+ All Categories
Home > Documents > Roman Krems University of British Columbiagroups.chem.ubc.ca/krems/talks/TalkMadridSept2011.pdf12...

Roman Krems University of British Columbiagroups.chem.ubc.ca/krems/talks/TalkMadridSept2011.pdf12...

Date post: 13-Oct-2020
Category:
Upload: others
View: 1 times
Download: 0 times
Share this document with a friend
73
Collective excitations of ultracold molecules on an optical lattice Roman Krems University of British Columbia
Transcript
Page 1: Roman Krems University of British Columbiagroups.chem.ubc.ca/krems/talks/TalkMadridSept2011.pdf12 Nobel prizes to 27 scientists for research of low temperature phenomena since 1913

Collective excitations of ultracold molecules on an optical lattice

Roman Krems University of British Columbia

Page 2: Roman Krems University of British Columbiagroups.chem.ubc.ca/krems/talks/TalkMadridSept2011.pdf12 Nobel prizes to 27 scientists for research of low temperature phenomena since 1913

Collective excitations of ultracold molecules�trapped on an optical lattice�

Sergey  Alyabyshev  Chris  Hemming  Felipe  Herrera  Jie  Cui  Marina  Li9nskaya  Jesus  Perez  Rios  Ping  Xiang  Alisdair  Wallis  

Funding:  

Peter  Wall  Ins9tute    for  Advanced  Studies  

                     Roman Krems�

Zhiying  Li,  now  at  Harvard  University  Timur  Tscherbul,  now  at  Harvard  University  

Page 3: Roman Krems University of British Columbiagroups.chem.ubc.ca/krems/talks/TalkMadridSept2011.pdf12 Nobel prizes to 27 scientists for research of low temperature phenomena since 1913

This talk

1. Ultracold chemistry – a new exciting research field

2. New physics with ultracold molecules in an optical lattice

Page 4: Roman Krems University of British Columbiagroups.chem.ubc.ca/krems/talks/TalkMadridSept2011.pdf12 Nobel prizes to 27 scientists for research of low temperature phenomena since 1913

12 Nobel prizes to 27 scientists for research of low temperature phenomena since 1913

1997 - for the development of methods to cool and trap atoms with laser light

2001 - for the achievement of Bose-Einstein condensation in dilute gases of alkali metal atoms, and for early

fundamental studies of the properties of the condensates

Page 5: Roman Krems University of British Columbiagroups.chem.ubc.ca/krems/talks/TalkMadridSept2011.pdf12 Nobel prizes to 27 scientists for research of low temperature phenomena since 1913

12 Nobel prizes to 27 scientists for research of low temperature phenomena since 1913

1997 - for the development of methods to cool and trap atoms with laser light

2001 - for the achievement of Bose-Einstein condensation in dilute gases of alkali metal atoms, and for early

fundamental studies of the properties of the condensates

20XX - for Ultracold Chemistry

Page 6: Roman Krems University of British Columbiagroups.chem.ubc.ca/krems/talks/TalkMadridSept2011.pdf12 Nobel prizes to 27 scientists for research of low temperature phenomena since 1913

10-8

10-7

10-6

10-5

10-4

10-3

10-2

10-1

100

101

102

Temperature scale (Kelvin)

Page 7: Roman Krems University of British Columbiagroups.chem.ubc.ca/krems/talks/TalkMadridSept2011.pdf12 Nobel prizes to 27 scientists for research of low temperature phenomena since 1913

10-8

10-7

10-6

10-5

10-4

10-3

10-2

10-1

100

101

102

Temperature scale (Kelvin)

cold

Page 8: Roman Krems University of British Columbiagroups.chem.ubc.ca/krems/talks/TalkMadridSept2011.pdf12 Nobel prizes to 27 scientists for research of low temperature phenomena since 1913

10-8

10-7

10-6

10-5

10-4

10-3

10-2

10-1

100

101

102

Temperature scale (Kelvin)

ultra-cold cold

Page 9: Roman Krems University of British Columbiagroups.chem.ubc.ca/krems/talks/TalkMadridSept2011.pdf12 Nobel prizes to 27 scientists for research of low temperature phenomena since 1913

10-8

10-7

10-6

10-5

10-4

10-3

10-2

10-1

100

101

102

Temperature scale (Kelvin)

ultra-cold cold hot

war

m

Page 10: Roman Krems University of British Columbiagroups.chem.ubc.ca/krems/talks/TalkMadridSept2011.pdf12 Nobel prizes to 27 scientists for research of low temperature phenomena since 1913

10-8

10-7

10-6

10-5

10-4

10-3

10-2

10-1

100

101

102

Temperature scale (Kelvin)

ultra-cold cold hot

war

m

Coldest T in

the Universe

Page 11: Roman Krems University of British Columbiagroups.chem.ubc.ca/krems/talks/TalkMadridSept2011.pdf12 Nobel prizes to 27 scientists for research of low temperature phenomena since 1913

