+ All Categories
Home > Documents > Schottky Tunnel Contacts for Efficient Coupling of ... · Schottky Tunnel Contacts for Efficient...

Schottky Tunnel Contacts for Efficient Coupling of ... · Schottky Tunnel Contacts for Efficient...

Date post: 10-Mar-2020
Category:
Upload: others
View: 10 times
Download: 0 times
Share this document with a friend
23
Schottky Tunnel Contacts for Efficient Coupling of Photovoltaics and Catalysts Collaborators: Paul C. McIntyre, Y.W. Chen, J.D. Prange, A. Scheuermann, M. Gunji, O. Hendricks Support: Precourt Institute for Energy Seed Grant; CIS Seed Funds; Stanford Graduate Fellowship, NSF Graduate Fellowship, GCEP Christopher E. D. Chidsey Department of Chemistry Stanford University
Transcript

Schottky Tunnel Contacts for Efficient Coupling of Photovoltaics and Catalysts

Collaborators: Paul C. McIntyre, Y.W. Chen, J.D. Prange, A. Scheuermann, M. Gunji, O. Hendricks

Support: Precourt Institute for Energy Seed Grant; CIS Seed Funds;

Stanford Graduate Fellowship, NSF Graduate Fellowship, GCEP

Christopher E. D. Chidsey

Department of Chemistry

Stanford University

Storage: Energy Density Comparison

2

Pumped Hydro Storage

e.g. pump 1 L of water up the Hoover Dam

Energy density ≈ 1.8 kJ/L

Li Ion Rechargeable Battery

Energy density* ≈ 0.9-2.2 MJ/L

Hydrogen Storage

e.g. H2 in metal hydrides

Energy density ≈ 5-15 MJ/L

Liquid Fuel

e.g. 2 C8H18 + 25 O2 → 16 CO2 + 18 H2O

Energy density ≈ 35 MJ/L

* http://www.greencarcongress.com/2009/12/panasonic-20091225.html ¶ Sorensen, B., Renewable Energy Conversion, Transmission and Storage. Elsevier. (2007)

Major Scientific Challenges of

Photoelectrochemical Fuel Synthesis

• Oxidative stability of anode

• Proper alignment of band edges

• Optimizing solar absorption

• Making liquid fuels rather than hydrogen gas

(not addressed in this work)

3

-2

-1

0

1

2

0 1 10 11 12 13 14 5 6 7 8 9 3 4 2

pH

Pote

ntial, V

(vs.

NH

E)

TiO2

Ti3+

Ti2O3

Ti

TiO

Water Oxidation

Proton Reduction

Titanium Pourbaix Diagram

Why we want to use Titanium Dioxide

4

Photoelectrochemical Electrolysis of Water

• Schematic of solar hydrogen synthesis by photolysis of water using a

semiconducting photoanode with Eg = 3.0 eV (such as TiO2,* SrTiO3).

Basic Research Needs for Solar Energy Utilization, US DOE (2005)

* A. Fujishima and K. Honda, Nature 238, 37-38 (1972). 5

Photoanode Selection • Stable semiconductor absorbers tend to have large band gaps

– e.g. TiO2 with 3.4eV

– Only able to absorb UV portion of solar spectrum

Si

Fe2O3

TiO2

A B

M. Grätzel, Nature 414, 338-44 (2001).

6

• Use silicon with a smaller band gap but protect it with larger band gap, corrosion-resistant layer of TiO2.

• Must also control band offsets and add additional voltage.

“We disregard in our treatment the special case of such thin layers (<

50 Å)… it is hardly possible to produce such thin layers without

pinholes or larger defects.”

H. Gerisher et. al. (J. Electrochem. Soc., 1983, 130(11), 2173-2179.)

Background – Protecting Si Photoanodes

A. Bard et. al. (J. Electrochem. Soc., 1977, 124(2), 225-229.)

“There does not appear to be any advantage in depositing TiO2

…because of the inability to transfer holes from the substrate through

the TiO2.”

Conclusion: Don’t Use TiO2

Conclusion: Don’t Use Thin Layers

Our Work: Use Thin Layers of TiO2 7

Atomic-Layer-Deposition (ALD) Protection of Silicon Electrode

• Combine chemical stability of TiO2 with efficient photo-absorption by Si substrate

• Coat thin TiO2 by ALD as corrosion resistant tunnel oxide

• Deposit thin surface layer of a known water oxidation catalyst (e.g. Ir) H2O(g)

TDMAT(g) Saturated adsorption

HNMe2 (g)

TiO2(s)

8

Y.W. Chen et al., Nature Mater. 10, 539 (2011).

