+ All Categories
Home > Documents > Selection of Mass Underground Mining Methods

Selection of Mass Underground Mining Methods

Date post: 13-Sep-2015
Category:
Upload: felipe-llanos-arriagada
View: 250 times
Download: 10 times
Share this document with a friend
Description:
Selection of Mass Underground Mining Methods
Popular Tags:
16
SELECTION OF MASS UNDERGROUND MINING METHODS Chapter 3 Dennis H. Laubscher Mining Geology Director, Shabanie and Mashaba Mines (Private) Limited, Bulawayo, Zimbabwe INTRODUCTION The selection of mass mining methods i s the situation facing not only planners of new operations, but also those involved with cur- rent operations, including the eventual change from open-pit t o underground. Increasing ground control problems on many mines, plus a better understanding of dilution and ore loss problems have meant a review of current mining methods and support technioues. Experiments are only successful if conducted i n the right mining environment and on the right scale. Mining personnel have been known for their con- servatism and will tend to persevere with an established method rather than change; often, hidden costs will obscure the correct economic assessment. An established mining sequence i s not necessarily correct i n the long term. However, recommendations t o change are usually met with opposition because of inconvenience, temporary production problems and the desire for a trouble-free guarantee. In any planning exercise, care must be taken that time and money are not wasted i n trying to achieve the unattainable. During the decision-making period, production personnel must bs involved, and, if possible, they should visit similar omrations to that proposed. Co-operative production personnel will help ensure success. Descriptions of mining methods are available i n technical papers and books, and it i s not intended to discuss this aspect, but, rather, the various factors which must be recognised before arriving at a final selection. In another paper presented at this Conference (~eslop and Laubscher, 1981) factors affecting ore recovery and dilution are discussed i n greater detail for various cave mining methods. Detailed references are made to two major chrysotile asbestos mines i n Zimbabwe, namely Shabanie Nine a t Shabani and King Mine at Mashaba. These deposits are located i n com- plex geological environments with a wide range of ground conditions (~aubscher, 1960). The orinciples outlined i n this paper can be applied to any massive deposit. PRELIMINARY CONSIDERATIONS Comprehensive Geoloqical Data. Geological information is available durinq the ex~lor- ation stage, but, often, core from exploration drilling i s not analysed with the selection of a mining method i n mind. Drilling costs are high, therefore the maximum benefits must be derived from this operation. Holes which have not intersected ore may provide data on possible shaft sites, and 35 mm colour slides of core, sound logging and geomechanics classification, will provide a record which can be used with confidence at a later date. Intersections of the various rock types should be kept for future study; f o r example, i s weathering likely to be a problem, bearing i n mind that this can be accelerated i n the warm, humid atmosphere o f an underground mine. The accumulation of data required to select a mining method starts with initial geological work i n the target area, whether this be sur- face mapping or a diamond d r i l l hole. Publications. As technical papers, reports and books are used in the selection of mining methods, an appeal i s made to authors to des- cribe the geological environment so that read- ers can relate to their own conditions. Not enough emphasis i s given t o the problems experienced and the techniaues employed to overcome them. Follow-up papers are seldom written and we should be prepared to discuss our failures. Diagrams are often misleading, as the ideal and not actual situations are depicted. The caved ore/waste interface i s not a straipht line, and whereas this may not be significant i n a diagram of a 200-117 draw height, it certainly i s i n sub-level caving with draw zones only 1 - 2 m width but up to 20 m high. SUMMARY OF FACTORS AFFECTING THE SELECTION OF UNDERGROUND MASS MINING METHODS (a) Regional rock stresses and mininq geometry. (b) The geomechanics rock mass classification of the orebody and surrounding rock mass. (c) Ratio of the surface area of the ore/unpay interface to the contained ore which determines ore losses and dilution. (d) The cavability and fragmentation data of the ore and hangingwall. (e) The mineral distribution in the orebody and i t s dilution zone. 23
Transcript
  • SELECTION OF MASS UNDERGROUND MINING METHODS Chapter 3 Dennis H. Laubscher

    M i n i n g Geology D i r e c t o r , Shabanie and Mashaba Mines ( P r i v a t e ) L im i ted ,