Magnetic trap

middle of the trap

Mag

net

ic f

ield

Page 12: Roman Krems University of British Columbiagroups.chem.ubc.ca/krems/talks/TalkMadridSept2011.pdf12 Nobel prizes to 27 scientists for research of low temperature phenomena since 1913

More delicate methods: evaporative coolingEvaporative cooling

Page 13: Roman Krems University of British Columbiagroups.chem.ubc.ca/krems/talks/TalkMadridSept2011.pdf12 Nobel prizes to 27 scientists for research of low temperature phenomena since 1913

� ����� � ��� ��� � � ������� ���������� !�" ���#�#��

�����&���� ��� � � �� ���$������� ��� ��� ��� ������ ������������� ���� ��������Q� �� ��� ��������������� ��� � � � ��w��� ����������E����� ���������� � ��� �!� � "� ����#�%$��&� �(' � ��� ��) �+* �� ����� �� �����^��� � � � � ���n������� � � � � �"�� � ��� �� ����� �� � � �� ��� ������)� � ���������� � � �&� �() �+* �� ����� �

��������� �8��rux!y�jlr�y$# ���z� ��� � ��� ��� � ��^�����8� * � � ��"����� ���"� � � � ��"� � �"��"������� � � ���

� ��� � � � �^����� � � � �z� ���^�����)� � �������� ����(' � �^��� ��� ����� � ��� ��� � ����� �

� �Ev (�t�x!y�kn{ t�r y �Ev����hj~rwy � ( k v wt�(Ov�M��xnv���v�r �hj~ru� v o6� �Ev�(Ot�x!y�k {� ��rwy�k���� ��v o (�����v �8� � j�kZo�{�rhj�(�t���x������� ��� "����������� �%� � ��� ��� �n��� � � �()������^��"� � �%� � ��� ��� ��) �+* �� ����� �

��� ������

Page 14: Roman Krems University of British Columbiagroups.chem.ubc.ca/krems/talks/TalkMadridSept2011.pdf12 Nobel prizes to 27 scientists for research of low temperature phenomena since 1913

� ����� � ��� ��� ��� ������� ���������� !�" ���#�#��

� ��� ������ �� ����������������������������� �!�"�#%$ &�'�(�) *�+, $.- / 0�-213#4$3'�1�-&35

687:9<;>=@?

Page 15: Roman Krems University of British Columbiagroups.chem.ubc.ca/krems/talks/TalkMadridSept2011.pdf12 Nobel prizes to 27 scientists for research of low temperature phenomena since 1913

� ����� � ��� ������� ������� ���������� !�" ���#�#��

� ����� ����� � �� ��� �� ��� ��� � ��� ��� ���� ���'�

� � � ��� � � � �

10-6

10-4

10-2

100

102

Temperature (K)

Typ

ical

Rat

e C

oeff

icie

nt room temperature

��� ���������������������� "!�#%$'&)(�*,+-#�.0/,/21436587,7,*09

��� ������

Page 16: Roman Krems University of British Columbiagroups.chem.ubc.ca/krems/talks/TalkMadridSept2011.pdf12 Nobel prizes to 27 scientists for research of low temperature phenomena since 1913

� ����� � ��� � ��#�� ������� ���������� !�" ���#�#��

� ����� ����� � �� ��� �� ��� ��� � ��� ��� ���� ���'�

� � � ��� � � � �

10-6

10-4

10-2

100

102

Temperature (K)

Typ

ical

Rat

e C

oeff

icie

nt room temperature

��� ���������������������� "!�#%$'&)(�*,+-#�.0/,/21436587,7,*09

��� ������

Page 17: Roman Krems University of British Columbiagroups.chem.ubc.ca/krems/talks/TalkMadridSept2011.pdf12 Nobel prizes to 27 scientists for research of low temperature phenomena since 1913

� ����� � ��� � �n��� ������� ���������� !�" ���#�#��

� ����� ����� � �� ��� �� ��� ��� � ��� ��� ���� ���'�

� � � ��� � � � �

10-6

10-4

10-2

100

102

Temperature (K)

Typ

ical

Rat

e C

oeff

icie

nt room temperature

��� ���������������������� "!�#%$'&)(�*,+-#�.0/,/21436587,7,*09

��� ������

Page 18: Roman Krems University of British Columbiagroups.chem.ubc.ca/krems/talks/TalkMadridSept2011.pdf12 Nobel prizes to 27 scientists for research of low temperature phenomena since 1913

� ����� � ��� � ���"� ������� ���������� !�" ���#�#��

� ����� ����� � �� ��� �� ��� ��� � ��� ��� ���� ���'�

� � � ��� � � � �

10-6

10-4

10-2

100

102

Temperature (K)

