+ All Categories
Home > Documents > SCF and Cantiliver Strenth Analysis

SCF and Cantiliver Strenth Analysis

Date post: 04-Jun-2018
Category:
Upload: vikasrajput1989
View: 234 times
Download: 0 times
Share this document with a friend

of 68

Transcript
  • 8/13/2019 SCF and Cantiliver Strenth Analysis

    1/68

    System Parameters Topographica

    System Voltage 2.20E+02 kV Basic wind sp

    System Frequency f 5.00E+01 Hz Terrain categ

    Symmetrical Short Circuit Fault Current Ik 5.00E+04 A Reliability Lev

    Three Phase automatic reclosing "FALSE" Equipment u

    System x/r ratio x/r 3.00E+01 Equipment D

    Phase to Phase Spacing am 4.00E+00 m Cantilever str

    Size of Rigid Bus 4.00E+00 inch Equipment HDropper Conductor type "ACSR BER" Equipment Di

    Height of equipment bus above ground Heqpt 5.90E+00 m

    Equipment connection details Left Connection Right Connec

    Connected Equipment Iso

    Span Lenth L 7 m

    Connection on main equipment E

    Connection on other end equip. R

    No. of spans 1.00E+00

    Dropper Lenth (l) 0.00E+00

    No. of subconductor in Dropper (Ns) 1.00E+00

    Calculation Constants

    Stress corresponding to the Yield point Rp0.2 1.70E+08 n/m2

    Gravitational Constant g 9.81E+00 m/s2

    Young's Modulus of Elasticity for Tube (E) E 6.89E+10

    Rigid Bus Parameters Dropper Para

    Outer Diameter of tube Do 1.14E-01 mm Conductor di

    Inner Diameter of tube Di 9.69E-02 mm

    Mass per unit lenth M 7.70E+00 kg/m

    Wall thickness of the tube Sthk 1.00E-02 m

    Wind force constants

    Factor for ref. wind speed (Ko) Ko 1.38E+00

    Risk Co-eff (K1) Ki 1.00E+00

    Terrain roughness co-eff K2 1.00E+00

    Drag Co-eff (Cond.) Cdc 1.00E+00

    Drag Co-eff (Insu.) Cdi 1.20E+00

    Gust response factor for conductor Gc 1.83E+00

    Gust response factor for Insulator Gi 1.92E+00

    Calculation of Peak value of SC Current

    -1.00E-01

    1.91E+00 Ip =

    Calculation of rigid bus parameters

  • 8/13/2019 SCF and Cantiliver Strenth Analysis

    2/68

    Moment of inertia of Tube (j) = 4.05E-06

    Section modulus of tube(z) = 7.09E-05 m3

    Permissible stress in rigid Bus(.max)

    for normal conditions = 1.70E+08

    for SC conditions = 2.36E+08

    Factor for plasticity(q)

    = 1.39E+00

    Actual Deflection

    Left Deflection Right Deflection

    = 3.51E-03 m =

    Calculation of design wind pressure(Pd)

    Design wind pressure (Pd) N/m2 = 7.01E+02 N/m2

    Design wind speed Vd = K1.K2.Vr = 3.42E+01 m/s

    Vr = Vb/Ko = 3.42E+01

    Calculation of wind load on equipment housing (Fw2)

  • 8/13/2019 SCF and Cantiliver Strenth Analysis

    3/68

    = 3.71E+02 N

    Determination of load factors , , & based on support types

    These factors take into consideration the effect of type of busbar support on

    equipment in transmitting the dynamic forces onto supports.

    Load factors for left span Load factors for right span

    0.375 0.73 2.45 0.375 0.73

    Determination of natural frequency

    Left span Right span

    fcleft = 9.52E+00 fcright =

    Ratio of natural frequency & system frequency leftratio = 1.90E-01 rightratio =

    Calculation of stress factors V , Vr & Vf in the rigid conductors

    Vleft1 =

    Vleft2 =

    Vleft3 =

    Vrleft1 =

    Vrleft2 =

    Vrleft3 =

    Vfleft1 =

    Vfleft2 =

    Vfleft3 =

    Vfleft4 =

  • 8/13/2019 SCF and Cantiliver Strenth Analysis

    4/68

    Vfleft5 =

    Vfleft6 =

    Vfleft7 =

    Vfleft8 =

    Vfleft9 =

    Stress factors for left span Stress factors

    V Vr Vf V

    0.672 1 0.753 0.707

    Calculation of SCF & Total deflection force

    SCF between rigid bus (Fm3)

    SCF between droppers

    F1_left =

    Gravitational load of rigid bus conductor (Fc)

    Fc=m.g.l Fc_left =

    Wind load on rigid bus (Fw)

    Fw = Pd.Gc.Cdc.Do.L Fw_left =

    Wind load on droppers (Fw1)

    Fw1 = Pd.Gc.Cdc.Do.L.ns Fw1_left =

    Total Effective force (F Vector sum of forces due to SCF, Wind & Dead Load.

    Total Force Fm_left =

    Calculation of stresses in rigid conductor (m)

    m_left =

    IN Limit (m < max) Leftcheck

    Calculation of deflection forces on equipment top due to LEFT/RIGHT connection

  • 8/13/2019 SCF and Cantiliver Strenth Analysis

    5/68

    Fd = Vf.Vr..Fl Fd_left

    FSCF = Vf.Vr..(Fscf-tube + Fscf-dropper) Fscf_left =

    (please add al

    Cantilever strength analysis for equipment supports

    Wind force on equipment insulator acting on insulator midpoint Fw"

    Equivalent wind force on equipment top Fw"/2

    Deflection force due to left connection Fd(left)

    Deflection force due to right connection Fd(right)

