+ All Categories
Home > Documents > Salt Marsh Restoration: Changes in Greenhouse Gas Flux

Salt Marsh Restoration: Changes in Greenhouse Gas Flux

Date post: 03-Oct-2021
Category:
Upload: others
View: 2 times
Download: 0 times
Share this document with a friend
28
1 Salt Marsh Restoration: Changes in Greenhouse Gas Flux Nia Bartolucci 50 College Street South Hadley, MA, 01075 Mentor: Dr. Jim Tang Ecosystem Center 7 MBL Street Marine Biological Laboratories, Woods Hole, MA 02543 December 20, 2015
Transcript
Page 1: Salt Marsh Restoration: Changes in Greenhouse Gas Flux

1

Salt Marsh Restoration: Changes in Greenhouse Gas Flux

Nia Bartolucci

50 College Street

South Hadley, MA, 01075

Mentor: Dr. Jim Tang

Ecosystem Center

7 MBL Street

Marine Biological Laboratories, Woods Hole, MA 02543

December 20, 2015

Page 2: Salt Marsh Restoration: Changes in Greenhouse Gas Flux

2

Abstract:

In this project a 2 week lab experiment was designed to test how the restoration of

Herring river, a fresh marsh that was a salt marsh before the diking of the Herring River system

in the early 1900s, would affect greenhouse gas flux (CH4 and CO2). Sediment cores were taken

at Herring River and a salt marsh, Stony Brook, and then treated with either fresh or salt water.

CH4 and CO2 fluxes from the cores were then measured five days a week for a 2 week period.

Although there wasn’t a statistical effect of the different water treatments on CH4 flux, general

trends showed that the addition of salt water decreased CH4 flux while the addition of fresh water

increased CH4 flux. CO2 emissions were lower in the controls and higher in cores treated with

the opposite water type than their natural conditions. Field measurements of CH4 and CO2

emissions were also taken at three restored salt marshes to see how length of time since

restoration affects greenhouse gas flux. Due to the cold weather, the data from this portion of the

experiment is inconclusive.

Key words: Salt marsh, greenhouse gas flux, restoration, Herring River, methane, carbon dioxide

Introduction:

Salt marshes are among the most productive systems in the world (Kennish, 2001,

Broome et al 1987). Coastal salt marshes carry out many vital ecosystem functions such as

filtration of coastal runoff, flood abatement, habitat for many plant and animal species and

carbon sequestration. Although many of the functions of salt marshes have been studied

extensively, one function that is not well understood and needs further study is the capability of

salt marshes to offset and help mitigate the amount of greenhouse gases in the atmosphere

through their ability to sequester and store carbon (Tang, 2015).

With rising CO2 levels from primarily anthropogenic causes now at 398.2 ppm, and the

effects of climate change already altering and affecting the world, there have been efforts to

research the capability of natural ecosystem to store carbon (ESRL NOAA 2015). This idea of

using natural ecosystem to help decrease CO2 levels is called “blue carbon” and is a relatively

new area of study (Mcleod, 2011). According to Mcleod et al. (2011), coastal salt marshes store

40 times more carbon then forested upland areas and therefore have been and continue to be

systems that are studied for their carbon storage capacity.

One effect of climate change that is starting to affect salt marshes and greenhouse gas

flux from these systems is sea level rise (Waquoit Bay National Estuarine Research Reserve

2012). According to research done by the Waquoit Bay National Estuarine Research Reserve

Page 3: Salt Marsh Restoration: Changes in Greenhouse Gas Flux

3

(2012), carbon burial has increased from 50-100 g C m-2

yr-1

in 1900 to 75 – 250 g C m-2

yr-1

;

This can be attributed to sea level rise which has created more marsh area and has allowed for

more C to be stored. However, in order for carbon to be optimally stored with rising sea level,

elevation growth must keep up with sea level rise (Weston et al 2011). As we start to see

increased sea level rise, it is apparent that we will start to see shifts in salt marsh conditions that

will effect biogeochemical processes that lead to greenhouse gas emissions (Helton et al 2014).

While there is some knowledge about the conditions that lead to burial of C or emissions of

greenhouse gases, there is still much that remains unknown.