    Bulawayo, Zimbabwe

    INTRODUCTION

    The s e l e c t i o n o f mass m in ing methods i s t h e s i t u a t i o n f a c i n g n o t o n l y p l a n n e r s o f new opera t ions , bu t a l s o those i n v o l v e d w i t h cur- r e n t opera t ions , i n c l u d i n g t h e e v e n t u a l change from open-pi t t o underground. I n c r e a s i n g ground c o n t r o l problems on many mines, p l u s a b e t t e r unders tand ing o f d i l u t i o n and o r e l o s s problems have meant a rev iew o f c u r r e n t m i n i n g methods and suppor t techn ioues. Exper iments a r e o n l y success fu l i f conducted i n t h e r i g h t min ing environment and on t h e r i g h t sca le . M in ing personne l have been known f o r t h e i r con- serva t ism and w i l l tend t o persevere w i t h an es tab l i shed method r a t h e r t h a n change; o f t e n , h idden c o s t s w i l l obscure t h e c o r r e c t economic assessment. An e s t a b l i s h e d m i n i n g sequence i s n o t n e c e s s a r i l y c o r r e c t i n t h e l o n g term. However, recommendations t o change a re u s u a l l y met w i t h o p p o s i t i o n because o f inconven ience, temporary p r o d u c t i o n problems and t h e d e s i r e f o r a t r o u b l e - f r e e guarantee. I n any p l a n n i n g exerc ise , care must be taken t h a t t i m e and money a re n o t wasted i n t r y i n g t o ach ieve t h e una t ta inab le . D u r i n g t h e dec is ion-mak ing per iod , p r o d u c t i o n pe rsonne l must bs i n v o l v e d , and, i f poss ib le , t hey shou ld v i s i t s i m i l a r o m r a t i o n s t o t h a t proposed. Co-operat ive p r o d u c t i o n pe rsonne l w i l l h e l p ensure success.

    D e s c r i p t i o n s o f m i n i n g methods a r e a v a i l a b l e i n t e c h n i c a l papers and books, and i t i s n o t i n tended t o d i s c u s s t h i s aspect , bu t , r a t h e r , t h e v a r i o u s f a c t o r s wh ich must be recogn ised b e f o r e a r r i v i n g a t a f i n a l s e l e c t i o n . I n another paper p resen ted a t t h i s Conference ( ~ e s l o p and Laubscher, 1981) f a c t o r s a f f e c t i n g o r e recovery and d i l u t i o n a r e d i scussed i n g r e a t e r d e t a i l f o r v a r i o u s cave m i n i n g methods.

    D e t a i l e d r e f e r e n c e s a r e made t o two ma jo r c h r y s o t i l e asbestos mines i n Zimbabwe, namely Shabanie N ine a t Shabani and K i n g Mine a t Mashaba. These d e p o s i t s a r e l o c a t e d i n com- p l e x g e o l o g i c a l env i ronments w i t h a wide range o f ground c o n d i t i o n s ( ~ a u b s c h e r , 1960). The o r i n c i p l e s o u t l i n e d i n t h i s paper can be a p p l i e d t o any massive d e p o s i t .

    PRELIMINARY CONSIDERATIONS

    Comprehensive G e o l o q i c a l Data. G e o l o g i c a l i n f o r m a t i o n i s a v a i l a b l e d u r i n q t h e e x ~ l o r -

    a t i o n stage, bu t , o f t e n , co re f rom e x p l o r a t i o n d r i l l i n g i s n o t ana lysed w i t h t h e s e l e c t i o n o f a m in ing method i n mind. D r i l l i n g c o s t s a r e h igh , t h e r e f o r e t h e maximum b e n e f i t s must be d e r i v e d f rom t h i s ope ra t i on . Ho les wh ich have n o t i n t e r s e c t e d o r e may p r o v i d e d a t a on p o s s i b l e s h a f t s i t e s , and 35 mm c o l o u r s l i d e s o f core, sound l o g g i n g and geomechanics c l a s s i f i c a t i o n , w i l l p r o v i d e a r e c o r d wh ich can be used w i t h conf idence a t a l a t e r da te . I n t e r s e c t i o n s o f t h e v a r i o u s r o c k t y p e s shou ld be k e p t f o r f u t u r e study; f o r example, i s weather ing l i k e l y t o be a problem, b e a r i n g i n mind t h a t t h i s can be a c c e l e r a t e d i n t h e warm, humid atmosphere o f an underground mine.

    The accumula t ion o f d a t a r e q u i r e d t o s e l e c t a m i n i n g method s t a r t s w i t h i n i t i a l g e o l o g i c a l work i n t h e t a r g e t area, whether t h i s be sur- f ace mapping o r a diamond d r i l l ho le .