    Total deflection force on top Fd = FW/2 + F

    Fd =

    Acceptance Fd < Fcant

  • 8/13/2019 SCF and Cantiliver Strenth Analysis

    6/68

    l Inputs

    eed Vb 47 m/s

    ry Ter 2

    el RL 1

    der analysis

    scription BPI

    enth Fcant 8000 N

    ight Hi 2.3 m ameter D 0.2 m

    ion

    ISO

    6.5 m

    E

    R

    1

    0

    1

    meters

    meter Dc 0.03504 m

    Uo = 1.256E-06

    1.35E+05

  • 8/13/2019 SCF and Cantiliver Strenth Analysis

    7/68

    m4

    N/m2

    N/m2

    2.61E-03 m

  • 8/13/2019 SCF and Cantiliver Strenth Analysis

    8/68

    2.45

    1.10E+01 Hz

    2.21E-01

    0 Vright1 = 0

    0.67239 Vright2 = 0.707149

    0 Vright3 = 0

    1 Vrright1 = 1

    1 Vrright2 = 1

    1 Vrright3 = 1

    0 Vfright1 = 0

    0.752694 Vfright2 = 0.791316

    0 Vfright3 = 0

    0 Vfright4 = 0

  • 8/13/2019 SCF and Cantiliver Strenth Analysis

    9/68

    0 Vfright5 = 0

    0 Vfright6 = 0

    0 Vfright7 = 0

    0 Vfright8 = 0

    0 Vfright9 = 0

    for right span

    Vr Vf

    1 0.791

    5.51E+03 5.11E+03 N

    0.00E+00 F1_right = 0.00E+00

    5.29E+02 Fc_right = 4.91E+02 N

    1.03E+03 Fw_right = 9.53E+02 N

    0.00E+00 Fw1_right = 0.00E+00 N

    6555.02 Fm_right = 6086.804 N

    3.97E+07 m_right = 3.60E+07 N/m2

    YES Rightcheck YES

  • 8/13/2019 SCF and Cantiliver Strenth Analysis

    10/68

    1.84E+03 Fd_right 1.80E+03

    1.56E+03 Fscf_right = 1.52E+03

    so dropper SCF force if value is defined)

    FW2 = 3.71E+02

    FW2/2 = 1.86E+02

    Fd_left = 1.84E+03

    Fd_right = 1.80E+03

    d_left + Fd_right

    3.83E+03 N

    check2= OK

  • 8/13/2019 SCF and Cantiliver Strenth Analysis

    11/68

    System Parameters Topographica

    System Voltage 2.20E+02 kV Basic wind sp

    System Frequency f 5.00E+01 Hz Terrain categ

    Symmetrical Short Circuit Fault Current Ik 5.00E+04 A Reliability Lev

    Three Phase automatic reclosing "FALSE" Equipment u

    System x/r ratio x/r 3.00E+01 Equipment D

    Phase to Phase Spacing am 4.00E+00 m Cantilever str

    Size of Rigid Bus 4.00E+00 inch Equipment HDropper Conductor type "ACSR BER" Equipment Di

    Height of equipment bus above ground Heqpt 5.90E+00 m

    Equipment connection details Left Connection Right Connec

    Connected Equipment Iso

    Span Lenth L 6.7 m

    Connection on main equipment E

    Connection on other end equip. R

    No. of spans 1.00E+00

    Dropper Lenth (l) 0.00E+00

    No. of subconductor in Dropper (Ns) 1.00E+00

    Calculation Constants

    Stress corresponding to the Yield point Rp0.2 1.70E+08 n/m2

    Gravitational Constant g 9.81E+00 m/s2

    Young's Modulus of Elasticity for Tube (E) E 6.89E+10 N/m2

    Rigid Bus Parameters Dropper Para

    Outer Diameter of tube Do 1.14E-01 m Conductor di

    Inner Diameter of tube Di 9.69E-02 m

    Mass per unit lenth M 7.70E+00 kg/m

    Wall thickness of the tube Sthk 1.00E-02 m

    Wind force constants

    Factor for ref. wind speed (Ko) Ko 1.38E+00

    Risk Co-eff (K1) Ki 1.00E+00

    Terrain roughness co-eff K2 1.00E+00

    Drag Co-eff (Cond.) Cdc 1.00E+00

    Drag Co-eff (Insu.) Cdi 1.20E+00

    Gust response factor for conductor Gc 1.83E+00

    Gust response factor for Insulator Gi 1.92E+00

    Calculation of Peak value of SC Current

    -1.00E-01

    1.91E+00 Ip =

    Calculation of rigid bus parameters

  • 8/13/2019 SCF and Cantiliver Strenth Analysis

    12/68

    Moment of inertia of Tube (j) = 4.05E-06

    Section modulus of tube(z) = 7.09E-05 m3

    Permissible stress in rigid Bus(.max)

    for normal conditions = 1.70E+08

    for SC conditions = 2.36E+08

    Factor for plasticity(q)

    = 1.39E+00

    Actual Deflection

    Left Deflection Right Deflection

    = 2.95E-03 m =

    Calculation of design wind pressure(Pd)

    Design wind pressure (Pd) N/m2 = 7.01E+02 N/m2

    Design wind speed Vd = K1.K2.Vr = 3.42E+01 m/s

    Vr = Vb/Ko = 3.42E+01

    Calculation of wind load on equipment housing (Fw2)

  • 8/13/2019 SCF and Cantiliver Strenth Analysis

    13/68

    = 1.05E+03 N

    Determination of load factors , , & based on support types

    These factors take into consideration the effect of type of busbar support on

    equipment in transmitting the dynamic forces onto supports.

    Load factors for left span Load factors for right span

    0.375 0.73 2.45 0.375 0.73

    Determination of natural frequency

    Left span Right span

    fcleft = 1.04E+01 fcright =

    Ratio of natural frequency & system frequency leftratio = 2.08E-01 rightratio =

    Calculation of stress factors V , Vr & Vf in the rigid conductors

    Vleft1 =

    Vleft2 =

    Vleft3 =

    Vrleft1 =

    Vrleft2 =

    Vrleft3 =

    Vfleft1 =

    Vfleft2 =

    Vfleft3 =

    Vfleft4 =

  • 8/13/2019 SCF and Cantiliver Strenth Analysis

    14/68

    Vfleft5 =

    Vfleft6 =

    Vfleft7 =

    Vfleft8 =

    Vfleft9 =

    Stress factors for left span Stress factors

    V Vr Vf V

    0.692935 1 0.775522 0.64632527

    Calculation of SCF & Total deflection force

    SCF between rigid bus (Fm3)

    SCF between droppers

    F1_left =

    Gravitational load of rigid bus conductor (Fc)

    Fc=m.g.l Fc_left =

    Wind load on rigid bus (Fw)

    Fw = Pd.Gc.Cdc.Do.L Fw_left =

    Wind load on droppers (Fw1)

    Fw1 = Pd.Gc.Cdc.Do.L.ns Fw1_left =

    Total Effective force (F Vector sum of forces due to SCF, Wind & Dead Load.