Typ

ical

Rat

e C

oeff

icie

nt room temperature

��� ���������������������� "!�#%$'&)(�*,+-#�.0/,/21436587,7,*09

��� ������

Page 19: Roman Krems University of British Columbiagroups.chem.ubc.ca/krems/talks/TalkMadridSept2011.pdf12 Nobel prizes to 27 scientists for research of low temperature phenomena since 1913

� ����� � ��� � � ��� ������� ���������� !�" ���#�#��

� ����� ����� � �� ��� �� ��� ��� � ��� ��� ���� ���'�

10-6

10-4

10-2

100

102

Collision energy (Kelvin)

Typ

ical

cro

ss s

ectio

n

��� ������

Page 20: Roman Krems University of British Columbiagroups.chem.ubc.ca/krems/talks/TalkMadridSept2011.pdf12 Nobel prizes to 27 scientists for research of low temperature phenomena since 1913

� ����� � ��� � � ��� ������� ���������� !�" ���#�#��

� ����� ����� � �� ��� �� ��� ��� � ��� ��� ���� ���'�

10-6

10-4

10-2

100

102

Collision energy (Kelvin)

Typ

ical

cro

ss s

ectio

n

Wigner’s laws:elastic cross section ~ constantreaction cross section ~ 1/velocity

��� ������

Page 21: Roman Krems University of British Columbiagroups.chem.ubc.ca/krems/talks/TalkMadridSept2011.pdf12 Nobel prizes to 27 scientists for research of low temperature phenomena since 1913

� ����� � ��� � ���"� ������� ���������� !�" ���#�#��

� ����� ����� � �� ��� �� ��� ��� � ��� ��� ���� ���'�

Wigner’s laws:elastic cross section ~ constantreaction cross section ~ 1/velocity

rate ~ velocity cross sectionelastic rate ~ 0reaction rate ~ constant

x

��� ������

Page 22: Roman Krems University of British Columbiagroups.chem.ubc.ca/krems/talks/TalkMadridSept2011.pdf12 Nobel prizes to 27 scientists for research of low temperature phenomena since 1913

� ����� � ��� � � ��� ������� ���������� !�" ���#�#��

� ����� ����� � �� ��� �� ��� ��� � ��� ��� ���� ���'�

� � � �� � � �������� ��������� � � �������3���~��#����� � �� ��� �

��� ����� � ��� � ��������� � � � � � � �� � � � �"�"��� ��� � �"� � � �"����'��#�� � � � �� ��� �

��� ������

Page 23: Roman Krems University of British Columbiagroups.chem.ubc.ca/krems/talks/TalkMadridSept2011.pdf12 Nobel prizes to 27 scientists for research of low temperature phenomena since 1913

� ����� � ��� � � ��� ������� ���������� !�" ���#�#��

� ��� � ��2��� ����������� ������� � �2�����#%$ &�'���� - *�� � $.-/ 0�-21�#%$�'�1�-&��� )�-�� / #�� ��- -21�� -�� (�� - � $ �

687:9<;>=@?

Page 24: Roman Krems University of British Columbiagroups.chem.ubc.ca/krems/talks/TalkMadridSept2011.pdf12 Nobel prizes to 27 scientists for research of low temperature phenomena since 1913

Ultracold chemistry – new regime of chemistry

•  controlled chemical reactions

•  quantum effects in chemistry

•  detailed mechanisms of chemical reactions

•  role of individual ro-vibrational energy levels in determining chemical reactivity

Possibility to study 

See “Cold Controlled Chemistry”: R. V. Krems, PCCP 10, 479 (2009)

Page 25: Roman Krems University of British Columbiagroups.chem.ubc.ca/krems/talks/TalkMadridSept2011.pdf12 Nobel prizes to 27 scientists for research of low temperature phenomena since 1913

Ultracold chemistry – new regime of chemistry

•  effects of quantum statistics and many-body physics on chemical reactions

•  effects of tunable fine and hyperfine interactions on chemical reactions

•  effects of external space symmetry on chemical reactions

Possibility to study 

See “Cold Controlled Chemistry”: R. V. Krems, PCCP 10, 479 (2009)

Page 26: Roman Krems University of British Columbiagroups.chem.ubc.ca/krems/talks/TalkMadridSept2011.pdf12 Nobel prizes to 27 scientists for research of low temperature phenomena since 1913

Collective excitations of molecules in an optical lattice

Page 27: Roman Krems University of British Columbiagroups.chem.ubc.ca/krems/talks/TalkMadridSept2011.pdf12 Nobel prizes to 27 scientists for research of low temperature phenomena since 1913

It has now become possible to create dense ensembles of diatomic molecules, both polar and non-polar, at nanoKelvin temperatures

Page 28: Roman Krems University of British Columbiagroups.chem.ubc.ca/krems/talks/TalkMadridSept2011.pdf12 Nobel prizes to 27 scientists for research of low temperature phenomena since 1913
Page 29: Roman Krems University of British Columbiagroups.chem.ubc.ca/krems/talks/TalkMadridSept2011.pdf12 Nobel prizes to 27 scientists for research of low temperature phenomena since 1913

Ultracold molecules on optical lattices = molecular crystals with unusual properties:

Intermolecular interactions are very weak, much weaker than the energy of rotational

splitting in molecules

Molecules are held in the crystal by optical field forces, not intermolecular interactions

Page 30: Roman Krems University of British Columbiagroups.chem.ubc.ca/krems/talks/TalkMadridSept2011.pdf12 Nobel prizes to 27 scientists for research of low temperature phenomena since 1913

Is rotational excitation of a molecule a single-particle or collective excitation?

