+ All Categories
Home > Documents > S-72.245 Transmission Methods in Telecommunication Systems ... · For non-Inter-Symbolic...

S-72.245 Transmission Methods in Telecommunication Systems ... · For non-Inter-Symbolic...

Date post: 24-Mar-2019
Category:
Upload: trancong
View: 223 times
Download: 0 times
Share this document with a friend
25
S-72.1140 Transmission Methods in Telecommunication Systems (5 cr) Digital Baseband Transmission
Transcript

S-72.1140 Transmission Methods in Telecommunication Systems (5 cr)

Digital Baseband Transmission

2 Helsinki University of Technology,Communications Laboratory, Timo O. Korhonen

Digital Baseband TransmissionWhy to apply digital transmission?Symbols and bitsBinary PAM FormatsBaseband transmission– Binary error probabilities in baseband transmission

Pulse shaping– minimizing ISI and making bandwidth adaptation - cos roll-off

signaling– maximizing SNR at the instant of sampling - matched

filtering– optimal terminal filters

Determination of transmission bandwidth as a function of pulse shape– Spectral density of Pulse Amplitude Modulation (PAM)

Equalization - removing residual ISI - eye diagram

3 Helsinki University of Technology,Communications Laboratory, Timo O. Korhonen

Why to Apply Digital Transmission?Digital communication withstands channel noise, interference and distortion better than analog system. For instance in PSTN inter-exchange STP*-links NEXT (Near-End Cross-Talk) produces several interference. For analog systems interference must be below 50 dB whereas in digital system 20 dB is enough. With this respect digital systems can utilize lower quality cabling than analog systemsRegenerative repeaters are efficient. Note that cleaning of analog-signals by repeaters does not work as wellDigital HW/SW implementation is straightforwardCircuits can be easily configured and programmed by DSP techniquesDigital signals can be coded to yield very low error ratesDigital communication enables efficient exchange of SNR to BW-> easy adaptation into different channelsThe cost of digital HW continues to halve every two or three years

STP: Shielded twisted pair

4 Helsinki University of Technology,Communications Laboratory, Timo O. Korhonen

DigitalTransmission

Information:- analog:BW & dynamic range- digital:bit rate

Information:- analog:BW & dynamic range- digital:bit rate

Transmitted power;bandpass/baseband signal BW

Transmitted power;bandpass/baseband signal BW

‘Baseband’ means that no carrier wave modulation is used for transmission

Maximization of information transferred

Maximization of information transferred

Message protection & channel adaptation;convolution, block coding

Message protection & channel adaptation;convolution, block coding

M-PSK/FSK/ASK..., depends on channel BW & characteristics

M-PSK/FSK/ASK..., depends on channel BW & characteristics

wireline/wirelessconstant/variablelinear/nonlinear

wireline/wirelessconstant/variablelinear/nonlinear

NoiseNoise

InterferenceInterference

ChannelChannel

ModulatorModulator

ChannelEncoder

ChannelEncoder

Source encoder

Source encoder

Channel decoder

Channel decoder

Source decoder

Source decoder

DemodulatorDemodulator

Information sink

Information sink

Information source

Information source

Transmitted signal

Message estimate

Message

Received signal(may contain errors)

InterleavingInterleaving

Fights against burst errors

Fights against burst errors

DeinterleavingDeinterleaving

In baseband systemsthese blocks are missing

5 Helsinki University of Technology,Communications Laboratory, Timo O. Korhonen

Symbols and Bits – M-ary PAM

1 1 00 1 11 110 1 0

bi( 1/ ) ts/sb b bT r T=bitrate ( 1/ )D r D=symbol rate baud

2nM =

:

::

number of bits: number of levelsSymbol durationBit duaration

⎧⎪⎪⎨⎪⎪⎩ b

nMDT

2log=n M

( ) ( )∑= −kk

s t a p t kDFor M=2 (binary signalling):

For non-Inter-Symbolic Interference (ISI), p(t) mustsatisfy:

This means that at the instant of decision, received signal component is

( ) ( )∑= −k bk

s t a p t kT

1, 0( )

