+ All Categories
Home > Documents > RSC Article Template (Version 3.2) · Anisole Bromination30,35 ... Formylation71 Toluene...

RSC Article Template (Version 3.2) · Anisole Bromination30,35 ... Formylation71 Toluene...

Date post: 18-Aug-2018
Category:
Upload: nguyencong
View: 213 times
Download: 0 times
Share this document with a friend
46
S1 SUPPORTING INFORMATION Aromatic Reactivity Revealed: Beyond Resonance Theory & Frontier Orbitals James J. Brown and Scott L. Cockroft* EaStCHEM School of Chemistry, University of Edinburgh King’s Buildings, West Mains Rd, Edinburgh, EH9 3JJ, UK E-mail: [email protected] Contents: Methods Supporting Figures S1 to S19 Supporting Tables S1 to S3 Supporting References 61 to 328 Electronic Supplementary Material (ESI) for Chemical Science This journal is © The Royal Society of Chemistry 2013
Transcript

S1

SUPPORTING INFORMATION

Aromatic Reactivity Revealed: Beyond Resonance Theory & Frontier Orbitals

James J. Brown and Scott L. Cockroft*

EaStCHEM School of Chemistry, University of Edinburgh

King’s Buildings, West Mains Rd, Edinburgh, EH9 3JJ, UK

E-mail: [email protected]

Contents:

Methods

Supporting Figures S1 to S19

Supporting Tables S1 to S3

Supporting References 61 to 328

Electronic Supplementary Material (ESI) for Chemical ScienceThis journal is © The Royal Society of Chemistry 2013

S2

Methods Minimised geometries and molecular surfaces were calculated using Spartan ’08 with

DFT/B3LYP/6-311G*, unless otherwise indicated. ionisation energies and electrostatic

potentials are plotted on the 0.002 electrons/bohr3

density surface. Ionisation energy

surfaces emphasising minima are scaled from the average local ionisation energy

minimum on the molecular surface, ĪS,min (red) to ĪS,min +0.4 eV (blue) of each molecule.

A step-by-step guide describing how this was done is provided on the following page.

ĪS meta and ĪS para values for the plots in Figures 3 and S17 were taken on the 0.002

electrons/bohr3 average local ionisation energy surface directly over the centre of the

carbon atoms perpendicular to the plane of the aromatic ring as shown in Figure S1.

Electronic Supplementary Material (ESI) for Chemical ScienceThis journal is © The Royal Society of Chemistry 2013

S3

Step-by-step guide for calculating ionisation energy surfaces using Spartan ‘08:

1) Open the ‘Model Kit’ structure drawing tool by selecting ‘New’ from the ‘File’ menu,

and draw a structure of interest. Using benzene as an example, click the "Rings" button

and left click in the drawing window.

2) Click the ‘Setup’ menu and select ‘Surfaces’ to open the surfaces window.

Electronic Supplementary Material (ESI) for Chemical ScienceThis journal is © The Royal Society of Chemistry 2013

S4

3) Click the ‘Add’ button and select ‘ionization’ from the ‘Property’ drop-down menu.

Additionally, electrostatic surfaces can be added by selecting ‘potential’, while the

HOMO and LUMO visualisations are available under the ‘Surface’ drop-down menu.

4) Select ‘Calculations’ from the ‘Setup’ menu in the main program window. In the

window that opens, select ‘Density Functional’ from the ‘with’ menu, then select the

required functional and basis set. In this work, the B3LYP functional was used with the

6-311G* basis set. Click ‘Submit’ to save and start the calculation.

Electronic Supplementary Material (ESI) for Chemical ScienceThis journal is © The Royal Society of Chemistry 2013

S5

5) After the calculation is complete, open the surfaces window by selecting ‘Surfaces’

from the ‘Setup’ menu, and check the box to the left of the ‘density’ ‘ionization’ entry.

6) To scale the surface appropriately, open the properties window by selecting

‘Properties’ from the Display menu in the main program, and left-click click anywhere on

the surface of the molecule.

Electronic Supplementary Material (ESI) for Chemical ScienceThis journal is © The Royal Society of Chemistry 2013

S6

7) The surface can be scaled by changing the values in the ‘Property Range’ boxes. The

procedure used in this work leaves the minimum value unchanged and the maximum

value is adjusted to the min+0.4 eV. The surface can be made transparent by selecting

this option from the ‘Style’ drop-down menu. Furthermore, the model can be changed to

‘Ball and Spoke’ via the ‘Model’ menu in the main program window. To read a value

from a specific point on the surface, place the cursor over that point. The value at the

cursor point is shown on the left of the properties window as “Val: 9.787659” eV in this

example.

Electronic Supplementary Material (ESI) for Chemical ScienceThis journal is © The Royal Society of Chemistry 2013

S7

Method Selection:

We quickly established that average local ionisation energy calculations performed using

Density Functional Theory (DFT) successfully rank the relative nucleophilicities of

aromatic carbons and heteroatoms where previously used Hartree-Fock (HF) methods

sometimes fail (Figure S2) 25, 61-63

. Indeed, average local ionisation energies calculated

using DFT have been shown to be theoretically robust ,61

and were also employed in the

most detailed assessment of local average ionisation energies prior to the present study

(21 aromatic molecules)20

.

Correlations of average local ionisation energy minima calculated using DFT and various

basis sets against experimental reactivity parameters were also found to be better than

corresponding calculations performed using HF (Figures S16-S17).

Figure S1. Example showing the positions on the 0.002 electrons/bohr3 average local

ionisation energy surface corresponding to ĪS meta and ĪS para in the example of

trifluoromethyl benzene.

ĪS meta

ĪS para

Electronic Supplementary Material (ESI) for Chemical ScienceThis journal is © The Royal Society of Chemistry 2013

S8

Figure S2. Experimental reactivity patterns for a range of aromatic substrates and

corresponding average local ionisation energy surfaces at the 0.002 electrons/bohr3

surface calculated using the methods shown. Examples where the calculation correctly

ranks the relative nucleophilicities of different reactive sites are highlighted with a green

background. References for the observed reactivity patterns are given in the captions of

other Supporting Figures.

Electronic Supplementary Material (ESI) for Chemical ScienceThis journal is © The Royal Society of Chemistry 2013

S9

Electronic Supplementary Material (ESI) for Chemical ScienceThis journal is © The Royal Society of Chemistry 2013

S10

Figure S3 (on preceding page). Comparison of surface-encoded ionisation energy

surfaces, electrostatic potentials, HOMO and HOMO-1 lobes of monosubstituted

benzenes in relation to their experimental reactivity in electrophilic aromatic substitution

reactions. Surface-encoded ionisation energies account for the reactivity of

monosubstituted benzenes and the magnitude of these minima correspond with the

relative nucleophilicities of these molecules. There is no obvious link between purely

electrostatic or orbital-based models and the reactive behaviour of this series of

molecules. The ionisation energy surfaces emphasising the relative reactivity of different

molecules in the second row are plotted on a standardised scale from 8.7 eV (red) to 10.7

eV (blue). Electrostatic potentials are scaled from the lowest potential on each aromatic

ring (red) to this value plus 15 kJ mol-1

(blue). HOMO and HOMO-1 lobes correspond to

0.032 electrons/bohr3. References for the observed reactivity patterns are given in the

captions of the other Supporting Figures.

For a general review of nitration by electrophilic

aromatic substitution64

Phenoxide anion:

Reimer-Tiemann reaction32, 65

Allylation66

Kolbe-Schmitt reaction31

Chlorination29

Benzoate anion

Chlorination38

Bromination39

Anisole

Bromination30,35

Chlorination29, 30, 67

Iodination30, 68, 69

Nitration70

Formylation71

Toluene

Chlorination30, 67, 72-74

Bromination75,30, 35, 74, 76

Iodination30, 36

Nitration70, 77, 78

Trimethylphenyl silane

In Pd-catalysed cross coupling reactions79

Review80

Desilylation (reaction with H+)

81

Bromination82

Chlorination83

Iodination84, 85

Nitration85

Fluorination86

Phenylboronic acid

Nitration87

Chlorobenzene and other halobenzenes

Nitration28, 70, 78

Chlorination29, 30, 67

Bromination 30,35

Iodination36

Phenylacetonitrile

Nitration42, 88

Benzonitrile

Nitration34, 37, 78

Bromination75,35

Chlorination34

Iodination36

Nitrobenzene

Nitration34, 78

Iodination89, 90

91

Bromination30, 75,35

Chlorination30, 34

Benzyltrimethyl phosphonium cation

Nitration92

Trimethylphenyl phosphonium cation

Nitration41, 92

Trimethyl anilinium cation

Nitration41, 93

Anilinium cation

Nitration93, 94

Electronic Supplementary Material (ESI) for Chemical ScienceThis journal is © The Royal Society of Chemistry 2013

S11

Figure S4. Experimental reactivity patterns and corresponding calculated average local

ionisation energy surfaces and minimum values (ĪS, min) at the 0.002 electrons/bohr3

surface for cationic monosubstituted benzenes. Calculations were performed using the

LACVP combination of basis sets where DFT/B3LYP/6-311G* was not supported.

References for the observed reactivity patterns are given below.

Anilinium cation

Nitration93, 94

Trimethyl anilinium cation

Nitration41, 93

Trimethylphenyl phosphonium cation

Nitration41, 92

Benzyltrimethyl phosphonium cation

Nitration92

Trimethylphenyl arsonium cation

Nitration41, 92

Trimethylphenyl antimony(V) cation

Nitration92

Triphenyl oxonium cation

Nitration41, 95

Triphenyl sulfonium cation

Nitration96

Dimethylphenyl sulfonium cation

Nitration41

Dimethyl selenonium cation

Nitration41

Electronic Supplementary Material (ESI) for Chemical ScienceThis journal is © The Royal Society of Chemistry 2013

S12

Figure S5. Experimental reactivity patterns and corresponding calculated average local

ionisation energy surfaces and minimum values (ĪS, min) at the 0.002 electrons/bohr3

surface for phenyl derivatives used in metal-catalysed cross-coupling reactions and ipso-

substitution reactions. Calculations were performed using the LACVP combination of

basis sets where DFT/B3LYP/6-311G* was not supported. References for the observed

reactivity patterns are given below.

General:

For excellent general overview of metal-

catalysed cross coupling reactions14, 79

For other more specific literature:

Phenyl lithium

General9

ipso-Fluorination97

Phenyl sodium

General98

Phenyl zinc chloride

ipso-Bromination99

Phenyl mercury(II)chloride

In Pd-catalysed cross coupling reactions100

ipso-nitration and nitrosation101

Triphenyl indium

In metal-catalysed cross-coupling reactions102

Trimethylphenyl silane

Review80

Electronic Supplementary Material (ESI) for Chemical ScienceThis journal is © The Royal Society of Chemistry 2013

S13

Desilylation (reaction with H+)

81

ipso-Bromination82

ipso-Chlorination83

ipso-Iodination84, 85

ipso-Nitration85

ipso-Fluorination86

5-Phenyl-1-aza-5-germabicyclo[3.3.3]undecane

In metal-catalysed cross-coupling reactions79

Trimethylphenyl stannane

ipso-Fluorination86

ipso-Nitration, Nitrosation101

In Pd-catalysed cross coupling reactions100

Tetraphenyl plumbane

ipso-Nitration, Nitrosation101

Triphenyl bismuthine

ipso-Nitrosation101

Electronic Supplementary Material (ESI) for Chemical ScienceThis journal is © The Royal Society of Chemistry 2013

S14

Figure S6. Experimental reactivity patterns and corresponding calculated average local

ionisation energy surfaces and minimum values (ĪS, min) at the 0.002 electrons/bohr3

surface for heterocycles used in metal-catalysed cross-coupling reactions. Calculations

were performed using the LACVP combination of basis sets where DFT/B3LYP/6-

311G* was not supported. References for the observed reactivity patterns are given

below.