Page 31: Roman Krems University of British Columbiagroups.chem.ubc.ca/krems/talks/TalkMadridSept2011.pdf12 Nobel prizes to 27 scientists for research of low temperature phenomena since 1913

What can we do with molecules on a lattice that cannot be done with conventional crystals?

Page 32: Roman Krems University of British Columbiagroups.chem.ubc.ca/krems/talks/TalkMadridSept2011.pdf12 Nobel prizes to 27 scientists for research of low temperature phenomena since 1913
Page 33: Roman Krems University of British Columbiagroups.chem.ubc.ca/krems/talks/TalkMadridSept2011.pdf12 Nobel prizes to 27 scientists for research of low temperature phenomena since 1913

Frenkel exciton

φn = |00〉1|00〉2...|10〉n|00〉n+1...|00〉N

ψ =∑n

Cnφn

Page 34: Roman Krems University of British Columbiagroups.chem.ubc.ca/krems/talks/TalkMadridSept2011.pdf12 Nobel prizes to 27 scientists for research of low temperature phenomena since 1913

Frenkel exciton

φn = |00〉1|00〉2...|10〉n|00〉n+1...|00〉N

ψk =∑n

eik·rn√Nφn

Page 35: Roman Krems University of British Columbiagroups.chem.ubc.ca/krems/talks/TalkMadridSept2011.pdf12 Nobel prizes to 27 scientists for research of low temperature phenomena since 1913

Dispersion Curves!

-20

-10

0

10

20

E(k

) (k

Hz)

0 1 2 3 k a

-100

-75

-50

-25

0

25

50

E(k

) (k

Hz)

0 1 2 3 k a

-25

-20

-15

-10

-5

0

5

10

15

20

E(k

) (

in u

nit

s of

10

-6B

)

!

" , #

!

"

#

Page 36: Roman Krems University of British Columbiagroups.chem.ubc.ca/krems/talks/TalkMadridSept2011.pdf12 Nobel prizes to 27 scientists for research of low temperature phenomena since 1913

Negative effective mass => ! negative refraction of EM field!

Page 37: Roman Krems University of British Columbiagroups.chem.ubc.ca/krems/talks/TalkMadridSept2011.pdf12 Nobel prizes to 27 scientists for research of low temperature phenomena since 1913

Rotational excitons are controllable…

Page 38: Roman Krems University of British Columbiagroups.chem.ubc.ca/krems/talks/TalkMadridSept2011.pdf12 Nobel prizes to 27 scientists for research of low temperature phenomena since 1913

-40

-20

0

20

40

E(k

) (k

Hz)

0 1 2 3k a

-120

-80

-40

0

40

80

E(k

) (k

Hz)

-90

-60

-30

0

30

60

E(k

) (

kHz)

0 1 2 3k a

-40

-20

0

20

40

60

E(k

) (

kHz)

E E

α, β

γ

α

β

γ

xx

Page 39: Roman Krems University of British Columbiagroups.chem.ubc.ca/krems/talks/TalkMadridSept2011.pdf12 Nobel prizes to 27 scientists for research of low temperature phenomena since 1913

Excitons are sensitive to impurities …

Exciton – impurity interactions can be controlled!

Page 40: Roman Krems University of British Columbiagroups.chem.ubc.ca/krems/talks/TalkMadridSept2011.pdf12 Nobel prizes to 27 scientists for research of low temperature phenomena since 1913
Page 41: Roman Krems University of British Columbiagroups.chem.ubc.ca/krems/talks/TalkMadridSept2011.pdf12 Nobel prizes to 27 scientists for research of low temperature phenomena since 1913

Impurities!

Pure Exciton Hamiltonian:

Page 42: Roman Krems University of British Columbiagroups.chem.ubc.ca/krems/talks/TalkMadridSept2011.pdf12 Nobel prizes to 27 scientists for research of low temperature phenomena since 1913

Impurities!