    Total Force Fm_left =

    Calculation of stresses in rigid conductor (m)

    m_left =

    IN Limit (m < max) Leftcheck

    Calculation of deflection forces on equipment top due to LEFT/RIGHT connection

  • 8/13/2019 SCF and Cantiliver Strenth Analysis

    15/68

    Fd = Vf.Vr..Fl Fd_left

    FSCF = Vf.Vr..(Fscf-tube + Fscf-dropper) Fscf_left =

    (please add al

    Cantilever strength analysis for equipment supports

    Wind force on equipment insulator acting on insulator midpoint Fw"

    Equivalent wind force on equipment top Fw"/2

    Deflection force due to left connection Fd(left)

    Deflection force due to right connection Fd(right)

    Total deflection force on top Fd = FW/2 + F

    Fd =

    Acceptance Fd < Fcant

  • 8/13/2019 SCF and Cantiliver Strenth Analysis

    16/68

    l Inputs

    eed Vb 47 m/s

    ry Ter 2

    el RL 1

    der analysis

    scription CB

    enth Fcant 10000 N

    ight Hi 4.2 m ameter D 0.31 m

    ion

    ISO

    7.4 m

    E

    R

    1

    0

    1

    meters

    meter Dc 0.03504 m

    Uo = 1.256E-06

    1.35E+05 kA

  • 8/13/2019 SCF and Cantiliver Strenth Analysis

    17/68

    m4

    N/m2

    N/m2

    4.39E-03 m

  • 8/13/2019 SCF and Cantiliver Strenth Analysis

    18/68

    2.45

    8.52E+00 Hz

    1.70E-01

    0 Vright1 = 0

    0.692935 Vright2 = 0.646325

    0 Vright3 = 0

    1 Vrright1 = 1

    1 Vrright2 = 1

    1 Vrright3 = 1

    0 Vfright1 = 0

    0.775522 Vfright2 = 0.723734

    0 Vfright3 = 0

    0 Vfright4 = 0

  • 8/13/2019 SCF and Cantiliver Strenth Analysis

    19/68

    0 Vfright5 = 0

    0 Vfright6 = 0

    0 Vfright7 = 0

    0 Vfright8 = 0

    0 Vfright9 = 0

    for right span

    Vr Vf

    1 0.7237338

    5.27E+03 5.82E+03 N

    0.00E+00 F1_right = 0.00E+00

    5.06E+02 Fc_right = 5.59E+02 N

    9.82E+02 Fw_right = 1.09E+03 N

    0.00E+00 Fw1_right = 0.00E+00 N

    6274.09 Fm_right = 6929.592 N

    3.75E+07 m_right = 4.27E+07 N/m2

    YES Rightcheck YES

  • 8/13/2019 SCF and Cantiliver Strenth Analysis

    20/68

    1.82E+03 Fd_right 1.87E+03

    1.53E+03 Fscf_right = 1.58E+03

    so dropper SCF force if value is defined) 1.56E+02

    FW2 = 1.05E+03

    FW2/2 = 5.26E+02

    Fd_left = 1.82E+03

    Fd_right = 1.87E+03

    d_left + Fd_right

    4.22E+03 N

    check2= OK

  • 8/13/2019 SCF and Cantiliver Strenth Analysis

    21/68

    System Parameters Topographica

    System Voltage 2.20E+02 kV Basic wind sp

    System Frequency f 5.00E+01 Hz Terrain categ

    Symmetrical Short Circuit Fault Current Ik 5.00E+04 A Reliability Lev

    Three Phase automatic reclosing "FALSE" Equipment u

    System x/r ratio x/r 3.00E+01 Equipment D

    Phase to Phase Spacing am 4.00E+00 m Cantilever str

    Size of Rigid Bus 4.00E+00 inch Equipment HDropper Conductor type "ACSR BER" Equipment Di

    Height of equipment bus above ground Heqpt 5.90E+00 m

    Equipment connection details Left Connection Right Connec

    Connected Equipment BPI

    Span Lenth L 1.85 m

    Connection on main equipment E

    Connection on other end equip. R

    No. of spans 1.00E+00

    Dropper Lenth (l) 0.00E+00

    No. of subconductor in Dropper (Ns) 1.00E+00

    Calculation Constants

    Stress corresponding to the Yield point Rp0.2 1.70E+08 n/m2

    Gravitational Constant g 9.81E+00 m/s2

    Young's Modulus of Elasticity for Tube (E) E 6.89E+10 N/m2

    Rigid Bus Parameters Dropper Para

    Outer Diameter of tube Do 1.14E-01 m Conductor di

    Inner Diameter of tube Di 9.69E-02 m

    Mass per unit lenth M 7.70E+00 kg/m

    Wall thickness of the tube Sthk 1.00E-02 m

    Wind force constants

    Factor for ref. wind speed (Ko) Ko 1.38E+00

    Risk Co-eff (K1) Ki 1.00E+00

    Terrain roughness co-eff K2 1.00E+00

    Drag Co-eff (Cond.) Cdc 1.00E+00

    Drag Co-eff (Insu.) Cdi 1.20E+00

    Gust response factor for conductor Gc 1.83E+00

    Gust response factor for Insulator Gi 1.92E+00

    Calculation of Peak value of SC Current

    -1.00E-01

    1.91E+00 Ip =

    Calculation of rigid bus parameters

  • 8/13/2019 SCF and Cantiliver Strenth Analysis

    22/68

    Moment of inertia of Tube (j) = 4.05E-06

    Section modulus of tube(z) = 7.09E-05 m3

    Permissible stress in rigid Bus(.max)

    for normal conditions = 1.70E+08

    for SC conditions = 2.36E+08

    Factor for plasticity(q)

    = 1.39E+00

    Actual Deflection

    Left Deflection Right Deflection

    = 1.71E-05 m =

    Calculation of design wind pressure(Pd)

    Design wind pressure (Pd) N/m2 = 7.01E+02 N/m2

    Design wind speed Vd = K1.K2.Vr = 3.42E+01 m/s

    Vr = Vb/Ko = 3.42E+01

    Calculation of wind load on equipment housing (Fw2)

  • 8/13/2019 SCF and Cantiliver Strenth Analysis

    23/68

    = 6.50E+02 N

    Determination of load factors , , & based on support types

    These factors take into consideration the effect of type of busbar support on

    equipment in transmitting the dynamic forces onto supports.