0, , 2 ...=⎧

= ⎨ = ± ±⎩

tp t

t D D

( ) ( )∑= − =k kk

s t a p t kD a

Generally: (a PAM* signal)

( )s t

*Pulse Amplitude Modulation

unipolar, 2-level pulses

6 Helsinki University of Technology,Communications Laboratory, Timo O. Korhonen

Binary PAM Formats (1)Bit stream

Unipolar RZ and NRZ

Polar RZ and NRZ

Bipolar NRZ or alternate mark inversion (AMI)

Split-phase Manchester

7 Helsinki University of Technology,Communications Laboratory, Timo O. Korhonen

Binary PAM Formats (2)

Unipolar RZ, NRZ:– DC component

• No information, wastes power• Transformers and capacitors in route block DC

– NRZ, more energy per bit, synchronization more difficultPolar RZ, NRZ:– No DC term if ´0´and ´1´ are equally likely

Bipolar NRZ– No DC term

Split-phase Manchester – Zero DC term regardless of message sequence– Synchronization simpler– Requires larger bandwidth

8 Helsinki University of Technology,Communications Laboratory, Timo O. Korhonen

Baseband Digital Transmission Link

( ) ( ) ( )∑= − − +k dk

y t a p t t kD n t

( ) ( ) ( )≠∑= + − +%K k kk K

y t a a p KD kD n t

message reconstruction at yields= +K dt KD t

message ISI Gaussian bandpass noise

Uni

pola

r PA

M original message bits

decision instances

received wave y(t)

Dt

9 Helsinki University of Technology,Communications Laboratory, Timo O. Korhonen

Baseband Unipolar Binary Error Probability

r.v. : ( ) ( )= +k k kY y t a n tThe sample-and-hold circuit yields:

0

0

: 0,( | ) ( )

= ==

k

Y N

H a Y np y H p y

Establish H0 and H1 hypothesis:

1

1

: 1,( | ) ( )

= = += −

k

Y N

H a Y A np y H p y A

and

pN(y): Noise probability density function (PDF)

Assume binary & unipolar x(t)

10 Helsinki University of Technology,Communications Laboratory, Timo O. Korhonen

Determining Decision Threshold0

0

: 0,( | ) ( )

= ==

k

Y N

H a Y np y H p y

1

1

: 1,( | ) ( )

= = += −

k

Y N

H a Y A np y H p y A

Choose Ho (ak=0) if Y<VChoose H1 (ak=1) if Y>V

The comparator implements decision rule:

1 1 1

0 0

( | ) ( | )( | ) ( | )

V

e Y

Veo Y

p P Y V H p y H dyp P Y V H p y H dy

−∞

≡ < =

≡ > =

Average error error probability: 0 0 1 1= +e e eP P P PP1

20 1 0 11/ 2 ( )= = ⇒ = +e e eP P P P PChannel noise is Gaussian with the pfd:

2

2

1( ) exp22N

xp xσσ π

⎛ ⎞= −⎜ ⎟⎝ ⎠

Transmitted ‘0’but detected as ‘1’

11 Helsinki University of Technology,Communications Laboratory, Timo O. Korhonen

Error rate and Q-function

0 ( )Ve N

Vp p y dy Qσ

∫⎛ ⎞= = ⎜ ⎟⎝ ⎠

2

0 2

1 exp22 Ve

xp dxσσ π

∫⎛ ⎞= −⎜ ⎟⎝ ⎠

This can be expressed by using the Q-function

by

and also

0 ( )∞

∫= Ve Np p y dy

1 ( )σ−∞∫−⎛ ⎞= − = ⎜ ⎟

⎝ ⎠V

e N

A VP p y A dy Q

21( ) exp22 k dQ k λλ

π∞ ⎛ ⎞−⎜ ⎟

⎝ ⎠∫

12 Helsinki University of Technology,Communications Laboratory, Timo O. Korhonen

Baseband Binary Error Rate in Terms of Pulse Shape and γ

12 0 1 0 1( )

