrition , *D6partement de biologic, tD 6p arte m en t desciences et technologic des aliments, Universit6 Laval, Qu6bec, Canada G 1K 7P 4

    A B S T R A C TMa r ine m ic roa lgae a re s ti l l an im po r tan t l arva l f e ed ing source . On e o f themos t p romi s ing harves t i ng t e chn iques o f t he a lgae p roduced appears t obe chem ica l f i occu la t i on . We repo r t r e su l ts ob ta ined w i th ch i t o san f i occu -l a ti o n o f f iv e m a r i n e s p e c i es o f m i cr o al ga e o f i m p o r t a n c e t o m a r i c u l tu r e(Skeletonema costatum, Dunaliella tertiolecta, Thalassiosira nordenskoldii,Chlorella sp . and Thalassionema sp .) . Th e a lgae were grow n in the labora-to ry i n 20 - l i t e r ba t ch cu l t u re s under nor ma l cond i t i ons i n a rt i fi c ia l seawa ter .W i t h o u t p H c o n t ro l , a 1 0 0 % f i o c c u l a t io n e f f i c ie n c y w a s re a c h e d a t f a i r l yh igh ch i t o san concen t ra t i ons (above 4 0 m g l it e r- I) . When the f ina l p Hw a s a d j u s t e d t o a r o u n d 7 . 8 - 8 . 0 , a 1 0 0 % f l o c c u l a t io n e f f i c ie n c y w a so b t a i n e d w i t h c h i to s a n c o n c e n t r a t i o n s o f 4 0 m g li t er - I o r m o r e . H o w e v e r ,wh en p H was ad jus t ed t o a roun d 7 o r le ss , p r io r t o ch i t o san add i t i on f o rS. costatum a n d Chlorella sp ., t he concen t ra t i on o f ch i t o san requ i red t oo b t a i n a 9 5 - 1 0 0 % f l o c c u l a t i o n e f f i c i e n c y w a s r e d u c e d t o 2 0 m g l it e r x f o rChlorella a n d 2 m g l i t e r -1 fo r S. costatum. The resu l t s are d iscussed in thel ig h t o f t h e c u r r e n t l y a c c e p t e d t h e o r ie s o n f l o c c u la t i o n .

    I N T R O D U C T I O NT h e c o m m e r c i a l c u l t u r e o f m a r i n e o r g a n i s m s is a n in c r e a si n g ly i m p o r -t a n t i n d u s t r y . H o w e v e r , o n e o f th e b o t t l e n e c k s s t il l r e m a i n i n g f o r i tsc o m p l e t e d e v e l o p m e n t is t h e l i m i t e d n u m b e r o f h a t c h er i es a n dn u r s e ri e s a r o u n d t h e w o r l d . In m a n y c a s e s t h e s u c c e s s o f re a r in g d e p e n d su p o n m i c r o a l g a e t h a t a r e r e q u i r e d f o r l a rv a l f e e d i n g . T h i s i s p a r t i c u l a r l yt r u e f o r b i v a lv e s ( G o l d m a n a n d R y t h e r , 1 9 7 6 ; W i l so n , 1 9 7 8 ; P e r s o o n e

    257Aquacu l tu ra l Eng ineer ing 0 1 4 4 - 8 6 0 9 /8 5 /$ 0 3 .3 0 - E l s ev i e r A p plied S c iencePublishers Ltd, England, 1985. Printed in Great Britain

  • 7/28/2019 Morales 1985 Aquacultural-Engineering

    2/14

    258 J. Morales, J. de la Noiie, G. Picard

    a n d C l a u s , 1 9 8 0 ) , c r u s t a c e a n s ( C o o k a n d M u r p h y , 1 9 6 9 ; M o c k a n dM u r p h y , 1 9 71 ; B a r d a c h e t a l . , 1 9 7 2 ; S h i g e n o , 1 9 7 5 ; H a n s o n a n d G o o d -w i n , 1 9 7 7 ; N e w , 1 9 8 2 ) a n d l a r v a e o f f l a t f i s h e s ( H o w e l l , 1 9 7 9 ; S c o t ta n d M i d d l e t o n , 1 9 7 9 ; G a t e s o u p e a n d L u q u e t , 1 9 8 1 ).

    T h e i n t e n s i v e c u l t u r e o f m a r i n e p h y t o p l a n k t o n i s a n a p p e a l i n ga l t e r n a t i v e f o r n u r s e r y o p e r a t i o n s , b u t r e q u i r e s a s o l u t i o n t o t h e p r o b l e mo f h a r v e s ti n g t h e m i c ro a l g a e p r o d u c e d .

    D u r i n g t h e l as t 2 0 y e a r s , a l a rg e n u m b e r o f h a r v e s t i n g m e t h o d s h a v eb e e n d e v e l o p e d ( M o h n , 1 9 8 0 ) . U n f o r t u n a t e l y , a l l t h e s e m e t h o d s s t i l lp r e s e n t e c o n o m i c a l o r t e c h n i c a l d r a w b a c k s ( e. g . u n f e a s i b i l i t y o f s c a li n gu p s o m e m e t h o d s , h i g h e n e r g y c o st , t o x i c i t y p r o b le m s c a u s e d b y t h ec h e m i c a l p r o d u c t s u s e d a s f lo c c u l a n t s , e t c .) . H o w e v e r , a m o n g al lh a r v es t in g m e t h o d s , c h e m i c a l fl o c c u l a t i o n is p r o b a b l y o n e o f t h e m o s tp r o m i s i n g .