General For an excellent overviews of metal-catalysed

cross coupling reactions79, 103

2-Furanyl lithium Reaction with carbonyls

104

3-Furanyl lithium Reaction with aldehydes

105 106-109

Reaction with ketones110

2-Thienyl lithium Reaction with esters

111, 112

Reaction with amides113, 114

Reaction with Weinreb amides115

Reaction with carbonyl116

Reaction with Vilsmeier reagent117-119

Reaction with carbon dioxide120

Electronic Supplementary Material (ESI) for Chemical ScienceThis journal is © The Royal Society of Chemistry 2013

S15

Reaction with carbonates121

2-Thienyl sodium General

98

2,5-Dimethyl, 3-thienyl lithium

With alkenes122

2-Trimethylsilyl, 5-methylthiophene:

ipso-substitution123-126

2-Furanylmagnesium bromide

Reaction oxycarbenium ions 127

2-Thienylmagnesium bromide

Reaction with carbonyls128

129, 130

Reaction with esters131

Reaction with Weinreb amides132

Reaction with alkenes 133, 134

2-Furanyl zinc bromide

Negishi coupling135, 136

2-Pyridylmagnesium chloride

Kumada coupling137

2-Tributylstannyl thiophene:

Stille coupling138, 139

Methyl 1-(N,N-dimethylsulfamoyl)-3,4-

bis(trimethylsilyl)-1H-pyrrole-2-carboxylate

ipso-substitution140

ipso-Iodination during formal total synthesis of

lukianol A141

3-Tributylstannyl 5-methoxybenzofuran

Stille coupling138

(Acetato)(indol-3-yl) mercury

Pd-catalysed cross-coupling142

Tri(2-furanyl) aluminium

Reaction with an epoxide143

Electronic Supplementary Material (ESI) for Chemical ScienceThis journal is © The Royal Society of Chemistry 2013

S16

Figure S7. Experimental reactivity patterns and corresponding calculated average local

ionisation energy surfaces and minimum values (ĪS, min) at the 0.002 electrons/bohr3

surface for multiply-substituted benzenes. References for the observed reactivity patterns

are given below.

Electronic Supplementary Material (ESI) for Chemical ScienceThis journal is © The Royal Society of Chemistry 2013

S17

p-Nitrotoluene

Bromination144,35

p-Fluorotoluene

Nitration145

p-Methylphenol

Bromination146

1,2,3-Trimethylbenzene

Nitration43

1,2,4-Trimethylbenzene

Nitration43

N,N-diethyl-2-(trimethylsilyl)benzamide

Iodination, bromination, chlorination, ipso-

borodesilylation83

2-(trimethylsilyl)phenyl diethylcarbamate Iodination, bromination, chlorination,

nitrosation, ipso-borodesilylation83

4-nitro-2-(trimethylsilyl)phenyl

diethylcarbamate

Bromination83

N,N-diethyl-2-methoxybenzamide

Nitration83

2-Methoxyphenyl diethylcarbamate

Nitration83

N,N-diethyl-2-methoxy-6-

(trimethylsilyl)benzamide

Nitration83

2-Methoxy-6-(trimethylsilyl)phenyl

diethylcarbamate

Nitration83

3,5-dinitrosalicylic acid

Nitration147

Electronic Supplementary Material (ESI) for Chemical ScienceThis journal is © The Royal Society of Chemistry 2013

S18

Figure S8. Experimental reactivity patterns and corresponding calculated average local

ionisation energy surfaces and minimum values (ĪS, min) at the 0.002 electrons/bohr3

surface for 5-membered heterocyclic rings. References for the observed reactivity

patterns are given below.

For a general review of the substitution of

5-membered rings148

Pyrroles

Nitration77, 149, 150

Nitration: reversal of 2– vs. 3–substitution ratio

upon N–substitution of pyrroles151

Halogenation152, 153

Acetylation: mostly in the 2–position, 3–position

minor product154

Formylation in 2–position71

2- and 3-EDG pyrroles

Note that electron–rich pyrroles tend to be highly

reactive and unstable.

Formylation (EDG = 2–Me)155

2-EWG-pyrroles

Bromination (EWG = NO2)49, 50

Nitration, halogenation and acetylation (EWG =

COCCl3)48

Nitration (EWG = COCH3)51

3-EWG-pyrroles

Alkylation, halogenation (EWG = COPh)156

Acylation (EWG = COPh–p–OMe)157

Formylation (EWG = COOEt)158

Thiophenes

Nitration77, 159, 160

Bromination, chlorination30, 67, 161

Acylation162

Formylation71, 163

Addition at sulfur (hashed arrow)164

2-EDG thiophenes

Bromination, Chlorination (EDG = OMe)5–

position most reactive 165-167

3– and 5–

positions139, 168

Iodination (EDG = Me, OMe, OC=OMe)69, 169

Nitration (EDG = Me)160

Formylation (EDG = OMe) 5–position most

reactive71

Electronic Supplementary Material (ESI) for Chemical ScienceThis journal is © The Royal Society of Chemistry 2013

S19

2-EWG thiophene

(EWG = NO2, CN and CHO) 5–position most

reactive, 4–position 2nd

most reactive, 3–position

3rd

most reactive159

Chlorination (EWG = Cl, Br)67

Nitration (EWG = Cl)160

Iodination (EWG = Cl, Br, I, CN, NO2, CHO,

COCH3, CO2CH3)69, 169

3-EDG thiophenes

Bromination (EDG = alkyl, OMe)170,167, 171

Iodination (EDG = alkyl)172

3-EWG thiophenes

(EWG = NO2, CN and CHO) 5–position most

reactive, 2–position 2nd

most reactive, 4–position

3rd

most reactive159

Hydroxyalkylation (EWG = Cl)173

Furans

Note that some of the substitution reactions of

furans may not–proceed through a typical

electrophilic aromatic substitution reaction

mechanism, but through an addition–elimination

mechanism, although the position of the initial

attack of the incoming electrophile determines

the regiochemistry of the final product as in a

typical EAS reaction mechanism.

Nitration77, 174

Formylation71

Bromination175

Acetylation176

Oxidation with osmium tetroxide (unfilled

arrow)177

2–EDG furans

Formylation (EDG = alkyl)178

Michael addition (EDG = OMe)179

180

Acylation (EDG = alkyl)181

Chlorination (EDG = t–Bu)152

2–EWG furans

Nitration (EWG = NO2)182, 183

3–EDG furans

Formylation, acylation (EWG = OMe, alkyl)184

185

3–EWG furans

Formylation (EWG = COOMe)186

Oxazole

pKa of conjugate acid = 0.8187

Oxazoles tend to undergo addition rather than

substitution (unfilled arrow)188

Imidazole and cation

pKa of conjugate acid = 7.1189

Nitration190

Bromination191

Oxidation with osmium tetroxide (unfilled

arrow)192

Thiazole

pKa of conjugate acid = 2.5187

Nitration193

Pyrazole and cation

pKa of conjugate acid = 2.5194

Iodination195, 196

Bromination and Chlorination197

Nitration190, 198

Isothiazole

pKa of conjugate acid = –0.5187

Halogenation199, 200

Nitration200

Isoxazole

pKa of conjugate acid = –3.0187

Nitration201-203

Bromination204, 205

Electronic Supplementary Material (ESI) for Chemical ScienceThis journal is © The Royal Society of Chemistry 2013

S20

Figure S9. Experimental reactivity patterns and corresponding calculated average local

ionisation energy surfaces and minimum values (ĪS, min) at the 0.002 electrons/bohr3

surface for fused 5-membered heterocycles. References for the observed reactivity

patterns are given below.

Indole

Formylation71, 206

Mannich reaction207

Halogenation208

Nitration77

Oxidation with osmium tetroxide (unfilled

arrow)209

Benzofuran

Nitration77, 210, 211

Formylation212

Hydroxyalkylation173

Addition at carbon (unfilled arrow)213

Benzothiophene

Halogenation214-217

Nitration77, 215, 218

Acetylation219

Hydroxyalkylation173

Addition at carbon (unfilled arrow)213

Addition at sulfur (hashed arrow)164

Indolisine

Nitrosylation, formylation220

Acylation221

Nitration222

Imidazo[1,2-a]pyridine and cation

pKa of conjugate acid = 8.3223

Bromination224

Chlorination224

Acylation225

Nitration224

Imidazo[1,5-a]pyridine and cation

pKa of conjugate acid = 5.5223

Acylation226

Nitration227

Pyrazolo[1,5-a]pyridine

pKa of conjugate acid = 1.4223

Formylation, acylation228

N-tert-Bu-BN-Indole

Bromination, Mannich Reaction, Michael

Addition, Deuteriation, Acylation56

Electronic Supplementary Material (ESI) for Chemical ScienceThis journal is © The Royal Society of Chemistry 2013

S21

Figure S10. Experimental reactivity patterns and corresponding calculated average local

ionisation energy surfaces and minimum values (ĪS, min) at the 0.002 electrons/bohr3

surface for biphenyl and naphthalene derivatives. References for the observed reactivity

patterns are given below.

Carbazole

Bromination229, 230

Alkylation231

Dibenzofuran

Halogenations, Friedel-Crafts and

protodetritiation reactions (note that some

nitration reactions follow a charge-transfer

mechanism to gives the 3-product rather than the

2-product) 52

Iodination232, 233

Alkylation, acylation234

Dibenzothiophene

Halogenation214

Biphenyl

Nitration70, 235-237

Chlorination67

Naphthalene

Nitration70, 235

Halogenation67, 214

Acylation238

Addition & oxidation reactions239

Reaction with ethyl diazoacetate (unfilled

arrow)240

Oxidation with osmium tetroxide (unfilled

arrow)241

10,9–Borazaronaphthalene

Bromination and deuteration242

1–Methoxynaphthalene

Nitration243

Iodination69

1–Nitronaphthalene

Nitration46, 244, 245

Electronic Supplementary Material (ESI) for Chemical ScienceThis journal is © The Royal Society of Chemistry 2013

S22

2–Methoxynaphthalene

Nitration243

Bromination246

Iodination68, 69, 247

2–Nitronaphthalene

Nitration248

Electronic Supplementary Material (ESI) for Chemical ScienceThis journal is © The Royal Society of Chemistry 2013

S23

Figure S11. Experimental reactivity patterns and corresponding calculated average local

ionisation energy surfaces and minimum values (ĪS, min) at the 0.002 electrons/bohr3

surface for pyridine derivatives. References for the observed reactivity patterns are given

below.