2e e e e e e

Ap p p p p p Qσ

⎛ ⎞= + = = ⇒ = ⎜ ⎟⎝ ⎠

for unipolar, rectangular NRZ [0,A] bits

setting V=A/2 yields then

2 2 21 1( ) (0) / 22 2RS A A= + =

for polar, rectangular NRZ [-A/2,A/2] bits2 2 21 1( / 2) ( / 2) / 4

2 2RS A A A= + − =

and hence2 2

2

0 0 0 0

0 0 0

/(2 ),unipolar/ ,polar2 4

/ / 2 /(2 ) ,unipolar/ 2 2 / 2 ,polar2

R R

R RR

b b b b b

R b

b R

b b b b

bE S

S NA AS NN

N N N r N rArN N r N r N r

σγ γ γ

γ γσ

⎧⎛ ⎞ = = ⎨⎜ ⎟⎝ ⎠ ⎩

= = =⎧ ⎧⎛ ⎞⇒ =⎨ ⎨⎜ ⎟= =⎝ ⎠⎩ ⎩

0 0 / 2R N bN N B N r= ≥Note that (lower limit with sinc-pulses)

Probability of occurrence

13 Helsinki University of Technology,Communications Laboratory, Timo O. Korhonen

Pulse Shaping and Band-limited Transmission

In digital transmission signaling pulse shape is chosen to satisfy the following requirements:– yields maximum SNR at the time instance of decision

(matched filtering)– accommodates signal to channel bandwidth:

• rapid decrease of pulse energy outside the main lobe in frequency domain alleviates filter design

• lowers cross-talk in multiplexed systems

14 Helsinki University of Technology,Communications Laboratory, Timo O. Korhonen

Signaling With Cosine Roll-off Signals

Maximum transmission rate can be obtained with sinc-pulses

However, they are not time-limited. A more practical choice is the cosine roll-off signaling:

( ) ( )( ) sinc sinc /1( ) [ ( )]

p t rt t DfP f F p t

r r

= =⎧⎪⎨ ⎛ ⎞= = Π⎜ ⎟⎪ ⎝ ⎠⎩

2

2( ) sinc1 (4 )cos tp t rt

tπββ

=−

2

/ 2

1( ) cos ( / 2 )2β

π=

= Πr

fP f f rr r

for raised cos-pulses β=r/2

15 Helsinki University of Technology,Communications Laboratory, Timo O. Korhonen

ExampleBy using and polar signaling, the following waveform is obtained:

Note that the zero crossing are spaced by D at

(this could be seen easily also in eye-diagram)The zero crossing are easy to detect for clock recovery.Note that unipolar baseband signaling involves performance penalty of 3 dB compared to polar signaling:

/ 2β = r

0.5 , 1.5 , 2.5 ,....t D D D= ± ± ±

( ), unipolar [0 /1]

( 2 ), polar[ 1]b

e

b

Qp

Q

γ

γ

⎧⎪= ⎨±⎪⎩

0 0

0

/ // 2

b R bb

R b

N NE SN N r

rγ = ==

16 Helsinki University of Technology,Communications Laboratory, Timo O. Korhonen

Matched Filtering

( ) ( ) exp( ) ( ) ( )d dH f KP f j t h t Kp t tω⇒ = ⇒ = −

0

0

( ) ( )( ) ( )exp( )

R R

R R

x t A p t tX f A P f j tω

= −⎧⎨ = −⎩

( )0

1[ ( ) ( )]

( ) ( )exp

dR

R d

t t tA F H f X f

H f P f j t dfA ω

−∞

= +

=

=

2 22 ( ) ( ) ( )2nH f G f df H f dfησ

∞ ∞

−∞ −∞∫ ∫= =

( )2

2

2

2

( ) ( )exp

( )2

d

R

H f P f j t dfA AH f df

ω

ησ

−∞

−∞

⎛ ⎞ =⎜ ⎟⎝ ⎠

H(f)H(f)++( )Rx t

( )2nG f η

=( )Dy t

Should be maximized

Post filter noise

Peak amplitude to be maximized

Using Schwartz’s inequality2

2 2( ) * ( ) ( ) ( )V f W f df W f df V f df∞ ∞ ∞

−∞ −∞ −∞∫ ∫ ∫≤

17 Helsinki University of Technology,Communications Laboratory, Timo O. Korhonen

Optimum terminal filtersAssume– arbitrary TX pulse shape x(t)– arbitrary channel response hc(t)– multilevel PAM transmission

What kind of filters are required for TX and RX to obtain matchedfiltered, non-ISI transmission?