    C h e m i c a l f l o c c u l a t io n t e c h n i q u e s w e r e u s e d a t t h e b e g i n n i n g b yw a s t e w a t e r i n v e s t i g a t o rs t o e l i m i n a t e s u s p e n d e d s o l id s a s w e l l a sm i c r o b e s o r m i c r o a l g ae f r o m t h e f i n al e f f l u e n t (I v es , 1 9 5 9 ; T e n n e y a n dS t u m m , 1 9 65 ; T e n n e y e t a l . , 1 9 6 9 ; M c G a r r y , 1 9 7 0 ; M c G a r r y a n dT o n g k a s a m e , 1 9 71 ; T i l t o n e t a l . , 1 9 7 2 ) .A l ar ge n u m b e r o f c h e m i c a l p r o d u c t s h a v e b e e n u s e d as f l o cc u l a n t s;T a b l e 1 s u m m a r i ze s t h e m o s t e x t e n si v e ly te s t e d . A m o n g t h e m , t h o s ew i t h a h i g h e r e f fe c t iv e n e s s a re a l u m a n d s o m e c a t i o n i c p o l y e l e c t r o ly t e s( T e n n e y a n d S t u m m , 1 9 65 ; T e n n e y e t a l . , 1 9 6 9 ; M c G a r r y , 1 9 7 0 ; M c -G a r r y a n d T o n g k a s a m e , 1 9 7 1 ; M o r a i n e e t a l . , 1 9 8 0 ; V iv ie r s an d V anV u u r e n , 1 98 1 ). U n f o r t u n a t e l y , al g al b i o m a s s h a r v e s t e d b y a l u m c o n t a i n sa h ig h c o n c e n t r a t i o n o f a l u m i n i u m a n d t h e r e a r e s o m e i n d i c a ti o n s t h a tc a t i o n i c p o l y e l e c t r o l y t e s ar e h a z a r d o u s f o r h u m a n h e a l t h ( D o d d , 1 9 7 9 ).T o a v o i d s u c h p r o b l e m s , c h i t o s a n , a n a t u r a l p r o d u c t , h a s b e e n u s e d b yI n d i a n i n v e s t i g a t o r s ( N i g a m e t a l . , 1 9 8 0 ; V e n k a t a r a m a n e t a l . , 1 9 8 0 ;B e c k e r a n d V e n k a t a r a m a n , 1 9 8 2 ) . T h e i r r e s u l t s h a v e b e e n c o n f i r m e dm o r e r e c e n t l y b y L a v o i e a n d d e l a N o iS e ( 1 9 8 3 ) i n C a n a d a .

    A l l t h e a u t h o r s w o r k e d o n f r e s h w a t e r m i c ro a l g a e , e x c e p t f o r s o m ep r e l i m i n a r y r e s u lt s o b t a i n e d b y L a v o i e a n d d e la N o iS e ( 1 9 8 3 ) w i t hP h a e o d a c t y l u m t r i c o r n u t u m . W e h a v e t h e r e f o r e u n d e r t a k e n s y s t e m a t i cs t u d i e s w i t h m a r i n e s p e c i e s o f i m p o r t a n c e f o r a q u a c u l t u r e . W e r e p o r th e r e t h e r e s u lt s o b t a i n e d w i t h f iv e o f t h e m u s in g a m o d i f i c a t i o n o f t h eC a n a d i a n p r o c e d u r e ( L a v o i e a n d d e l a N o t i e , 1 9 8 3 ) . T h e i m p o r t a n c eo f c h i t o s a n c o n c e n t r a t i o n a n d p H a d j u s t m e n t s t r a t e g y f o r m i c r o a l g a lf l o c c u l a t i o n w i ll b e s h o w n .

  • 7/28/2019 Morales 1985 Aquacultural-Engineering

    3/14

    Floccu la t i on o f mar ine m icroa lgae w i th ch i t o sanT A B L E 1Flocculating Agents Successfullyused for Algae Recovery

    259

    F l o c c u l a n t C o n c e n t r a ti o n R e f e r e n c e(rag l i ter -1)

    Alum 75-100 McGarry (1970)Alum 125-170 Van Vuuren andVan Vuuren (1965)Lime 300-400 Van Vuuren andVan Vuuren (1965)FeCI3 30 lves (1959)Cationic polyelectrolytes 50-100 Tilton e t a l. (1972)Cationic polyamine (Dow C-31) 3 Tenney et al . (1969)Ca(OH)2 100 Nigame t a l. (1980)Chitosan 50 Nigame t a l. (1980)Alum 70 Lavoie e t a l. (1984)Chitosan 30 Lavoiee t a l. (1984)

    MATERIAL AND METHODSA l g a eThe species used were the following:

    S k e l e t o n e m a c o s t a t u m (Thalassiosiraceae, Bacillariales)D u n a l i e l l a t e r t i o l e c t a (Dunaliellaceae, Volvocales)T h a l a s s i o s i r a n o r d e n s k o l d i i (Thalassiosiraceae, Bacillariales)C h l o r e l l a sp. (Oocystaceae, Chlorococcales)T h a l a s s i o n e m a sp. (Fragilaviaceae, Baccillariales).

    Algal batch cultures were grown in 20-liter Pyrex carboys on amedium derived from that proposed by De Pauw e t a l . (1980), which isitself a modification of tha t of Walne (1956). Table 2 shows the compo-sition and concentra tions of the algal growth medium.