    Load factors for left span Load factors for right span

    0.375 0.73 2.45 0.375 0.73

    Determination of natural frequency

    Left span Right span

    fcleft = 1.36E+02 fcright =

    Ratio of natural frequency & system frequency leftratio = 2.73E+00 rightratio =

    Calculation of stress factors V , Vr & Vf in the rigid conductors

    Vleft1 =

    Vleft2 =

    Vleft3 =

    Vrleft1 =

    Vrleft2 =

    Vrleft3 =

    Vfleft1 =

    Vfleft2 =

    Vfleft3 =

    Vfleft4 =

  • 8/13/2019 SCF and Cantiliver Strenth Analysis

    24/68

    Vfleft5 =

    Vfleft6 =

    Vfleft7 =

    Vfleft8 =

    Vfleft9 =

    Stress factors for left span Stress factors

    V Vr Vf V

    1 1 1.840196 1

    Calculation of SCF & Total deflection force

    SCF between rigid bus (Fm3)

    SCF between droppers

    F1_left =

    Gravitational load of rigid bus conductor (Fc)

    Fc=m.g.l Fc_left =

    Wind load on rigid bus (Fw)

    Fw = Pd.Gc.Cdc.Do.L Fw_left =

    Wind load on droppers (Fw1)

    Fw1 = Pd.Gc.Cdc.Do.L.ns Fw1_left =

    Total Effective force (F Vector sum of forces due to SCF, Wind & Dead Load.

    Total Force Fm_left =

    Calculation of stresses in rigid conductor (m)

    m_left =

    IN Limit (m < max) Leftcheck

    Calculation of deflection forces on equipment top due to LEFT/RIGHT connection

  • 8/13/2019 SCF and Cantiliver Strenth Analysis

    25/68

    Fd = Vf.Vr..Fl Fd_left

    FSCF = Vf.Vr..(Fscf-tube + Fscf-dropper) Fscf_left =

    (please add al

    Cantilever strength analysis for equipment supports

    Wind force on equipment insulator acting on insulator midpoint Fw"

    Equivalent wind force on equipment top Fw"/2

    Deflection force due to left connection Fd(left)

    Deflection force due to right connection Fd(right)

    Total deflection force on top Fd = FW/2 + F

    Fd =

    Acceptance Fd < Fcant

  • 8/13/2019 SCF and Cantiliver Strenth Analysis

    26/68

    l Inputs

    eed Vb 47 m/s

    ry Ter 2

    el RL 1

    der analysis

    scription CB

    enth Fcant 3434 N

    ight Hi 3.5 m ameter D 0.23 m

    ion

    ISO

    1.98 m

    E

    R

    1

    0

    1

    meters

    meter Dc 0.03504 m

    Uo = 1.256E-06

    1.35E+05 kA

  • 8/13/2019 SCF and Cantiliver Strenth Analysis

    27/68

    m4

    N/m2

    N/m2

    2.25E-05 m

  • 8/13/2019 SCF and Cantiliver Strenth Analysis

    28/68

    2.45

    1.19E+02 Hz

    2.38E+00

    0 Vright1 = 0

    0 Vright2 = 0

    1 Vright3 = 1

    1 Vrright1 = 1

    1 Vrright2 = 1

    1 Vrright3 = 1

    0 Vfright1 = 0

    0 Vfright2 = 0

    0 Vfright3 = 0

    0 Vfright4 = 0

  • 8/13/2019 SCF and Cantiliver Strenth Analysis

    29/68

    0 Vfright5 = 2.7

    1.840196 Vfright6 = 0

    0 Vfright7 = 0

    0 Vfright8 = 0

    0 Vfright9 = 0

    for right span

    Vr Vf

    1 2.7

    1.46E+03 1.56E+03 N

    0.00E+00 F1_right = 0.00E+00

    1.40E+02 Fc_right = 1.50E+02 N

    2.71E+02 Fw_right = 2.90E+02 N

    0.00E+00 Fw1_right = 0.00E+00 N

    1732.398 Fm_right = 1854.134 N

    4.13E+06 m_right = 4.73E+06 N/m2

    YES Rightcheck YES

  • 8/13/2019 SCF and Cantiliver Strenth Analysis

    30/68

    1.19E+03 Fd_right 1.87E+03 \

    1.00E+03 Fscf_right = 1.58E+03

    so dropper SCF force if value is defined) 1.02E+02

    FW2 = 6.50E+02

    FW2/2 = 3.25E+02

    Fd_left = 1.19E+03

    Fd_right = 1.87E+03

    d_left + Fd_right

    3.39E+03 N

    check2= OK

  • 8/13/2019 SCF and Cantiliver Strenth Analysis

    31/68

    System Parameters Topographica

    System Voltage 2.20E+02 kV Basic wind sp

    System Frequency f 5.00E+01 Hz Terrain categ

    Symmetrical Short Circuit Fault Current Ik 5.00E+04 A Reliability Lev

    Three Phase automatic reclosing "FALSE" Equipment u

    System x/r ratio x/r 3.00E+01 Equipment D

    Phase to Phase Spacing am 4.00E+00 m Cantilever str

    Size of Rigid Bus 4.00E+00 inch Equipment HDropper Conductor type "ACSR BER" Equipment Di

    Height of equipment bus above ground Heqpt 5.90E+00 m

    Equipment connection details Left Connection Right Connec

    Connected Equipment NA

    Span Lenth L 0 m

    Connection on main equipment E

    Connection on other end equip. R

    No. of spans 1.00E+00

    Dropper Lenth (l) 1.11E+01

    No. of subconductor in Dropper (Ns) 1.00E+00

    Calculation Constants

    Stress corresponding to the Yield point Rp0.2 1.70E+08 n/m2

    Gravitational Constant g 9.81E+00 m/s2

    Young's Modulus of Elasticity for Tube (E) E 6.89E+10 N/m2

    Rigid Bus Parameters Dropper Para

    Outer Diameter of tube Do 1.14E-01 m Conductor di

    Inner Diameter of tube Di 9.69E-02 m

    Mass per unit lenth M 7.70E+00 kg/m

    Wall thickness of the tube Sthk 1.00E-02 m

    Wind force constants

    Factor for ref. wind speed (Ko) Ko 1.38E+00

    Risk Co-eff (K1) Ki 1.00E+00

    Terrain roughness co-eff K2 1.00E+00

    Drag Co-eff (Cond.) Cdc 1.00E+00

    Drag Co-eff (Insu.) Cdi 1.20E+00

    Gust response factor for conductor Gc 1.83E+00

    Gust response factor for Insulator Gi 1.92E+00

    Calculation of Peak value of SC Current

    -1.00E-01

    1.91E+00 Ip =

    Calculation of rigid bus parameters

  • 8/13/2019 SCF and Cantiliver Strenth Analysis

    32/68

    Moment of inertia of Tube (j) = 4.05E-06

    Section modulus of tube(z) = 7.09E-05 m3

    Permissible stress in rigid Bus(.max)

    for normal conditions = 1.70E+08

    for SC conditions = 2.36E+08

    Factor for plasticity(q)

    = 1.39E+00

    Actual Deflection

    Left Deflection Right Deflection

    = 0.00E+00 m =

    Calculation of design wind pressure(Pd)

    Design wind pressure (Pd) N/m2 = 7.01E+02 N/m2

    Design wind speed Vd = K1.K2.Vr = 3.42E+01 m/s

    Vr = Vb/Ko = 3.42E+01

    Calculation of wind load on equipment housing (Fw2)

  • 8/13/2019 SCF and Cantiliver Strenth Analysis

    33/68

    = 8.11E+02 N

    Determination of load factors , , & based on support types

    These factors take into consideration the effect of type of busbar support on

    equipment in transmitting the dynamic forces onto supports.