    P u b l i c a t i o n s . As t e c h n i c a l papers, r e p o r t s and books a r e used i n t h e s e l e c t i o n o f m i n i n g methods, an appea l i s made t o a u t h o r s t o des- c r i b e t h e g e o l o g i c a l environment so t h a t read- e r s can r e l a t e t o t h e i r own c o n d i t i o n s . Not enough emphasis i s g i v e n t o t h e problems exper ienced and t h e techn iaues employed t o overcome them. Fol low-up papers a r e seldom w r i t t e n and we shou ld be prepared t o d i s c u s s our f a i l u r e s . Diagrams a r e o f t e n m is lead ing , as t h e i d e a l and n o t a c t u a l s i t u a t i o n s a r e dep i c ted . The caved ore/waste i n t e r f a c e i s n o t a s t r a i p h t l i n e , and whereas t h i s may n o t be s i g n i f i c a n t i n a d iagram o f a 200-117 draw h e i g h t , i t c e r t a i n l y i s i n sub - l eve l c a v i n g w i t h draw zones o n l y 1 - 2 m w i d t h b u t up t o 20 m h igh .

    SUMMARY OF FACTORS AFFECTING THE SELECTION OF UNDERGROUND MASS MINING METHODS

    (a ) Reg iona l r o c k s t r e s s e s and m i n i n q geometry. (b ) The geomechanics r o c k mass c l a s s i f i c a t i o n

    o f t h e orebody and su r round ing r o c k mass.

    ( c ) R a t i o o f t h e s u r f a c e a rea o f t h e ore/unpay i n t e r f a c e t o t h e con ta ined o r e wh ich determines o r e l o s s e s and d i l u t i o n .

    (d ) The c a v a b i l i t y and f ragmen ta t i on d a t a o f t h e o r e and hang ingwa l l .

    ( e ) The m i n e r a l d i s t r i b u t i o n i n t h e orebody and i t s d i l u t i o n zone.

    23

  • MASS UNDERGROUND MINING METHODS ( f ) Location, s t reng th o f e x t r a c t i o n hor izons

    and layou t geometry.

    (9) The mining sequence as determined by the e f f e c t o f a product ion b lock on surround- i n g orebodies and i n s t a l l a t i o n s .

    (h) The need o r no t t o mainta in r e g i o n a l s t a b i l i t y .

    (i) Model studies. ( j) Role o f rock mechanics. (k) Adherence t o a l o g i c a l p lanning schedule. (1) The degree o f soph i s t i ca t i on poss ib le i n

    t h a t s o c i a l environment, based on ava i la - b i l i t y o f s p e c i a l i s t s k i l l s o r a predom- inance o f u n s k i l l e d labour.

    REGIONfiL ROCK STRESSES AND NINING GEOMETRY

    This i e a f a c t o r o f t e n ignored i n mine plan- ning, poss ib ly because o f a l a ck o f app rec i a t im o f i t s s i gn i f i cance and a lso the cost, which i s minor i f compared w i t h t he cos t o f t he p ro jec t .

    Streee measurements are sometimes regarded as an academic exerc ise by p r a c t i c a l min ing men because the b e n e f i t s have no t been expla ined o r h igh l ighted. Perhape the blame l i e s on both sides.

    L i ke a l l techniques, once the l i m i t a t i o n 8 are known, s i g n i f i c a n t b e n e f i t s can be derived. The magnitude and r a t i o o f s t resses and t h e i r v a r i a t i o n w i t h depth a re a l l t h a t i s r equ i r ed t o be known. L i t h o l o g i c a l changes and s t ruc - tu res w i l l a f f e c t the magnitude and d i r e c t i o n o f readings. W i t h i n a geo log i ca l compart- ment, v a r i a t i o n s can be expected, f o r , i f compressional o r t ens i ona l cond i t i ons were the r e s u l t o f the t e c t o n i c cycle, t he r e s u l t a n t imp r i n t s can be measured (Fig. 1). There are c e r t a i n s i t u a t i o n s where t h e r e g i o n a l s t resses w i l l be i n s i g n i f i c a n t i n r e l a t i o n t o o t he r factors.