Pyridine and cation

pKa of conjugate acid = 5.2249

Halogenation250

Nitration251

252

4–EDG pyridines

Bromination (EDG = OMe, OH, NH2)253

Nitration (EDG = OMe)254

3–EDG pyridines

Bromination (EDG = OMe, OH, NH2)253

2–EDG pyridines

Bromination (EDG = OMe, OH, NH2)253, 255

Chlorination (EDG = NH2)256

Pyridine N–Oxide

pKa of conjugate acid = 0.8257

Bromination252, 258

Pyridinium N–Oxide cation

Nitration252

Chlorination259

4–Pyridone cation

pKa = 3.3249

Nitration255, 260, 261

Uracil

Phenylsulfenylation262

Bromination263

Iodination264, 265]{#338, 266, 267

Nitration160

Electronic Supplementary Material (ESI) for Chemical ScienceThis journal is © The Royal Society of Chemistry 2013

S25

Figure S12.Experimental reactivity patterns and corresponding calculated average local

ionisation energy surfaces and minimum values (ĪS, min) at the 0.002 electrons/bohr3

surface for quinoline derivatives. References for the observed reactivity patterns are

given below. Quinoline and cation

pKa of conjugate acid = 4.9249

Bromination268-271

Chlorination272

Iodination273

Nitration190, 252, 274-276

Fluorination277

Quinoline N–Oxide and cation

pKa of conjugate acid = 0.9278

Nitration252, 279, 280

Nitration with N2O5281

Isoquinoline and cation

pKa of conjugate acid = 5.5249

Nitration276, 282, 283

Bromination270, 284, 285

in 5 and 8–positions in

strong acid 271

Isoquinoline N–Oxide

pKa of conjugate acid = 1.0286

Nitration287

Isoquinolinium N–oxide cation

Nitration280, 288

4–Quinolone (X = NH)

pKa of conjugate acid = 2.3249

Nitration289

Chromone (X = O)

pKa of conjugate acid = –2.0290

Bromination291

Mannich reaction292

4–Hydroxyquinolin–1–ium cation (X = NH)

Nitration293-295

4–Hydroxychromenylium cation (X =O)

Nitration296, 297

Electronic Supplementary Material (ESI) for Chemical ScienceThis journal is © The Royal Society of Chemistry 2013

S26

Figure S13. Experimental reactivity patterns and corresponding calculated average local

ionisation energy surfaces and minimum values (ĪS, min) at the 0.002 electrons/bohr3

surface for 7-membered aromatics. References for the observed reactivity patterns are

given below.

Azulene

Iodination68

Tropolone and cation

pKa of conjugate acid of tropolone = –0.9298

Azo–coupling, nitrosation, nitration, sulfonation,

halogenation, hydroxylation,

hydroxymethylation, Reimer–Tiemann

reaction299, 300

Dihydro–1,4–diazepinium cation

pKa = 13.4 (5,7–dimethyl derivative)301

Bromination302-304

Nitration47, 305

Electronic Supplementary Material (ESI) for Chemical ScienceThis journal is © The Royal Society of Chemistry 2013

Electronic Supplementary Material (ESI) for Chemical ScienceThis journal is © The Royal Society of Chemistry 2013

S27

Figure S14. Experimental reactivity patterns and corresponding calculated average local

ionisation energy surfaces and minimum values (ĪS, min) at the 0.002 electrons/bohr3

surface for

polycyclic aromatics. Values in parentheses refer to the values taken over regions with double-

bond character as discussed in the main text. References for the observed reactivity patterns are

given below.

Phenanthrene

Nitration235

Halogenation67, 214

Bromination306

Addition & oxidation reactions (unfilled arrow)240, 241,

307, 308

10–Methyl–10,9–Borazarophenanthrene

Bromination and chlorination55

Electronic Supplementary Material (ESI) for Chemical ScienceThis journal is © The Royal Society of Chemistry 2013

S28

Nitration and chlorination54

Acetylation53

Steric congestion inhibits reaction at carbon 453

10–Hydroxy–10,9–Borazarophenanthrene

Bromination and chlorination55

Nitration and chlorination54

Acetylation53

Benzo(c)phenanthrene

Acylation238

Bromination, nitration, acetylation309

Oxidation with osmium tetroxide (unfilled arrow)310

Chrysene

Nitration235, 311

Halogenation214

Acetylation312

Acylation238, 313

Oxidation with osmium tetroxide (unfilled arrow)310,

314

Triphenylene

Small electrophiles react preferentially in the most

reactive 1–position, while larger electrophile react in

the 2–position due to the steric hindrance in the 1–

position.

1–chlorination and 1–deuteriation315

mostly 1–nitration, some 2–nitration316

311

mostly 2–nitration, some 1–nitration235, 311

2–halogenation214

2-acylation238

Fluoranthene

mostly 3–nitration, some 8–nitration 311

Anthracene

Acylation238

Halogenation67, 214, 306

Nitration317

Addition & Oxidation reactions (unfilled arrow)307,

308, 318, 319

241 240, 320

Pyrene

Acylation238

Nitration235, 311

Halogenation67, 214

Oxidation with osmium tetroxide (unfilled arrow)321

Reaction with ethyl diazoacetate (unfilled arrow)240

‘Cyclohexatrine’

Epoxidation and hydrogenation {#1240}57, 59

Electronic Supplementary Material (ESI) for Chemical ScienceThis journal is © The Royal Society of Chemistry 2013

S29

Figure S15. HOMOs and HOMO–1 orbitals and energies for theoretically challenging aromatic

molecules calculated using DFT/B3LYP/6-311G*. The locations of the largest HOMO lobes indicate that

the Frontier Molecular Orbital approximation for predicting nucleophilicity fails in many situations.

Electronic Supplementary Material (ESI) for Chemical ScienceThis journal is © The Royal Society of Chemistry 2013

S30

Figure S16. Correlations of experimental nucleophilicity parameters, N with average local ionisation

energy minima ĪS,min calculated using the methods indicated at the 0.002 electrons/bohr3

surface (Table

S3).

Electronic Supplementary Material (ESI) for Chemical ScienceThis journal is © The Royal Society of Chemistry 2013

S31

Figure S17. Correlations of experimental reactivity parameters with average local ionisation energies

calculated using HF/6-311G* at the 0.002 electrons/bohr3

surface: (a), Average local ionisation energies

taken over the meta and para positions vs. the corresponding Hammett substituent constants. (b),

Nucleophilicity parameters determined by Mayr and co-workers. (c), Experimental partial rate factors

for a range of electrophilic substitution reactions at different carbon positions in substituted benzenes.

(d), A scale of average local ionisation energies including representative examples. Tables S1-S3

contain the associated data and references. The main text contains a version of this figure plotted using

DFT/B3LYP/6-311G* values.

Electronic Supplementary Material (ESI) for Chemical ScienceThis journal is © The Royal Society of Chemistry 2013

S32

Figure S18. Correlation of experimental partial rate factors for (a) bromination, (b) chlorination, and

(c) nitration taken from individual experimental studies vs. average local ionisation minima taken over

each reactive position calculated using DFT/B3LYP/6-311G* at the 0.002 electrons/bohr3

surface. Table

S2 contains the associated data and references.

Electronic Supplementary Material (ESI) for Chemical ScienceThis journal is © The Royal Society of Chemistry 2013

S33

∑ ( )

Figure S19. Correlation of experimental percentage yields (from Figure 4) and those derived from

partial rate factors for a range of electrophilic aromatic substitution reactions (y-axis) vs. those predicted

using the equation given above (x-axis). nj is the number of equivalent aromatic positions j that are

available for substitution, fj is the experimental partial rate factor at each position j (Table S2), m is the

gradient of the graph determined in Figure 3c (m = –21.194), and ĪS,j is the average local ionisation

energy taken over each position j (calculated using B3LYP/6-311G* at the 0.002 electrons/bohr3

surface). Figure 4 in the main text and Table S2 contain the associated data and references. In general,

yields can be predicted with ±25% accuracy. The outliers marked with hollow circles correspond to

examples where steric effects have an important influence on the observed product ratios (iodobenzene

and some polymethylbenzenes), which are not taken into account in the ionisation energy model.

Electronic Supplementary Material (ESI) for Chemical ScienceThis journal is © The Royal Society of Chemistry 2013

S34

Table S1. Hammett m and p substituent constants and corresponding calculated average local ionisation

energy values ĪS meta and ĪS para taken directly over the centre of the carbons in the meta and para positions

when viewed perpendicular to the plane of the ring (as shown in Figure S1). a Entry numbers refer to

Table I of reference 26

.

DFT/B3LYP/6-311G* HF/B3LYP/6-311G*

Entrya Substituent m p ĪS meta /eV ĪS para /eV ĪS meta /eV ĪS para /eV

2 Br 0.39 0.23 9.69 9.61 12.63 12.56

5 Cl 0.37 0.23 9.71 9.60 12.64 12.53

7 SO2Cl 1.20 1.11 10.42 10.54 13.24 13.51

15 F 0.34 0.06 9.62 9.41 12.61 12.30

18 SO2F 0.80 0.91 10.38 10.50 13.24 13.52

28 I 0.35 0.18 9.71 9.66 12.62 12.60

31 NO 0.62 0.91 9.98 10.14 12.74 12.93

32 NO2 0.71 0.78 10.13 10.24 13.02 13.26

37 N3 0.37 0.08 9.42 9.41 12.53 12.13

43 H 0.00 0.00 9.25 9.25 12.13 12.13

45 OH 0.12 –0.37 9.32 8.96 12.39 11.84

49 SH 0.25 0.15 9.49 9.27 12.46 12.19

50 B(OH)2 –0.01 0.12 9.31 9.43 12.17 12.34

51 NH2 –0.16 –0.66 9.09 8.62 12.20 11.58

52 NHOH –0.04 –0.34 9.18 8.87 12.21 11.76

53 SO2NH2 0.53 0.60 9.88 9.96 12.76 12.97

59 NHNH2 –0.02 –0.55 9.21 8.76 12.33 11.68

60 SiH3 0.05 0.10 9.43 9.48 12.27 12.37

61 CBr3 0.28 0.29 9.79 9.83 12.65 12.71

62 CClF2 0.42 0.46 9.87 9.91 12.72 12.82

66 CCl3 0.40 0.46 9.86 9.92 12.69 12.79

70 CF3 0.43 0.54 9.83 9.90 12.70 12.83

75 OCF3 0.38 0.35 9.81 9.74 12.73 12.64

76 SOCF3 0.63 0.69 9.99 10.08 12.95 13.11

78 SO2CF3 0.83 0.96 10.33 10.45 13.21 13.53

80 OSO2CF3 0.56 0.53 9.96 9.91 13.01 12.98

81 SCF3 0.40 0.50 9.83 9.94 12.67 12.86

84 CN 0.56 0.66 10.06 10.10 12.94 13.05

85 NC 0.48 0.49 9.98 9.90 12.83 12.72

89 N=C=O 0.27 0.19 9.69 9.50 12.65 12.40

90 OCN 0.67 0.54 10.05 9.87 13.04 12.78

91 SO2CN 1.10 1.26 10.51 10.64 13.38 13.67

92 N=C=S 0.48 0.38 9.87 9.71 12.98 12.81

93 SCN 0.51 0.52 10.04 10.09 12.89 13.04

94 SeCN 0.61 0.66 10.00 10.08 12.86 13.00

97 C(NO2)3 0.72 0.82 10.44 10.52 13.39 13.63

102 OCHCl2 0.38 0.26 9.89 9.79 12.75 12.61

Electronic Supplementary Material (ESI) for Chemical ScienceThis journal is © The Royal Society of Chemistry 2013