    Load factors for left span Load factors for right span

    0.375 0.73 2.45 0.375 0.73

    Determination of natural frequency

    Left span Right span

    fcleft = #DIV/0! fcright =

    Ratio of natural frequency & system frequency leftratio = #DIV/0! rightratio =

    Calculation of stress factors V , Vr & Vf in the rigid conductors

    Vleft1 =

    Vleft2 =

    Vleft3 =

    Vrleft1 =

    Vrleft2 =

    Vrleft3 =

    Vfleft1 =

    Vfleft2 =

    Vfleft3 =

    Vfleft4 =

  • 8/13/2019 SCF and Cantiliver Strenth Analysis

    34/68

    Vfleft5 =

    Vfleft6 =

    Vfleft7 =

    Vfleft8 =

    Vfleft9 =

    Stress factors for left span Stress factors

    V Vr Vf V

    #DIV/0! 1 #DIV/0! #DIV/0!

    Calculation of SCF & Total deflection force

    SCF between rigid bus (Fm3)

    SCF between droppers

    F1_left =

    Gravitational load of rigid bus conductor (Fc)

    Fc=m.g.l Fc_left =

    Wind load on rigid bus (Fw)

    Fw = Pd.Gc.Cdc.Do.L Fw_left =

    Wind load on droppers (Fw1)

    Fw1 = Pd.Gc.Cdc.Do.L.ns Fw1_left =

    Total Effective force (F Vector sum of forces due to SCF, Wind & Dead Load.

    Total Force Fm_left =

    Calculation of stresses in rigid conductor (m)

    m_left =

    IN Limit (m < max) Leftcheck

    Calculation of deflection forces on equipment top due to LEFT/RIGHT connection

  • 8/13/2019 SCF and Cantiliver Strenth Analysis

    35/68

    Fd = Vf.Vr..Fl Fd_left

    FSCF = Vf.Vr..(Fscf-tube + Fscf-dropper) Fscf_left =

    (please add al

    Cantilever strength analysis for equipment supports

    Wind force on equipment insulator acting on insulator midpoint Fw"

    Equivalent wind force on equipment top Fw"/2

    Deflection force due to left connection Fd(left)

    Deflection force due to right connection Fd(right)

    Total deflection force on top Fd = FW/2 + F

    Fd =

    Acceptance Fd < Fcant

  • 8/13/2019 SCF and Cantiliver Strenth Analysis

    36/68

    l Inputs

    eed Vb 47 m/s

    ry Ter 2

    el RL 1

    der analysis

    scription LA

    enth Fcant 3434 N

    ight Hi 2.87 m ameter D 0.35 m

    ion

    NA

    0 m

    E

    R

    1

    0

    1

    meters

    meter Dc 0.03504 m

    Uo = 1.256E-06

    1.35E+05 kA

  • 8/13/2019 SCF and Cantiliver Strenth Analysis

    37/68

    m4

    N/m2

    N/m2

    0.00E+00 m

  • 8/13/2019 SCF and Cantiliver Strenth Analysis

    38/68

    2.45

    #DIV/0! Hz

    #DIV/0!

    #DIV/0! Vright1 = #DIV/0!

    #DIV/0! Vright2 = #DIV/0!

    #DIV/0! Vright3 = #DIV/0!

    1 Vrright1 = 1

    1 Vrright2 = 1

    1 Vrright3 = 1

    #DIV/0! Vfright1 = #DIV/0!

    #DIV/0! Vfright2 = #DIV/0!

    #DIV/0! Vfright3 = #DIV/0!

    #DIV/0! Vfright4 = #DIV/0!

  • 8/13/2019 SCF and Cantiliver Strenth Analysis

    39/68

    #DIV/0! Vfright5 = #DIV/0!

    #DIV/0! Vfright6 = #DIV/0!

    #DIV/0! Vfright7 = #DIV/0!

    #DIV/0! Vfright8 = #DIV/0!

    #DIV/0! Vfright9 = #DIV/0!

    for right span

    Vr Vf

    1 #DIV/0!

    0.00E+00 0.00E+00 N

    1.04E+03 F1_right = 0.00E+00

    0.00E+00 Fc_right = 0.00E+00 N

    0.00E+00 Fw_right = 0.00E+00 N

    4.99E+02 Fw1_right = 0.00E+00 N

    1.54E+03 Fm_right = 0.00E+00 N

    #DIV/0! m_right = #DIV/0! N/m2

    #DIV/0! Rightcheck #DIV/0!

  • 8/13/2019 SCF and Cantiliver Strenth Analysis

    40/68

    1.54E+03 Fd_right 0.00E+00 \

    1.04E+03 Fscf_right = #DIV/0!

    so dropper SCF force if value is defined) 1.06E+02

    FW2 = 8.11E+02

    FW2/2 = 4.06E+02

    Fd_left = 1.54E+03

    Fd_right = 0.00E+00

    d_left + Fd_right

    1.94E+03 N

    check2= OK

  • 8/13/2019 SCF and Cantiliver Strenth Analysis

    41/68

    System Parameters Topographica

    System Voltage 2.20E+02 kV Basic wind sp

    System Frequency f 5.00E+01 Hz Terrain categ

    Symmetrical Short Circuit Fault Current Ik 5.00E+04 A Reliability Lev

    Three Phase automatic reclosing "FALSE" Equipment u

    System x/r ratio x/r 3.00E+01 Equipment D

    Phase to Phase Spacing am 4.00E+00 m Cantilever str

    Size of Rigid Bus 4.00E+00 inch Equipment HDropper Conductor type "ACSR BER" Equipment Di