    Artificial seawater was prepared with 'Instant Ocean' to give a salinityof o31 ~o. Algal cultures were maintained in a thermos tat ted room at20C for 6-7 days. Under these conditions, pH varied without controlbetween 8.7 and 9.9 for all cultures. Light intensity was 30000 lux

  • 7/28/2019 Morales 1985 Aquacultural-Engineering

    4/14

    260 J . M o r a l e s , J . d e l a N o l l e , G . P i c a r dT A B L E 2

    Algal Cul ture M edium (M odif ied a f te r De Pauw e t a l . , 1980)FeSO 4.7 H20 0 .278 g l i te r -1MnC 12.4 H2 0 0-47 g l i ter -1NaH2PO4.2 H2 0 5 .0 g l i te r -1 (= 1000 m g P l i te r -1)NaNO3 30-0 g l i te r -1 (= 50 00 m gN l i te r -1)Na2SiO3 20 .0 g l i ter -~ (= 1.5 g Si l i ter -l)M ed ium renewa l ra te s : a lgal s tock m a in tenan ce , 0 .1 -1 -5% week 1 o f s tock so lu t ion ;a lga l cu l tu re ma in tenance : 0 .1 -0 .2% week 1 o f s tock so lu t ion .

    w i t h a p h o t o p e r i o d o f 1 4 : 1 0 ( L /D ) . C e ll d e n s i t y w a s m e a s u r e d b ys p e c t r o p h o t o m e t r y a t 6 7 8 n m ( S t e in , 1 9 7 3 ) in a 1 - cm c u v e t te fo ro p t i c a l d e n s i t y ( O D ) a b s o r b a n c e . C e ll c o u n t s o f 6 0 0 - 1 0 0 0 c ells w e r em a d e u n d e r a m i c r o sc o p e w i t h a M a la ss ez h e m a t o c y t o m e t e r ( B o rd e a u x-C h i m i c , B o r d e a u x , F r a n c e ) b e f o r e e a c h f l o c c u l a ti o n .Flocculat ion procedureT h e c o m p l e t e f l o c c u l a t io n p r o c e d u r e is s h o w n in F ig . 1 . C h i t o s a ne f f i c i e n c y w a s e v a l u a t e d a n d o p e r a t i n g c o n d i t i o n s , p r i m a r i l y f l o c c u l a n tc o n c e n t r a t i o n a n d p H s e n s i t iv i t y , w e r e d e t e r m i n e d in l - li te r f l o c c u l a t i o nt e s t s ( ' j a r t e s t s ' ) .

    Fig. 1.

    A l g a l c u l t u r ehom ogenizat ion (1 m in)

    A d d i t i o n o f f l o c c u l a t i n g a g e n t (c h it o sa n )~ mixing

    p H a d j u s t m e n t ( H C I 0 .1 N o r N a O H 0 -1 N)st irr ing(1 m in at lO Orp m and 4 rain at 40 rpm)

    f l o c c u l a t i o nFloccu la t ion p rocedure by ch i to san (Modi f i ed a f t e r Lavo ie and de l aNofie, 1983).

  • 7/28/2019 Morales 1985 Aquacultural-Engineering

    5/14

    Flocculation of marine microalgae with chitosan 26 1T h e p H w a s a d j u s t e d b y d r o p w i s e a d d i t io n o f 0 .1 N H C1 o r N a O H .

    F o l l o w i n g f l o c c u l a t i o n , t h e f in a l O D a n d p H o f t h e s u p e r n a t a n t w e r ed e t e r m i n e d . T h e f l o c c u l a t i o n e f f i c i e n c y w a s e s t a b l i s h e d b y t h e d i ff e r-e n c e f r o m t h e o r i g i n a l O D .C h i t o s a n

    C h i t o s a n , o b t a i n e d b y d e - a c e t y l a t i o n o f a ~ - N - a c e t y l- o - g lu c o s a m i n e ,m a i n l y e x t r a c t e d f r o m c r u s t a c e a n e x o s k e l e t o n (M u z z a r e ll i, 1 9 7 7 ;N i g a m e t a l . , 1 9 8 0 ) w a s p r o v i d e d b y K y p r o C o . ( S e a t t le , U S A ) .C h i t o s a n f l a k e s w e r e d i s s o l v e d i n a 1 % a c e t i c a c i d s o l u t i o n t o o b t a i n af in a l c h i to s a n s o l u t i o n o f 0 . 5 % ( w / w ) a t p H 3 -5 .

    R E S U L T SA . I n f lu e n c e o f c h i to s a n c o n c e n t r a t i o n o n f lo c c u l a t io n e f f ic i e n c yS e v e ra l c h i t o s a n c o n c e n t r a t i o n s w e r e t e s t e d t o d e t e r m i n e t h e b e s t c o n d i -t i o n f o r a m a x i m a l f l o c c u l a t i o n e f f i c i e n c y . A l ga l c u l t u r e f e a t u r e s b e f o r ea n d a f t e r f l o c c u l a t i o n a r e s h o w n i n T a b l e s 3 a n d 4 .

    TABLE 3Physico-chemical F eature s of Algal Cultures Befo re Floc culat ionSpec ies AIgal eoncentrat ion OD pH

    ( 106 cells, m1-1] (6 78 nm )Chlorella sp. 80.4 0.8 9.50S k e l e t o n e m a 3-0 0.215 9.85

    cos ta tumThalassiossira 5.7 0 .34 9 .70nordensko ld i iThalassionema sp. 3.0 0-21 9.7 0Dunaliella 2.2 0.305 9.25ter t iolecta

  • 7/28/2019 Morales 1985 Aquacultural-Engineering

    6/14

    262 J. Morales, J. de la Nolle, G. PicardT A B L E 4Flocculation Efficiency for Different Algal Species as a Function

    of Chitosan ConcentrationChitosan

    concentrat ion(rag lite r -I)pH a f t e r add i t ion F ina l OD Floccu la tion

    o f f ioccu lan t (6 78 nm ) e f f i c iency {%)Spec ies

    304050607080

    7.7 0-30 62.57-1 0-00 100- 0-00 100- 0 . 0 0 1 0 0- 0 . 0 0 1 0 0- 0 - 0 0 1 0 0

    20 8.4 0.30 1-630 7.9 0.27 11.540 7.6 0.23 24.645 7.1 0-00 10050 6.9 0.00 10060 6.5 0.00 10010 9-4 0.18 47.120 8.8 0.03 91.230 8-4 0.03 91-240 7.6 0-00 100

    Chorella sp.