    I n s t a r t i n g a new mine, s i t e s may n o t be ava i lab le t o measure t h e r e g i o n a l stresses. I n t h i s s i t ua t i on , i n f o rma t i on a v a i l a b l e i n t he d i s t r i c t and an i n t e r p r e t a t i o n o f t h e t e c t o n i c cyc les ehould enable one t o assess whether t h e h o r i z o n t a l o r v e r t i c a l s t r ess i s dominant. Stress measurements have been done i n many qa r t s o f t he wor ld and i t w i l l be noted tha t , i n s h i e l d areas and f o l ded be l t s , h o r i z o n t a l stresses are dominant. Thus, where t he geology shows h i gh l a t e r a l stresses, t h e odds are t h a t h o r i z o n t a l s t resses are dominant. I n Zimbabwe, s t r ess measurements conducted a t lihabanie Nine (asbestos), Ga thG Nine (asbestos) and Dalny Mine (go ld ) have shown s i m i l a r r e s u l t s ( ~ i g . 2).

    M)RIZONTAL STRESS (HI S SHABANIE MlNE G GATHS MlNE D DALNY MlNE

    -AFFECTED BY STOANG

    FIGURE 2 STRESS DEPTH RELATIONSHIPS

    The e f f e c t o f h i gh h o r i z o n t a l s t resses on mine design are i l l u s t r a t e d by t he f o l l o w i n g two examples a t Shabanie.

    Block 16. Th is orebody, o f f i v e m i l l i o n tonnes, w i t h dimensions o f 350 m x 110 m, was planned as a sub-level caving operat ion. Based on experience on t h e upper l e ve l s , i t was considered t h a t an area o f 80 m x 60 n would have t o be mined by h o r i z o n t a l c u t s i n order t o i n i t i a t e t he caving o f the competent ( c l a s s 2 ) , p a r t i a l l y se rpen t in i sed dun i te hangingwal l . Caving f i n a l l y took p lace when an ad jacent b lock caved, by which t ime the area mined was 140 m x 110 m. The h igh h o r i z o n t a l s t resses r esu l t ed i n increased f r ic t ion/compress ion on t he v e r t i c a l j o i n t s and a s t a b i l i s a t i o n o f t h e back i n an arch shape. The removal o f t he east-west h o r i z o n t a l s t r ess component by t h e caving o f t h e b lock t o t h e west r a s u l t e d i n t h ~ o r o ~ a g a t i o n o f t he cave. S im i l a r s t a b l e s i t - ua t ions occurred i n b lock caving opera t ions a t Lrad endri rick, 1970) and R i o Blanco (ca rpen te r and Woolfe, 1972) both environments e f h i g h h o r i z o n t a l s t ress.

    Block 52. The dec i s i on t o mine t h i s b lock

  • DESIGN AND OPERATION OF CAVING AND SUBLEVEL STOPING MINES i l t h open stones and pos t f ' i l l i n q , was aased gn [ i o t o r ~ t i a l Door orebody f ragmenta t ion , a com- n e t e n t hancjinowall, h i q h h o r i z o n t a l s t r e s s e s an? exper ience elsewhere where v o i d s o f 80 m x 150 m were s t i l l i n e x i s t e n c e a f t e r 25 years. The o n l y d i f f e r e n c e i n t h e m i n i n g method was t h a t , whereas, p r e v i o u s l y , m i n i n g had been by h o r i z o n t a l s l i c e s , i n t h i s case a no r th -sou th v e r t i c a l s l o t , 60 m l o n g x 10 m wide x 48 m - 60 m h i g h was c u t w i t h a p lanned r e t r e a t eas t and west. When planned, t h e s t r e s s magnitude o f 17 MPa i n t h e s t r i k e d i r e c t i o n had been e x t r a p o l a t e d f rom da ta on t h e upper l e v e l s , and i t was assumed t h a t a s u i t a b l e s t r e s s environment e x i s t e d . Subsequent s t r e s s meas- urements done i n t h e v i c i n i t y showed t h e v a l u e t o be 25 NPa, an i n c r e a s e o f 47%. The s t r e s s c o n c e n t r a t i n g f a c t o r s i n t h e back o f t h e v e r t i c a l s l o t meant va lues o f 60 MPa t o 80 NPa, r e s u l t i n g i n f a i l u r e o f t h e rock mass, p a r t i c u - l a r l y where a dominant s t r u c t u r e i n t e r s e c t e d t h e back. Wi th t h e loosened r o c k s f a l l i n g o u t under g r a v i t y , t h e f a i l u r e zone propagated up- wards, i n c r e a s i n g t h e h e i g h t o f t h e s l o t and t h e adverse aspect r a t i o . I t was o n l y when t h e upper l e v e l was r a p i d l y r e t r e a t e d westwards and eastwards t h a t t h e geometry was changed and some degree o f s t a b i l i t y occur red. However, e x t e n s i v e d i l u t i o n had occu r red and p r o d u c t i o n problems were exper ienced. The o r i e n t a t i o n o f t h e s l o t w i t h r e s p e c t t o a h i g h h o r i z o n t a l s t r e s s , t h e presence o f a s teep-d ipp ing s t r u c - t u r e n o t l o c a t e d by t h e v e r t i c a l hang ingwa l l bo reho les and r a p i d wea the r i ng o f t h e hanging- w a l l dun i t e , were t h e c o n t r i b u t o r y f a c t o r s .