    Height of equipment bus above ground Heqpt 5.90E+00 m

    Equipment connection details Left Connection Right Connec

    Connected Equipment CB

    Span Lenth L 7.4 m

    Connection on main equipment R

    Connection on other end equip. E

    No. of spans 1.00E+00

    Dropper Lenth (l) 0.00E+00

    No. of subconductor in Dropper (Ns) 1.00E+00

    Calculation Constants

    Stress corresponding to the Yield point Rp0.2 1.70E+08 n/m2

    Gravitational Constant g 9.81E+00 m/s2

    Young's Modulus of Elasticity for Tube (E) E 6.89E+10 N/m2

    Rigid Bus Parameters Dropper Para

    Outer Diameter of tube Do 1.14E-01 m Conductor di

    Inner Diameter of tube Di 9.69E-02 m

    Mass per unit lenth M 7.70E+00 kg/m

    Wall thickness of the tube Sthk 1.00E-02 m

    Wind force constants

    Factor for ref. wind speed (Ko) Ko 1.38E+00

    Risk Co-eff (K1) Ki 1.00E+00

    Terrain roughness co-eff K2 1.00E+00

    Drag Co-eff (Cond.) Cdc 1.00E+00

    Drag Co-eff (Insu.) Cdi 1.20E+00

    Gust response factor for conductor Gc 1.83E+00

    Gust response factor for Insulator Gi 1.92E+00

    Calculation of Peak value of SC Current

    -1.00E-01

    1.91E+00 Ip =

    Calculation of rigid bus parameters

  • 8/13/2019 SCF and Cantiliver Strenth Analysis

    42/68

    Moment of inertia of Tube (j) = 4.05E-06

    Section modulus of tube(z) = 7.09E-05 m3

    Permissible stress in rigid Bus(.max)

    for normal conditions = 1.70E+08

    for SC conditions = 2.36E+08

    Factor for plasticity(q)

    = 1.39E+00

    Actual Deflection

    Left Deflection Right Deflection

    = 4.39E-03 m =

    Calculation of design wind pressure(Pd)

    Design wind pressure (Pd) N/m2 = 7.01E+02 N/m2

    Design wind speed Vd = K1.K2.Vr = 3.42E+01 m/s

    Vr = Vb/Ko = 3.42E+01

    Calculation of wind load on equipment housing (Fw2)

  • 8/13/2019 SCF and Cantiliver Strenth Analysis

    43/68

    = 7.24E+02 N

    Determination of load factors , , & based on support types

    These factors take into consideration the effect of type of busbar support on

    equipment in transmitting the dynamic forces onto supports.

    Load factors for left span Load factors for right span

    0.625 0.73 2.45 0.375 0.73

    Determination of natural frequency

    Left span Right span

    fcleft = 8.52E+00 fcright =

    Ratio of natural frequency & system frequency leftratio = 1.70E-01 rightratio =

    Calculation of stress factors V , Vr & Vf in the rigid conductors

    Vleft1 =

    Vleft2 =

    Vleft3 =

    Vrleft1 =

    Vrleft2 =

    Vrleft3 =

    Vfleft1 =

    Vfleft2 =

    Vfleft3 =

    Vfleft4 =

  • 8/13/2019 SCF and Cantiliver Strenth Analysis

    44/68

    Vfleft5 =

    Vfleft6 =

    Vfleft7 =

    Vfleft8 =

    Vfleft9 =

    Stress factors for left span Stress factors

    V Vr Vf V

    0.646325 1 0.723734 0.52915403

    Calculation of SCF & Total deflection force

    SCF between rigid bus (Fm3)

    SCF between droppers

    F1_left =

    Gravitational load of rigid bus conductor (Fc)

    Fc=m.g.l Fc_left =

    Wind load on rigid bus (Fw)

    Fw = Pd.Gc.Cdc.Do.L Fw_left =

    Wind load on droppers (Fw1)

    Fw1 = Pd.Gc.Cdc.Do.L.ns Fw1_left =

    Total Effective force (F Vector sum of forces due to SCF, Wind & Dead Load.

    Total Force Fm_left =

    Calculation of stresses in rigid conductor (m)

    m_left =

    IN Limit (m < max) Leftcheck

    Calculation of deflection forces on equipment top due to LEFT/RIGHT connection

  • 8/13/2019 SCF and Cantiliver Strenth Analysis

    45/68

    Fd = Vf.Vr..Fl Fd_left

    FSCF = Vf.Vr..(Fscf-tube + Fscf-dropper) Fscf_left =

    (please add al

    Cantilever strength analysis for equipment supports

    Wind force on equipment insulator acting on insulator midpoint Fw"

    Equivalent wind force on equipment top Fw"/2

    Deflection force due to left connection Fd(left)

    Deflection force due to right connection Fd(right)

    Total deflection force on top Fd = FW/2 + F

    Fd =

    Acceptance Fd < Fcant

  • 8/13/2019 SCF and Cantiliver Strenth Analysis

    46/68

    l Inputs

    eed Vb 47 m/s

    ry Ter 2

    el RL 1

    der analysis

    scription CB

    enth Fcant 10000 N

    ight Hi 2.56 m ameter D 0.35 m

    ion

    ISO

    9.5 m

    E

    R

    1

    0

    1

    meters

    meter Dc 0.03504 m

    Uo = 1.256E-06

    1.35E+05 kA

  • 8/13/2019 SCF and Cantiliver Strenth Analysis

    47/68

    m4

    N/m2

    N/m2

    1.19E-02 m

  • 8/13/2019 SCF and Cantiliver Strenth Analysis

    48/68

    2.45

    5.17E+00 Hz

    1.03E-01

    0 Vright1 = 0

    0.646325 Vright2 = 0.529154

    0 Vright3 = 0

    1 Vrright1 = 1

    1 Vrright2 = 1

    1 Vrright3 = 1

    0 Vfright1 = 0

    0.723734 Vfright2 = 0.593544

    0 Vfright3 = 0

    0 Vfright4 = 0

  • 8/13/2019 SCF and Cantiliver Strenth Analysis

    49/68

    0 Vfright5 = 0

    0 Vfright6 = 0

    0 Vfright7 = 0

    0 Vfright8 = 0

    0 Vfright9 = 0

    for right span

    Vr Vf

    1 0.5935435

    5.82E+03 7.47E+03 N

    0.00E+00 F1_right = 0.00E+00

    5.59E+02 Fc_right = 7.18E+02 N

    1.09E+03 Fw_right = 1.39E+03 N

    0.00E+00 Fw1_right = 0.00E+00 N

    6929.592 Fm_right = 8896.098 N

    4.27E+07 m_right = 5.76E+07 N/m2

    YES Rightcheck YES

  • 8/13/2019 SCF and Cantiliver Strenth Analysis

    50/68

    3.12E+03 Fd_right 1.97E+03 \

    2.63E+03 Fscf_right = 1.66E+03

    so dropper SCF force if value is defined) 2.69E+02

    FW2 = 7.24E+02

    FW2/2 = 3.62E+02

    Fd_left = 3.12E+03

    Fd_right = 1.97E+03

    d_left + Fd_right

    5.46E+03 N

    check2= OK

  • 8/13/2019 SCF and Cantiliver Strenth Analysis

    51/68

    System Parameters Topographica

    System Voltage 2.20E+02 kV Basic wind sp

    System Frequency f 5.00E+01 Hz Terrain categ

    Symmetrical Short Circuit Fault Current Ik 5.00E+04 A Reliability Lev

    Three Phase automatic reclosing "FALSE" Equipment u

    System x/r ratio x/r 3.00E+01 Equipment D

    Phase to Phase Spacing am 4.00E+00 m Cantilever str

    Size of Rigid Bus 4.00E+00 inch Equipment HDropper Conductor type "ACSR BER" Equipment Di