Biogeochemical processes in salt marshes

Biogeochemical and microbial processes largely control the emissions of both CH4 and

CO2 in salt marshes. While there are several different types of microbial metabolism, two

processes that occur and have the most relevance in regards to this project are sulfate reduction

and methanogenesis. Through the process of methanogenesis, CH4, a green house gas that has 25

times the global warming potential of CO2, is emitted (Howarth, 2011). CH4 flux is significantly

affected by the water table, as methanogenesis is an anaerobic process (Moore and Knowles

1989). Methanogenesis is the metabolic activity of microbes known as methanogens. Through

the reduction of CO2 or the fermentation of acetate, CH2 is produced (Valiela 1995). CH4 is

released into the atmosphere through one of three processes: ebullition, diffusion or arrenchyma

(Mitsch and Gosselink 2007). Ebullition is when gases rise to the surface trapped in bubbles,

diffusion is when gas is dispersed through the water column, and arrenchyma is the transport of

gases through the vascular systems of plants (Mitsch and Gosselink 2007).

The microbial metabolism that dominates salt marshes however is sulfate reduction

(Valiela 1995). This can be attributed to the absence of other more favorable electrons acceptors

such as oxygen, nitrate, manganese, and ferric iron. Sulfate reduction inhibits methanogenesis in

three ways. Firstly sulfate reduction yields more energy for sulfate reducing bacteria, which

allows them to outcompete methanogens which use less preferential electron acceptors (Valiela

1995). Secondly, sulfate reducers also oxidize CH4, which further decreases CH4 flux, and lastly,

the reduction of sulfate to sulfide prevents methanogenesis (Valiela 1995). Poffenbarger et al.

(2011) found that CH4 emissions are considerably less in salt marshes in comparison with fresh

water wetlands because of the high concentrations of SO42-

in salt water.

Page 4: Salt Marsh Restoration: Changes in Greenhouse Gas Flux

4

Methanogenesis: CH3COO- +4 H2 = 2 CH4 + 2H2O

CH3COO- = CH4 + CO2

b

Sulfate reduction: CH3COO- + SO4

= = 2 CO2 +2 H2O

SO42-

+ 4H2 = 2H2O +HS-

(Equations taken from Valiela 1995)

Salt marshes provide short-term storage of C through biomass of vegetation, and provide

long-term storage through their capacity to store C in anaerobic sediments (Mcleod, 2011).

However, although salt marshes are net carbon sinks, they also emit CO2 as salt marshes

experience periodic oxidation which allows for aerobic decomposition of organic material which

then results in emission of CO2. (Moseman- Valtierra, 2011) Moore and Knowles (1989) found

that CO2 emissions were greatly impacted by the level of inundation; completely flooded cores

had much lower emissions than partially flooded cores. Also, another source of CO2 emission

from salt marshes is autotrophic and heterotrophic respiration.

Historically, salt marshes in the New England area were destroyed through dredging and

diking to create agricultural land as well as drained areas for development (Kennish, 2001)

(Bertness et al, 2002). As these sites were diked and drained and became oxidized upland

systems, they lost many of their original ecological functions such as their capacity to store

carbon. As the value of these ecosystems is being discovered and the need to find solutions to

deal with ever-rising CO2 levels in the atmosphere, there have been efforts to restore many of

these coastal wetlands.

In my project, I explored this function of salt marshes as emitters of greenhouse gases in

various New England salt marshes. I also studied how restoration of a salt marsh affects

greenhouse gas flux, specifically CO2 and CH4 flux. To better understand how restoration affects

greenhouse gas emissions I set up a series of sediment core incubations and treated them with

either salt or fresh water to simulate the placement or removal of a dike. I also took in field

measurements at four different locations on Cape Cod, Massachusetts. For my lab experiment, I

predict that the saltwater sediment cores will have lower CH4 flux than the freshwater cores due

to high concentrations of SO4-2

in the salt water. For the treated cores, I hypothesize that the fresh

cores treated with salt water will have greater CH4 flux than the saltmarsh cores treated with

fresh water because I predict that there will higher sulfate concentrations in the saltmarsh core

Page 5: Salt Marsh Restoration: Changes in Greenhouse Gas Flux

5

treated with salt water than the freshwater core treated with fresh water. For the in field

measurements, I hypothesize that the fluxes of both CO2 and CH4 will decrease with length of

time since restoration. The following report documents my two and half week experiment that

sought to address these topics.

