+ All Categories
Home > Documents > Section 7 Frequency Response Analysisweb.engr.oregonstate.edu/~webbky/MAE4421_files... ·...

Section 7 Frequency Response Analysisweb.engr.oregonstate.edu/~webbky/MAE4421_files... ·...

Date post: 28-Jun-2020
Category:
Upload: others
View: 1 times
Download: 0 times
Share this document with a friend
113
MAE 4421 – Control of Aerospace & Mechanical Systems SECTION 7: FREQUENCYRESPONSE ANALYSIS
Transcript
Page 1: Section 7 Frequency Response Analysisweb.engr.oregonstate.edu/~webbky/MAE4421_files... · Steady‐State Sinusoidal Response Gain –the ratio of amplitudes of the output and input

MAE 4421 – Control of Aerospace & Mechanical Systems

SECTION 7: FREQUENCY‐RESPONSE ANALYSIS

Page 2: Section 7 Frequency Response Analysisweb.engr.oregonstate.edu/~webbky/MAE4421_files... · Steady‐State Sinusoidal Response Gain –the ratio of amplitudes of the output and input

K. Webb MAE 4421

Introduction2

Page 3: Section 7 Frequency Response Analysisweb.engr.oregonstate.edu/~webbky/MAE4421_files... · Steady‐State Sinusoidal Response Gain –the ratio of amplitudes of the output and input

K. Webb MAE 4421

3

Introduction

We have seen how to design feedback control systems using the root locus

In this section of the course, we’ll learn how to do the same using the open‐loop frequency response

Objectives: Review frequency‐response fundamentals Relate a system’s frequency response to its transient response

Determine static error constants from the open‐loop frequency response

Determine closed‐loop stability from the open‐loop frequency response

Page 4: Section 7 Frequency Response Analysisweb.engr.oregonstate.edu/~webbky/MAE4421_files... · Steady‐State Sinusoidal Response Gain –the ratio of amplitudes of the output and input

K. Webb MAE 4421

4

System Response to a Sinusoidal Input

Consider an  ‐order system poles:  , , … Real or complex Assume all are distinct

Transfer function is:

⋯(1)

Apply a sinusoidal input to the system

sin

Output is given by

⋯∙ (2)

Page 5: Section 7 Frequency Response Analysisweb.engr.oregonstate.edu/~webbky/MAE4421_files... · Steady‐State Sinusoidal Response Gain –the ratio of amplitudes of the output and input

K. Webb MAE 4421

5

System Response to a Sinusoidal Input

Partial fraction expansion of (2) gives

⋯ (3)

Inverse transform of (3) gives the time‐domain output

⋯ cos sin (4)

transient steady state

Two portions of the response: Transient Decaying exponentials or sinusoids – goes to zero in steady state Natural response to initial conditions

Steady state Due to the input – sinusoidal in steady state

Page 6: Section 7 Frequency Response Analysisweb.engr.oregonstate.edu/~webbky/MAE4421_files... · Steady‐State Sinusoidal Response Gain –the ratio of amplitudes of the output and input

K. Webb MAE 4421

6

Steady‐State Sinusoidal Response

We are interested in the steady‐state response

cos sin (5)

A trig. identity provides insight into  :

cos sin sinwhere

tan

Steady‐state response to a sinusoidal input

sin

is a sinusoid of the same frequency, but, in general different amplitude and phase

sinWhere (6)

and      tan

Page 7: Section 7 Frequency Response Analysisweb.engr.oregonstate.edu/~webbky/MAE4421_files... · Steady‐State Sinusoidal Response Gain –the ratio of amplitudes of the output and input

K. Webb MAE 4421

7

Steady‐State Sinusoidal Response

sin → sin

Steady‐state sinusoidal response is a scaled andphase‐shifted sinusoid of the same frequency Equal frequency is a property of linear systems

Note the  term in the numerator of (3) will affect the residues Residues determine amplitude and phase of the output Output amplitude and phase are frequency‐dependent

sin

Page 8: Section 7 Frequency Response Analysisweb.engr.oregonstate.edu/~webbky/MAE4421_files... · Steady‐State Sinusoidal Response Gain –the ratio of amplitudes of the output and input

K. Webb MAE 4421

8

Steady‐State Sinusoidal Response

Gain – the ratio of amplitudes of the output and input of the system

Phase – phase difference between system input and output

Systems will, in general, exhibit frequency‐dependent gain and phase

We’d like to be able to determine these functions of frequency The system’s frequency response

Linear Systemsin sin

Page 9: Section 7 Frequency Response Analysisweb.engr.oregonstate.edu/~webbky/MAE4421_files... · Steady‐State Sinusoidal Response Gain –the ratio of amplitudes of the output and input

K. Webb MAE 4421

A system’s frequency response, or sinusoidal transfer function, describes its gain and phase shift for sinusoidal inputs as a function of frequency.

Frequency Response9

Page 10: Section 7 Frequency Response Analysisweb.engr.oregonstate.edu/~webbky/MAE4421_files... · Steady‐State Sinusoidal Response Gain –the ratio of amplitudes of the output and input

K. Webb MAE 4421

10

Frequency Response

System output in the Laplace domain is⋅

Multiplication in the Laplace domain corresponds to convolution in the time domain

Consider an exponential input of the form

where  is the complex Laplace variable:   

Now the output is

⋅ (1)

Page 11: Section 7 Frequency Response Analysisweb.engr.oregonstate.edu/~webbky/MAE4421_files... · Steady‐State Sinusoidal Response Gain –the ratio of amplitudes of the output and input

K. Webb MAE 4421

11

Frequency Response

⋅ (1)

We’re interested in the steady‐state response, so let the upper limit of integration go to infinity

⋅ (2)

Time‐domain response to an exponential input is the time‐domain input multiplied by the system transfer function

What is this input?(3)

If we let  → 0, i.e. let  → , then we have

⋅ (4)

Page 12: Section 7 Frequency Response Analysisweb.engr.oregonstate.edu/~webbky/MAE4421_files... · Steady‐State Sinusoidal Response Gain –the ratio of amplitudes of the output and input

K. Webb MAE 4421

12

Euler’s Formula

Recall Euler’s formula:

cos sin (5)

From which it follows that

cos (6)

and

sin (7)

Page 13: Section 7 Frequency Response Analysisweb.engr.oregonstate.edu/~webbky/MAE4421_files... · Steady‐State Sinusoidal Response Gain –the ratio of amplitudes of the output and input

K. Webb MAE 4421

13

Frequency Response

We’re interested in the sinusoidal steady‐state system response, so let the input be

cos 2

A sum of complex exponentials in the form of (3) We’ve let  → in the first term and  → in the second

(8)

According to (4) the output in response to (8) will be 

⋅ ⋅ (9)