    Dunaliellatertiolecta

    Thalassiosiranordenskoldi i

    30 9.3 0.1940 9.0 O. 1350 8.9 0-1560 8.6 0.1070 8.2 0.0380 7.4 0.00

    11-6 }39.530.0 S k e l e t o n e m a5 3 . 5 cos ta tum86-0100

    40 9-0 0.13 38.1 )50 8.9 0-10 52.460 8.7 0.10 52.4 T h a l a s s i o -70 8.4 0-09 57.4 nema sp.80 8.0 0.08 61.990 7.1 0-01 95.2

  • 7/28/2019 Morales 1985 Aquacultural-Engineering

    7/14

    Flocc ula t ion o f mar ine microalgae wi th chi tosan 263The chitosan concentration needed to obtain 100% flocculation

    effic iency was d ifferent for each algal culture (Table 4). Several factorsrelated to the flocculation process could explain such differences: celldensity, algal size, ageing of cultures, phase of growth, etc.

    Chitosan concentra tions were always above 40 ra g liter -I andfrequen tly reached 80 and 90 mg liter -a. These values are intermed iatebetween those of Nigam e t a l . (1980), Venkataraman e t a l . (1980) andthose of Lavoie and de la Notie (1983) obtained with fresh watermicroalgae. However, they are of the same range as those reported byLavoie and de la NoiSe (1983) for the marine diatom P h a e o d a c t y l u mt r i c o r n u t u m .

    In these experiments, pH was not adjusted prior to flocculation, butafter adding chitosan solution, it was readjusted to 8.0 by dropwiseaddit ion of 0.1 N HC1 or NaOH.

    The addition of acidic chitosan solution reduced pH values but onlywhen pH dropped to near 7.1, before readjustment to 8.0, was a maxi-mal flocculation efficiency obtained. Due to seawater buffer capacity,the quantities of chitosan needed to drop the pH of algal solutionsbelow 7.5 are higher than those mentioned for freshwater media(Lavoie and de la Nofie, 1983).B. I n f l u e n c e o f f i n a l p H v a l u e s o n f l o c c u l a t i o n e f f i c ie n c yThe importance of pH on flocculation processes was demonstratedby several authors (Ives, 1959; Tenney and Stumm, 1965; Tenneye t a l . , 1969; McGarry and Tongkasame, 1971; Tilton e t a l . , 1972;Venkataraman e t a l . , 1980; Lavoie and de la NoiJe, 1983; Lavoie e t a l . ,1984), but this parameter has never been studied in salt-water media.

    Since pH values obtained with the same chitosan concentration weredifferent for each algal culture, we chose the smallest quantity ofchitosan needed to reach an OD reduction higher than 95% (Table 4).Immediately after adding the flocculant, pH was brought to differentfinal values ranging from 7.4 to 8-2 and higher .

    We have compared flocculation efficiency for all these final pHvalues on the basis of optical density fluctuations of the supernatant.Figure 2 shows a strong influence of final pH on flocculation efficiency.For pH values between 7.8 and 8.0 we noticed a slight decrease inflocculation efficiency. For pH below 7-8, we observed a marked

  • 7/28/2019 Morales 1985 Aquacultural-Engineering

    8/14

    264 J. Morales, J. de la Nolle, G. Picard

    I 0 0

    8 0 -c ,-

    ~ 6 0 -

    = 4 00~D

    ~ 20-i,

    a / m I

    ?/a

    A7 ~ _ _ ~_ m7 1 6 8 1 o { 4 9 ' 2 9 1 6

    F i n o l p HFig. 2. Effe ct of f inal pH of f locculat ion efficiency: D,Dunal ie l la ter t io lec ta (at 45mg l i ter - i chi tosan); o, Thalassiossira nordenskoldi i (a t 4 0 m g liter -1 chitosan); z~,S k e l e t o n e m a c o s t a t u m (at 80 mg liter -1 chitosan); o , Chlorel la sp. (at 60 mg liter -I

    chitosan).

    r e d u c t i o n o f f l o c c u l a t i o n e f f i c ie n c y . T h i s f a c t is r e l a te d t o c h i t o s a nc h a r a c te r i st ic s a s w e l l a s t o t h e p h y s i c o c h e m i c a l r e a c t i o n s b e t w e e n t h ef l o c c u l a n t a n d t h e a l g a l c e l l s .

    F l o c c u l a t i o n e f f i c i e n c y w a s m a x i m a l o n l y f o r p H v a l u e s h i gh e r t h a n8 . 0 . W e d id n o t o b s e r v e a n y r e d u c t i o n i n f lo c c u l a t i o n e f f i c i e n c y i n t h ep H r a ng e 8 . 0 to 9 . 0 f o r a n y o f t h e m i c r o a lg a e s p e c i e s s t u d i e d . T h isc h i t o s a n a c t i v i t y r a n g e i s l a rg e r t h a n t h e 0 . 5 p H r an g e r e p o r t e d b yL a v o i e a n d d e la N o iS e ( 1 9 8 3 ) a n d L a v o i e e t a l . ( 1 9 8 4 ) f o r S c e n e d e s m u sc u l t u r e s i n C a n a d a . V e n k a t a r a m a n e t a l . ( 1 9 8 0 ) m e n t i o n e d a m a x i m a ls e d i m e n t a t i o n r a t e o f S c e n e d e s m u s c u l t u r e i n I n d i a f o r p H v a l u e sb e t w e e n 7 - 5 a n d 8 . 5 .C . I n f l u e n c e o f p H p r e a d ju s t m e n t o n f i o c c u l a t i o n e f f i c i e n c yI n t h e e x p e r i m e n t s d e s c r i b e d i n s e c t i o n A , m a x i m a l f l o c c u l a t i o ne f f i c ie n c y w a s o b s e r v e d a t p H v a lu e s b e l o w 7 . 5 , w h i c h w e r e o b t a i n e db y a d d i n g t h e a c i d ic s o l u t i o n o f c h i to s a n . I n t h e p r e s e n t e x p e r i m e n t s , ap H p r e a d j u s t m e n t w a s d o n e p r io r t o c h i t o s a n a d d i t i o n in o r d e r to f in d

  • 7/28/2019 Morales 1985 Aquacultural-Engineering

    9/14

    Flocculation of marine microalgae with chitosan 265the minimal flocculant concen tratio n leading to a sedime ntation greaterthan 95%.