Scatterer with the strength = difference in transition energies:

Breaks translational symmetry Mixes states with different k

One impurity:

Page 43: Roman Krems University of British Columbiagroups.chem.ubc.ca/krems/talks/TalkMadridSept2011.pdf12 Nobel prizes to 27 scientists for research of low temperature phenomena since 1913

-60

-30

0

30

60

∆Eeg

(kH

z)

0 1 2 3 4ε (kV/cm)

1.0

1.2

1.4

1.6

1.8

2.0∆E

eg (

×10

4 MH

z)

-30 -15 0 15 30ε − ε 0 (mV/cm)

100

102

104

106

108

σ 2D

(Å)

LiCs

LiRb

Page 44: Roman Krems University of British Columbiagroups.chem.ubc.ca/krems/talks/TalkMadridSept2011.pdf12 Nobel prizes to 27 scientists for research of low temperature phenomena since 1913

cross sections for |k|! !/a, in 3D and 2D, as

"3D(k, V0) =2!!2/|m!|Tk + E(3D)

b

, (5a)

"2D(k, V0) =4!2/k

!2 + ln2

!E

(2D)b (!"Tk)

Tk(!"E(2D)b )

" , (5b)

where E(3D)b = (2/!"V0/!)2! and E(2D)

b = !/ [exp(4!/!V0)" 1]. In 3D, the bound state

exists only if V0 > 2!/!. Resonant enhancement of the scattering cross section occurs for

values of V0 that support a shallow bound state (Eb # T $ 0). As a result of the negative

e"ective mass of the exciton, the bound state that leads to resonance is produced by a

repulsive potential. Equations (??) are derived in the approximation !Jn,0 = 0. Including

!Jn,0 in the calculation leads to a shift of the positions of the resonance and the resonant

enhancement of the scattering cross section at a slightly di"erent value of V0 [? ].

FIG. 2: (color online) (a) Excitation energies !Eeg for transitions |0, 0% $ |1,M% with M = 0

(upper curve) and M = ±1 (lower curve) vs electric field for three polar molecules. (b) Expanded

view of the encircled area in panel (a). (c) Exciton-impurity 2D scattering cross sections for

|k|a = 4 & 10"5 (solid line), |k|a = 4 & 10"3 (dashed line), and |k|a = 4 & 10"2 (dotted line).

a = 400 nm and E0 = 3228.663 V/cm

Experiments with optical lattices allow for controlled deposition of ultracold particles at

di"erent lattice sites, which can be used to generate exciton-impurity systems with con-

trolled spatial distributions of impurities. Another advantage of optical lattices for studying

exciton dynamics is the absence of phonons [? ]. Therefore, for low exciton density, one

can use scattering by impurities to fully control the dynamics of exciton wavepackets. A

generalization of Hamiltonian (??) describes the dynamics of an exciton in the presence of

Ni substitutional impurities at positions in in the lattice. This Hamiltonian can be written

as H = H0 + W + V , with the corresponding matrix elements in the basis of free-exciton

states |#k% given by

'H0%q,k = E(k)#k,q, (6a)

'W %q,k =2!J(a)

Nmol(cosq · a + cosk · a)

Ni#

in=1

ei(q"k)·in , (6b)

5

Exciton – impurity Hamiltonian matrix!

!V "q,k =V0

Nmol

Ni!

in=1

ei(q!k)·in , (6c)

where V = V0, and !J(a) = !Jn,n!1. Here, we neglect the fast-decaying terms !Jn,m

with |n # m| > 1. The terms V and W correspond to diagonal and o"-diagonal disorder,

respectively, in the site representation.

FIG. 3: (color online) Probability density |!(x)|2 (solid line) of a lattice eigenstate near the top of

the energy band, for a 1D array of 1000 LiCs molecules, with 1% of LiRb impurities (dots). Panels

correspond to di"erent values of V0: (a) V0 = 0, (b) V0/h = 21 kHz, and (c) V0/h = 29 kHz.

When an external electric field is such that V = 0, exciton-impurity scattering occurs

only due to the di"erence in dipole moments between host and impurity molecules. The

eigenstates of the corresponding Hamiltonian are localized wavepackets in real space. Figure

3 shows the probability density of a particular eigenstate of Hamiltonian (6) near the top

of the energy band, for di"erent values of V0. We consider a 1D array of LiCs separated by

400 nm, with a random distribution of LiRb impurities (d0 = 4.165 Debye, 2Be = 13.2268

GHz [? ]), which gives !J(a)/h = #6.89 kHz. Due to the negative e"ective mass of free-

exciton states, high energy eigenstates are dominated by free-exciton states with k $ 0.

These eigenstates are localized (Fig. 3a). Delocalization of these states can be achieved by

applying an electric field so that V0 $ #4!J(a) (see Fig. 3b). In this case, for a given

k, the matrix elements !V "q,k and !W "q,k cancel for q $ k, which suppresses the coupling

between the corresponding free-exciton states. Localized eigenstates with di"erent energies

become delocalized at di"erent values of V0 because !W "q,k is wavevector dependent. The

wavepackets are localized for values of V0 that do not balance the e"ect of !J(a) (Fig. 3c).