S35

103 CHF2 0.29 0.32 9.61 9.64 12.52 12.56

104 OCHF2 0.31 0.18 9.72 9.51 12.67 12.54

105 SOCHF2 0.54 0.58 9.95 9.99 12.89 13.03

106 SO2CHF2 0.75 0.86 10.16 10.31 13.03 13.35

107 SCHF2 0.33 0.37 9.78 9.82 12.66 12.78

109 NHSO2CF3 0.44 0.39 9.82 9.69 12.80 12.83

111 NHCN 0.21 0.06 9.72 9.40 12.76 12.28

117 CHO 0.35 0.42 9.78 9.89 12.58 12.75

118 COOH 0.37 0.45 9.63 9.78 12.47 12.71

119 CH2Br 0.12 0.14 9.57 9.56 12.43 12.41

120 CH2Cl 0.11 0.12 9.58 9.58 12.44 12.43

121 OCH2Cl 0.25 0.08 9.56 9.28 12.61 12.17

122 CH2F 0.12 0.11 9.37 9.32 12.34 12.23

123 OCH2F 0.20 0.02 9.52 9.21 12.56 12.12

124 SCH2F 0.23 0.20 9.73 9.78 12.59 12.70

125 CH2I 0.10 0.11 9.59 9.58 12.45 12.40

126 NHCHO 0.19 0.00 9.41 9.21 12.40 12.01

127 CONH2 0.28 0.36 9.58 9.65 12.42 12.60

133 Me –0.07 –0.17 9.19 9.11 12.09 11.96

139 NHCONH2 –0.03 –0.24 9.25 8.98 12.25 11.84

142 OMe 0.12 –0.27 9.24 8.91 12.28 11.79

143 CH2OH 0.00 0.00 9.52 9.52 12.40 12.40

144 SOMe 0.52 0.49 9.72 9.73 12.64 12.70

147 S(O)OMe 0.50 0.54 9.70 9.76 12.56 12.75

148 SO2Me 0.60 0.72 10.01 10.10 12.89 13.10

150 OSO2Me 0.39 0.36 9.57 9.37 12.69 12.39

151 SMe 0.15 0.00 9.49 9.51 12.29 12.37

152 SSMe 0.22 0.13 9.61 9.62 12.49 12.56

154 NHMe –0.21 –0.70 9.04 8.57 12.16 11.48

155 CH2NH2 –0.03 –0.11 9.10 9.08 12.02 11.95

158 N(COF)2 0.58 0.57 10.00 10.05 12.93 12.98

160 COCF3 0.63 0.80 10.00 10.17 12.80 13.06

161 SCOCF3 0.48 0.46 9.87 9.95 12.72 12.85

162 OCOCF3 0.56 0.46 9.89 9.81 12.81 12.68

165 CF2CF3 0.47 0.52 9.86 9.94 12.74 12.90

166 OCF2CF3 0.48 0.28 9.78 9.61 12.80 12.50

167 SO2CF2CF3 0.92 1.08 10.33 10.49 13.21 13.55

169 N(CF3)2 0.40 0.53 9.91 9.95 12.77 12.89

175 C≡CH 0.21 0.23 9.56 9.50 12.43 12.41

176 OCF2CHFCl 0.35 0.28 9.77 9.69 12.68 12.58

177 NHCOCF3 0.30 0.12 9.69 9.52 12.70 12.33

179 OCF2CHF2 0.34 0.25 9.66 9.48 12.66 12.36

180 SCF2CHF2 0.38 0.47 9.74 9.82 12.59 12.76

185 CH2CF3 0.12 0.09 9.51 9.50 12.41 12.42

Electronic Supplementary Material (ESI) for Chemical ScienceThis journal is © The Royal Society of Chemistry 2013

S36

186 CH2SOCF3 0.25 0.24 9.65 9.66 12.56 12.59

187 CH2SO2CF3 0.29 0.31 9.77 9.80 12.66 12.74

188 CH2SCF3 0.12 0.15 9.45 9.50 12.41 12.38

189 CH2CN 0.16 0.18 9.67 9.65 12.58 12.55

193 CH=CH2 0.06 –0.04 9.34 9.26 12.23 12.11

198 oxiranyl 0.05 0.03 9.36 9.30 12.23 12.17

199 OCH=CH2 0.21 –0.09 9.46 9.14 12.47 12.01

200 COMe 0.38 0.50 9.61 9.74 12.46 12.61

201 SCOMe 0.39 0.44 9.50 9.51 12.38 12.47

202 OCOMe 0.39 0.31 9.50 9.39 12.43 12.25

203 COOMe 0.37 0.45 9.55 9.66 12.37 12.61

205 SCH=CH2 0.26 0.20 9.53 9.39 12.38 12.41

210 NHCOOMe –0.02 –0.17 9.32 9.03 12.30 11.89

211 NHCOMe 0.21 0.00 9.30 9.09 12.25 11.89

212 CONHMe 0.35 0.36 9.50 9.57 12.44 12.54

214 CH2CONH2 0.06 0.07 9.59 9.54 12.54 12.47

219 Et –0.07 –0.15 9.20 9.12 12.11 11.97

221 OCH2CH3 0.10 –0.24 9.21 8.88 12.27 11.80

222 CH(OH)Me 0.08 –0.07 9.34 9.29 12.21 12.14

223 CH2OMe 0.08 0.01 9.30 9.25 12.17 12.13

224 SO2Et 0.66 0.77 9.98 10.08 12.85 13.08

225 SEt 0.18 0.03 9.48 9.50 12.34 12.43

230 NHEt –0.24 –0.61 9.03 8.55 12.13 11.50

231 N(Me)2 –0.16 –0.83 8.99 8.54 12.10 11.43

236 N=NNMe2 –0.05 –0.03 9.13 8.96 12.13 11.96

239 PO(OMe)2 0.42 0.53 9.60 9.73 12.44 12.65

250 C≡CF3 0.41 0.51 9.94 9.95 12.80 12.83

251 CF=CFCF3–t 0.39 0.46 9.88 9.89 12.73 12.84

253 CF2CF2CF3 0.44 0.48 9.88 9.97 12.75 12.92

254 CF(CF3)2 0.37 0.53 9.85 9.91 12.75 12.88

255 SO2CF2CF3 0.92 1.09 10.33 10.48 13.21 13.57

256 SO2CF(CF3)2 0.92 1.10 10.33 10.48 13.19 13.55

257 SCF2CF2CF3 0.45 0.48 9.87 9.94 12.72 12.90

258 SCF(CF3)2 0.48 0.51 9.88 9.95 12.70 12.89

262 CH(CN)2 0.53 0.52 9.99 9.99 12.91 12.92

263 CHC=HCF3–c 0.16 0.17 9.61 9.63 12.43 12.43

264 CH=HCF3–t 0.24 0.27 9.74 9.71 12.59 12.55

266 CH=HCN–t 0.24 0.17 9.91 9.90 12.77 12.75

267 C=CMe 0.21 0.03 9.25 9.13 12.14 11.97

268 N(Me)COCF3 0.41 0.39 9.81 9.82 12.68 12.72

269 CH=CHCHO 0.24 0.13 9.80 9.80 12.62 12.60

270 cyclopropyl –0.07 –0.21 9.20 9.16 12.07 12.02

272 CH=CHCH3 0.02 –0.09 9.26 9.14 12.14 11.98

276 COEt 0.38 0.48 9.53 9.65 12.35 12.59

Electronic Supplementary Material (ESI) for Chemical ScienceThis journal is © The Royal Society of Chemistry 2013

S37

277 COOEt 0.37 0.45 9.60 9.71 12.42 12.60

278 CH2OCOMe 0.04 0.05 9.46 9.47 12.34 12.30

288 isopropyl –0.04 –0.15 9.18 9.12 12.06 11.95

294 OCH2CH2CH3 0.10 –0.25 9.20 8.87 12.29 11.76

307 SiMe3 –0.04 –0.07 9.24 9.28 12.10 12.17

317 C(CF3)3 0.55 0.55 9.85 9.94 12.76 12.94

346 COCHMe2 0.38 0.47 9.61 9.72 12.41 12.60

348 NHCOCH(Me)2 0.11 –0.10 9.35 9.09 12.30 11.91

352 (CH2)3CH3 –0.08 –0.16 9.18 9.11 12.09 11.96

360 N(Et)2 –0.23 –0.72 8.96 8.44 12.09 11.31

434 N(C3H7)2 –0.26 –0.93 8.97 8.47 12.07 11.36

504 N(C6H5)2 0.00 –0.22 9.31 9.10 12.23 11.93

527 Si(C6H5)3 –0.03 0.10 9.25 9.33 12.08 12.21

529 C(C6H5)3 –0.01 0.02 9.20 9.18 12.10 12.07

Electronic Supplementary Material (ESI) for Chemical ScienceThis journal is © The Royal Society of Chemistry 2013

S38

Table S2. Experimental partial rate factors for electrophilic substitution in different positions of

aromatic substrates and their corresponding average local ionisation energies, ĪS, j. Average local

ionisation energies were calculated using the methods indicated at the 0.002 electrons/bohr3 surface (as

shown in Figure S1). % yields were calculated from DFT ionisation energies using the equations given

in Figure S19. Predicted % yields are and are associated with an error of up to ±25% (Figure S19).

Experimental partial rate factors are taken from references21,44, 74, 322, 323.

Ave. Local Ionisation

Energy, ĪS,j /eV (predicted % yields)

ln (experimental partial rate factor), ln(fj) (corresponding % yields where all partial rates known)

Compound

Po

sit

ion

, j

DF

T/B

3LY

P

6-3

11

G*

HF

/

6-3

11

G*

Bro

min

atio

n

Ch

lori

na

tio

n

Nitra

tio

n

Be

nzyla

tio

n

So

lvo

lysis

Eth

yla

tio

n

Me

rcu

ratio

n

Ace

tyla

tio

n

Benzene 1 9.25 (100%) 12.12 0.0 (100%) 0.0 (100%) 0.0 (100%) 0.0 (100%) 0.0 0.0 0.0 0.0

Toluene 2 9.07 (70%) 11.94 6.40 (68%) 6.40 (60%) - - - - - -

3 9.18 (7%) 12.10 1.70 (1%) 1.59 (0%) 0.74 - 0.67 0.39 0.81 1.57

4 9.09 (23%) 11.98 7.78 (31%) 6.70 (40%) 3.89 - 3.21 1.75 3.15 6.61

1,2-dimethylbenzene 3 9.02 (60%) 11.91 8.06 (20%) 7.9 (43%) - - - - - -

4 9.04 (40%) 11.94 9.44 (80%) 8.2 (57%) - - - - - -

1,3-dimethylbenzene 2 8.91 (48%) 11.78 12.66 12.6 - - - - - -

4 8.94 (51%) 11.78 14.05 12.9 - - - - - -

5 9.13 (0%) 12.07 - - - - - - - -

1,4-dimethylbenzene 2 9.03 (100%) 11.92 8.29 (100%) 8.0 (100%) - - - - - -

1,2,3-trimethylbenzene 4 8.88 (95%) 11.76 15.43 (100%) - - - - - - -

5 8.99 (5%) 11.91 10.82 (0%) - - - - - - -

1,2,4-trimethylbenzene 3 8.86 (52%) 11.76 14.51 (20%) - - - - - - -

5 8.87 (42%) 11.75 15.89 (80%) - - - - - - -

6 8.97 (5%) 11.88 9.67 (0%) - - - - - - -

1,3,5-trimethylbenezene 2 8.77 (100%) 11.60 19.8 (100%) 17.9 (100%) - - - - - -

1,2,3,4-tetramethylbenzene 5 8.83 (100%) 11.72 17.27(100%) - - - - - - -

1,2,3,5-tetramethylbenzene 4 8.73 (100%) 11.60 20.95 (100%) - - - - - - -

1,2,4,5-tetramethylbenzene 3 8.82 (100%) 11.73 15.89 (100%) 15.4 (100%) - - - - - -