Page 14: Section 7 Frequency Response Analysisweb.engr.oregonstate.edu/~webbky/MAE4421_files... · Steady‐State Sinusoidal Response Gain –the ratio of amplitudes of the output and input

K. Webb MAE 4421

14

Frequency Response

⋅ ⋅ (9)

is a complex function of frequency Evaluates to a complex number at each value of  Has both magnitude and phase Can be expressed in polar form as

(10)

whereand   ∠

It follows that

(11)

Page 15: Section 7 Frequency Response Analysisweb.engr.oregonstate.edu/~webbky/MAE4421_files... · Steady‐State Sinusoidal Response Gain –the ratio of amplitudes of the output and input

K. Webb MAE 4421

15

Frequency Response

Using (11), the output given by (9) becomes

(12)

(13)

where, again

and   ∠ (14)

Page 16: Section 7 Frequency Response Analysisweb.engr.oregonstate.edu/~webbky/MAE4421_files... · Steady‐State Sinusoidal Response Gain –the ratio of amplitudes of the output and input

K. Webb MAE 4421

16

Frequency response Function –

is the system’s frequency response function Transfer function, where  →

| → (15)

A complex‐valued function of frequency

at each  is the gain at that frequency Ratio of output amplitude to input amplitude

∠ at each  is the phase at that frequency Phase shift between input and output sinusoids

Another representation of system behavior Along with state‐space model, impulse/step responses, transfer 

function, etc. Typically represented graphically

Page 17: Section 7 Frequency Response Analysisweb.engr.oregonstate.edu/~webbky/MAE4421_files... · Steady‐State Sinusoidal Response Gain –the ratio of amplitudes of the output and input

K. Webb MAE 4421

17

Plotting the Frequency Response Function

is a complex‐valued function of frequency Has both magnitude and phase Plot gain and phase separately

Frequency response plots formatted as Bode plots Two sets of axes: gain on top, phase below Identical, logarithmic frequency axes Gain axis is logarithmic – either explicitly or as units of decibels (dB)

Phase axis is linear with units of degrees

Page 18: Section 7 Frequency Response Analysisweb.engr.oregonstate.edu/~webbky/MAE4421_files... · Steady‐State Sinusoidal Response Gain –the ratio of amplitudes of the output and input

K. Webb MAE 4421

18

Bode Plots

Logarithmic frequency axes

Units of magnitude are dB Magnitude 

plot on top

Phase plot below

Units of phase are degrees

Page 19: Section 7 Frequency Response Analysisweb.engr.oregonstate.edu/~webbky/MAE4421_files... · Steady‐State Sinusoidal Response Gain –the ratio of amplitudes of the output and input

K. Webb MAE 4421

19

Interpreting Bode Plots

Bode plots tell you the gain and phase shift at all frequencies: choose a frequency, read gain and phase values from the plot

For a 10KHz sinusoidal input, the gain is 0dB (1) and the phase shift is 0°.

For a 10MHz sinusoidal input, the gain is ‐32dB (0.025), and the phase shift is ‐176°.

Page 20: Section 7 Frequency Response Analysisweb.engr.oregonstate.edu/~webbky/MAE4421_files... · Steady‐State Sinusoidal Response Gain –the ratio of amplitudes of the output and input

K. Webb MAE 4421

20

Interpreting Bode Plots

Page 21: Section 7 Frequency Response Analysisweb.engr.oregonstate.edu/~webbky/MAE4421_files... · Steady‐State Sinusoidal Response Gain –the ratio of amplitudes of the output and input

K. Webb MAE 4421

21

Decibels ‐ dB

Frequency response gain most often expressed and plotted with units of decibels (dB) A logarithmic scale Provides detail of very large and very small values on the same plot

Commonly used for ratios of powers or amplitudes

Conversion from a linear scale to dB:

20 ⋅ log

Conversion from dB to a linear scale:

10

Page 22: Section 7 Frequency Response Analysisweb.engr.oregonstate.edu/~webbky/MAE4421_files... · Steady‐State Sinusoidal Response Gain –the ratio of amplitudes of the output and input

K. Webb MAE 4421

22

Decibels – dB 

Multiplying two gain values corresponds to adding their values in dB E.g., the overall gain of cascaded systems

Negative dB values corresponds to sub‐unity gain Positive dB values are gains greater than one

dB Linear

60 1000

40 100

20 10

0 1

dB Linear

6 2

‐3 1/√2 0.707‐6 0.5

‐20 0.1

Page 23: Section 7 Frequency Response Analysisweb.engr.oregonstate.edu/~webbky/MAE4421_files... · Steady‐State Sinusoidal Response Gain –the ratio of amplitudes of the output and input

K. Webb MAE 4421

23

Value of Logarithmic Axes ‐ dB

Gain axis is linear in dB A logarithmic scale Allows for displaying detail at very large and very small levels on the same plot

Gain plotted in dB Two resonant peaks 

clearly visible

Linear gain scale Smaller peak has 

disappeared

Page 24: Section 7 Frequency Response Analysisweb.engr.oregonstate.edu/~webbky/MAE4421_files... · Steady‐State Sinusoidal Response Gain –the ratio of amplitudes of the output and input

K. Webb MAE 4421

24

Value of Logarithmic Axes ‐ dB

Frequency axis is logarithmic Allows for displaying detail at very low and very high frequencies on the 

same plot

Log frequency axis Can resolve 

frequency of both resonant peaks

Linear frequency axis Lower resonant 

frequency is unclear

Page 25: Section 7 Frequency Response Analysisweb.engr.oregonstate.edu/~webbky/MAE4421_files... · Steady‐State Sinusoidal Response Gain –the ratio of amplitudes of the output and input

K. Webb MAE 4421

25

Gain Response – Terminology 

Corner frequency, cut off frequency, ‐3dB frequency: Frequency at which 

gain is 3dB below its low‐frequency value

2

This is the bandwidthof the system

Peaking Any increase in gain 

above the low frequency gain

1.45

2 0.23

~5 of peaking

Page 26: Section 7 Frequency Response Analysisweb.engr.oregonstate.edu/~webbky/MAE4421_files... · Steady‐State Sinusoidal Response Gain –the ratio of amplitudes of the output and input

K. Webb MAE 4421

Frequency‐Response Factors26

Page 27: Section 7 Frequency Response Analysisweb.engr.oregonstate.edu/~webbky/MAE4421_files... · Steady‐State Sinusoidal Response Gain –the ratio of amplitudes of the output and input

K. Webb MAE 4421

27

Transfer Function Factors

Numerator and denominator of a transfer function can be factored into first‐ and second‐order terms