Microwave photons with linear polarization can be used to generate a rotational excita-

tion. We consider an excitation generated in a lattice with impurities in the presence of

an electric field that corresponds to V0 = 0. The electric field can then be tuned to intro-

duce a repulsive or attractive potential V0. This can be used to modify the dynamics of

exciton-impurity scattering. To illustrate this, we set V = V0f(t) in Hamiltonian (6), and

solve the corresponding time-dependent Schrodinger equation. We expand the eigenstate

of the system in the free-exciton basis, |#(t)" ="

k C(k, t)|#k"e!iE(k)t/!, and integrate the

corresponding 2Nmol % 2Nmol system of first-order di"erential equations for the complex

amplitudes C(k, t).

6

Off-diagonal disorder!

Diagonal disorder!

Page 45: Roman Krems University of British Columbiagroups.chem.ubc.ca/krems/talks/TalkMadridSept2011.pdf12 Nobel prizes to 27 scientists for research of low temperature phenomena since 1913

-500 -250 0 250 500x (a)

0

10

20

30

40

50

60|Ψ

(x)|2 (

1/N

mol

)

-500 -250 0 250 500x (a)

0

2

4

6

|Ψ(x

)|2 (1/

Nm

ol)

-500 -250 0 250 500x (a)

100

200

300

400No diagonal disorderStrong diagonal disorder

Diagonal disorder ~ off-diagonal disorder

Page 46: Roman Krems University of British Columbiagroups.chem.ubc.ca/krems/talks/TalkMadridSept2011.pdf12 Nobel prizes to 27 scientists for research of low temperature phenomena since 1913

Applications!•  Time-domain quantum simulation of localization of quantum particles:!

timescale of Anderson localization ! dynamics of exciton localization as a function of effective mass, exciton ! bandwidth, and exciton-impurity interaction strength ! effect of disorder correlations on localization and delocalization!

•  Negative refraction of MW fields!

•  Controlled preparation of many-body entangled states of molecules!

•  Effects of dimensionality and finite size on energy transfer in crystals!

Page 47: Roman Krems University of British Columbiagroups.chem.ubc.ca/krems/talks/TalkMadridSept2011.pdf12 Nobel prizes to 27 scientists for research of low temperature phenomena since 1913

Energy diagram of a 2Σ diatomic molecule

How do electric fields affect spin relaxation?

• Induce couplings between the rotational levels (!N = 1)

• Increase the energy gap between the rotational levels

R. V. Krems, A.Dalgarno, N.Balakrishnan, and G.C. Groenenboom, PRA 67, 060703(R) (2003)

Page 48: Roman Krems University of British Columbiagroups.chem.ubc.ca/krems/talks/TalkMadridSept2011.pdf12 Nobel prizes to 27 scientists for research of low temperature phenomena since 1913

0 200 400 600 800 1000B(mT)

-0.4

-0.2

0

0.2

0.4

0.6

0.8

1

Ene

rgy

(cm

-1)

0 5 10 15 20B(mT)

14800

15000

15200

15400E

nerg

y (M

Hz)

534 536 538 540B(mT)

7400

7425

7450

7475

7500

7525

Ene

rgy

(MH

z)

α

βγ

γ

γ

β

Page 49: Roman Krems University of British Columbiagroups.chem.ubc.ca/krems/talks/TalkMadridSept2011.pdf12 Nobel prizes to 27 scientists for research of low temperature phenomena since 1913
Page 50: Roman Krems University of British Columbiagroups.chem.ubc.ca/krems/talks/TalkMadridSept2011.pdf12 Nobel prizes to 27 scientists for research of low temperature phenomena since 1913

530 540 550 560 570 580-5

-4

-3

-2

-1

0C

oupl

ing

Ene

rgy

(kH

z)

E=1 kV/cmE=2 kV/cmE=5 kV/cm

530 540 550 560 570 580B (mT)

0

5

10

15

20

Exc

iton

Ban

dwid

th (

kHz)

Page 51: Roman Krems University of British Columbiagroups.chem.ubc.ca/krems/talks/TalkMadridSept2011.pdf12 Nobel prizes to 27 scientists for research of low temperature phenomena since 1913
Page 52: Roman Krems University of British Columbiagroups.chem.ubc.ca/krems/talks/TalkMadridSept2011.pdf12 Nobel prizes to 27 scientists for research of low temperature phenomena since 1913
Page 53: Roman Krems University of British Columbiagroups.chem.ubc.ca/krems/talks/TalkMadridSept2011.pdf12 Nobel prizes to 27 scientists for research of low temperature phenomena since 1913

-1000 -500 0 500 10000

1

2

3

|Ψ|2 (

1/N

mol

)

-1000 -500 0 500 10000

1

2

3

4

-1000 -500 0 500 1000x (in units of a)

0

5

10

15

20

|Ψ|2 (

1/N

mol

)

-1000 -500 0 500 1000x (in units of a)