Pentamethylbenzene 6 8.67 (100%) 11.53 22.34 (100%) 20.5 (100%) - - - - - -

Nitrobenzene 2 10.31 (3%) 13.41 - - -18.3 (6%) - - - - -

3 10.14 (92%) 13.03 - - –15.6 (92%) - - - - -

4 10.24 (6%) 13.26 - - –18.7 (2%) - - - - -

t-Butylbenzene 2 9.08 (66%) 11.91 - - - - - - - -

3 9.16 (17%) 12.03 1.80 1.68 1.34 - 0.62 - 1.22 2.56

4 9.12 (17%) 11.95 6.70 5.99 4.05 - 2.67 - 2.86 6.49

Chlorobenzene 2 9.66 (28%) 12.66 - - - –1.4 (33%) - - - -

3 9.71 (10%) 12.65 –7.09 –8.11 –7.09 –5.4 (1%) –

4.17 –4.17 –2.28 –7.48

4 9.59 (62%) 12.53 –1.93 –0.97 –2.05 0.0 (67%) –

1.20 –0.62 –1.01 –2.07

Bromobenzene 2 9.65 (31%) 12.70 - - - –1.7 (33%) - - - -

3 9.69 (13%) 12.64 –6.93 –1.24 –6.90 –5.6 (1%) –

4.17 -4.24 –2.44 –7.55

Electronic Supplementary Material (ESI) for Chemical ScienceThis journal is © The Royal Society of Chemistry 2013

S39

4 9.59 (56%) 12.56 - 1.47 –2.30 –0.3 (67%) –

1.57 –1.57 - -

Fluorobenzene 2 9.47 (23%) 12.47 –2.79 - - –1.6 (14%) - - - -

3 9.60 (1%) 12.61 1.52 - –2.28 –5.9 (0%) –

3.68 –0.83 –1.31 –2.49

4 9.38 (76%) 12.31 - - –0.25 0.9 (86%) 0.76 –0.30 1.08 0.41

Iodobenzene 2 9.71 (26%) 12.73 - - - –1.4 (31%) - - - -

3 9.71 (26%) 12.64 - - - –5.1 (1%) - - - -

4 9.65 (47%) 12.60 - - - 0.1 (69%) - - - -

Electronic Supplementary Material (ESI) for Chemical ScienceThis journal is © The Royal Society of Chemistry 2013

S40

Table S3.Experimental nucleophilicity parameters, N and corresponding average local ionisation energy

minima ĪS,min taken nearest to the carbons marked with arrows. Average local ionisation energies were

calculated with the methods indicated and taken at the 0.002 electrons/bohr3 surface. This data is plotted

graphically in Figures 3, S16 and S17. a n.s. denotes entries with atoms not supported by a particular basis

set.

Structure

Nu

cle

op

hilic

ity

pa

ram

ete

r, N

So

lven

t

DF

T/B

3L

YP

/ 6-3

1G

*

DF

T/B

3L

YP

/ 6-3

1G

**

DF

T/B

3L

YP

/ 6-3

1+

G*

DF

T/B

3L

YP

/

6-3

11G

*

DF

T/B

3L

YP

/ 6-3

11+

G**

DF

T/B

3L

YP

/

6-3

11+

+G

**

DF

T/B

3L

YP

/ L

AC

VP

HF

/6-3

1G

*

HF

/6-3

11G

*

Refe

ren

ce

–4.47 DCM 9.02 9.06 9.01 9.07 8.98 8.97 9.02 11.94 11.94 324

–3.54 DCM 8.86 8.88 8.82 8.92 8.78 8.77 8.84 11.76 11.75 324

2.48 DCM 8.55 8.57 8.58 8.55 8.53 8.53 8.63 11.47 11.42 324

0.13 DCM 8.71 8.73 8.68 8.72 8.64 8.64 8.75 11.59 11.57 324

6.66 ACN 8.34 8.37 8.32 8.38 8.29 8.28 8.28 10.93 10.93 325

–1.18 DCM 8.86 8.89 8.87 8.88 8.83 8.82 8.91 11.78 11.75 326

1.26 DCM 8.71 8.73 8.65 8.77 8.60 8.59 8.74 11.81 11.83

324

3.61 DCM 8.36 8.39 8.37 8.44 8.38 8.38 8.52 11.30 11.32

324

5.85 DCM 7.83 7.87 7.87 7.89 7.86 7.86 7.80 10.74 10.72 324

1.36 DCM 8.55 8.59 8.61 8.65 8.64 8.63 8.76 11.48 11.52

324

10.67 ACN 7.68 7.70 7.65 7.68 7.63 7.63 7.61 10.57 10.50 325

Electronic Supplementary Material (ESI) for Chemical ScienceThis journal is © The Royal Society of Chemistry 2013

S41

8.69 ACN 7.66 7.68 7.60 7.70 7.59 7.59 7.60 10.53 10.52 325

8.01 ACN 7.67 7.70 7.60 7.71 7.67 7.66 7.63 10.57 10.55 325

11.63 ACN 7.68 7.70 7.60 7.68 7.59 7.60 7.60 10.56 10.48 325

6.22 DCM 8.05 8.08 8.05 8.07 8.05 8.05 8.04 10.97 10.95 327

5.55 DCM 8.14 8.18 8.15 8.18 8.16 8.16 8.10 11.01 11.00 327

5.75 DCM 8.12 8.15 8.14 8.16 8.07 8.07 8.05 10.98 10.97 327

2.16 DCM 8.33 8.35 8.47 8.48 8.51 8.50 8.44 11.16 11.24

326

3.97 ACN 8.50 8.53 8.47 8.53 8.53 8.53 8.50 11.36 11.33 327

7.26 ACN 7.93 7.95 7.91 7.96 7.89 7.89 7.90 10.82 10.82 327

7.22 ACN 7.91 7.93 7.89 7.95 7.88 7.89 7.85 10.78 10.79 327

6.91 ACN 7.97 7.99 7.96 8.01 7.97 7.96 7.91 10.83 10.84 327

6.08 ACN 8.30 8.30 8.27 8.35 8.25 8.25 8.31 11.18 11.19 327

5.41 ACN 8.00 8.04 8.02 8.03 8.03 8.02 7.96 10.87 10.84 327

Electronic Supplementary Material (ESI) for Chemical ScienceThis journal is © The Royal Society of Chemistry 2013

S42

3.87 ACN 8.37 8.41 8.38 8.41 8.39 8.39 8.40 11.23 11.21 327

2.83 ACN 8.76 8.80 8.76 8.80 8.78 8.78 8.71 11.63 11.62 327

4.38 ACN 8.44 8.46 8.44 8.49 8.44 8.44 8.46 11.36 11.33 327

4.42 ACN 8.44 8.47 8.42 8.48 8.42 8.42 8.46 11.33 11.32 327

2.20 DCM 8.36 8.38 8.52 8.50 8.52 8.51 8.45 11.20 11.25

326

2.37 DCM 8.40 8.42 8.51 8.49 8.53 8.52 8.53 11.21 11.25

326

–1.01 DCM 8.86 8.89 8.83 8.92 8.80 8.79 8.92 11.97 12.00

326

–0.80 DCM 8.65 8.67 8.72 8.79 8.75 8.74 8.88 11.65 11.70

326

3.63 DCM

an.s. n.s. n.s. n.s. n.s. 8.62 n.s. n.s. n.s.

326

1.53 DCM n.s. n.s. n.s. n.s. n.s. 8.85 n.s. n.s. n.s.

326

4.63 DCM 7.88 7.93 7.97 7.93 7.98 7.98 7.88 10.81 10.77

328

6.54 DCM 7.95 7.97 7.90 8.00 7.88 7.88 7.87 10.80 10.82 327

6.44 ACN 8.10 8.14 8.13 8.14 8.14 8.13 8.13 11.04 11.02 327

6.00 ACN 8.08 8.12 8.07 8.12 8.07 8.08 8.04 10.97 10.96 327

7.22 ACN 7.95 7.97 7.96 7.96 7.97 7.97 7.80 10.90 10.88 327

Electronic Supplementary Material (ESI) for Chemical ScienceThis journal is © The Royal Society of Chemistry 2013

S43

Supporting References

1. to 60. are given in the main text.

61. P. Politzer, F. Abu-Awwad and J. S. Murray, Int. J. Quantum 5

Chem., 1998, 69, 607-613. 62. J. S. Murray, T. Brinck and P. Politzer, J. Mol. Struct.:

THEOCHEM, 1992, 87, 271-281.

63. P. Politzer, J. S. Murray and M. C. Concha, Int. J. Quantum Chem., 2002, 88, 19-27. 10

64. J. G. Hoggett, R. B. Moodie, J. R. Penton and K. Schofield, Nitration and aromatic reactivity, Cambridge University

Press, Cambridge, 1971.

65. H. Wynberg and E. W. Meijer, Org. React., 1982, 28, 1-36. 66. F. Bigi, G. Casiraghi, G. Casnati and G. Sartori, Synthesis, 15

1981, 1981, 310-312.

67. H. A. Muathen, Tetrahedron, 1996, 52, 8863-8866. 68. T. Yamamoto, K. Toyota and N. Morita, Tetrahedron Lett.,

2010, 51, 1364-1366.

69. C.-Y. Zhou, J. Li, S. Peddibhotla and D. Romo, Org. Lett., 20

2010, 12, 2104-2107.

70. R. B. Moodie, K. Schofield and A. R. Wait, J. Chem. Soc.,

Perkin Trans. 2, 1984, 921-926. 71. I. M. Downie, M. J. Earle, H. Heaney and K. F. Shuhaibar,

Tetrahedron, 1993, 49, 4015-4034. 25

72. J. L. O'Connell, J. S. Simpson, P. G. Dumanski, G. W. Simpson and C. J. Easton, Org. Biomol. Chem., 2006, 4, 2716-

2723.

73. L. M. Stock and A. Himoe, J. Am. Chem. Soc., 1961, 83, 4605-4609. 30

74. H. C. Brown and L. M. Stock, Journal of the American

Chemical Society, 1957, 79, 1421-1425. 75. Y. Okada, M. Yokozawa, M. Akiba, K. Oishi, K. Okawa, T.

Akeboshi, Y. Kawamura, S. Inokuma, Y. Nakamura and J.

Nishimura, Org. Biomol. Chem., 2003, 1, 2506-2511. 35

76. L. Gavara, T. Boisse, B. Rigo and J.-P. Hénichart,

Tetrahedron, 2008, 64, 4999-5004.

77. K. Tanemura, T. Suzuki, Y. Nishida, K. Satsumabayashi and T. Horaguchi, J. Chem. Res., Synop., 2003, 497-499.

78. K. Smith, T. Gibbins, R. W. Millar and R. P. Claridge, J. 40

Chem. Soc., Perkin Trans. 1, 2000, 2753-2758. 79. J. Hassan, M. Sévignon, C. Gozzi, E. Schulz and M. Lemaire,

Chem. Rev., 2002, 102, 1359-1470.

80. B. Bennetau and J. Dunogues, Synlett, 1993, 171-176. 81. C. Jia, D. Piao, J. Oyamada, W. Lu, T. Kitamura and Y. 45

Fujiwara, Science, 2000, 287, 1992-1995.