Methods:

Site Descriptions (see appendix for map):

Stony Brook (41 45.275'N 70 6.767'W): Stony Brook is located in Brewster, MA. The site is

dominated by Spartina spp. It was the most recently restored site of the salt marshes studied in

this experiment; it was restored in 2010.

Herring River (41.96058N, 70.05587W): The Herring River site is located in Wellfleet, MA.

The Herring River site was originally a salt marsh but after the insertion of a dike in the early

1900s has becomes a fresh marsh as tidal inundation has been restricted. The site is dominated

by Typha species.

Quivett Creek (41 44.813'N 70 8.614'W): Quivett Creek is a salt marsh that is located in

Dennis, MA. It was restored in 2005. The vegetation is primarily Spartina spp

Chequessett (41.930457N, 70.071033W): Chequessett is located in Wellfleet, MA. It is located

at the mouth of the Herring River site. The site is also dominated by Spartina spp.

Core Collection

We collected 16 approximately 50 cm sediment cores on November 17th

, 2015 from two

different locations, 8 from Stony Brook, a salt marsh and 8 from Herring River, a fresh marsh. At

the Stony Brook site, we took the cores from the southwestern portion of the salt marsh near to

where Dr. Tang previously established sampling site. At the Herring River sites, we took the

cores adjacent to another established sampling area located close to the road in the southeastern

portion of the marsh.

We collected the cores by pounding polyvinyl cores into the ground using a

sledgehammer. Once the cores were completely driven into the ground, a metal fitting was

fastened around the next of the core and attached to a sawhorse cradle with a crank mechanism

attached. Before removing the cores from the ground, we pushed a rubber plug into the cores to

create a vacuum to keep the sediment in the core. Once we removed the cores from the ground,

we capped them with plastic caps to transport back to the lab.

Page 6: Salt Marsh Restoration: Changes in Greenhouse Gas Flux

6

Lab Experiment Set Up and Maintenance

The incubation treatments were set up on November 18th

, 2015. We drilled holes in the

bottom caps and fit them with ports so that pore water could be sampled. To minimize leaking

for when we flooded the cores, we wrapped the bottom part of the core where the end of the cap

met the core with ½ inch thread sealing tape to ensure the cap had a snug fit. We also sealed the

remaining gap between the cap and the core with ¾ inch black electrical tape, and then lastly fit a

metal collar around the core.

We collected a carboy of seawater from the Marine Biological docks in Woods Hole, MA

and then filtered it using 25mm GF/F swinex filters. The 16 cores were treated with different

types of water, and were set up in replicates of 4. We flooded four of the cores from Stony Brook

with saltwater while the remaining four cores were flooded with DI water. The same treatments

were applied to the Herring River cores; four were flooded with DI water and four were flooded

with salt water. The Herring River cores with DI water and the Stony Brook cores with salt water

acted as controls and represented what happens naturally. The Stony Brook cores with the fresh

water simulated the diking of the system while the Herring River cores with added salt water

simulate the restoration of a salt marsh by the removal of the dike and the return of tidal flow.

Because the different cores varied in depth, differential amounts of water were added to the

cores. Water was added until the entirety of the sediment was submerged in water. The cores

were left open and were stored in a controlled environment with an ambient temperature of

approximately 21 degrees C.

Field Measurements:

We took field measurements using the Picarro CO2, CH4, and H2O gas analyzer. We took

measurements at the Herring River and Chequessett site on Nov. 24th, 2015. The field data for

Stony Brook and Quivette Creek was collected on Dec. 3rd

, 2015. Field conditions and

temperature were comparable between these different dates.