    GEONECHANICS ROCK MASS CLASSIFICATION

    I t i s s u r p r i s i n g t h a t r o c k mass c l a s s i f i - c a t i o n s have n o t been u n i v e r s a l l y accepted by t h e g e o l o g i c a l p r o f e s s i o n o r by m i n i n g com- pan ies . I n f a c t , i t was c i v i l eng ineers who saw t h e need f o r a means o f communication w i t h c o n t r a c t o r s who s t i m u l a t e d t h e development o f c l a s s i f i c a t i o n systems. The need f o r a means o f communication and an unders tandab le des- c r i p t i o n o f rock mass p r o p e r t i e s is presen t i n t h e m in ing i n d u s t r y . Vague d e s c r i p t i v e terms, such as "good", " f a i r " and "poor" serve no purpose because f a i r ground on a mine w i t h ground problems would be poor ground on a mine where rock b o l t s a r e a r a r i t y . We f i n d so o f t e n t h a t sound g e o l o g i c a l work i s n o t recog- n i s e d by m in ing pe rsonne l because t h e in form- a t i o n cannot be passed on w i t h o u t t hose pe rsonne l hav ing d e t a i l e d g e o l o g i c a l knowledge. What we r e q u i r e i s t h a t t h e m i n i n g g e o l o g i s t assembles a l l h i s f a c t s and p resen ts them i n a form accep tab le t o a l l concerned w i t h t h e m i n i n g ope ra t i on .

    A r ock mass c l a s s i f i c a t i o n system must r e c o g n i s e a l l t h e g e o l o g i c a l f a c t o r s wh ich a f f e c t t h e i n - s i t u s t r e n g t h o f t h e r o c k mass. A c l a s s i f i c a t i o n techn ique must be s t r a i g h t - f o rward so t h a t i t forms p a r t o f normal mine o e o l o q i c e l i n v e s t i g a t i o n s . H i g h l y sophis-

    t i c a t e d techn iques a r e time-consuming and most mines cannot a f f o r d t h e l a r g e s t a f f r e q u i r e d t o p r o v i d e complex d a t a o f d o u b t f u l p r a c t i c a l b e n e f i t . The approach adopted i s t h a t t he r o c k mass i s assigned an i n - s i t u va lue regard- l e s s o f i t s p o s i t i o n i n space. To decide how t h e rock mass w i l l behave du r i ng mining, t h e r a t i n g s a r e a d j u s t e d f o r weathering, f i e l d and induced s t resses, changes i n s t r e s s caused by mining, t h e o r i e n t a t i o n and t y p e o f excavat ion and t h e e f f e c t o f b l a s t i n g (~aubsche r , 1977).

    The accuracy o f t h e geomechanics c l a s s i f i - c a t i o n depends on t h e sampl ing o f t h e area b e i n g i n v e s t i g a t e d . A s imple statement, b u t so o f t e n i g n o r e d when expend i tu re on geo- t e c h n i c a l i n v e s t i g a t i o n s i s kep t t o a minimum. C l a s s i f i c a t i o n d a t a must be prov ided a t an e a r l y s tage t o ensure c o r r e c t dec i s i ons on m i n i n g methods, l a y o u t and suppor t requirements. D u r i n g e x p l o r a t i o n , development i s l i m i t e d and bo reho les a r e t h e main source o f i n fo rma t i on . Boreho les d r i l l e d f o r v a l u a t i o n purposes may n o t p r o v i d e s u f f i c i e n t coverage f o r s t r u c t u r a l i n t e r p r e t a t i o n and r o c k mass c l a s s i f i c a t i o n . D e t a i l e d g e o l o g i c a l knowledge o f t h e area, bo th on s u r f a c e and underground, d e f i n e s t h e s t ruc- t u r a l u n i t s , which, combined w i t h p r o p e r l y s i t e d boreholes, p r o v i d e s t h e da ta f o r mine p lann ing .