    These experiments were carried out with Chlorella sp. and Skele-tonema costatum as representatives of two of the main groups ofmarine microalgae. Algae culture features are shown in Table 3.

    The preadju stment of pH was done by dropwise addition of 0-1 NHCI. Three minutes after chitosan addition, pH was readjusted to afinal value of 8.0 by adding 0.1N NaOH. This preadjustment of pHallowed a 50% reduction of flocculant concentration for Chlorellaculture, while a maximal sedimentation of 100% was obtained onSkeletonema culture with a c oncent rat ion of 2 mg liter-~; this is aflocculant conce ntration 40 times lower than the original concen tration(Table 5).

    Several important observations can be reported at this point:- For maximal algal flocculation, the agitation time as well as the

    stirring speed mu st be increased by 50%.- Microalgal-chitosan flocs are smaller as compared to those observed

    in section A experiments.

    T A B L E 5Flocculation Efficiency for Chlorella sp. and Skeletonema costatum with pH

    AdjustmentChitosan pH pH after Final DO Flocculation

    concentration preadjustment chitosan (678 nm) efficiency(mg liter -1) {drops f addition (%)HCl I N)

    Species

    10 7-9 (9) 7-1 0.14 82.520 8-1 (8) 6.9 0-03 96.230 8.4 (8) 6.9 0-02 97-540 8-3 (7) 6.6 0.01 98.310 7.0 (10) 6.6 0.00 1002 5-7 (15) 5.3 0-00 100a

    Chlorella sp.Chlorella sp.Chlorella sp.Chlorella sp.Skeletonema

    eostatumSkeletonemacostatuma This includes both sedimented and floated flocs (see text).

  • 7/28/2019 Morales 1985 Aquacultural-Engineering

    10/14

    266 J. Morales, J. de la Noiie, G. Picard

    - W h e n p H v a lu e s a re b r o u g h t t o a s l o w as 5 . 3 f o r S k e l e t o n e m ac u l t u r e , s m a l l b u b b l e s a p p e a r o n a lg a l f lo c s l if t in g m o s t o f t h e a lg a ls u s p e n s i o n t o t h e s u r f a c e ; t h i s c o u l d b e d u e t o c h e m i c a l r e a c t i o n sb e t w e e n t h e a c i d i c s o l u t i o n a n d t h e s il ic a f ru s t u l e o f t h e d i a t o m s .

    D I S C U S S I O NS i nc e t h e 1 9 5 0s , f l o c c u l a t io n a n d c o a g u l a t io n p h e n o m e n a h a ve b e e n t h es u b j e c t o f i n te n s iv e r e s ea r c h b y d i f f e r e n t a u t h o r s w h o h a v e d e v e l o p e dt w o b r o a d t h e o r i e s t o e x p l a i n t h e m e c h a n i s m s o f c o l lo i d p r e c i p it a t io n .T h e c h e m i c a l t h e o r y , w h i c h i s t h e o l d e r o n e , a s s u m e d t h a t d e s t a b i l i z a -t i o n ( a n d f in a l p r e c i p i t a t i o n ) o f c o l l o id s is d u e t o c h e m i c a l i n t e r a c t i o n ss u c h a s c o m p l e x f o r m a t i o n a n d p r o t o n t r an s f e r (S m e l li e a n d L a M e r ,1 9 5 8 ). L a t e r o n , a p h y s ic a l t h e o r y e m p h a s i z e d t h e im p o r t a n c e o fp h y s i c a l f a c t o r s s u c h a s z e t a p o t e n t i a l r e d u c t i o n o r i o n p a i r f o r m a t i o ni n t h e d e s t a b i l i z a t io n o f c o ll o i d s ( S t u m m a n d M o r g a n , 1 9 6 2 ) .

    A t p r e s e n t, t h e i n f lu e n c e o f b o t h p h y s ic a l a n d c h e m i c a l f a c t o rs o nt h e c o a g u l a t i o n a n d f l o c c u l a t i o n p r o c e s s e s is r e c o g n i z e d . C l a r k e t a l .( 1 9 7 7 ) d e s c r i b e d c o a g u l a t i o n a s a r e d u c t i o n o f n e t e l e c tr ic a l r e p u ls iv ef o r c e s a t p a r t ic l e s u r f a c es b y e l e c t r o l y t e s i n s o l u t i o n , w h i l e f l o c c u l a t i o ns h o u l d b e a n a g g r e g a t i o n b y c h e m i c a l b r i d g in g b e t w e e n p a r ti c le s .M i c r o a lg a e a s w e l l a s b a c t e r i a o r p r o t o z o a c a n b e c o n s i d e r e d h y d r o -p h il ic b io c o l lo i d s ( T e n n e y a n d S t u m m , 1 9 6 5) .