Greenhouse Gas Measurements and Flux Calculations

I took greenhouse gas measurements using the G2301 Picarro CO2, CH4, and H2O gas

analyzer ( Picarro Inc. Santa Clara, CA, USA). For the lab experiment, I took samples

Page 7: Salt Marsh Restoration: Changes in Greenhouse Gas Flux

7

approximately five days a week for a two-week incubation period. Once concentrations were

recorded using the Picarro gas analyzer, fluxes were calculated using the computer program

Matlab 6 (Mathworks, Natick, MA, USA).

Physical Parameters, DOC and Sulfate Analysis:

I collected pore water from the cores on Nov. 18, 2015, Nov. 19th

, 2015, Nov. 23rd

, 2015, and

Nov. 30th

, 2015. At each pore water collection time, I also measured pH, temperature, redox, and

salinity using Spectrum FieldScout SoilStik electrode meters. The pore water was then filtered

through 47mm GF/D filter followed by a 47mm GF/F filter. Once filtered, dissolved organic

carbon (DOC) samples were acidified with 1 μliter of phosphoric acid for each mL of sample.

Samples were run on the total organic carbon analyzer (OL Analytical Aurora 1030). Sulfate

concentrations were determined using the Dionex, ion chromatograph.

Statistical Analysis:

I used the StatPlus add-on for Microsoft Excel 2011 and SPSS21.0 to run one-way and

two-way ANOVAs to determine significant effects and interactions between the field sites and

different treatments in the lab experiment. A 95% confidence interval was used to determine

significance.

Results:

Lab Experiment:

CH4 fluxes from the incubated sediment cores show no clear trends in any of the

treatments before and at the beginning of the incubation (Figure 1). The fresh marsh core treated

with salt water (FS) has a large peak at day zero and the salt marsh core with salt water (SS) had

a large dip at day one (Figure 1). However, towards the end of the incubation, the fluxes begin to

become steadier and show that the controls show discernable differences in fluxes; the fresh

marsh core with fresh water (FF) has higher CH4 flux than the salt marsh core treated with salt

water (Figure 1). The salt marsh core with fresh waster (SF) and the fresh marsh core with salt

water (FS) do not show clear trends (Figure 1). The results of a two-way ANOVA show that

neither the origin of the sediment core (p=0.36), treatment (either fresh water or salt water)

(p=0.90), nor the combination of the two (p= 0.53) have a significant effect on the CH4 flux

(df=13). However, general trends in the data suggest that the addition of fresh water to the salt

Page 8: Salt Marsh Restoration: Changes in Greenhouse Gas Flux

8

marsh cores increases the CH4 flux while the addition of salt water to the fresh water cores

decreases CH4 flux (Figure 2).

CO2 fluxes from the incubation experiment show extremely high fluxes at the beginning

of the incubation period but then quickly decrease in all treatments in the subsequent days

(Figure 3). Again the trends between the different treatments don’t show any clear trends (Figure

3). Statistical analysis of the mean fluxes over the incubation period, conclude that there is not an

effect of origin (p=0.67) on the sediment core or the treatment of the cores (p=0.73) on CO2 flux

(df= 14). However the interaction of both treatment and origin did have a significant affect on

CO2 flux (df= 14, p= 0.48). Adding fresh water to the salt-water cores increased CO2 flux as did

adding salt water to the fresh water cores (Figure 4). Comparing CO2 flux with CH4 flux across

the different treatments, CO2 had substantially higher fluxes than CH4 ( Figure 2, Figure 4).

Physical Parameters, Sulfate, and DOC Analysis:

pH was highest in the SF cores (7.15), followed by the SS cores (6.88), then the FF cores

(5.59), and lastly the FS cores (4.99) ( Figure 5). pH data across the incubation period show

general increase in pH in all cores expect the FS treatment (Figure 6).

Average redox of the different treatments follow the same patterns as the pH data (Figure

7). Over the incubation period, the redox values became less negative in the SF and SS cores

(Figure 8). The FF and FS cores start out with positive values but then become negative with

time, and then increase towards the end of the incubation period (Figure 8). The data from Nov.

19 shows opposite trends from what was observed in the other days, and shows large positive

values for all the treatments (Figure 8). In calculating mean values, the data from Nov. 19 was

excluded.