The following condition must be fulfilled:

that means that undistorted transmission is obtained

( ) ( ) ( ) ( ) ( )exp( )x T C dP f H f H f R f P f j tω= −

Nyqvist shapedpulse in y(t)

( )T f

( )R f

: transmitting waveform: transmitter shaping filter: channel transfer function

: receiver filter

x

T

C

PHHR

⎧⎪⎪⎨⎪⎪⎩

18 Helsinki University of Technology,Communications Laboratory, Timo O. Korhonen

Avoiding ISI and enabling band-limiting inradio systems

Two goals to achieve: band limited transmission & matched filterreception

Hence at the transmitter and receiveralike root-raised cos-filtersmust be applied

TXfilt.

RXfilt.

Decisiondevice

noise

data

( )T f ( )R f

( ) ( ) ( ), raised-cos shaping( ) *( ), matched filtering

NT f R f C fT f R f

≡⎧⎨ =⎩

( ) ( ) ( )NR f T f C f⇒ = =

raised cos-spectra CN(f)

19 Helsinki University of Technology,Communications Laboratory, Timo O. Korhonen

Determining Transmission Bandwidth for an Arbitrary Baseband Signaling Waveform

Determine the relation between r and B when p(t)=sinc2 atFirst note from time domain that

hence this waveform is suitable for signalingThere exists a Fourier transform pair

From the spectra we note thatand hence it must be that for baseband

21, 0

sinc0, 1/ , 2 / ...

=⎧= ⇒ =⎨ = ± ±⎩

tat r a

t a a

2 1sinc fata a

⎛ ⎞↔ Λ⎜ ⎟⎝ ⎠

−a a

1/ a

TB a≥ f

TB r⇒ ≥

20 Helsinki University of Technology,Communications Laboratory, Timo O. Korhonen

PAM Power Spectral Density (PSD)PSD for PAM can be determined by using a general expression

For uncorrelated message bits

and therefore

on the other hand and

21( ) ( ) ( )exp( 2 )π∞

=−∞∑= −x a

nG f P f R n j nfD

D

Amplitude autocorrelation

2 2

2

, 0( )

, 0σ + =⎧

= ⎨ ≠⎩a a

a

a

m nR n

m n

2 2( )exp( 2 ) exp( 2 )a n an n

R n j nfD m j nfDπ σ π∞ ∞

=−∞ =−∞∑ ∑− = + −

1exp( 2 )n n

nj nfD fD D

π δ∞ ∞

=−∞ =−∞∑ ∑ ⎛ ⎞− = −⎜ ⎟

⎝ ⎠2 22 2 2( ) ( ) ( ) ( )x a a

nG f r P f m r P nr f nrσ δ

=−∞∑= + −

1/=r D

Total power

DC power

21 Helsinki University of Technology,Communications Laboratory, Timo O. Korhonen

ExampleFor unipolar binary RZ signal:

Assume source bits are equally likely and independent, thus

1( ) sinc2 2

=b b

fP fr r

2 2 2 2/ 2, / 2, / 4,a k k am a A a A Aσ= = = =2 2

2 2( ) sinc ( )sinc16 2 16 2x b

nb b

A f A nG f f nrr r

δ∞

=−∞∑⇒ = + −

22

22 2

( ) ( )