⋯ 2 2 ⋯⋯ 2 2 ⋯

Can think of the transfer function as a product of the individual factors

For example, consider the following system

2

Can rewrite as

⋅1

⋅1

2

Page 28: Section 7 Frequency Response Analysisweb.engr.oregonstate.edu/~webbky/MAE4421_files... · Steady‐State Sinusoidal Response Gain –the ratio of amplitudes of the output and input

K. Webb MAE 4421

28

Transfer Function Factors

⋅1

⋅1

2

Think of this as three cascaded transfer functions,      ,     

1 12

or

Page 29: Section 7 Frequency Response Analysisweb.engr.oregonstate.edu/~webbky/MAE4421_files... · Steady‐State Sinusoidal Response Gain –the ratio of amplitudes of the output and input

K. Webb MAE 4421

29

Transfer Function Factors

In the Laplace domain, transfer function of a cascade of systems is the product of the individual transfer functions In the time domain, overall impulse response is the convolution of the individual impulse responses

Same holds true in the frequency domain Frequency response of a cascade is the product of the individual frequency responses 

Or, the product of individual factors

Page 30: Section 7 Frequency Response Analysisweb.engr.oregonstate.edu/~webbky/MAE4421_files... · Steady‐State Sinusoidal Response Gain –the ratio of amplitudes of the output and input

K. Webb MAE 4421

30

Frequency Response Components ‐ Example

Consider the following system

20 201 100

The system’s frequency response function is 

20 201 100

As we’ve seen we can consider this a product of individual frequency response factors

20 ⋅ 20 ⋅11 ⋅

1100

Overall response is the composite of the individual responses Product of individual gain responses – sum in dB Sum of individual phase responses

Page 31: Section 7 Frequency Response Analysisweb.engr.oregonstate.edu/~webbky/MAE4421_files... · Steady‐State Sinusoidal Response Gain –the ratio of amplitudes of the output and input

K. Webb MAE 4421

31

Frequency Response Components ‐ Example

Gain response

Page 32: Section 7 Frequency Response Analysisweb.engr.oregonstate.edu/~webbky/MAE4421_files... · Steady‐State Sinusoidal Response Gain –the ratio of amplitudes of the output and input

K. Webb MAE 4421

32

Frequency Response Components ‐ Example

Phase response

Page 33: Section 7 Frequency Response Analysisweb.engr.oregonstate.edu/~webbky/MAE4421_files... · Steady‐State Sinusoidal Response Gain –the ratio of amplitudes of the output and input

K. Webb MAE 4421

In this section, we’ll look at a method for sketching, by hand, a straight‐line, asymptotic approximation for a Bode plot.

Bode Plot Construction33

Page 34: Section 7 Frequency Response Analysisweb.engr.oregonstate.edu/~webbky/MAE4421_files... · Steady‐State Sinusoidal Response Gain –the ratio of amplitudes of the output and input

K. Webb MAE 4421

34

Bode Plot Construction

We’ve just seen that a system’s frequency response function can be factored into first‐ and second‐order terms Each factor contributes a component to the overall gain and phase responses

Now, we’ll look at a technique for manually sketching a system’s Bode plot In practice, you’ll almost always plot with a computer But, learning to do it by hand provides valuable insight

We’ll look at how to approximate Bode plots for each of the different factors

Page 35: Section 7 Frequency Response Analysisweb.engr.oregonstate.edu/~webbky/MAE4421_files... · Steady‐State Sinusoidal Response Gain –the ratio of amplitudes of the output and input

K. Webb MAE 4421

35

Bode Form of the Transfer function

Consider the general transfer function form:⋯ 2 ⋯⋯ 2 ⋯

We first want to put this into Bode form:

1 1 ⋯ 2 1 ⋯

1 1 ⋯ 2 1 ⋯

The corresponding frequency response function, in Bode form, is

1 1 ⋯ 2 1 ⋯

1 1 ⋯ 2 1 ⋯

Putting  into Bode form requires putting each of the first‐ and second‐order factors into Bode form

Page 36: Section 7 Frequency Response Analysisweb.engr.oregonstate.edu/~webbky/MAE4421_files... · Steady‐State Sinusoidal Response Gain –the ratio of amplitudes of the output and input

K. Webb MAE 4421

36

First‐Order Factors in Bode Form

First‐order frequency‐response factors include:

,    ,  

For the first factor,  ,  is a positive or negative integer Already in Bode form

For the second two, divide through by  , giving

1 and    

Here,  , the corner frequency associated with that zero or pole, so 

1 and    

Page 37: Section 7 Frequency Response Analysisweb.engr.oregonstate.edu/~webbky/MAE4421_files... · Steady‐State Sinusoidal Response Gain –the ratio of amplitudes of the output and input

K. Webb MAE 4421

37

Second‐Order Factors in Bode Form

Second‐order frequency‐response factors include:

2 and    

Again, normalize the  coefficient, giving

1 and     /

Putting each factor into its Bode form involves factoring out any DC gain component

Lump all of DC gains together into a single gain constant, 

⋯ ⋯

⋯ ⋯

Page 38: Section 7 Frequency Response Analysisweb.engr.oregonstate.edu/~webbky/MAE4421_files... · Steady‐State Sinusoidal Response Gain –the ratio of amplitudes of the output and input

K. Webb MAE 4421

38

Bode Plot Construction

Frequency response function in Bode form ⋯ ⋯

⋯ ⋯

Product of a constant DC gain factor, , and first‐and second‐order factors

Plot the frequency response of each factor individually, then combine graphically Overall response is the product of individual factors Product of gain responses – sum on a dB scale  Sum of phase responses

Page 39: Section 7 Frequency Response Analysisweb.engr.oregonstate.edu/~webbky/MAE4421_files... · Steady‐State Sinusoidal Response Gain –the ratio of amplitudes of the output and input

K. Webb MAE 4421

39

Bode Plot Construction

Bode plot construction procedure:1. Put the sinusoidal transfer function into Bode form2. Draw a straight‐line asymptotic approximation for the 

gain and phase response of each individual factor3. Graphically add all individual response components 

and sketch the result 

Next, we’ll look at the straight‐line asymptotic approximations for the Bode plots for each of the transfer function factors

Page 40: Section 7 Frequency Response Analysisweb.engr.oregonstate.edu/~webbky/MAE4421_files... · Steady‐State Sinusoidal Response Gain –the ratio of amplitudes of the output and input

K. Webb MAE 4421

Bode Plot – Constant Gain Factor40

Constant gain

Constant Phase

Page 41: Section 7 Frequency Response Analysisweb.engr.oregonstate.edu/~webbky/MAE4421_files... · Steady‐State Sinusoidal Response Gain –the ratio of amplitudes of the output and input