Salinity was highest in the SS cores (24ppm), followed by the SF cores (21 ppm), then

the FS cores (4 ppm), and lastly the FF cores (<1 ppm) (Table 1).

Sulfate data mostly correlates with the pH and redox data; average concentrations are

highest in the SS cores (12,313 μmols/L), followed by the SF cores (8,625 μmols /L), then FS

cores (3,619 μmols /L), and lastly FF cores (732 μmols /L (Figure 9). Average dissolved organic

carbon (DOC) was highest in the FS cores (179.30 ppm), lowest in the SS cores (31.95 ppm) and

intermediary in the FF and SF cores (98.56 ppm) (31.78ppm) respectively (Figure 10).

Page 9: Salt Marsh Restoration: Changes in Greenhouse Gas Flux

9

Field Measurements

CH4 flux was highest at the Herring River site (0.0104 μmols m-2

sec-1

) , followed by

Quivette Creek (0.0102 μmols m-2

sec-1

), then Stony Brook (0.0035 μmols m-2

sec-1

), then

Chequessett (9.5x10-5

) (Figure 11). The standard error for Quivette Creek indicates much greater

variance for this site( Figure 11). Using a one way ANOVA to compare the different sites show

that there wasn’t a statistical effect of site on CH4 flux ( df= 19, p=0.051). CO2 flux was highest

at the Quivette Creek (0.4999 μmols m-2

sec-1

) and lowest at Stony Brook (-0.213 μmols m-2

sec-

1) (Figure 12). Herring River and Chequesset had intermediary CO2 flux (0.0802 μmols m

-2 sec

-1

) (-0.0087 μmols m-2

sec-1

) respectively (Figure 12). The results of a one way ANOVA show

that there is no statistical effect of the site on the CO2 flux (df=29, p=0.42). Similarly to the lab

experiment, CO2 fluxes were higher than CH4 fluxes ( Figure 2, Figure 4, Figure 11, Figure 12)

Discussion:

Lab Experiment:

Although there weren’t any significant effects of the origin, treatment, or origin and

treatment in combination on CH4 flux from the lab experiment cores, the general trends that we

observed are what we expected. CH4 flux was highest in the cores in which fresh water was

added. Salt water has high concentrations of SO4-2

. This presence of SO4-2

, which is a

preferential electron acceptor allow sulfate reduction to be the dominant process and inhibit

methanogenesis. CH4 increased in the cores where we added fresh water because SO42-

concentrations were lower; this is corroborated by the SO42-

concentration data. These results are

comparable to those of Poffenberger et al (2011) who found decreasing CH4 with increasing

salinity and SO4-2

concentrations.

CO2 fluxes from the sediment cores showed that the addition of fresh or salt water to

either the fresh marsh or salt marsh core had a significant effect on CO2 flux. The addition of

fresh water to the salt marsh could have increased CO2 flux because the fresh water could have

allowed microbes that were once limited by high salinity to become more active which increased

their respiration. The higher CO2 flux in the SF cores could be attributed to more living roots in

the cores; the salt marsh cores overall still had many residual root systems in the cores which

could elevate CO2 flux. Higher CO2 flux from the fresh marsh treated with salt water could also

be attributed to high sulfate concentrations which then accelerated decomposition of soil organic

Page 10: Salt Marsh Restoration: Changes in Greenhouse Gas Flux

10

matter. This is supported by high DOC in the pore water that was collected from the FS cores.

However, it is predicted that this is short -term trend and that over time as the added salt water

causes an increase in salinity microbes would eventually become limited.

Physical Parameters and SO42-

data

The salt marsh cores had the highest pH and the largest negative redox values. This is due

to the high rates of dissimilatory sulfate reduction that reduces SO42-

to H2S. This process

consumes H ions, which then results in a higher pH. Also high negative redox values are

expected with high concentrations of H2S. However, the data from Nov. 19 displays redox

results that are inconsistent with the general trends from the rest of the data. This dissimilar data

is most likely explained by the fact that the cores were flooded on this date. The immediate

flooding and disruption of what was happening naturally, resulted in peaked results. The high pH

correlates with low CH4 emissions due to the presence of SO4-2

which t allows sulfate reduction

to be the dominate process and out compete methanogens.