0

10

20

30

40

(c) (d)

(a) (b)

Page 54: Roman Krems University of British Columbiagroups.chem.ubc.ca/krems/talks/TalkMadridSept2011.pdf12 Nobel prizes to 27 scientists for research of low temperature phenomena since 1913

Frenkel exciton

φn = |00〉1|00〉2...|10〉n|00〉n+1...|00〉N

ψk =∑n

eik·rn√Nφn

Page 55: Roman Krems University of British Columbiagroups.chem.ubc.ca/krems/talks/TalkMadridSept2011.pdf12 Nobel prizes to 27 scientists for research of low temperature phenomena since 1913

Frenkel exciton

φn = |00〉1|00〉2...|10〉n|00〉n+1...|00〉N

ψk =∑n

eik·rn√Nφn

Ψ =1√Nmol

∑i

CiΦSi

ΦSi = |MS = 1/2〉ri∏j 6=i|MS = −1/2〉rj.

Page 56: Roman Krems University of British Columbiagroups.chem.ubc.ca/krems/talks/TalkMadridSept2011.pdf12 Nobel prizes to 27 scientists for research of low temperature phenomena since 1913

Frenkel exciton

φn = |00〉1|00〉2...|10〉n|00〉n+1...|00〉N

ψk =∑n

eik·rn√Nφn

Ψ =1√Nmol

∑i

CiΦSi

ΦSi = |MS = 1/2〉ri∏j 6=i|MS = −1/2〉rj.

α| ↑〉| ↓〉 + β| ↓〉| ↑〉

Page 57: Roman Krems University of British Columbiagroups.chem.ubc.ca/krems/talks/TalkMadridSept2011.pdf12 Nobel prizes to 27 scientists for research of low temperature phenomena since 1913

0 1 2 3 4 50

0.2

0.4

0.6

0.8

1B = 536.9 mT

0 1 2 3 4 50

0.2

0.4

0.6

0.8

1B = 536.8 mT

0 1 2 3 4 5t (ms)

0

0.2

0.4

0.6

0.8

1B = 536.7 mT

0 1 2 3 4 5t (ms)

0

0.2

0.4

0.6

0.8

1B = 536.5 mT

|A(t

)|2

Page 58: Roman Krems University of British Columbiagroups.chem.ubc.ca/krems/talks/TalkMadridSept2011.pdf12 Nobel prizes to 27 scientists for research of low temperature phenomena since 1913

Applications!

•  Time-domain quantum simulation of localization of quantum particles:!

timescale of Anderson localization ! dynamics of exciton localization as a function of effective mass, exciton ! bandwidth, and exciton-impurity interaction strength ! effect of disorder correlations on localization and delocalization!

•  Negative refraction of MW fields!

•  Controlled preparation of many-body entangled states of molecules!

•  Effects of dimensionality and finite size on energy transfer in crystals!

Crystal with tunable impurities:!

Optical lattice of magnetic molecules:!•  Crystal with tunable magnetic properties, tunable spin waves!

•  Preparation of many-body entangled states of spin up-down pairs!

•  ???!

Page 59: Roman Krems University of British Columbiagroups.chem.ubc.ca/krems/talks/TalkMadridSept2011.pdf12 Nobel prizes to 27 scientists for research of low temperature phenomena since 1913

Tunable exciton – phonon interactions = �Tunable Holstein Hamiltonian �

Page 60: Roman Krems University of British Columbiagroups.chem.ubc.ca/krems/talks/TalkMadridSept2011.pdf12 Nobel prizes to 27 scientists for research of low temperature phenomena since 1913

H = Hex + Hph + HI

Hex =∑i

(εeg +Dij

)B†i Bi +

∑i,j 6=i

Ji,jB†i Bj

Hph = ~ω0∑q,λ

(a†q,λaq,λ +

1

2)

HI =1

2

∑i,j 6=i

(a†i + ai − a

†j − aj

)×{

gDij

[B†i Bi + B

†jBj

]+ gJij

[B†i Bj + B

†jBi

]}

Page 61: Roman Krems University of British Columbiagroups.chem.ubc.ca/krems/talks/TalkMadridSept2011.pdf12 Nobel prizes to 27 scientists for research of low temperature phenomena since 1913

0 2 4 6 8 10Electric field (kV/cm)

-30

-20

-10

0

10

20

30

Ene

rgy

(kH

z)

0 2 4 6 8 10Electric field (kV/cm)

-40

-20

0

20

40

60gJ

gJ

gD

gD

One dimensional array of LiCs molecules

Θ = 90 Θ = 0

Page 62: Roman Krems University of British Columbiagroups.chem.ubc.ca/krems/talks/TalkMadridSept2011.pdf12 Nobel prizes to 27 scientists for research of low temperature phenomena since 1913

0

0.2

0.4

0.6

0.8

1Pr

obab

ility

0 100 200 300 400Time (µs)