K. Webb MAE 4421

Bode Plot – Poles/Zeros at the Origin41

0: zeros at the origin

0: poles at the origin

Gain: Straight line Slope  ⋅ 20 ⋅ 6

0 at  1

Phase: ∠ ⋅ 90°

Page 42: Section 7 Frequency Response Analysisweb.engr.oregonstate.edu/~webbky/MAE4421_files... · Steady‐State Sinusoidal Response Gain –the ratio of amplitudes of the output and input

K. Webb MAE 4421

Bode Plot – First‐Order Zero42

Single real zero at 

Gain: 0 for 

20 6 for 

Straight‐line asymptotes intersect at  , 0

Phase:  0° for  0.1 45° for  90° for  10

° for 0.1 10

1

Page 43: Section 7 Frequency Response Analysisweb.engr.oregonstate.edu/~webbky/MAE4421_files... · Steady‐State Sinusoidal Response Gain –the ratio of amplitudes of the output and input

K. Webb MAE 4421

Bode Plot – First‐Order Pole43

Single real pole at 

Gain: 0 for 

20 6 for 

Straight‐line asymptotes intersect at  , 0

Phase:  0° for  0.1 45° for  90° for  10

° for 0.1 10

1

1

Page 44: Section 7 Frequency Response Analysisweb.engr.oregonstate.edu/~webbky/MAE4421_files... · Steady‐State Sinusoidal Response Gain –the ratio of amplitudes of the output and input

K. Webb MAE 4421

Bode Plot – Second‐Order Zero44

Complex‐conjugate zeros:  

,

Gain: 0 for  ≪ 40 12 for   ≫ Straight‐line asymptotes intersect at 

, 0

‐dependent peaking around 

Phase:  0° for   ≪ 90° for  

180° for  ≫ ‐dependent slope through 

Sketch as step‐change at  for low  , 90°/ for high  , or in between

21

Page 45: Section 7 Frequency Response Analysisweb.engr.oregonstate.edu/~webbky/MAE4421_files... · Steady‐State Sinusoidal Response Gain –the ratio of amplitudes of the output and input

K. Webb MAE 4421

Bode Plot – Second‐Order Pole45

12 1

Complex‐conjugate poles:  

,

Gain: 0 for  ≪ 40 12 for   ≫ Straight‐line asymptotes intersect at 

, 0

‐dependent peaking around 

Phase:  0° for   ≪ 90° for  

180° for  ≫ ‐dependent slope through 

Sketch as step‐change at  for low  , 90°/ for high  , or in between

Page 46: Section 7 Frequency Response Analysisweb.engr.oregonstate.edu/~webbky/MAE4421_files... · Steady‐State Sinusoidal Response Gain –the ratio of amplitudes of the output and input

K. Webb MAE 4421

Bode Plot Construction – Example46

Consider a system with the following transfer function

10 20400

The sinusoidal transfer function:

10 20400

Put it into Bode form

10 ⋅ 20 20 1

⋅ 400 400 1

0.5 20 1

⋅ 400 1

Represent as a product of factors

0.5 ⋅ 20 1 ⋅1⋅

1

400 1

Page 47: Section 7 Frequency Response Analysisweb.engr.oregonstate.edu/~webbky/MAE4421_files... · Steady‐State Sinusoidal Response Gain –the ratio of amplitudes of the output and input

K. Webb MAE 4421

47

Bode Plot Construction – Example

Page 48: Section 7 Frequency Response Analysisweb.engr.oregonstate.edu/~webbky/MAE4421_files... · Steady‐State Sinusoidal Response Gain –the ratio of amplitudes of the output and input

K. Webb MAE 4421

48

Bode Plot Construction – Example

Page 49: Section 7 Frequency Response Analysisweb.engr.oregonstate.edu/~webbky/MAE4421_files... · Steady‐State Sinusoidal Response Gain –the ratio of amplitudes of the output and input

K. Webb MAE 4421

Polar Frequency Response Plots49

Page 50: Section 7 Frequency Response Analysisweb.engr.oregonstate.edu/~webbky/MAE4421_files... · Steady‐State Sinusoidal Response Gain –the ratio of amplitudes of the output and input

K. Webb MAE 4421

50

Polar Frequency Response Plots

is a complex function of frequency  Typically plot as Bode plots  Magnitude and phase plotted separately Aids visualization of system behavior

A real and an imaginary part at each value of  A point in the complex plane at each frequency Defines a curve in the complex plane A polar plot Parametrized by frequency – not as easy to distinguish frequency as on a Bode plot

Polar plots are not terribly useful as a means of displaying a frequency response However, an important concept later, when we introduce the Nyquist stability criterion

Page 51: Section 7 Frequency Response Analysisweb.engr.oregonstate.edu/~webbky/MAE4421_files... · Steady‐State Sinusoidal Response Gain –the ratio of amplitudes of the output and input

K. Webb MAE 4421

51

Polar Frequency Response Plots

Identical frequency responses plotted two ways:  Bode plot and polar plot

Note uneven frequency spacing along polar plot curve Dependent on frequency rates of change of gain and phase

Page 52: Section 7 Frequency Response Analysisweb.engr.oregonstate.edu/~webbky/MAE4421_files... · Steady‐State Sinusoidal Response Gain –the ratio of amplitudes of the output and input

K. Webb MAE 4421

Relationship between Frequency Response and Transient Response

52

Page 53: Section 7 Frequency Response Analysisweb.engr.oregonstate.edu/~webbky/MAE4421_files... · Steady‐State Sinusoidal Response Gain –the ratio of amplitudes of the output and input

K. Webb MAE 4421

53

Transient/Frequency Response Relationship

We have seen relationships – some exact, some approximate – between closed‐loop pole locations and closed‐loop transient response

Also have relationships between closed‐loop frequency response and closed‐loop transient responses

Applicable to second‐order systems:

2

Also applicable to higher‐order systems that are reasonably approximated as second‐order Systems with a pair of dominant second‐order poles

Page 54: Section 7 Frequency Response Analysisweb.engr.oregonstate.edu/~webbky/MAE4421_files... · Steady‐State Sinusoidal Response Gain –the ratio of amplitudes of the output and input

K. Webb MAE 4421

54

Transient/Frequency Response Relationship

Damping ratio vs. overshoot vs. peaking

Natural frequency vs. risetime vs. bandwidth

Qualitative 2nd‐order time/freq. response/pole relationships

Page 55: Section 7 Frequency Response Analysisweb.engr.oregonstate.edu/~webbky/MAE4421_files... · Steady‐State Sinusoidal Response Gain –the ratio of amplitudes of the output and input