    T h e s t a b i li t y o f h y d r o p h i l i c c o l l o id s (l a c k o f t e n d e n c y t o a g g lo -m e r a t e ) d e p e n d s u p o n a m a r k e d a f f in i ty f o r w a t e r r a t h e r t h a n u p o nt h e s li g ht m u t u a l l y r e p u l s iv e c h a r g e s (u s u a l ly n e g a t i v e ) t h a t t h e y p o s se s s( C l a r k e t a l . , 1 97 7 ). T e n n e y a n d S t u m m ( 1 9 6 5 ) p o i n t e d o u t t h a t t h es u r fa c e c h a r ge d e n s i t y o f b a c t e r i a is s t r o n g l y p H - d e p e n d e n t . T h i sc r i t e r i o n is a l s o v a l id f o r m i c r o a l g a e ( I v e s, 1 9 5 9 ) . C e l l w a l ls o f m i c r o -a lg ae a re m a i n l y c o m p o s e d o f g l u c o - a n d m u c o - p o l y s a c c h a r i d e s ( J e n se n ,1 9 8 3 ) ; t h e s e s u b s t a n c e s h a v e l o w is o e l e c tr i c p o i n t s ( T e n n e y a n d S t u m m ,1 9 6 5 ) a n d t h e y a r e n e g a ti v e ly c h a r g e d d u e t o i o n i z e d c a r b o x y l ic g r o u p s( S t u m m a n d M o r ga n , 1 9 6 2) .

    A m e c h a n i s m e x p l a i n in g t h e f l o c c u l a ti o n p r o c es s o f b i o c o l lo i d s w a sp r o p o s e d b y T e n n e y a n d S t u m m ( 1 9 6 5 ) . I ts m a i n f e a tu r e s ar e t h ef o ll o w i ng : n a t u r a l p o l y m e r s s u c h a s c o m p l e x p o l y sa c c h a r id e s a n d p o l y -a m i n o a c id s ar e e x c r e t e d o r e x p o s e d a t t h e s u rf a ce , p r e d o m i n a n t l yd u r i n g t h e d e c l in i n g g r o w t h p h a se a n d e n d o g e n o u s r e s p ir a t io n

  • 7/28/2019 Morales 1985 Aquacultural-Engineering

    11/14

    Flocc ula t ion o f rnar ine microalgae wi th chi tosan 267( A v n i m e l e c h e t a l . , 1 9 8 2 ) ; t h e s e p o l y m e r i c m o l e c u l e s a re o f s u f f ic i e n tl e n g t h t o f o r m b r i d g e s b e t w e e n m i c r o b i a l p a r ti c le s . C h i t o s a n , a s w e l la s c a t io n i c p o l y e l e c t r o l y t e s , b e i n g p o s i t iv e l y c h a rg e d , s h o u l d f o r m c o m -p l e x b r i d g e s b e t w e e n t h e n e g a t i v e ly c h a r g e d s u b s t a n c e s o f t h e a lg a es u rf ac e ( T e n n e y a n d S t u m m , 1 9 6 5; A v n i m e l e c h e t a l . , 1 9 8 2 ) . T e n n e ya n d S t u m m ( 1 9 6 5 ) r e p o r t e d t h a t in t h e i n t e r a c ti o n o f p o l y e l e c tr o -l y r e s w i t h c e l l s , e l e c t r o s t a t i c f o r c e s a r e n e c e s s a r y t o ' b i n d ' p o s i t i v e l yc h a r g e d s e g m e n t s o f t h e p o l y e l e c t r o l y t e t o t h e m i c r o b i a l su r fa c e .

    O u r e x p e r i m e n t s e m p h a s i z e t h e i m p o r t a n c e o f d i m i n i s h i n g p H v a lu e sb e l o w 7 . 0 p r i o r t o r e a d j u s t m e n t t o 8 . 0 f o r f i n a l p r e c i p i t a t i o n . T h i s p Hr e d u c t i o n i s l i k el y t o h a v e t w o m a i n c o n s e q u e n c e s : 1 , i n c r e a s e d c h i t o s a na c t iv i ty b y v i sc o s it y r e d u c t i o n ; 2 , i n d u c e d r e d u c t i o n o f m e a n s u r fa c ec h a r g e o f m i c r o a l g a e a n d a l t e r a t i o n o f i t s s t a b i l i t y . O n c e t h e b r i d g i n gis m a d e , a f i n a l p H a d j u s t m e n t t o 8 . 0 i n c r e a s e s f i r s tl y c h i t o s a n v i s c o s i tya n d f i n al ly c a u s e s m i c r o a l g a e - c h i t o s a n f l o c p r e c i p i t a t i o n .

    W e h a ve o b s e r v e d t h e n e c e s s it y t o e x t e n d a g i t a ti o n w h e n w e w o r k e da t v e r y l o w c h i t o s a n c o n c e n t r a t i o n ( i. e. 2 m g l it e r -1 ) a n d p H p r e a d j u s t -m e n t . T h e f ir st o b s e r v a ti o n is i n li ne w i t h w h a t T e n n e y a n d S t u m m( 1 9 6 5 ) m e n t i o n e d , n a m e l y ' . . . w i t h a g iv en m i c r o o r g a n is m - p o l y e l e c t r o -l yr e s u s p e n s i o n , th e e x t e n t o f p o l y e l e c t r o l y t e a d s o r p t i o n a p p a r e n t l yi nc r ea s es w i t h p r o l o n g e d a g i t a t i o n . . . '. M o r e r e se a r ch i s n e e d e d t oe s t a b li s h t h e o p t i m a l a g i t a t i o n t i m e s f o r a g i ve n c h i t o s a n c o n c e n t r a t i o na n d t h e o p t i m a l m i n i m a l p H v a lu e f o r a m a x i m a l c h it o s a n - m i c r o a lg a lb r id g i ng w i t h a m i n i m a l f l o c c u l a n t c o n c e n t r a t i o n .

    F i n a l ly , i t a p p e a r s t h a t t h e g e n e r a l f l o c c u l a t i o n p r o c e s s d e s c r i b e d f o rf r e s h w a t e r m i c r o o r g a n i s m s a ls o h o l d s f o r m a r i n e a lg a l s p e c ie s .