    Height of equipment bus above ground Heqpt 5.90E+00 m

    Equipment connection details Left Connection Right Connec

    Connected Equipment NA

    Span Lenth L 0 m

    Connection on main equipment R

    Connection on other end equip. E

    No. of spans 1.00E+00

    Dropper Lenth (l) 1.11E+01

    No. of subconductor in Dropper (Ns) 1.00E+00

    Calculation Constants

    Stress corresponding to the Yield point Rp0.2 1.70E+08 n/m2

    Gravitational Constant g 9.81E+00 m/s2

    Young's Modulus of Elasticity for Tube (E) E 6.89E+10 N/m2

    Rigid Bus Parameters Dropper Para

    Outer Diameter of tube Do 1.14E-01 m Conductor di

    Inner Diameter of tube Di 9.69E-02 m

    Mass per unit lenth M 7.70E+00 kg/m

    Wall thickness of the tube Sthk 1.00E-02 m

    Wind force constants

    Factor for ref. wind speed (Ko) Ko 1.38E+00

    Risk Co-eff (K1) Ki 1.00E+00

    Terrain roughness co-eff K2 1.00E+00

    Drag Co-eff (Cond.) Cdc 1.00E+00

    Drag Co-eff (Insu.) Cdi 1.20E+00

    Gust response factor for conductor Gc 1.83E+00

    Gust response factor for Insulator Gi 1.92E+00

    Calculation of Peak value of SC Current

    -1.00E-01

    1.91E+00 Ip =

    Calculation of rigid bus parameters

  • 8/13/2019 SCF and Cantiliver Strenth Analysis

    52/68

    Moment of inertia of Tube (j) = 4.05E-06

    Section modulus of tube(z) = 7.09E-05 m3

    Permissible stress in rigid Bus(.max)

    for normal conditions = 1.70E+08

    for SC conditions = 2.36E+08

    Factor for plasticity(q)

    = 1.39E+00

    Actual Deflection

    Left Deflection Right Deflection

    = 0.00E+00 m =

    Calculation of design wind pressure(Pd)

    Design wind pressure (Pd) N/m2 = 7.01E+02 N/m2

    Design wind speed Vd = K1.K2.Vr = 3.42E+01 m/s

    Vr = Vb/Ko = 3.42E+01

    Calculation of wind load on equipment housing (Fw2)

  • 8/13/2019 SCF and Cantiliver Strenth Analysis

    53/68

    = 6.41E+02 N

    Determination of load factors , , & based on support types

    These factors take into consideration the effect of type of busbar support on

    equipment in transmitting the dynamic forces onto supports.

    Load factors for left span Load factors for right span

    0.625 0.73 2.45 0.375 0.73

    Determination of natural frequency

    Left span Right span

    fcleft = #DIV/0! fcright =

    Ratio of natural frequency & system frequency leftratio = #DIV/0! rightratio =

    Calculation of stress factors V , Vr & Vf in the rigid conductors

    Vleft1 =

    Vleft2 =

    Vleft3 =

    Vrleft1 =

    Vrleft2 =

    Vrleft3 =

    Vfleft1 =

    Vfleft2 =

    Vfleft3 =

    Vfleft4 =

  • 8/13/2019 SCF and Cantiliver Strenth Analysis

    54/68

    Vfleft5 =

    Vfleft6 =

    Vfleft7 =

    Vfleft8 =

    Vfleft9 =

    Stress factors for left span Stress factors

    V Vr Vf V

    #DIV/0! 1 #DIV/0! #DIV/0!

    Calculation of SCF & Total deflection force

    SCF between rigid bus (Fm3)

    SCF between droppers

    F1_left =

    Gravitational load of rigid bus conductor (Fc)

    Fc=m.g.l Fc_left =

    Wind load on rigid bus (Fw)

    Fw = Pd.Gc.Cdc.Do.L Fw_left =

    Wind load on droppers (Fw1)

    Fw1 = Pd.Gc.Cdc.Do.L.ns Fw1_left =

    Total Effective force (F Vector sum of forces due to SCF, Wind & Dead Load.

    Total Force Fm_left =

    Calculation of stresses in rigid conductor (m)

    m_left =

    IN Limit (m < max) Leftcheck

    Calculation of deflection forces on equipment top due to LEFT/RIGHT connection

  • 8/13/2019 SCF and Cantiliver Strenth Analysis

    55/68

    Fd = Vf.Vr..Fl Fd_left

    FSCF = Vf.Vr..(Fscf-tube + Fscf-dropper) Fscf_left =

    (please add al

    Cantilever strength analysis for equipment supports

    Wind force on equipment insulator acting on insulator midpoint Fw"

    Equivalent wind force on equipment top Fw"/2

    Deflection force due to left connection Fd(left)

    Deflection force due to right connection Fd(right)

    Total deflection force on top Fd = FW/2 + F

    Fd =

    Acceptance Fd < Fcant

  • 8/13/2019 SCF and Cantiliver Strenth Analysis

    56/68

    l Inputs

    eed Vb 47 m/s

    ry Ter 2

    el RL 1

    der analysis

    scription LA

    enth Fcant 10000 N

    ight Hi 2.94 m ameter D 0.27 m

    ion

    NA

    0 m

    E

    R

    1

    0

    1

    meters

    meter Dc 0.03504 m

    Uo = 1.256E-06

    1.35E+05 kA

  • 8/13/2019 SCF and Cantiliver Strenth Analysis

    57/68

    m4

    N/m2

    N/m2

    0.00E+00 m

  • 8/13/2019 SCF and Cantiliver Strenth Analysis

    58/68

    2.45

    #DIV/0! Hz

    #DIV/0!