K. Webb MAE 4421

55

Frequency Response Peaking

For systems with  0.707, the gain response will exhibit peaking

Can relate peak magnitudeto the damping ratio

12 1

Relative to low‐frequency gain

And the peak frequency to the damping ratio and natural frequency

1 2

Page 56: Section 7 Frequency Response Analysisweb.engr.oregonstate.edu/~webbky/MAE4421_files... · Steady‐State Sinusoidal Response Gain –the ratio of amplitudes of the output and input

K. Webb MAE 4421

56

Transient/Frequency Response Relationship

Can also relate a system’s bandwidth (i.e., ‐3dB frequency, ) to the speed of its step response

Bandwidth as a function of  and 

1 2 4 4 2

Bandwidth as a function of 1% settling time and 

4.61 2 4 4 2

Bandwidth as a function of peak time and 

11 2 4 4 2

Page 57: Section 7 Frequency Response Analysisweb.engr.oregonstate.edu/~webbky/MAE4421_files... · Steady‐State Sinusoidal Response Gain –the ratio of amplitudes of the output and input

K. Webb MAE 4421

Steady‐State Error from Bode Plots57

Page 58: Section 7 Frequency Response Analysisweb.engr.oregonstate.edu/~webbky/MAE4421_files... · Steady‐State Sinusoidal Response Gain –the ratio of amplitudes of the output and input

K. Webb MAE 4421

58

Static Error Constants

For unity‐feedback systems, open‐loop transfer function gives static error constants Use static error constants to calculate steady‐state error

lim→

lim→

lim→

We can also determine static error constants from a system’s open‐loop Bode plot

Page 59: Section 7 Frequency Response Analysisweb.engr.oregonstate.edu/~webbky/MAE4421_files... · Steady‐State Sinusoidal Response Gain –the ratio of amplitudes of the output and input

K. Webb MAE 4421

59

Static Error Constant – Type 0

For a type 0 system

At low frequency, i.e. below any open‐loop poles or zeros

Read  directly from the open‐loop Bode plot  Low‐frequency gain

100 303 200

Page 60: Section 7 Frequency Response Analysisweb.engr.oregonstate.edu/~webbky/MAE4421_files... · Steady‐State Sinusoidal Response Gain –the ratio of amplitudes of the output and input

K. Webb MAE 4421

60

Static Error Constant – Type 1

For a type 1 systemlim→

At low frequencies, i.e. below any other open‐loop poles or zeros

and    

A straight line with a slope of  / Evaluating this low‐frequency asymptote at yields the velocity constant, 

On the Bode plot, extend the low‐frequency asymptote to  Gain of this line at  1 is 

Page 61: Section 7 Frequency Response Analysisweb.engr.oregonstate.edu/~webbky/MAE4421_files... · Steady‐State Sinusoidal Response Gain –the ratio of amplitudes of the output and input

K. Webb MAE 4421

61

Static Error Constant – Type 1

85 0.1 5010 125

Page 62: Section 7 Frequency Response Analysisweb.engr.oregonstate.edu/~webbky/MAE4421_files... · Steady‐State Sinusoidal Response Gain –the ratio of amplitudes of the output and input

K. Webb MAE 4421

62

Static Error Constant – Type 2

For a type 2 systemlim→

At low frequencies, i.e. below any other open‐loop poles or zeros

and    

A straight line with a slope of  / Evaluating this low‐frequency asymptote at yields the acceleration constant, 

On the Bode plot, extend the low‐frequency asymptote to  Gain of this line at  1 is 

Page 63: Section 7 Frequency Response Analysisweb.engr.oregonstate.edu/~webbky/MAE4421_files... · Steady‐State Sinusoidal Response Gain –the ratio of amplitudes of the output and input

K. Webb MAE 4421

63

Static Error Constant – Type 2

1600 0.1 5100

Page 64: Section 7 Frequency Response Analysisweb.engr.oregonstate.edu/~webbky/MAE4421_files... · Steady‐State Sinusoidal Response Gain –the ratio of amplitudes of the output and input

K. Webb MAE 4421

Nyquist Stability Criterion64

Page 65: Section 7 Frequency Response Analysisweb.engr.oregonstate.edu/~webbky/MAE4421_files... · Steady‐State Sinusoidal Response Gain –the ratio of amplitudes of the output and input

K. Webb MAE 4421

65

Stability

Consider the following system

We already have a couple of tools for assessing stability as a function of loop gain,  Routh Hurwitz Root locus

Root locus: Stable for some values of  Unstable for others

Page 66: Section 7 Frequency Response Analysisweb.engr.oregonstate.edu/~webbky/MAE4421_files... · Steady‐State Sinusoidal Response Gain –the ratio of amplitudes of the output and input

K. Webb MAE 4421

66

Stability

In this case gain is stable below some value

Other systems may be stable for gain abovesome value

Marginal stability point: Closed‐loop poles on the imaginary axis at 

For gain 

Page 67: Section 7 Frequency Response Analysisweb.engr.oregonstate.edu/~webbky/MAE4421_files... · Steady‐State Sinusoidal Response Gain –the ratio of amplitudes of the output and input

K. Webb MAE 4421

67

Open‐Loop Frequency Response & Stability

Marginal stability point occurs when closed‐loop poles are on the imaginary axis Angle criterion satisfied at 

1 and    ∠ 180°

Note that 

is the open‐loop frequency response Marginal stability occurs when:

Open‐loop gain is:   Open‐loop phase is:   

Page 68: Section 7 Frequency Response Analysisweb.engr.oregonstate.edu/~webbky/MAE4421_files... · Steady‐State Sinusoidal Response Gain –the ratio of amplitudes of the output and input

K. Webb MAE 4421

68

Stability from Bode Plots

Here, stable for smaller gain values 0 when∠ 180°

Often, stable for larger gain values 0 when∠ 180°

Root locus provides this information  Bode plot does not

Varying  simply shifts gain response up or down

Page 69: Section 7 Frequency Response Analysisweb.engr.oregonstate.edu/~webbky/MAE4421_files... · Steady‐State Sinusoidal Response Gain –the ratio of amplitudes of the output and input

K. Webb MAE 4421

69

Open‐Loop Frequency Response & Stability

A method does exist for determining stability from the open‐loop frequency response:

Nyquist stability criterion Graphical technique Uses open‐loop frequency response Determine system stability Determine gain ranges for stability

Before introducing the Nyquist criterion, we must first introduce the concept of complex functional mapping

Page 70: Section 7 Frequency Response Analysisweb.engr.oregonstate.edu/~webbky/MAE4421_files... · Steady‐State Sinusoidal Response Gain –the ratio of amplitudes of the output and input

K. Webb MAE 4421

70

Complex Functional Mapping

Consider a complex function⋯⋯

Takes one complex value,  , and yields a second complex value,  In other words, it maps to 

Page 71: Section 7 Frequency Response Analysisweb.engr.oregonstate.edu/~webbky/MAE4421_files... · Steady‐State Sinusoidal Response Gain –the ratio of amplitudes of the output and input