    A C K N O W L E D G E M E N T ST h i s w o r k w a s s u p p o r t e d b y g r a n t s f r o m t h e N a t u r a l S c ie n c es a n dE n g i n e e r in g R e s e a r c h C o u n c i l o f C a n a d a a n d t h e F o n d s F C A C o ft h e m i n i s t 6 r e d e l ' E d u c a t i o n d u Q u 6 b e c . W e t h a n k M r A l a i n L a v o i e f o rh e l p f u l d i s c u ss io n s , D r N . E i d h e n f o r i m p r o v i n g t h e m a n u s c r i p t a n d t h eK y p r o C o . ( S e a t t l e , U S A ) f o r p r o v i d in g u s w i t h t h e c h i to s a n .

    R E F E R E N C E SAvnimelech, Y., Troeger, B. W. & R eed, L . W. (1982). M utua l flocculation o f algaeand clay: Evidence and implications. Sc i ence , 216, 63-5.

  • 7/28/2019 Morales 1985 Aquacultural-Engineering

    12/14

    2 6 8 J. M orales, J. de la Noiie, G. PicardBa r d a c h , J . E . , Ry t h e r , J . H . & Mc La r n e y , W . O . ( 1 9 7 2 ) . Aquaculture. The Farming

    and H usbandry o f Fresh-Water and Marine Organisms, W f l e y - I n t e r s c i e n c e , Ne wY o r k .

    B e c k e r , E . W . & V e n k a t a r a m a n , L . V . ( 1 9 8 2 ) . B i o t e c h n o l o g y a n d e x p l o i t a t i o n o fa lg ae - T h e I n d i a n a p p r o a c h . G e r m a n A g e n c y f o r T e c h n i c a l C o o p e r a t i o n ( G T Z ) .

    C l a r k , J . W ., V i e s s ma n , W . & Ha m m e r , M. ( 1 9 7 7 ) . Water Supply and Pollut ionControl, 3 r d e d n , H a r p e r I n t e r n a ti o n a l E d i t io n s , N e w Y o r k .

    C o o k , H . L . & Mu r p h y , M. A . ( 1 9 6 9 ) . Th e c u l t u r e o f l ar va l p e n a i e d s h r imp . Trans.Am. Fish . Soc. , 9 8 ( 4 ) , 7 5 1 - 4 .

    D e P a u w , N . , V e r l e t , H . & d e L e e n h e e r , J r , L . ( 1 9 8 0 ) . H e a t e d a n d u n h e a t e d o u t d o o rc u l t u r e s o f ma r i n e a l ga e w i t h a n i ma l m a n u r e . I n : Algae Biomass, e d s . G . Sh e l e fa n d C . J . So e d e r , E l s e v i e r / No r t h Ho l l a n d B i o me d i c a l P r e s s , Ams t e r d a m, p p .3 1 5 - 4 1 .

    D o d d , J . C . ( 1 9 7 9 ) . A l g a e p r o d u c t i o n a n d h a r v e st i n g f r o m a n i ma l wa s t e w a t e r s .Agricultural Wastes, 1 , 2 3 - 3 7 .G a t e s o u p e , F . J . & L u q u e t , P . ( 1 9 8 1 ) . P r a c t ic a l d i e t f o r ma s s c u l t u r e o f t h e r o t i f e r

    Brachionus plicatilis" app l i ca t ion to l a rva l r ea r ing o f sea bass Dicentrarchuslabrax. Aq uacu l ture, 2 2 , 1 4 9 - 6 3 .Go l d ma n , J . C . & Ry t h e r , J . H . ( 1 9 7 6 ) . W a s t e r e c l a ma t i o n i n a n i n t e g r a t e d f o o d

    c h a i n s y s t e m. I n : Biological Contro l of Water Po llut ion, e d s J . To u r b i e r a n dR. W . P i er s o n , J r , Un i v . Pe n n s y l v a n i a P r e s s , p p . 1 9 7 - 2 1 4 .

    H a n s o n , J . A . & G o o d w i n , H . L . ( 1 9 7 7 ) . Shrim p andP raw n Farming in the WesternHemisphere , D o w d e n , H u t c h i n s o n & R o s s , In c . , S t r o u d s b u r g , P e n n s y lv a n ia .H o w e l l , B . R . ( 1 9 7 9 ) . Ex p e r i m e n t s o n t h e r ea r in g o f l ar va l t u r b o t Scop tha lmus

    maximus. Aquacul ture, 1 8 , 2 1 5 - 2 5 .Ives , K. J . (1959) . The s ign i f i cance o f su r face e l ec t r i c change on a lgae in wa te r

    p u r i f i c a t i o n . J . Biochem. Microbiol . Technol . Eng., 1 ( 1 ) , 3 7 - 4 7 .J e n s e n , A . ( 1 9 8 3 ) . Ex c r e t i o n o f o r g a n i c c a r b o n a s f u n c t i o n o f n u t r i e n t s tr e ss . Pa p e r

    p r e s e n t e d i n 'Ph y s i o l o g i c a l a n d b i o c h e m i c a l a s p e c t s o f ma r i n e b i o l o g y ' , Ta o r m i n a ,I t a l y , 5 - 8 Se p t .

    La v o i e , A . & d e l a No t i e , J . ( 1 9 8 3 ) . Ha r v e s t i n g mi c r o a l g a e w i t h c h i t o s a n . J . WormMaricult. Soc., 1 4 , 6 8 5 - 9 4 .La v o i e , A . , d e l a No i i e , J . & S e r o d e s , J . B . ( 1 9 8 4 ) . R 6 c u p 6 r a t i o n d e mi c r o a l g u e s e n

    e a u x u s6 e s: 6 t u d e c o m p a r a t i v e d e d i v e r s a g e n t s fl o c u l a n t s . Can . J. O r. Eng.,1 1 ( 2 ) , 2 6 6 - 7 2 .Mc Ga r r y , M. ( 1 9 7 0 ) . A l g a l f l o c c u l a t i o n w i t h a l u mi n i u m s u l p h a t e a n d p o l y e l e c t r o -

    ly te s . J . Water Pollut . Co ntrol Fed ., 4 2 , 1 9 1 - 2 0 0 .Mc Ga r r y , M. G . & To n g k a s a me , C . ( 1 9 7 1 ) . W a t e r r e c l a ma t i o n a n d a l g a e h a r v e s t i n g .J. Water Pollut . Co ntrol Fe d., 4 3 ( 5 ), 8 2 4 - 3 5 .M o c k . C . R . & Mu r p h y , M. A . ( 1 9 7 1 ) . Te c h n i q u e s f o r r ais in g p e n a e i d s h r imp f r o m

    egg to pos t l a rvae . Proc. First Ann - Workshop World Maricult . Soc., 1 , 1 4 3 - 5 6 .