Water Oxidation in the Dark

• Use heavily-doped p+Si as substrate – Sufficient holes for oxidation

• 2 nm of TiO2 as corrosion resistant tunnel oxide

• 3 nm of Ir: water oxidation catalyst and hole transport mediator

• Operation in acidic, neutral, and basic solutions – Overpotentials at 1 mA/cm2

• 1M NaOH: 384 mV • pH 7: 346 mV • 1M H2SO4: 332 mV

– Low overpotential – Comparable to the best water

oxidation anodes reported

Electrode: Ir/TiO2/p+-Si

Electrode: Ir/TiO2/p+Si

9

Anode: 2H2O(l) O2(g)+4H+(aq)+4e-

Y.W. Chen et al., Nature Mater. 10, 539 (2011).

• Use lightly-doped n-Si as substrate – Holes must be photo-generated for

efficient oxidation

• Without illumination – No observable peaks

• With AM 1.5 illumination – “Overpotentials” at 1 mA/cm2

• 1M NaOH: -171 mV • pH 7: -219 mV • 1M H2SO4: -200 mV

– Large water oxidation current density below equilibrium (dark) potential

– Inferred photovoltage ≈ 550 mV

Electrode: Ir/TiO2/n-Si

10

Water Oxidation in Simulated Solar Light

Y.W. Chen et al., Nature Mater. 10, 539 (2011).

1 M H2SO4

Light Electrolysis – n-Si Substrates

Current saturation under illumination: 26 mA/cm2

Theoretical limit for Silicon: 43 mA/cm2

11

60% charge collection

Stability of Anodes – n-Si with Solar Illumination

Hold spot of anode at a constant current of 5 mA/cm2

Samples with TiO2

Samples without TiO2

Samples with TiO2

Samples without TiO2

1 M Base 1 M Acid

12

Stability of Anodes – TEM

Before (left) and after (right) images of Ir/TiO2/Si anode for 3 hr stability Test

13 Y.W. Chen et al., Nature Mater. 10, 539 (2011).

Stability of Anodes – XPS Depth Profiling After Stability Test – Protection with TiO2

14 Y.W. Chen et al., Nature Mater. 10, 539 (2011).

Ir/2 nm TiO2/p+-Si

2 nm TiO2/p+-Si

Electronic Transport Characterization

• Use Fe(CN)63-/Fe(CN)6

4- redox pair to study charge transfer efficiency in electrodes

– Fe(CN)63-/Fe(CN)6

4- redox reaction has low kinetic barrier (Scherer et al., J. Electroanal. Chem., 85, p77, 1977)

• Importance of Ir layer as carrier transport mediator

– No Fe(II)/Fe(III) peaks observed for TiO2/p+-Si samples without Ir top layer

– Large Fe(II)/Fe(III) peak with the thin Ir top layer

– Peak-to-peak splitting similar to conductive electrodes (e.g. ITO)

• Efficient electron transport explained by band structure

– Nearly flat band at equilibrium on p+-Si substrates

15

• No oxidation wave observed without illumination – Lack of holes in n-Si in the dark – Have to generate electron-hole

pairs for oxidation reaction to proceed

– Difficult to do with thick Si depletion layer

• Oxidation wave recovers with illumination – Electron-hole pairs supplied by

incident photons

• E0 shifts to the lower potential – Effective photovoltage ~550mV

when compared to the dark CV – Similar to the photovoltage

observed for water oxidation

Ir/2 nm TiO2/n-Si light Ir/2 nm TiO2/p+-Si

Ir/2 nm TiO2/n-Si

Electronic Transport Characterization

16

TiO2 Thickness Effects

17

• Amorphous TiO2 as-deposited

• Film thickness can be controlled using ALD cycle number

• Films have smooth interfaces and uniform thickness

A.G. Scheuermann et al., Energy Environ. Sci. DOI: 10.1039/c3ee41178h

TiO2 Thickness Effects

• Thin (2 nm) TiO2 has a very small peak-to-peak splitting – ~130 mV

• Thick (10 nm) TiO2 has a much larger peak-to-peak splitting – ~610 mV

• Greater barrier to hole transport through thick TiO2

• ALD enables growth of a thin and pinhole-free TiO2 tunnel oxide – facile carrier transport