K. Webb MAE 4421

71

Mapping of Contours

provides a mapping of individual points in the s‐plane to corresponding points in the F‐plane

Can also map all points around a contour in the s‐plane to another contour in the F‐plane

Page 72: Section 7 Frequency Response Analysisweb.engr.oregonstate.edu/~webbky/MAE4421_files... · Steady‐State Sinusoidal Response Gain –the ratio of amplitudes of the output and input

K. Webb MAE 4421

72

Mapping of Contours

Recall how we approached the application of the angle criterion Vector approach to the evaluation of a transfer function at a particular point in the s‐plane

∏ ∏

∠ Σ∠ Σ∠

Can take the same approach to evaluating complex functions around contours in the s‐plane

Page 73: Section 7 Frequency Response Analysisweb.engr.oregonstate.edu/~webbky/MAE4421_files... · Steady‐State Sinusoidal Response Gain –the ratio of amplitudes of the output and input

K. Webb MAE 4421

73

Mapping Contours – Example 1

Map contour  by  in a clockwise direction Contour  does not enclose the zero

Here,  , so   and  ∠ ∠

As  is evaluated around  , ∠ never exceeds 0° or 180° does the same: 

Does not rotate through a full 360° Contour  does not encircle the origin

Page 74: Section 7 Frequency Response Analysisweb.engr.oregonstate.edu/~webbky/MAE4421_files... · Steady‐State Sinusoidal Response Gain –the ratio of amplitudes of the output and input

K. Webb MAE 4421

74

Mapping Contours – Example 2

Map contour  by  in a clockwise direction Contour  does not enclose the pole

Here,  1/ , so   1/ and  ∠ ∠

∠ oscillates over some range well within 0° and 180° rotates through the negative of the same range  Contour  does not encircle the origin

1

Page 75: Section 7 Frequency Response Analysisweb.engr.oregonstate.edu/~webbky/MAE4421_files... · Steady‐State Sinusoidal Response Gain –the ratio of amplitudes of the output and input

K. Webb MAE 4421

75

Mapping Contours – Example 3

Now, contour  encloses a single zero

, so   and  ∠ ∠

rotates through a full 360° in a clockwise direction does the same: 

Contour  encircles the origin in a clockwise direction

Page 76: Section 7 Frequency Response Analysisweb.engr.oregonstate.edu/~webbky/MAE4421_files... · Steady‐State Sinusoidal Response Gain –the ratio of amplitudes of the output and input

K. Webb MAE 4421

76

Mapping Contours – Example 4

Now, contour  encloses a single pole

1/ , so   1/ and  ∠ ∠

rotates through a full 360° in a clockwise direction rotates in the opposite direction Contour  encircles the origin in a CCW direction

1

Page 77: Section 7 Frequency Response Analysisweb.engr.oregonstate.edu/~webbky/MAE4421_files... · Steady‐State Sinusoidal Response Gain –the ratio of amplitudes of the output and input

K. Webb MAE 4421

77

Mapping Contours – Example 5

Now, contour  encloses two poles

,  so    and    ∠ ∠ ∠

and  each rotate through a full 360° in a clockwise direction rotates in the opposite direction Contour  encircles the origin twice in a CCW direction

1

Page 78: Section 7 Frequency Response Analysisweb.engr.oregonstate.edu/~webbky/MAE4421_files... · Steady‐State Sinusoidal Response Gain –the ratio of amplitudes of the output and input

K. Webb MAE 4421

78

Mapping Contours – Example 6

∠ and∠ rotate through 360° in a CW direction Their contributions rotate in opposite directions ∠ does not rotate through a full 360° Contour  does not encircle the origin

Now, contour  encloses one pole and one zero

,  so    and    ∠ ∠ ∠

Page 79: Section 7 Frequency Response Analysisweb.engr.oregonstate.edu/~webbky/MAE4421_files... · Steady‐State Sinusoidal Response Gain –the ratio of amplitudes of the output and input

K. Webb MAE 4421

79

Complex Functional Mapping of Contours

Some observations regarding complex mapping of contour  in a CW direction to contour  : If  does not enclose any poles or zeros,  does not encircle the origin

If  encloses a single pole,  will encircle the origin once in a CCW direction

If  encloses two poles,  will make two CCW encirclements of the origin

If  encloses a pole and a zero,  will not encircle the origin

Next, we’ll use these observations to help derive the Nyquist stability criterion

Page 80: Section 7 Frequency Response Analysisweb.engr.oregonstate.edu/~webbky/MAE4421_files... · Steady‐State Sinusoidal Response Gain –the ratio of amplitudes of the output and input

K. Webb MAE 4421

80

Nyquist Stability Criterion

Our goal is to assess closed‐loop stability Determine if there are any closed‐loop poles in the RHP

Consider a generic feedback system:

Closed‐loop transfer function

1

Closed‐loop poles are roots (zeros) of the closed‐loop characteristic polynomial:

1

Page 81: Section 7 Frequency Response Analysisweb.engr.oregonstate.edu/~webbky/MAE4421_files... · Steady‐State Sinusoidal Response Gain –the ratio of amplitudes of the output and input

K. Webb MAE 4421

81

Nyquist Stability Criterion

Can represent the individual transfer functions as

and    

The closed‐loop polynomial becomes

1 1

From this, we can see that: The poles of 1 are the poles of  , the open‐loop poles

The zeros of 1 are the poles of  , the closed‐loop poles

Page 82: Section 7 Frequency Response Analysisweb.engr.oregonstate.edu/~webbky/MAE4421_files... · Steady‐State Sinusoidal Response Gain –the ratio of amplitudes of the output and input

K. Webb MAE 4421

82

Nyquist Stability Criterion

To determine stability, look for RHP closed‐loop poles Evaluate 1 CW around a contour that encircles the entire right half‐plane Evaluate 1 along entire 

‐axis Encircle the entire RHP with an infinite‐radius arc

If 1 has one RHP pole, resulting contour will encircle the origin once CCW

If 1 has one RHP zero, resulting contour will encircle the origin once CW

Page 83: Section 7 Frequency Response Analysisweb.engr.oregonstate.edu/~webbky/MAE4421_files... · Steady‐State Sinusoidal Response Gain –the ratio of amplitudes of the output and input

K. Webb MAE 4421

83

Nyquist Stability Criterion

Total number of CW encirclements of the origin,  , by the resulting contour will be

# of RHP poles of 1 # of RHP zeros of 1

Want to detect RHP poles of  , zeros of 1 , so

# of closed‐loop RHP poles

# of open‐loop RHP poles

# of CW encirclements of the origin

Page 84: Section 7 Frequency Response Analysisweb.engr.oregonstate.edu/~webbky/MAE4421_files... · Steady‐State Sinusoidal Response Gain –the ratio of amplitudes of the output and input