82. G. Felix, J. Dunogues, F. Pisciotti and R. Calas, Angew. Chem., 1977, 89, 502-504.

83. Z. Zhao and V. Snieckus, Org. Lett., 2005, 7, 2523-2526.

84. K. Durka, J. Górka, P. Kurach, S. Lulinski and J. Serwatowski, 50

J. Organomet. Chem., 2010, 695, 2635-2643.

85. G. Felix, J. Dunogues and R. Calas, Angew. Chem., 1979, 91,

439-432. 86. H. H. Coenen and S. M. Moerlein, J. Fluorine Chem.

, 1987, 36, 63-75. 55

87. W. Seaman and J. R. Johnson, J. Am. Chem. Soc., 1931, 53, 711-723.

88. J. R. Knowles and R. O. C. Norman, J. Chem. Soc., 1961,

3888-3891. 89. L. Kraszkiewicz, M. Sosnowski and L. Skulski, Synthesis, 60

2006, 2006, 1195-1199. 90. R. D. Chambers, C. J. Skinner, M. Atherton and J. S. Moilliet,

Chem. Commun., 1995, 19-19.

91. J. Arotsky, R. Butler and A. C. Darby, Chem. Commun., 1966, 650. 65

92. A. Gastaminza, T. A. Modro, J. H. Ridd and J. H. P. Utley, J.

Chem. Soc. B, 1968, 534-539.

93. M. Brickman, J. H. P. Utley and J. H. Ridd, J. Chem. Soc.,

1965, 6851-6857.

94. S. R. Hartshorn and J. H. Ridd, J. Chem. Soc. B, 1968, 1063-70

1067.

95. L. I. Belen'kii, G. M. Zhidomirov and I. A. Abronin, Russ.

Chem. Bull., 1974, 23, 28-31.

96. A. N. Nesmeyanov, T. P. Tolstaya, L. S. Isaeva and A. V. Grib, Dokl. Akad. Nauk. SSSR, 1960, 133, 602. 75

97. J. DeYoung, H. Kawa and R. J. Lagow, Chem. Commun.,

1992, 811-812. 98. A. Gissot, J.-M. Becht, J. R. Desmurs, V. Pévère, A. Wagner

and C. Mioskowski, Angew. Chem., Int. Ed., 2002, 41, 340-

343. 80

99. K. Menzel, E. L. Fisher, L. DiMichele, D. E. Frantz, T. D.

Nelson and M. H. Kress, J. Org. Chem., 2006, 71, 2188-2191.

100. I. P. Beletskaya, J. Organomet. Chem., 1983, 250, 551-564. 101. S. Uemura, A. Toshimitsu and M. Okano, J. Chem. Soc.,

Perkin Trans. 1, 1978, 1076-1079. 85

102. V. Papoian and T. Minehan, J. Org. Chem., 2008, 73, 7376-7379.

103. R. Chinchilla, C. Nájera and M. Yus, Chem. Rev., 2004, 104,

2667-2722. 104. G. V. M. Sharma, V. G. Reddy and P. R. Krishna, 90

Tetrahedron Lett., 1999, 40, 1783-1786.

105. N. Kanoh, J. Ishihara, Y. Yamamoto and A. Murai, Synthesis, 2000, 2000, 1878,1893.

106. H. Okamura, K. Yamauchi, K. Miyawaki, T. Iwagawa and M.

Nakatani, Tetrahedron Lett., 1997, 38, 263-266. 95

107. M. Müller, J. Schröder, C. Magg and K. Seifert, Tetrahedron

Lett., 1998, 39, 4655-4656.

108. H. Watanabe, T. Onoda and T. Kitahara, Tetrahedron Lett., 1999, 40, 2545-2548.

109. N. Furuichi, T. Hata, H. Soetjipto, M. Kato and S. Katsumura, 100

Tetrahedron, 2001, 57, 8425-8442. 110. C. W. Hui, H. K. Lee and H. N. C. Wong, Tetrahedron Lett.,

2002, 43, 123-126.

111. P. G. Lima, L. C. Sequeira and P. R. R. Costa, Tetrahedron Lett., 2001, 42, 3525-3527. 105

112. V. G. Nenajdenko, I. L. Baraznenok and E. S. Balenkova, J.

Org. Chem., 1998, 63, 6132-6136. 113. P. C. Hutchison, T. D. Heightman and D. J. Procter, Org. Lett.,

2002, 4, 4583-4585.

114. J. Ruiz, N. Sotomayor and E. Lete, Org. Lett., 2003, 5, 1115-110

1117.

115. L. Calvo, A. González-Ortega and M. C. Sañudo, Synthesis, 2002, 2002, 2450,2456.

116. C. Coindet, A. Comel and G. Kirsch, Tetrahedron Lett., 2001,

42, 6101-6104. 115

117. G. M. Coppola, R. E. Damon and H. Yu, J. Heterocycl.

Chem., 1996, 33, 687-696.

118. P. Leriche, M. Turbiez, V. Monroche, P. Frère, P. Blanchard, P. J. Skabara and J. Roncali, Tetrahedron Lett., 2003, 44, 649-

652. 120

119. M. M. M. Raposo and G. Kirsch, Tetrahedron, 2003, 59, 4891-4899.

120. A. A. Kiryanov, A. J. Seed and P. Sampson, Tetrahedron Lett.,

2001, 42, 8797-8800. 121. K. C. Nicolaou, J. Renaud, P. G. Nantermet, E. A. 125

Couladouros, R. K. Guy and W. Wrasidlo, J. Am. Chem. Soc.,

1995, 117, 2409-2420. 122. A. Peters, C. Vitols, R. McDonald and N. R. Branda, Org.

Lett., 2003, 5, 1183-1186.

123. H. Beck, C. B. W. Stark and H. M. R. Hoffmann, Org. Lett., 130

2000, 2, 883-886.

124. A. Padwa and C. S. Straub, J. Org. Chem., 2002, 68, 227-239.

125. C. A. Briehn, T. Kirschbaum and P. Bäuerle, J. Org. Chem., 1999, 65, 352-359.

126. Y. Lee and R. B. Silverman, Tetrahedron, 2001, 57, 5339-135

5352. 127. X. Franck, R. Hocquemiller and B. Figadere, Chem. Commun.,

2002, 160-161.

128. M. S. Vollmer, F. Effenberger, T. Stümpfig, A. Hartschuh, H.

Port and H. C. Wolf, J. Org. Chem., 1998, 63, 5080-5087. 140

129. M. S. Vollmer, F. Effenberger, R. Stecher, B. Gompf and W.

Eisenmenger, Chem. Eur. J., 1999, 5, 96-101. 130. M. Yokoyama, H. Toyoshima, M. Shimizu and H. Togo, J.

Chem. Soc. Perkin Trans. 1, 1997, 29-34.

Electronic Supplementary Material (ESI) for Chemical ScienceThis journal is © The Royal Society of Chemistry 2013

S44

131. P. Pigeon, A. c. Mamouni, J. Sikoraiova, S. Marchalin and B.

Decroix, Tetrahedron, 2001, 57, 4939-4943.

132. M. P. Sibi, M. Marvin and R. Sharma, J. Org. Chem., 1995, 60, 5016-5023.

133. T. A. Grese and L. D. Pennington, Tetrahedron Lett., 1995, 5

36, 8913-8916. 134. L. Bianchi, C. Dell'Erba, A. Gabellini, M. Novi, G. Petrillo

and C. Tavani, Tetrahedron, 2002, 58, 3379-3385.

135. D. Balachari, L. Quinn and G. A. O'Doherty, Tetrahedron Lett., 1999, 40, 4769-4773. 10

136. J. astul k and C. Ma al, Tetrahedron Lett., 2000, 41, 2741-

2744. 137. V. Bonnet, F. Mongin, F. Trecourt, G. Breton, F. Marsais, P.

Knochel and G. Queguiner, Synlett, 2002, 1008-1010.

138. R. Benhida, F. Lecubin, J.-L. Fourrey, L. R. Castellanos and 15

L. Quintero, Tetrahedron Lett., 1999, 40, 5701-5703.

139. Y. Zhang, A.-B. Hoernfeldt and S. Gronowitz, J. Heterocycl.

Chem., 1995, 32, 435-444. 140. E. Bures, P. G. Spinazze, G. Beese, I. R. Hunt, C. Rogers and

B. A. Keay, J. Org. Chem., 1997, 62, 8741-8749. 20

141. J.-H. Liu, Q.-C. Yang, T. C. W. Mak and H. N. C. Wong, J. Org. Chem., 2000, 65, 3587-3595.

142. M. C. Pirrung, Z. Li, K. Park and J. Zhu, J. Org. Chem., 2002,

67, 7919-7926. 143. J. D. Rainier and J. M. Cox, Org. Lett., 2000, 2, 2707-2709. 25

144. P. J. Wagner and L. Wang, Org. Lett., 2006, 8, 645-647.

145. M. Bentov, A. Kaluszyner and Z. Pelchowicz, J. Chem. Soc., 1962, 2825-2827.

146. P. K. Chhattise, A. V. Ramaswamy and S. B. Waghmode,

Tetrahedron Lett., 2008, 49, 189 - 194. 30

147. R. Andreozzi, M. Canterino, V. Caprio, I. Di Somma and R.

Sanchirico, Organic Process Research & Development, 2006,

10, 1199-1204. 148. G. Marino, A. R. Katritzky and A. J. Boulton, in Adv.

Heterocycl. Chem., Academic Press, 1971, vol. Volume 13, 35

pp. 235-314. 149. A. R. Cooksey, K. J. Morgan and D. P. Morrey, Tetrahedron,

1970, 26, 5101-5111.

150. N. Iranpoor, H. Firouzabadi, N. Nowrouzi and D. Firouzabadi, Tetrahedron Lett., 2006, 47, 6879-6881. 40

151. G. Doddi, P. Mencarelli, A. Razzini and F. Stegel, J. Org. Chem., 1979, 44, 2321-2323.

152. G. A. Cordell, J. Org. Chem., 1975, 40, 3161-3169.

153. H. M. Gilow and D. E. Burton, J. Org. Chem., 1981, 46, 2221-2225. 45

154. A. G. Anderson and M. M. Exner, J. Org. Chem., 1977, 42,

3952-3955. 155. A. R. Butler and P. T. Shepherd, J. Chem. Soc., Perkin Trans.

2, 1980, 113-116.

156. N. J. Gogan, R. McDonald, H. J. Anderson and C. E. Loader, 50

Can. J. Chem., 1989, 67, 433-436.

157. I. Nicolaou and V. J. Demopoulos, J. Med. Chem., 2003, 46,

417-426. 158. M. Krayer, M. Ptaszek, H.-J. Kim, K. R. Meneely, D. Fan, K.

Secor and J. S. Lindsey, J. Org. Chem., 2010, 75, 1016-1039. 55

159. B. Ostman, Acta Chem. Scand., 1968, 22, 2754-2764. 160. C. D. Johnson, A. R. Katritzky, M. Kingsland and E. F. V.

Scriven, J. Chem. Soc. B, 1971, 1-4.