Field Measurements

The field measurements show much higher CO2 flux than CH4 flux. This is expected, as

CH4 release into the atmosphere is much smaller than total soil respiration. CH4 is highest in the

fresh marsh, Herring River, and lowest in the natural salt marsh, Chequessett. This can be

explained by high SO42-

in the salt marsh and low SO42-

in the fresh marsh. The high CH4

emissions in the Quivette Creek contradict what is expected. As Quivette Creek was restored ten

years ago, I expected Quivette Creek to have lower flux than the Stony Brook salt marsh that was

restored more recently. I also expected to see more of a difference between the Herring River site

and the salt marsh sites. It may be that since Herring River was a natural salt marsh that was

then diked in the early 1900s that there is residual SO42-

in the sediments that then inhibits

methanogenesis. Also, there are such large error bars in the Quivette Creek site, that a larger

sample number is needed to get accurate results.

Page 11: Salt Marsh Restoration: Changes in Greenhouse Gas Flux

11

Conclusion:

One thing to consider about this experiment was the brevity of it. Looking at the

greenhouse gas fluxes from the sediment cores across the sampling time, it becomes evident that

it takes time for fluxes to normalize from the disturbance of being removed from the

environment and then flooded. For example, the CO2 fluxes start off very high from all the

treatments, this is due to the oxidation of the sediment core that occurred during the transport and

set up of the experiment and doesn’t represent normal fluxes. In order to get more realistic fluxes

it would be necessary to have a much longer incubation period.

For the field experiment, it was hard to discern any significant trends largely because of

the time of the year I took measurements. I sampled in late November to early December after

the days have become colder compared to summer months and many of the plants have senesced

and microbial activity has decreased. As microbial activities largely influence greenhouse gas

emission, their decreased activity significantly decreases CH4 and CO2 efflux. It would be

interesting to continue to measure CO2 and CH4 throughout the year to see how fluxes change

throughout the year. Also, since fluxes are dependent on many factors it is hard to get an

accurate understanding of fluxes from one day of measurements. In conclusion, with the affects

of climate change already impacting the globe, it is important that studies similar to this one

continue so that we can better understand the intricacies and conditions that lead to greenhouse

gas emissions from natural ecosystems.

Acknowledgements:

Thank you to my mentor Jim Tang who helped me with experimental design. Joanna Carey for

her insights and help explaining the biogeochemistry of wetlands. To Thomas Parker for his help

with statistics and to Liz de la Reguera for showing me around the lab and her general support.

Thank you to Rich Mchorney for helping me with DOC and sulfate analysis. Thank you to the

wonderful TAs – Brecia, Hannah, and Aliza, for their input and their direction in lab. Special

thanks to Faming Wang who helped me with every step of my project from data collection to

explaining the results we found. I could not have done this project without his guidance. Lastly,

thank you to Olivia Box and Erica Moretti for their input, support, and laughter throughout the

whole process.

Page 12: Salt Marsh Restoration: Changes in Greenhouse Gas Flux

12

Literature Cited:

Bertness, M, P. Ewanchuk, and B. Silliman. 2002. Anthropogenic modification of New

England salt marsh landscapes. Proceedings of the National Academy of Sciences of

the United States of America. 99(3): 1395-1398

Broome, S., E. Seneca, E. Woodhouse. 1988. “Tidal salt marsh restoration” Aquatic Botany.

32(1-2): 1-22

ESRL/NOAA (Earth Systems Research Laboratory/National Oceanic and Atmospheric

Administration). 2015. http://www.esrl.noaa.gov/gmd/ccgg/trends/. Viewed 9

November, 2015.

Helton, A., E. Bernhardt, A. Fedders. 2014.”Biogeochemical regime shifts in coastal landscapes:

the contrasting effects of saltwater incursion and agricultural pollution on greenhouse gas

emissions from a freshwater wetland.” Biogeochemistry. 120:133-147

Howarth, R.W. 2011. “Methane and the greenhouse gas footprint of natural gas from shale

formations” Climatic Change. Vol 106(4):679-690

Kennish, M. 2001. “Coastal salt marsh systems in the U.S: a review of anthropogenic impacts.”