  • 7/28/2019 Morales 1985 Aquacultural-Engineering

    13/14

    Flocculation o f marine microalgae with chitosan 269M ohn, F . N. (1980 ) . Exp er iences and s t rategies in the recovery of b iomass f rom

    mass cul tures of microa lgae . In : Algae Biomass, eds G. She lef and C. J . Soeder ,Elsevier /North Hol land B iomedica l Press, Am sterdam .

    Mora ine , R . , She lef , G. , Sandbank, E. , Bar-Moshe , Z. & Shvar tzburd , L. (1980) .Rec overy of sewage-borne a lgae: f lo ccula t ion and cen tr i fuga t ion techniques .In : Algae Biomass, eds G. She lef & C. J . Soeder , Elsevier /North Hol land Bio-med ica l P re ss , Ams te rdam , pp . 531-45 .

    M uzzarelli , R . A. A. (197 7). Chitin, Pergamon Press , Oxford , New York.New , M. B. (Ed. ) . (19 82) . GiantPrawn Farming, Elsevier , Am sterdam .Nigam, B . P . , Ramana than , P . K . & Venka ta raman , L . V . (1980) . App l i ca t ion o f

    chi tosa n as a f lo cculan t for the cul tures of the green a lgae: Scenedesm us acutus .Arch. Hydrobiol . , 88 (3 ) , 378-87 .Persoone , G. & Claus , C . (1980) . M ass cul ture o f a lgae: A bot t lene ck in the nurserycul tur ing of mol luscs . In : Algae Biomass, eds G. S hele f & C. J . Soede r, Elsevier/No r th Ho l l and B iomed ica l P res s, Am s te rdam, pp . 2 65-85 .

    Sco t t , A. P . & Mid dle ton , C . (1979 ) . Unice llu la r a lgae as a food for tu rbo t (Scop-tha lmus maximus L.) la rvae . The importance of d ie ta ry long cha in poly-unsa tu ra ted fa t ty acids. Aquacul ture, 18 , 227-40 .

    Shigeno, K. (1975) . Shrimp Culture in Japan, Ass. In te rn . Tech . P romo t ion , Toky o ,J apan .

    Smel lie, R . H . J r . & La M er, V. K. (195 8) . Floc cula t ion , subs idence and f ' f l tra t ion ofphosphate s l imes . VI . A quant i ta t ive theory of f ' t l t ra t ion of f loccula ted suspen-sions. J. Colloid. Sci., 2 3 , 5 8 9 - 9 9 .

    Ste in , J . R . (Ed. ) . (1983) . H and boo k o f Phycological Methods. Cul ture M ethodsand G rowth Measuremen t, Cambridge Univ. Press , Cambridge.

    Stu m m , W. & M organ, J . J . (196 2) . Chem ica l aspec ts of coagula t ion . J . Am. WaterWorks Ass n. , 54 (8 ) , 971-94 .

    T en ne y, M . W., Echelberg er Jr. , W. F . , Schuessler, R. G. & Pavo ni, J . L. (196 9).Alga l f loccula t ion wi th synthe t ic organic polye lec t ro ly tes . Appl. Microbiol.,18 (6) , 965-71.

    Ten ney , M. W. & S tum m , W. (1965) . Chemica l f loccu la t ion o f mic roorgan i sms inbio logical was te t rea tm ent . J . Water Pollut . Co ntrol Fed ., 37 , 1370-88 .

    Ti l ton , R . C. , Mu rphy , J . & Dixon, J . K . (1972) . The f loccu la t ion of a lgae wi thsyn the t i c po lym er ic f loccu lan ts . WaterRes . , 6, 155-64.

    Van V uuren, L. R . J. & Van V uuren , F . A. (1965) . Rem oval of a lgae f rom was te-w a t e r m a t u r a t i o n p o n d e f f l u e n t . WPCFJ. , 37 (9) , 1256-62.

    Venk a ta raman , L . V . , N igam, B . P. & Ram ana than , P. K . (1980) . Rura l o r ien tedf re sh wa te r cu l t iva t ion and p rod uc t ion o f a lgae in Ind ia . In : Algae Biomass, edsG. S helef & C. J . So eder , Elsevier /North H ol land Biomedica l Press, Am sterdam ,pp . 81 -95 .Viviers , J . M . P. & Van V uuren , L. R . J . (1981 ) . In t ro du ct io n: H arves t ing and

  • 7/28/2019 Morales 1985 Aquacultural-Engineering

    14/14

    270 J. Morales, J. de la Nolle, G. Pieardprocess ing . In : ICastewater or Aquaculture, eds J . U. Grob belaar , C . J . Soeder &D. F. To er ien , Univ . O.F.S. Pub l . SeE C. No. 3 , Bloem fonte in , So uth Afr ica ,pp . 49 -51 .

    Walne, P . (1956 ) . Ex per im enta l rear ing of the la rvae of Ostrea edulis L. in thelabora to ry . Fishery Invest., London Ser. 2, 20 (9) .

    Wilson, J . H. (1978) . The food va lue ofPhaeodactylum tricornutum Bohl in to thelarvae of Ostrea edulis 1. and Crassostrea gigas T h u n b e r g . Aquaculture, 1 3 ,3 1 3 - 2 3 .


Recommended