Ir/2 nm TiO2/p+-Si

Ir/10 nm TiO2/p+-Si

18 Y.W. Chen et al., Nature Mater. 10, 539 (2011).

• Standard ferri/ferrocyanide redox couple in water

• Peak-to-peak splitting measures barrier to electron

transport from electrode to electrolyte

19

0 2 4 6 8 10 120

100

200

300

400

500

600

Base

pH7

Acid

FFC

Overp

ote

ntial (m

V)

TiO2 thickness (nm)

TiO2 Thickness Effects: Overpotential

• Increasing TiO2 thickness requires increasing overpotential

for the same water oxidation rate; ~ 20 mV/nm TiO2

• At very small thicknesses, the overpotential for water splitting

is approximately constant, suggesting it is not limited by

electronic conduction A.G. Scheuermann et al., Energy Environ. Sci. DOI: 10.1039/c3ee41178h

Ir/TiO2/p+Si

Conduction Mechanism: Ir Solid State Contact

• Solid-state contact current-voltage measurements – No solution here – p+Si substrate – 50 nm Ir layer as top contact

• Observe tunneling conduction – by varying TiO2 thickness – by varying temperature & applied bias

• Thin TiO2 – Current almost independent of

temperature – Direct tunneling through the ALD-grown

oxide

• Thick TiO2 – Current increases (by several orders of

magnitude) with temperature – Current is thermally activated and bulk

limited 20 Y.W. Chen et al., Nature Mater. 10, 539 (2011).

Applied VG = -0.5 V on Ir contact

Vfb = +0.13 V

Solid-State MIS Characterization

21

• Good CV behavior of ultrathin films on p-Si substrate

• No Vfb shift with thickness Low fixed charge in oxide • Predicted shifts with ΦM suggests Fermi-level unpinned

50nm Ir / x TiO2 / native SiO2 / p-Si / 20nm Pt

-0.5

0

0.5

1

1.5

2

Fla

t b

an

d v

olt

ag

e (

V)

Gate Metal

Gate metal effect on Vfb

Theoretical range

Observed

Ir Pt Pd Ni Al -2.0 -1.5 -1.0 -0.5 0.0 0.5 1.0 1.5 2.00.0

0.5

1.0

1.5

2.0

2.5

3.0

Capacitance (

uF

/cm

2)

Gate Bias (V)

800kHz

1nm TiO2

8nm TiO2

-1.2 -0.8 -0.4 0.0 0.4 0.8 1.20.0

0.5

1.0

1.5

2.0

2.5

Ca

pa

cit

an

ce

(u

F/c

m2

)

Gate Bias (V)

1kHz

800kHz

2nm TiO2

/ / A.G. Scheuermann et al., Energy Environ. Sci. DOI: 10.1039/c3ee41178h

22

MIS Junction Band Structure1-3

1. M. Perego et al., J. Appl. Phys. 2008, 103, 043509.

2. W. Mönch, J. Appl. Phys. 2010, 107, 013706.

3. M. Houssa et al., J. Appl. Phys. 2000, 87, 8615.

• Bulk-limited electron hopping conduction through the TiO2 layer and tunneling across the ultra-thin SiO2 layer.

• Bulk conduction through TiO2 contributes ~ 20 mV of overpotential increase per nm of thickness at J = 1 mA/cm2

• Corresponds to a bulk resistivity of 2x108 ˑcm

• The bulk resistivity of TiO2 will

depend on its oxygen stoichiometry, crystallinity, etc.

23

Conclusions

• Fuels generated from renewable energy can help accommodate

intermittency. -high energy density

• Water is the only readily accessible source of electrons for solar fuel

synthesis at large scale.

• Water oxidation is a kinetically difficult reaction that requires

oxidation stable but catalytically active surfaces.

• Atomic layer deposited tunnel oxides can protect Si and, potentially,

other high-quality semiconductor absorbers so they can be used in

efficient solar-driven water splitting.

• Atomic layer deposition of ultrathin and pinhole-free TiO2 produces a

Schottky tunnel junction coupling a high quality semiconductor to

a nanoscale oxidation catalyst .

• ALD-TiO2 adds only a modest overpotential penalty of 20 mV/nm


Recommended