Journal of Coastal Research 17(3):731-748

Mcleod E. G. Chmura, S. Bouillon, R. Salm, M. Bjork, C.M. Duarte, C.E. Lovelock, W.H.

Schlesinger, B.R. Silliman. 2011. “A blueprint for blue carbon: toward an improved

understanding of the role of vegetated coastal habitats in sequestering CO2” Frontiers in

Ecology and the Environment. 9(10): 552-560

Mitsch, W.J and J.G Gosselink. 2007. Wetlands. Hoboken, New Jersey. John Wiley and Sons

Inc.

Moore, T, R. Knowles. 1989. “The Influence of Water Table Levels on Methane an Carbon

Dioxide Emissions from Peatlands Soils” Canadian Journal of Soil Science.” 69(1): 33-

38

Moseman-Valteierra, S, R. Gonzales, K. Kroeger, J. Tang, W. Chao, J. Crusius, J. Bratton, A.

Green, J. Shelton. 2011. Atmospheric Environment. 45(26): 4390-4397

Poffenbarger H. B. Needelman, J. Megonigal. “salinity influence on methane emissions from

tidal marshes.” Wetlands. 31(5):831-842

Tang, Jim. 2015. Personal Communication.

Valiela, I. 1995.Marine Ecological Processes. Springer Science and Business Media, Inc. New

York, New York, USA

Page 13: Salt Marsh Restoration: Changes in Greenhouse Gas Flux

13

Waquoit Bay National Estuarine Research Reserve. 2012. “ Greenhouse gas fluxes and carbon

storage in wetlands: summary of BWM science findings” Fact Sheet.

Weston, N.B, M.A. Vile, S.C. Neubauer, D.J, Velinsky. 2011. “Accelerated microbial organic

matter mineralization following salt-water intrusion into tidal freshwater marsh soils.”

Biogeochemistry. 102:135-151

Page 14: Salt Marsh Restoration: Changes in Greenhouse Gas Flux

14

Tables and Figures list:

Table 1: Average salinity of the different cores

Figure 1: CH4 flux of the different core treatments over the incubation period

Figure 2: Average CH4 flux of the different core treatments

Figure 3: CO2 flux of the different core treatments over the incubation period

Figure 4: Average CO2 flux of the different core treatments

Figure 5: Average pH of the different core treatments

Figure 6: pH of the different core treatments over time.

Figure 7: Average redox values (mv) of the different core treatments

Figure 8: Redox values of the different core treatments over time

Figure 9: Sulfate concentrations of the different core treatments.

Figure 10: Dissolved organic carbon (DOC) of the different core treatments.

Figure 11: Methane emissions from the different field sites

Figure 12: CO2 emissions from the different field sites

Page 15: Salt Marsh Restoration: Changes in Greenhouse Gas Flux

15

Tables and Figures:

Table 1: Average salinity (ppm) of the individual sediment cores

Origin Treatment Salinity (ppm)

F F 0

F F 0

F F 0

F F 0

F S 2

F S 5

F S 6

F S 2

S S 22

S S 25

S S 24

S S 24

S F 20

S F 21

S F 25

S F 19

Page 16: Salt Marsh Restoration: Changes in Greenhouse Gas Flux

16

Figure 1: Average CH4 flux (μmols m-2

sec-1

) from the different core treatments over the

incubation period.

-.0200

-.0100

.0000

.0100

.0200

.0300

-1 0 0.5 1 3 4 6 8 10 11μm

ol m

-2 s

ec-1

Days After Incubation

Fresh Marsh with Fresh Water

Fresh Marsh with Salt Water

Salt Marsh with Fresh Water

Salt Marsh with Salt Water

Page 17: Salt Marsh Restoration: Changes in Greenhouse Gas Flux

17

Figure 2: Average CH4 flux (μmols m-2

sec-1

) of the different core treatments from day 3-11 of

the incubation period. Error bars display standard error.

0

0.001

0.002

0.003

0.004

0.005

0.006

Salt Marsh Fresh Marsh

um

ol

m-2

se

c-1

add salt

add fresh

Page 18: Salt Marsh Restoration: Changes in Greenhouse Gas Flux

18

Figure 3: CO2 flux (μmols m-2

sec-1

) from the different core treatments over the incubation

period.