    #DIV/0! Vright1 = #DIV/0!

    #DIV/0! Vright2 = #DIV/0!

    #DIV/0! Vright3 = #DIV/0!

    1 Vrright1 = 1

    1 Vrright2 = 1

    1 Vrright3 = 1

    #DIV/0! Vfright1 = #DIV/0!

    #DIV/0! Vfright2 = #DIV/0!

    #DIV/0! Vfright3 = #DIV/0!

    #DIV/0! Vfright4 = #DIV/0!

  • 8/13/2019 SCF and Cantiliver Strenth Analysis

    59/68

    #DIV/0! Vfright5 = #DIV/0!

    #DIV/0! Vfright6 = #DIV/0!

    #DIV/0! Vfright7 = #DIV/0!

    #DIV/0! Vfright8 = #DIV/0!

    #DIV/0! Vfright9 = #DIV/0!

    for right span

    Vr Vf

    1 #DIV/0!

    0.00E+00 0.00E+00 N

    1.04E+03 F1_right = 0.00E+00

    0.00E+00 Fc_right = 0.00E+00 N

    0.00E+00 Fw_right = 0.00E+00 N

    4.99E+02 Fw1_right = 0.00E+00 N

    1.54E+03 Fm_right = 0 N

    #DIV/0! m_right = #DIV/0! N/m2

    #DIV/0! Rightcheck #DIV/0!

  • 8/13/2019 SCF and Cantiliver Strenth Analysis

    60/68

    1.54E+03 Fd_right #DIV/0! \

    1.04E+03 Fscf_right = #DIV/0!

    so dropper SCF force if value is defined) 1.06E+02

    FW2 = 6.41E+02

    FW2/2 = 3.21E+02

    Fd_left = 1.54E+03

    Fd_right = #DIV/0!

    d_left + Fd_right

    1.86E+03 N

    check2= OK

  • 8/13/2019 SCF and Cantiliver Strenth Analysis

    61/68

    Varriables Value(Alstom)

    lc 3.8

    ns 1

    Fst 843.5419

    F' 93.61594

    Mc' 2.384368

    r 2.0017521 63.45501

    Fes 0.1

    T 0.567381

    Tres 0.410754

    Eeff 1.94E+10

    N 2.67E-06

    8.22E-01

    Tk1 0.226952

    end 126.91

    -1.00175

    m 180

    x== 3.712906

    Ftd1 2271.73

    ela 0.003809

    th 3.3E-05

    Cd 1.755157

    Cf 1.15

    fed 0.201843

    180

    Ftd2 2271.73

    Ftd 2271.73

    Ftdkg 231.6437

    Ffd 2786.15

    Ffdkg 284.0981

    bh 0.180566 0.201843

    v1 1.643041

    v2 2.702

    V3 0.292

    Fv 11575.99

    st 0.456471pi 36.4265 Ve1 calculationj 5.00101 2.476833

    3.166 1.187069

    V41 6.134703 0.479269

    Ve1 1.098 37.1111 19.32491 0.520731

    Fpi.d1 7267.554 19.07491

    1 4.367483

  • 8/13/2019 SCF and Cantiliver Strenth Analysis

    62/68

    V42 6.134703 4.867483

    Ve2 4.864

    Fpi.d2 9832.03

    Fpi.d 9832.03

    Fpi.d.kg 741.5871

  • 8/13/2019 SCF and Cantiliver Strenth Analysis

    63/68

    E 6.20E+10

    S 100000

    L 3.8

    As 0.000724

    2.196

    0.456Cth 2.7E-19

    Ik 50000

    Uo 1.26E-06 1.570796

    Ls 2.5

    as 0.25 1

    ds 0.03504

    Li 0

    Dg 0

    Ls 2.5 end 123.5216

    Fst.kg 86.0757 21 126.91

    mc 2.187 (1-r) -1.00175

    ms 1.5

    nc 2

    Tk1 1

    .4T 0.226952

    Tk1/Tres 0.552526

    aph 4

    amin 3.388869

    md 0

    Ve2 Calculation

    2.476833

    1.187069

    0.479269

    0.520731

    19.32491

  • 8/13/2019 SCF and Cantiliver Strenth Analysis

    64/68

    19.07491

    4.367483

    4.867483

  • 8/13/2019 SCF and Cantiliver Strenth Analysis

    65/68

    Varriables Value(Alstom)

    lc 3.8

    ns 1

    Fst 843.5419

    F' 93.61594

    Mc' 2.384368

    r 2.0017521 63.45501

    Fes 0.1

    T 0.567381

    Tres 0.410754

    Eeff 1.94E+10

    N 2.67E-06

    8.22E-01

    Tk1 0.226952

    end 126.91

    -1.00175

    m 180

    x== 3.712906

    Ftd1 2271.73

    ela 0.003809

    th 3.3E-05

    Cd 1.755157

    Cf 1.15

    fed 0.201843

    180

    Ftd2 2271.73

    Ftd 2271.73

    Ftdkg 231.6437

    Ffd 2786.15

    Ffdkg 284.0981

    bh 0.180566 0.201843

    v1 1.643041

    v2 2.702

    V3 0.292

    Fv 11575.99

    st 0.456471pi 36.4265 Ve1 calculationj 5.00101 2.476833

    3.166 1.187069

    V41 6.134703 0.479269

    Ve1 1.098 37.1111 19.32491 0.520731

    Fpi.d1 7267.554 19.07491

    1 4.367483

  • 8/13/2019 SCF and Cantiliver Strenth Analysis

    66/68

    V42 6.134703 4.867483

    Ve2 4.864

    Fpi.d2 9832.03

    Fpi.d 9832.03

    Fpi.d.kg 741.5871

  • 8/13/2019 SCF and Cantiliver Strenth Analysis

    67/68

    E 6.20E+10

    S 100000

    L 3.8

    As 0.000724

    2.196

    0.456Cth 2.7E-19

    Ik 50000

    Uo 1.26E-06 1.570796

    Ls 2.5

    as 0.25 1

    ds 0.03504

    Li 0

    Dg 0

    Ls 2.5 end 123.5216

    Fst.kg 86.0757 21 126.91

    mc 2.187 (1-r) -1.00175

    ms 1.5

    nc 2

    Tk1 1

    .4T 0.226952

    Tk1/Tres 0.552526

    aph 4

    amin 3.388869

    md 0

    Ve2 Calculation

    2.476833

    1.187069

    0.479269

    0.520731

    19.32491

  • 8/13/2019 SCF and Cantiliver Strenth Analysis

    68/68

    19.07491

    4.367483

    4.867483


Recommended