( ) ( )x a

an

G f r P f

m r P nr f nr

σ

δ∞

=−∞∑

=

+ −

22 1

4 2b

b

A rr

⎛ ⎞⎜ ⎟⎝ ⎠

22 Helsinki University of Technology,Communications Laboratory, Timo O. Korhonen

Equalization: Removing Residual ISIConsider a tapped delay line equalizer with

Search for the tap gains cN such that the output equals zero at sample intervals D except at the decision instant when it should be unity. The output is (think for instance paths c-N, cN or c0)

that is sampled at yielding

( ) ( )=−∑= − −%N

eq nn N

p t c p t nD ND

[ ]( ) ( ) ( ) ( )N N

eq k eq n nn N n N

p t p kD ND c p kD nD c p D k n=− =−∑ ∑= + = − = −% %

= +kt kD ND

( ) ( 2 )N Np t c p t ND= −%

( ) ( )N Np t c p t− −= %

0 0( ) ( )p t c p t ND= −%

23 Helsinki University of Technology,Communications Laboratory, Timo O. Korhonen

Tapped Delay Line: Matrix Representation

At the instant of decision:

That leads into (2N+1)x(2N+1) matrix where (2N+1) tap coefficients can be solved:

[ ]1, 0

( ) ( )0, 1, 2,...,

N N

eq k n nn N n N k n

kp t c p D k n c p

k N=− =− −∑ ∑

=⎧= − = = ⎨ = ± ± ±⎩

% %

0 2

1 1 1

0

1 1 1

2 0

... 0

...

... 0

... 1

... 0

... 0

− −

− − − −

+ − +

⎡ ⎤ ⎡ ⎤ ⎡ ⎤⎢ ⎥ ⎢ ⎥ ⎢ ⎥⎢ ⎥ ⎢ ⎥ ⎢ ⎥⎢ ⎥ ⎢ ⎥ ⎢ ⎥⎢ ⎥ ⎢ ⎥ ⎢ ⎥=⎢ ⎥ ⎢ ⎥ ⎢ ⎥⎢ ⎥ ⎢ ⎥ ⎢ ⎥⎢ ⎥ ⎢ ⎥ ⎢ ⎥⎢ ⎥ ⎢ ⎥ ⎢ ⎥⎢ ⎥ ⎢ ⎥ ⎢ ⎥⎣ ⎦⎣ ⎦ ⎣ ⎦

% %

M M M M

% %

% %

% %

M M M M

% %

N N

N N

N N

N N

N N

p p c

p p cp p cp p c

p p c

0 1 1 2

1 0 1 2 1

1 1

2 2 1 1 0

... 0... 0

... 1

... 0

n n n n

n n n n

n n n n n n

n n n n n

p c p c p cp c p c p c

p c p c p c

p c p c p c

− − − + −

− − + − +

− − − + −

− − − +

+ + + =+ + + =

+ + + =

+ + + =

% % %

% % %

L

% % %

L

% % %

0 1 2

1

n

n n n

p p pc c c

− −

− − +

L

L

+( )eqp t

( )p t%

time

taps

24 Helsinki University of Technology,Communications Laboratory, Timo O. Korhonen

Example of Equalization

Read the distorted pulse values into matrix from fig. (a)

and the solution is

1

0

1

1.0 0.1 0.0 00.2 1.0 0.1 10.1 0.2 1.0 0

−⎡ ⎤ ⎡ ⎤ ⎡ ⎤⎢ ⎥ ⎢ ⎥ ⎢ ⎥− =⎢ ⎥ ⎢ ⎥ ⎢ ⎥

−⎢ ⎥ ⎢ ⎥ ⎢ ⎥⎣ ⎦ ⎣ ⎦ ⎣ ⎦

ccc

1

0

1

0.0960.960.2

−−⎡ ⎤ ⎡ ⎤

⎢ ⎥ ⎢ ⎥=⎢ ⎥ ⎢ ⎥⎢ ⎥ ⎢ ⎥⎣ ⎦ ⎣ ⎦

ccc

Zero forced values

0p

1p

2p1p

2p−

Question: what does thesezeros help because they don’texist at the sampling instant?

25 Helsinki University of Technology,Communications Laboratory, Timo O. Korhonen

Monitoring Transmission Quality by Eye Diagram

Required minimum bandwidth is

Nyqvist’s sampling theorem:

/ 2TB r≥

Given an ideal LPF with thebandwidth B it is possible totransmit independent symbols at the rate:

/ 2 1/(2 )T bB r T≥ =


Recommended