0

0.2

0.4

0.6

0.8

1

Prob

abili

ty

0 100 200 300 400t (µs)

02468

10

E (

kV/c

m)

No phonons

With phonons

Page 63: Roman Krems University of British Columbiagroups.chem.ubc.ca/krems/talks/TalkMadridSept2011.pdf12 Nobel prizes to 27 scientists for research of low temperature phenomena since 1913

Quantum particles with tunable quantum statistics…

Page 64: Roman Krems University of British Columbiagroups.chem.ubc.ca/krems/talks/TalkMadridSept2011.pdf12 Nobel prizes to 27 scientists for research of low temperature phenomena since 1913
Page 65: Roman Krems University of British Columbiagroups.chem.ubc.ca/krems/talks/TalkMadridSept2011.pdf12 Nobel prizes to 27 scientists for research of low temperature phenomena since 1913

Kinematic Interaction

One-particle state:

Two-particle state:

Bose/Fermi

other

Operators are neither bosonic, nor fermionic

Page 66: Roman Krems University of British Columbiagroups.chem.ubc.ca/krems/talks/TalkMadridSept2011.pdf12 Nobel prizes to 27 scientists for research of low temperature phenomena since 1913

What does this mean?

The same molecule cannot be excited twice!

The two excitations are coupled!

k1 and k2 are not conserved, however the total wavevector K = k1 + k2 should be conserved

Page 67: Roman Krems University of British Columbiagroups.chem.ubc.ca/krems/talks/TalkMadridSept2011.pdf12 Nobel prizes to 27 scientists for research of low temperature phenomena since 1913

Two-Particle Schroedinger Equation

In terms of K and k:

Page 68: Roman Krems University of British Columbiagroups.chem.ubc.ca/krems/talks/TalkMadridSept2011.pdf12 Nobel prizes to 27 scientists for research of low temperature phenomena since 1913

Bound state solutions?

Notation:

No solutions …

Page 69: Roman Krems University of British Columbiagroups.chem.ubc.ca/krems/talks/TalkMadridSept2011.pdf12 Nobel prizes to 27 scientists for research of low temperature phenomena since 1913

However,

Schroedinger equation has a simple solution

if the dispersion curve shape is such that for a specific value of the total wave vector K=K* (and specific branches ρ1 and ρ2) the sum does not depend on the relative wave vector k. This solution is (N-1)-time degenerate (n-degeneracy) and has the following wave function:

n is the (fixed) distance between excitations in site representation!

Under this condition

Page 70: Roman Krems University of British Columbiagroups.chem.ubc.ca/krems/talks/TalkMadridSept2011.pdf12 Nobel prizes to 27 scientists for research of low temperature phenomena since 1913

Can happen for branches with high symmetry:

K

|k|=0 |k|=π/4a

|k|=3π/4a |k|=π/a

2π/a -2π/a

Page 71: Roman Krems University of British Columbiagroups.chem.ubc.ca/krems/talks/TalkMadridSept2011.pdf12 Nobel prizes to 27 scientists for research of low temperature phenomena since 1913

Can be realized with Frenkel rotational excitons in an optical lattice with oblique electric field:

E θ

E = 10 kV/cm E = 0

Page 72: Roman Krems University of British Columbiagroups.chem.ubc.ca/krems/talks/TalkMadridSept2011.pdf12 Nobel prizes to 27 scientists for research of low temperature phenomena since 1913

What can we do with molecules on a lattice that cannot be done with conventional crystals?

1.  Study rotational excitons: Rotational excitons are controllable * Electric field can be used to control exciton effective mass, exciton – impurity interactions and exciton – exciton interactions

2. Study quantum statistics of excitons * The role of kinematic interactions remains an open question 3. Study energy transfer in molecular ensembles * Could be used for quantum simulation of energy transfer in photosynthetic complexes and polaron physics

Page 73: Roman Krems University of British Columbiagroups.chem.ubc.ca/krems/talks/TalkMadridSept2011.pdf12 Nobel prizes to 27 scientists for research of low temperature phenomena since 1913

ReferencesFelipe Herrera, Marina Litinskaya, and RK,space holder space Phys. Rev. A 82, 033428 (2010).

Jesus Perez-Rios, Felipe Herrera and RK,space holder space New J. Phys. 12, 103007 (2010).

Felipe Herrera and RK, arXiv:1010.1782

T. V. Tscherbul and RK, PRL 97, 083201 (2006).

Related ReviewsR. V. Krems, Perspective on “Cold Controlled Chemistry”,fill this space Phys. Chem. Chem. Phys. 10, 479 (2008).

R. V. Krems, Int. Rev. Phys. Chem. 24, 99 (2005).

Book

R. V. Krems, W. C. Stwalley, and B. Friedrich (eds.), “Cold Molecules:Theory, Experiment, Applications”, CRC Press (2009) - 750 pages.


Recommended