161. Y. Goldberg and H. Alper, J. Org. Chem., 1993, 58, 3072-3075. 60

162. S. I. Pennanen, Heterocycles, 1976, 4, 1021-1024.

163. A. W. Weston and R. J. Michaels, Org. Synth. Coll. Vol. IV, 1963, 913.

164. R. M. Acheson and D. R. Harrison, J. Chem. Soc. C, 1970,

1764-1784. 65

165. J. J. McNally, P. J. Sanfilippo, L. Fitzpatrick and J. B. Press, J.

Heterocycl. Chem., 1992, 29, 247-250.

166. S. Gronowitz, A. Hallberg and C. Glennow, J. Heterocycl. Chem., 1980, 17, 171-174.

167. I. J. Turchi, J. B. Press, J. J. McNally, M. P. Bonner and K. L. 70

Sorgi, J. Org. Chem., 1993, 58, 4629-4633. 168. K. Uchida, N. Izumi, S. Sukata, Y. Kojima, S. Nakamura and

M. Irie, Angew. Chem., Int. Ed., 2006, 45, 6470-6473.

169. M. D'Auria and G. Mauriello, Tetrahedron Lett., 1995, 36,

4883-4884. 75

170. K. J. Hoffmann and P. H. J. Carlsen, Synth. Commun., 1999, 29, 1607 - 1610.

171. S. Gronowitz and I. Ander, Chem. Scr., 1980, 15, 20-22.

172. D. L. Pearson and J. M. Tour, J. Org. Chem., 1997, 62, 1376-1387. 80

173. W. Zhang and P. G. Wang, J. Org. Chem., 2000, 65, 4732-

4735. 174. J. G. Michels and K. J. Hayes, J. Am. Chem. Soc., 1958, 80,

1114-1116.

175. M. A. Keegstra, A. J. A. Klomp and L. Brandsma, Synth. 85

Commun., 1990, 20, 3371-3374.

176. G. Ciranni and S. Clementi, Tetrahedron Lett., 1971, 3833-

3836. 177. R. F. Hartman and S. D. Rose, J. Org. Chem., 1981, 46, 4340-

4345. 90

178. D. A. H. Taylor, J. Chem. Soc., 1953, 2767-2769. 179. K. Itoh, S. Kishimoto and K. Sagi, Can. J. Chem., 2009, 87,

760-774.

180. K. Itoh and S. Kishimoto, New J. Chem., 2009, 33, 1127-1138. 181. Q. He, W. Chen and Y. Qin, Tetrahedron Lett. , 2007, 48, 95

1899-1901.

182. A. Padwa and A. G. Waterson, ARKIVOC, 2001, 29-42. 183. G. Doddi, F. Stegel and M. T. Tanasi, J. Org. Chem., 1978,

43, 4303-4305.

184. T. J. Donohoe, A. A. Calabrese, J.-B. Guillermin, C. S. 100

Frampton and D. Walter, J. Chem. Soc., Perkin Trans. 1, 2002,

1748-1756.

185. P. A. Finan and G. A. Fothergill, J. Chem. Soc., 1963, 2723-2727.

186. G. Zwicky, P. G. Waser and C. H. Eugster, Helv. Chim. Acta, 105

1959, 42, 1177-1189. 187. J. A. Zoltewicz and L. W. Deady, Adv. Heterocycl. Chem.,

1978, 22, 71-121.

188. A. Hassner and B. Fischer, Tetrahedron, 1989, 45, 6249-6262. 189. H. Walba and R. W. Isensee, J. Org. Chem., 1961, 26, 2789-110

2791.

190. M. W. Austin, J. R. Blackborow, J. H. Ridd and B. V. Smith, J. Chem. Soc., 1965, 1051-1057.

191. I. E. Balaban and F. L. Pyman, J. Chem. Soc., Trans., 1922, 121, 947-958. 115

192. S. F. Kobs and E. J. Behrman, Inorg. Chim. Acta, 1987, 138,

113-120. 193. A. R. Katritzky, C. Ogretir, H. O. Tarhan, H. M. Dou and J. V.

Metzger, J. Chem. Soc., Perkin Trans. 2, 1975, 1614-1620.

194. L. D. Hansen, E. J. Baca and P. Scheiner, J. Heterocycl. 120

Chem., 1970, 7, 991-996.

195. G. Zoppellaro, V. Enkelmann, A. Geies and M. Baumgarten,

Org. Lett., 2004, 6, 4929-4932. 196. M. M. Kim, R. T. Ruck, D. Zhao and M. A. Huffman,

Tetrahedron Lett., 2008, 49, 4026-4028. 125

197. Z.-G. Zhao and Z.-X. Wang, Synth. Commun., 2007, 37, 137-147.

198. R. S. Gross, Z. Guo, B. Dyck, T. Coon, C. Q. Huang, R. F.

Lowe, D. Marinkovic, M. Moorjani, J. Nelson, S. Zamani-Kord, D. E. Grigoriadis, S. R. J. Hoare, P. D. Crowe, J. H. Bu, 130

M. Haddach, J. McCarthy, J. Saunders, R. Sullivan, T. Chen

and J. P. Williams, J. Med. Chem., 2005, 48, 5780-5793. 199. R. Raap and R. G. Micetich, J. Med. Chem., 1968, 11, 70-73.

200. F. Hübenett, F. H. Flock, W. Hansel, H. Heinze and H.

Hofmann, Angew. Chem., Int. Ed. Engl., 1963, 2, 714-719. 135

201. A. R. Katritzky, E. F. V. Scriven, S. Majumder, R. G.

Akhmedova, N. G. Akhmedov and A. V. Vakulenko,

ARKIVOC, 2005, 179-191. 202. A. Pascual, Helv. Chim. Acta, 1989, 72, 556-569.

203. L. A. Reiter, J. Org. Chem., 1987, 52, 2714-2726. 140

204. N. K. Kochetkov and E. D. Khomutova, Zh. Obshch. Khim., 1959, 29, 535-539.

205. N. K. Kochetkov, S. D. Sokolov and N. M. Vagurtova, Zh.

Obshch. Khim., 1962, 32, 325-326. 206. P. N. James and H. R. Snyder, Org. Synth., 1959, 39, 30-33. 145

Electronic Supplementary Material (ESI) for Chemical ScienceThis journal is © The Royal Society of Chemistry 2013

S45

207. H. Heaney, G. Papageorgiou and R. F. Wilkins, Tetrahedron,

1997, 53, 13361-13372.

208. K. Piers, C. Meimaroglou, R. V. Jardine and R. K. Brown, Can. J. Chem., 1963, 41, 2399-2401.

209. D. W. Ockenden and K. Schofield, Nature, 1951, 168, 603-5

603. 210. G. Bastian, R. Royer and R. Cavier, Eur. J. Med. Chem., 1983,

18, 365-368

211. R. Stoermer and O. Richter, Ber. Dtsch. Chem. Ges., 1897, 30, 2094-2096. 10

212. A. Krutosikova, J. Kovac, M. Dandarova and M. Bobalova,

Collect. Czech. Chem. Commun., 1982, 47, 3288-3296. 213. E. Baciocchi, S. Clementi and G. V. Sebastiani, J. Chem. Soc.,

Perkin Trans. 2, 1976, 266-271.

214. T. Sugiyama, Bull. Chem. Soc. Jpn., 1982, 55, 1504-1508. 15

215. G. Van Zyl, C. J. Bredeweg, R. H. Rynbrandt and D. C.

Neckers, Can. J. Chem., 1966, 44, 2283-2289.

216. U. Berens, U. Englert, S. Geyser, J. Runsink and A. Salzer, Eur. J. Org. Chem., 2006, 2006, 2100-2109.

217. A. Heynderickx, A. Samat and R. Guglielmetti, Synthesis, 20

2002, 2002, 213-216. 218. K. J. Armstrong, M. Martin-Smith, N. M. D. Brown, G. C.

Brophy and S. Sternhell, J. Chem. Soc. C, 1969, 1766-1775.

219. T. Okuyama, Y. Tani, K. Miyake and Y. Yokoyama, J. Org. Chem., 2007, 72, 1634-1638. 25

220. O. Fuentes and W. W. Paudler, J. Heterocycl. Chem., 1975,

12, 379-383. 221. K. Sawada, S. Okada, A. Kuroda, S. Watanabe, Y. Sawada

and H. Tanaka, Chem. Pharm. Bull., 2001, 49, 799-813.

222. E. T. Borrows, D. O. Holland and J. Kenyon, J. Chem. Soc., 30

1946, 1077-1083.

223. J. A. Joule and K. Mills, Heterocyclic Chemistry, Chichester,

UK, 2010. 224. J. P. Paolini and R. K. Robins, J. Org. Chem., 1965, 30, 4085-

4090. 35

225. S. Chayer, M. Schmitt, V. Collot and J.-J. Bourguignon, Tetrahedron Lett., 1998, 39, 9685-9688.

226. P. V. Khodakovskiy, D. M. Volochnyuk, D. M. Panov, I. I.

Pervak, E. V. Zarudnitskii, O. V. Shishkin, A. A. Yurchenko, A. Shivanyuk and A. A. Tolmachev, Synthesis, 2008, 948-956. 40

227. E. E. Glover and L. W. Peck, J. Chem. Soc., Perkin Trans. 1, 1980, 959-962.

228. K. Tanji, T. Sasahara, J. Suzuki and T. Higashino,

Heterocycles, 1993, 35, 915-924. 229. Y.-L. Yang, Y.-H. Lee, C.-J. Chang, A.-J. Lu, W.-C. Hsu, L. 45

Wang, M.-K. Leung and C.-A. Dai, J. Polym. Sci., Part A:

Polym. Chem., 2010, 48, 1607-1616. 230. N. Berton, I. Fabre-Francke, D. Bourrat, F. Chandezon and S.

Sadki, J. Phys. Chem. B, 2009, 113, 14087-14093.

231. Z. Zhao, X. Xu, X. Chen, X. Wang, P. Lu, G. Yu and Y. Liu, 50

Tetrahedron, 2008, 64, 2658-2668.

232. X. J. Feng, P. L. Wu, F. Bolze, H. W. C. Leung, K. F. Li, N.

K. Mak, D. W. J. Kwong, J.-F. Nicoud, K. W. Cheah and M. S. Wong, Org. Lett., 2010, 12, 2194-2197.

233. R. Kaul, S. Deechongkit and J. W. Kelly, J. Am. Chem. Soc., 55

2002, 124, 11900-11907. 234. W. G. Skene, V. Berl, H. Risler, R. Khoury and J.-M. Lehn,

Org. Biomol. Chem., 2006, 4, 3652-3663.

235. M. J. S. Dewar and E. W. T. Warford, J. Chem. Soc., 1956, 3581-3585. 60

236. R. Taylor, Tetrahedron Lett., 1972, 13, 1755-1757.

237. R. G. Coombes and L. W. Russell, J. Chem. Soc. B, 1971, 2443-2447.

238. P. H. Gore, Chem. Rev., 1955, 55, 229-281.

239. P. B. D. De la Mare, Acc. Chem. Res., 1974, 7, 361-368. 65

240. G. M. Badger, J. W. Cook and A. R. M. Gibb, J. Chem. Soc.,

1951, 3456-3459.

241. J. M. Wallis and J. K. Kochi, J. Am. Chem. Soc., 1988, 110,

8207-8223.

242. M. Dewar and R. Jones, J. Am. Chem. Soc., 1968, 90, 2137-70

2144. 243. P. G. E. Alcorn and P. R. Wells, Aust. J. Chem., 1965, 18,

1391-1396.