K. Webb MAE 4421

84

Nyquist Stability Criterion

Basis for detecting closed‐loop RHP polesMap contour encircling the entire RHP through closed‐loop characteristic polynomial

Count number of CW encirclements of the origin by resulting contour

Calculate the number of closed‐loop RHP poles:

Need to know: Closed‐loop characteristic polynomial Number of RHP poles of closed‐loop characteristic polynomial 

Page 85: Section 7 Frequency Response Analysisweb.engr.oregonstate.edu/~webbky/MAE4421_files... · Steady‐State Sinusoidal Response Gain –the ratio of amplitudes of the output and input

K. Webb MAE 4421

85

Nyquist Stability Criterion

Open‐loop transfer function Easy to use for mapping – we know poles and zeros

Resulting contour shifts left by 1 – that’s all

Now, count encirclements of the point 

Instead, map through 

Page 86: Section 7 Frequency Response Analysisweb.engr.oregonstate.edu/~webbky/MAE4421_files... · Steady‐State Sinusoidal Response Gain –the ratio of amplitudes of the output and input

K. Webb MAE 4421

86

Nyquist Stability Criterion

Nyquist stability criterion If a contour that encloses the entire RHP is mapped through the open‐loop transfer function,  , then the number of closed‐loop RHP poles,  , is given by

where

# of CW encirclements of # of open‐loop RHP poles

Page 87: Section 7 Frequency Response Analysisweb.engr.oregonstate.edu/~webbky/MAE4421_files... · Steady‐State Sinusoidal Response Gain –the ratio of amplitudes of the output and input

K. Webb MAE 4421

87

Nyquist Stability Criterion

Want to detect net clockwise encirclements# CW encirclements ‐ # CCW encirclements

Draw a line from in any 

direction Count number of times contour crosses the line in each direction

2

Page 88: Section 7 Frequency Response Analysisweb.engr.oregonstate.edu/~webbky/MAE4421_files... · Steady‐State Sinusoidal Response Gain –the ratio of amplitudes of the output and input

K. Webb MAE 4421

88

Nyquist Diagram

The contour that results from mapping the perimeter of the entire RHP is a Nyquist diagram

Consider four segments of the contour:

①②

1) Along positive  ‐axis, we’re evaluating  )  Open‐loop frequency response

2) Here,  → Maps to zero for any physical system

3) Here, evaluating  ) Complex conjugate of segment ① Mirror ① about the real axis

4) The origin  Sometimes a special case – more later

Page 89: Section 7 Frequency Response Analysisweb.engr.oregonstate.edu/~webbky/MAE4421_files... · Steady‐State Sinusoidal Response Gain –the ratio of amplitudes of the output and input

K. Webb MAE 4421

89

Nyquist Criterion – Example 1

Apply the Nyquist criterion to determine stability for the following system

First evaluate along segment ①,  ‐axis This is the frequency response

Read values off of the Bode plot

Page 90: Section 7 Frequency Response Analysisweb.engr.oregonstate.edu/~webbky/MAE4421_files... · Steady‐State Sinusoidal Response Gain –the ratio of amplitudes of the output and input

K. Webb MAE 4421

90

Nyquist Criterion – Example 1

Segment ① is a polar plot of the frequency response

All of segment ②, arc at  , maps to the origin

Page 91: Section 7 Frequency Response Analysisweb.engr.oregonstate.edu/~webbky/MAE4421_files... · Steady‐State Sinusoidal Response Gain –the ratio of amplitudes of the output and input

K. Webb MAE 4421

91

Nyquist Criterion – Example 1

Segment ③ is the complex conjugate of segment ①Mirror about the real axis

Page 92: Section 7 Frequency Response Analysisweb.engr.oregonstate.edu/~webbky/MAE4421_files... · Steady‐State Sinusoidal Response Gain –the ratio of amplitudes of the output and input

K. Webb MAE 4421

92

Nyquist Criterion – Example 1

Count CW encirclements of  Draw a line from  1 in any direction

Here,  Closed‐loop RHP poles given by:

No open‐loop RHP poles, so 

Two RHP poles, so system is unstable

Page 93: Section 7 Frequency Response Analysisweb.engr.oregonstate.edu/~webbky/MAE4421_files... · Steady‐State Sinusoidal Response Gain –the ratio of amplitudes of the output and input

K. Webb MAE 4421

93

Nyquist Criterion – Example 2

This system is open‐loop stable Stable for low enough  Nyquist plot will not encircle 

Three poles and no zeros  Unstable for  above some value Nyquist plot will encircle 

Page 94: Section 7 Frequency Response Analysisweb.engr.oregonstate.edu/~webbky/MAE4421_files... · Steady‐State Sinusoidal Response Gain –the ratio of amplitudes of the output and input

K. Webb MAE 4421

94

Nyquist Criterion – Example 2

For  ,  , and the system is stable Modifying  simply scales the magnitude of the Nyquist plot

Page 95: Section 7 Frequency Response Analysisweb.engr.oregonstate.edu/~webbky/MAE4421_files... · Steady‐State Sinusoidal Response Gain –the ratio of amplitudes of the output and input

K. Webb MAE 4421

95

Nyquist Criterion – Example 2

Here, the Nyquist plot crosses the negative real axis at 

As gain increases real‐axis crossing moves to the left

Increasing  by 2x or more results in two encirclements of 

Unstable for  60 More later …

Page 96: Section 7 Frequency Response Analysisweb.engr.oregonstate.edu/~webbky/MAE4421_files... · Steady‐State Sinusoidal Response Gain –the ratio of amplitudes of the output and input

K. Webb MAE 4421

96

Nyquist Diagram – Poles at the Origin

We evaluate the open‐loop transfer function along a contour including the  ‐axis

is undefined at the pole Must detour around the pole

Consider the common case of a pole at the origin

This is the special case for segment ④

12

Page 97: Section 7 Frequency Response Analysisweb.engr.oregonstate.edu/~webbky/MAE4421_files... · Steady‐State Sinusoidal Response Gain –the ratio of amplitudes of the output and input

K. Webb MAE 4421

97

Nyquist Diagram – Poles at the Origin

Segment ④ contour:    for     0° 90° Evaluate  around segment ④ as 

12

Magnitude:1

212

As  → 0lim→

Maps to an arc at 

Page 98: Section 7 Frequency Response Analysisweb.engr.oregonstate.edu/~webbky/MAE4421_files... · Steady‐State Sinusoidal Response Gain –the ratio of amplitudes of the output and input

K. Webb MAE 4421

98

Nyquist Diagram – Poles at the Origin

Segment ④ traversed in a CCW direction varies from 

Phase of the resulting contour:

Negative because it is angle from a pole

Extra phase from additional pole

maps segment ④ to: An arc at  Rotating CW from 0° to  90°

Page 99: Section 7 Frequency Response Analysisweb.engr.oregonstate.edu/~webbky/MAE4421_files... · Steady‐State Sinusoidal Response Gain –the ratio of amplitudes of the output and input

K. Webb MAE 4421

99

Nyquist Criterion – Example 3

Apply the Nyquist criterion to determine stability for the following system

Use Bode plot to map segment ① Infinite DC gain Starts at  at for 

Page 100: Section 7 Frequency Response Analysisweb.engr.oregonstate.edu/~webbky/MAE4421_files... · Steady‐State Sinusoidal Response Gain –the ratio of amplitudes of the output and input

K. Webb MAE 4421

100

Nyquist Criterion – Example 3

Segment ① starts at  at  Heads to the origin at  All of segment ②, arc at  , maps to the origin

Page 101: Section 7 Frequency Response Analysisweb.engr.oregonstate.edu/~webbky/MAE4421_files... · Steady‐State Sinusoidal Response Gain –the ratio of amplitudes of the output and input

K. Webb MAE 4421

101

Nyquist Criterion – Example 3

Segment ③ is the complex conjugate of segment ①Mirror about the real axis

Page 102: Section 7 Frequency Response Analysisweb.engr.oregonstate.edu/~webbky/MAE4421_files... · Steady‐State Sinusoidal Response Gain –the ratio of amplitudes of the output and input

K. Webb MAE 4421

102

Nyquist Criterion – Example 3

Segment 4 maps to a CW arc at  CW, so it does not encircle  Can’t draw to scale

Here,  No open‐loop RHP poles, so 

No RHP poles, so system is stable

Page 103: Section 7 Frequency Response Analysisweb.engr.oregonstate.edu/~webbky/MAE4421_files... · Steady‐State Sinusoidal Response Gain –the ratio of amplitudes of the output and input

K. Webb MAE 4421

Stability Margins103

Page 104: Section 7 Frequency Response Analysisweb.engr.oregonstate.edu/~webbky/MAE4421_files... · Steady‐State Sinusoidal Response Gain –the ratio of amplitudes of the output and input

K. Webb MAE 4421

104

Stability Margins

Recall a previous example

According to the Nyquist plot, the system is stable How stable?

Two stability metrics Both are measures of how close the Nyquist plot is to encircling the point  1

Gain margin and phase margin

Page 105: Section 7 Frequency Response Analysisweb.engr.oregonstate.edu/~webbky/MAE4421_files... · Steady‐State Sinusoidal Response Gain –the ratio of amplitudes of the output and input

K. Webb MAE 4421

105

Crossover Frequencies

Two important frequencies when assessing stability:

Gain crossover frequency The frequency at which the open‐loop gain crosses 

Phase crossover frequency The frequency at which the open‐loop phase crosses 

Page 106: Section 7 Frequency Response Analysisweb.engr.oregonstate.edu/~webbky/MAE4421_files... · Steady‐State Sinusoidal Response Gain –the ratio of amplitudes of the output and input

K. Webb MAE 4421

106

Gain Margin

An open‐loop‐stable system will be closed‐loop stable as long as its gain is less than unity at the phase crossover frequency

Gain margin, GM The change in open‐loop gain at the phase crossover frequency required to make the closed‐loop system unstable

Page 107: Section 7 Frequency Response Analysisweb.engr.oregonstate.edu/~webbky/MAE4421_files... · Steady‐State Sinusoidal Response Gain –the ratio of amplitudes of the output and input

K. Webb MAE 4421

107

Phase Margin

An open‐loop‐stable system will be closed‐loop stable as long as its phase has not fallen below  at the gain crossover frequency

Phase margin, PM The change in open‐loop phase at the gain crossover frequency required to make the closed‐loop system unstable

Page 108: Section 7 Frequency Response Analysisweb.engr.oregonstate.edu/~webbky/MAE4421_files... · Steady‐State Sinusoidal Response Gain –the ratio of amplitudes of the output and input

K. Webb MAE 4421

108

Gain and Phase Margins from Bode Plots

Page 109: Section 7 Frequency Response Analysisweb.engr.oregonstate.edu/~webbky/MAE4421_files... · Steady‐State Sinusoidal Response Gain –the ratio of amplitudes of the output and input

K. Webb MAE 4421

109

Phase Margin and Damping Ratio, 

PM can be expressed as a function of damping ratio,  , as

tan

For  65° or so, we can approximate:

100 or    

Page 110: Section 7 Frequency Response Analysisweb.engr.oregonstate.edu/~webbky/MAE4421_files... · Steady‐State Sinusoidal Response Gain –the ratio of amplitudes of the output and input

K. Webb MAE 4421

Frequency Response Analysis in MATLAB110

Page 111: Section 7 Frequency Response Analysisweb.engr.oregonstate.edu/~webbky/MAE4421_files... · Steady‐State Sinusoidal Response Gain –the ratio of amplitudes of the output and input

K. Webb MAE 4421

111

bode.m

[mag,phase] = bode(sys,w)

sys: system model – state‐space, transfer function, or other w: optional frequency vector – in rad/sec  mag: system gain response vector phase: system phase response vector – in degrees

If no outputs are specified, bode response is automatically plotted – preferable to plot yourself

Frequency vector input is optional If not specified, MATLAB will generate automatically

May need to do: squeeze(mag) and squeeze(phase)to eliminate singleton dimensions of output matrices

Page 112: Section 7 Frequency Response Analysisweb.engr.oregonstate.edu/~webbky/MAE4421_files... · Steady‐State Sinusoidal Response Gain –the ratio of amplitudes of the output and input

K. Webb MAE 4421

112

nyquist.m

nyquist(sys,w) sys: system model – state‐space, transfer function, or other w: optional frequency vector – in rad/sec 

MATLAB generates a Nyquist plot automatically Can also specify outputs, if desired:

[Re,Im] = nyquist(sys,w)

Plot is not be generated in this case

Page 113: Section 7 Frequency Response Analysisweb.engr.oregonstate.edu/~webbky/MAE4421_files... · Steady‐State Sinusoidal Response Gain –the ratio of amplitudes of the output and input

K. Webb MAE 4421

113

margin.m

[GM,PM,wgm,wpm] = margin(sys)

sys: system model – state‐space, transfer function, or other GM: gain margin PM: phase margin – in degrees wgm: frequency at which GM is measured, the phase crossover frequency – in rad/sec

wpm: frequency at which PM is measured, the gain crossover frequency

If no outputs are specified, a Bode plot with GM and PM indicated is automatically generated


Recommended