-10

-5

0

5

10

15

20

-1 0 0.5 1 3 4 6 8 10 11

um

ol m

-2 s

ec-1

Days After Incubation

FF

FS

SF

SS

Page 19: Salt Marsh Restoration: Changes in Greenhouse Gas Flux

19

Figure 4: Average CO2 flux (μmols m-2

sec-1

) of the different core treatments from day 3-11 of

the incubation period. Error bars display standard error.

-0.5

0

0.5

1

1.5

2

Salt Marsh Fresh Marsh

μm

ol m

-2 s

ec-1

add salt

add fresh

Page 20: Salt Marsh Restoration: Changes in Greenhouse Gas Flux

20

Figure 5: Average pH of the different core treatments. Error bars display standard error.

0

1

2

3

4

5

6

7

8

Fresh Marsh FreshWater

Fresh Marsh SaltWater

Salt Marsh SaltWater

Salt Marsh FreshWater

pH

Page 21: Salt Marsh Restoration: Changes in Greenhouse Gas Flux

21

Figure 6: pH of the different core treatments over time. Error bars display standard error.

0

1

2

3

4

5

6

7

8

18-Nov 19-Nov 23-Nov 30-Nov

pH

Fresh Marsh Fresh Water

Fresh Marsh Salt Water

Salt Marsh Salt Water

Salt Marsh Fresh Water

Page 22: Salt Marsh Restoration: Changes in Greenhouse Gas Flux

22

Figure 7: Average redox values (mv) of the different core treatments. Error bars display standard

error

-350

-300

-250

-200

-150

-100

-50

0

50

Fresh MarshFresh Water

Fresh Marsh SaltWater

Salt Marsh SaltWater

Salt Marsh FreshWater

mV

Page 23: Salt Marsh Restoration: Changes in Greenhouse Gas Flux

23

Figure 8: Redox values (mV) of the different core treatments over time. Error bars display

standard error.

-400

-300

-200

-100

0

100

200

300

400

18-Nov 19-Nov 23-Nov 30-Nov

mV

Fresh Marsh Fresh Water

Fresh Marsh Salt Water

Salt Marsh Salt Water

Salt Marsh Fresh Water

Page 24: Salt Marsh Restoration: Changes in Greenhouse Gas Flux

24

Figure 9: Sulfate concentrations (μmol) of the different core treatments. Error bars display

standard error.

0

4000

8000

12000

16000

20000

Fresh Marsh FreshWater

Fresh Marsh Salt WaterSalt Marsh Fresh Water Salt Marsh Salt Water

μm

ol

Page 25: Salt Marsh Restoration: Changes in Greenhouse Gas Flux

25

Figure 10: Dissolved organic carbon (DOC) of the different core treatments. Error bars display

standard error.

0

50

100

150

200

250

300

Fresh Marsh FreshWater

Fresh Marsh SaltWater

Salt Marsh FreshWater

Salt Marsh Salt Water

pp

m

Page 26: Salt Marsh Restoration: Changes in Greenhouse Gas Flux

26

Figure 11: Methane emissions (μmols m--2

sec-1

) from the different field sites. Error bars display

standard error.

-0.005

0

0.005

0.01

0.015

0.02

0.025

Herring River FreshMarsh

Stony Brook 2010 Quivette Creek 2005 Chequessett NaturalSalt Marsh

μm

ol

m--

2 s

ec-1

Page 27: Salt Marsh Restoration: Changes in Greenhouse Gas Flux

27

Figure 12: CO2 emissions (μmols m

--2 sec

-1) from the different field sites. Error bars display

standard error.

-0.8

-0.6

-0.4

-0.2

0

0.2

0.4

0.6

0.8

Herring River FreshMarsh

Stony Brook 2010 Quivette Creek 2005 Chequessett NaturalSalt Marsh

μm

ol

m--

2 s

ec-1

Page 28: Salt Marsh Restoration: Changes in Greenhouse Gas Flux

28

Appendix:

Map of sampling sites


Recommended