244. L. H. Klemm, J. W. Sprague and E. Y. K. Mak, J. Org. Chem.,

1957, 22, 161-166. 75

245. E. R. Ward, C. D. Johnson and L. A. Day, J. Chem. Soc., 1959, 487-493.

246. J. Nanclares, J. Gil, B. Rojano, J. Saez, B. Schneider and F.

Otalvaro, Tetrahedron Lett., 2008, 49, 3844-3847. 247. K. S. K. Reddy, N. Narender, C. N. Rohitha and S. J. 80

Kulkarni, Synth. Commun., 2008, 38, 3894-3902.

248. E. R. Ward and J. G. Hawkins, J. Chem. Soc., 1954, 2975. 249. A. Albert and J. N. Phillips, J. Chem. Soc., 1956, 1294-1304.

250. D. E. Pearson, W. W. Hargrove, J. K. T. Chow and B. R.

Suthers, J. Org. Chem., 1961, 26, 789-792. 85

251. G. A. Olah, J. A. Olah and N. A. Overchuk, J. Org. Chem.,

1965, 30, 3373-3376.

252. E. Ochiai, J. Org. Chem., 1953, 18, 534-551. 253. V. Cañibano, J. F. Rodríguez, M. Santos, M. A. Sanz-Tejedor,

M. C. Carreño, G. González and J. L. García-Ruano, 90

Synthesis, 2001, 2001, 2175-2179. 254. P. J. Brignell, A. R. Katritzky and H. O. Tarhan, J. Chem. Soc.

B, 1968, 1477-1484.

255. A. R. Katritzky and C. D. Johnson, Angew. Chem., Int. Ed. Engl., 1967, 6, 608-615. 95

256. T. J. Kress, L. L. Moore and S. M. Costantino, J. Org. Chem.,

1976, 41, 93-96. 257. H. H. Jaffé, J. Am. Chem. Soc., 1955, 77, 4445-4448.

258. M. v. Ammers, H. J. d. Hertog and B. Haase, Tetrahedron,

1962, 18, 227-232. 100

259. B. Bobranski, L. Kochanska and A. Kowalewska, Ber. Dtsch.

Chem. Ges. B, 1938, 71B, 2385-2388.

260. A. R. Katrizky and W. Q. Fan, Heterocycles, 1992, 34, 2179-2229.

261. A. R. Katritzky, B. Terem, E. V. Scriven, S. Clementi and H. 105

O. Tarhan, J. Chem. Soc., Perkin Trans. 2, 1975, 1600-1609. 262. C. H. Lee and Y. H. Kim, Tetrahedron Lett., 1991, 32, 2401-

2404.

263. L. Glavas-Obrovac, I. Karner, M. Pavlak, M. Radacic, J. Kasnar-Samprec and B. Zinic, Nucleosides, Nucleotides 110

Nucleic Acids, 2005, 24, 557-569.

264. Z. Janeba, J. Balzarini, G. Andrei, R. Snoeck, E. De Clercq and M. J. Robins, Can. J. Chem., 2006, 84, 580-586.

265. G. Sun, C. J. Fecko, R. B. Nicewonger, W. W. Webb and T. P. Begley, Org. Lett., 2006, 8, 681-683. 115

266. M. Jereb, M. Zupan and S. Stavber, Chem. Commun., 2004,

2614-2615. 267. L. Paolini, E. Petricci, F. Corelli and M. Botta, Synthesis,

2003, 1039-1042.

268. P. B. D. De la Mare, M. Kiamuddin and J. H. Ridd, J. Chem. 120

Soc., 1960, 561-565.

269. A. I. Tochilkin, I. R. Kovel'man, E. P. Prokof'ev, I. N.

Gracheva and M. V. Levinskii, Chem. Heterocycl. Compd., 1988, 24, 892-897.

270. M. Gordon and D. E. Pearson, J. Org. Chem., 1964, 29, 329-125

332. 271. W. D. Brown and A. H. Gouliaev, Synthesis, 2002, 2002,

0083,0086.

272. M. K. Din and A. K. Choudhury, Chem. Ind., 1963, 1840. 273. M. Kiamuddin and M. E. Haque, Chem. Ind., 1964, 1753-130

1754.

274. M. W. Austin and J. H. Ridd, J. Chem. Soc., 1963, 4204-4210. 275. D. H. G. Crout, J. R. Penton and K. Schofield, J. Chem. Soc.

B, 1971, 1254-1256.

276. M. J. S. Dewar and P. M. Maitlis, J. Chem. Soc., 1957, 2521-135

2528.

277. R. D. Chambers, D. Holling, G. Sandford, A. S. Batsanov and

J. A. K. Howard, J. Fluorine Chem., 2004, 125, 661-671. 278. R. Whyman, D. B. Copley and W. E. Hatfield, J. Am. Chem.

Soc., 1967, 89, 3135-3141. 140

279. A. Yokoyama, T. Ohwada, S. Saito and K. Shudo, Chem. Pharm. Bull., 1997, 45, 279-283.

280. R. B. Moodie, K. Schofield and M. J. Williamson, Chem. Ind.,

1964, 1577. 281. B. Arnestad, J. M. Bakke, I. Hegbom and E. Ranes, Acta 145

Chem. Scand., 1996, 50, 556-557.

Electronic Supplementary Material (ESI) for Chemical ScienceThis journal is © The Royal Society of Chemistry 2013

S46

282. A. R. Katritzky and M. Kingsland, J. Chem. Soc. B, 1968,

862-864.

283. R. B. Moodie, E. A. Qureshi, K. Schofield and J. T. Gleghorn, J. Chem. Soc. B, 1968, 312-315.

284. W. D. Brown and A. H. Gouliaev, Org. Synth., 2005, 81, 98-5

104. 285. S.-Y. Sit, K. Xie, S. Jacutin-Porte, M. T. Taber, A. G.

Gulwadi, C. D. Korpinen, K. D. Burris, T. F. Molski, E. Ryan,

C. Xu, H. Wong, J. Zhu, S. Krishnananthan, Q. Gao, T. Verdoorn and G. Johnson, J. Med. Chem., 2002, 45, 3660-10

3668.

286. J. H. Nelson, R. G. Garvey and R. O. Ragsdale, J. Heterocycl. Chem., 1967, 4, 591-597.

287. M. Hamana and H. Saito, Heterocycles, 1977, 8, 403-409.

288. E. Ochiai and M. Ikehara, J. Pharm. Soc. Japan, 1953, 73, 15

666-669.

289. K. Schofield and T. Swain, J. Chem. Soc., 1949, 1367-1371.

290. O. S. Wolfbeis and A. Knierzinger, Z. Naturforsch., A, 1979, 34A, 510-515.

291. G. P. Ellis and I. L. Thomas, J. Chem. Soc., Perkin Trans. 1, 20

1973, 2781-2785. 292. P. F. Wiley, J. Am. Chem. Soc., 1952, 74, 4326-4328.

293. A. Adams and D. H. Hey, J. Chem. Soc., 1949, 255-258.

294. K. Schofield and T. Swain, Nature, 1948, 161, 690-691. 295. R. B. Moodie, J. R. Penton and K. Schofield, J. Chem. Soc. B, 25

1971, 1493-1498.

296. A. Clayton, J. Chem. Soc., Trans., 1910, 97, 2102-2112. 297. P. P. Joshi, T. R. Ingle and B. V. Bhide, J. Indian Chem. Soc.,

1959, 36, 59-63.

298. H. Hosoya and S. Nagakura, Bull. Chem. Soc. Jpn., 1966, 39, 30

1414-1418.

299. M. K. Yusupov and A. S. Sadykov, Khim. Prir. Soedin., 1978,

3-26. 300. P. L. Pauson, Chem. Rev., 1955, 55, 9-136.

301. D. Lloyd, R. H. McDougall and D. R. Marshall, J. Chem. Soc. 35

C, 1966, 780-782. 302. D. Lloyd and D. R. Marshall, J. Chem. Soc., 1958, 118-120.

303. R. P. Bell and D. R. Marshall, J. Chem. Soc., 1964, 2195-

2201. 304. G. Ferguson, D. Lloyd, H. McNab, D. R. Marshall, B. L. Ruhl 40

and T. Wieckowski, J. Chem. Soc., Perkin Trans. 2, 1991, 1563-1568.

305. D. Lloyd and H. McNab, Angew. Chem., Int. Ed. Engl., 1976,

15, 459-468. 306. L. Altschuler and E. Berliner, J. Am. Chem. Soc., 1966, 88, 45

5837-5845.

307. T. Okamoto, K. Shudo, N. Miyata, Y. Kitahara and S. Nagata, Chem. Pharm. Bull., 1978, 26, 2014-2026.

308. G. M. Badger and R. I. Reed, Nature, 1948, 161, 238.

309. M. S. Newman and A. I. Kosak, J. Org. Chem., 1949, 14, 375-50

378.

310. S. K. Balani, P. J. Van Bladeren, E. S. Cassidy, D. R. Boyd

and D. M. Jerina, J. Org. Chem., 1987, 52, 137-144. 311. F. Radner, Acta Chem. Scand., Ser. B, 1983, B37, 65-67.

312. W. Carruthers, J. Chem. Soc., 1953, 3486-3489. 55

313. E. Clar, Polycyclic hydrocarbons, Academic, New York, 1964.

314. J. W. Cook and R. Schoental, J. Chem. Soc., 1948, 170-173.

315. G. Dallinga, A. A. V. Stuart, P. J. Smit and E. L. Mackor, Z. Elektrochem. Angew. Phys. Chem., 1957, 61, 1019-1027. 60

316. C. C. Barker, R. G. Emmerson and J. D. Periam, J. Chem.

Soc., 1955, 4482-4485. 317. K. Hirano, S. Urban, C. Wang and F. Glorius, Org. Lett.,

2009, 11, 1019-1022.

318. P. B. D. de la Mare and J. H. Ridd, Aromatic substitution, New 65

York, 1959.

319. C. E. Braun, C. D. Cook, C. Merritt, Jr. and J. E. Rousseau,

Org. Synth., 1951, 31, 77-79.

320. J. W. Cook and R. Schoental, Nature, 1948, 161, 237-238.

321. R. M. Moriarty, P. Dansette and D. M. Jerina, Tetrahedron 70

Lett., 1975, 2557-2560. 322. H. C. Brown and L. M. Stock, Journal of the American

Chemical Society, 1962, 84, 3298-3306.

323. A. D. Mesure and J. G. Tillett, Journal of the Chemical

Society B: Physical Organic, 1966, 0, 669-670. 75

324. H. Mayr, T. Bug, M. F. Gotta, N. Hering, B. Irrgang, B. Janker, B. Kempf, R. Loos, A. R. Ofial, G. Remennikov and

H. Schimmel, J. Am. Chem. Soc., 2001, 123, 9500-9512.

325. M. Kedziorek, P. Mayer and H. Mayr, Eur. J. Org. Chem., 2009, 1202-1206. 80

326. H. Mayr, B. Kempf and A. R. Ofial, Acc. Chem. Res., 2003,

36, 66-77. 327. S. Lakhdar, M. Westermaier, F. Terrier, R. Goumont, T.

Boubaker, A. R. Ofial and H. Mayr, J. Org. Chem., 2006, 71,

9088-9095. 85

328. B. Kempf, N. Hampel, A. R. Ofial and H. Mayr, Chem. Eur.

J., 2003, 9, 2209-2218.

90

Electronic Supplementary Material (ESI) for Chemical ScienceThis journal is © The Royal Society of Chemistry 2013


Recommended