    I n t h e geomechanics c l a s s i f i c a t i o n developed by Laubscher (1977), a v a l u e r a t i n g o f 0 - 100 i s used t o cover a l l v a r i a t i o n s i n j o i n t e d rock masses f rom ve ry good t o ve ry poor. The c l a s s i f i c a t i o n i s d i v i d e d i n t o f i v e classes, w i t h v a l u e r a t i n g s o f 20 per c lass , and each c l a s s i s sub-div ided i n t o an A and B sub-class w i t h a 10-po in t r a t i n g ( ~ i g . 3).

    The accuracy o f a c l a s s i f i c a t i o n system must be v iewed w i t h r e s p e c t t o t he prec iseness o f m i n i n g methods and suppo r t systems. The i n - s i t u r a t i n g s measured by competent personnel show v e r y l i t t l e v a r i a t i o n . C r i t i c i s m i s sometimes l e v e l l e d a t t h e accuracy o f t h e ad jus tments . The i m p o r t a n t p o i n t w i t h t h e ad jus tments i s t h a t i t makes personne l t h i n k i n t e rms o f what t h e excava t i on o r min ing oper- a t i o n w i l l do t o t h a t r o c k mass. Adjustments a r e summarised i n Tab le I, which a l s o i l l u s - t r a t e s an example where these adjustments are a p p l i e d t o an i n - s i t u r a t i n g o f 60 by two p l a n n i n g o f f i c i a l s , A and B.

    Both A and B recogn ised t h a t t h e rock mass, which, i n i n i t i a l exposures, would be c lassed as good ground, would d e t e r i o r a t e w i t h mining, and, t h e r e f o r e , suppo r t should be i n s t a l l e d a t an e a r l y date. A would recommend pa t te rned g rou ted b o l t s a t 1 m spac ing w i t h 50 mm mesh r e i n f o r c e d sho tc re te , whereas t h e more con- s e r v a t i v e 0 would recommend 0,75 m b o l t spac ing and 75 mm sho tc re te . The d i f f e r e n c e i n c o s t would n o t be s i g n i f i c a n t , b u t what i s i m p o r t a n t i s t h a t t h e recommended support would do i t s work i n . t h e c o r r e c t environment and n o t be i n s t a l l e d i n t o a f a i l e d rock mass

  • MASS UNDERGROUND MINING METHODS

    B. BASIS OF THE CLASSIFICATION

    D. ASSESSMENT OF JOINT CONDITIONS C. RATINGS FOR

    MULTI JOINT SYSTEMS

    MAXIMUM SPACING EXAMPLES W C I N G S A:a;ZmB~Q45mC;0,5m D:lO E & 7 U T M G S A.19 ABr13 ABC-5 A B D d ME-13

    t GNORE TMS MCTOR FOR STRAICHT,KLISHED OR STRAIGHT SMOOTH J O R m

    FIGURE 3 THE GEOME CHANICS CLASSIFICATON OF JOINTED ROCK MASSES

    A. MEANING OF THE RATINGS

    CLASS

    RATING(x~-L OF Bl

    DESC RIPTION

    1

    A B

    Y)O - 81

    VERY GOOD

    5

    A B

    20 - 0

    VERY POOR

    2 4

    A B A B

    8 0 - 61

    GOOD

    60 - 41

    FA1 R

    40 - 21

    POOR

  • 0 H)

    (Lo

    50

    100 m

    1

    I I

    I I

    J SCALE

    ESMC

    LASS

    I A,B

    PZ

    l CLA

    SS 2

    AB

    )+CLA

    SS

    3 A,

    B a

    cL

    A~

    s

    4 AP

    CL

    ASS

    5 A,

    B I i

  • MASS UNDERGROUND MINING METHODS and thereby be cons ide rab l y l e s s e f f e c t i v e . be capable o f suppo r t i ng wedges o f 1 000 tonnes

    o r more.

    TABLE I

    Weathering F i e l d and Induced

    St resses

    Changes i n S t r e s s S t r i k e and O ip B l a s t i n g Average

    Examples o f i n - s i t u r a t i n g s f o r d i f f e r e n t o rebod ies a r e shown i n F ig . 4. I n t h e Shabanie orebody, t h e b u l k o f t h e r o c k mass ranges from c l a s s 3A t o c l a s s 28, i .e . r a t i n g s between 5 1 and 70 - range 19. I n t h e K i n g orebody, t h e r o c k mass ranges f rom minor c l a s s 5 t o 3A, i .e. r a t i n g s between 10 and 60 - a range o f 50. Both d e p o s i t s were p lanned f o r b lock cav ing w i t h a c o n v e n t i o n a l h o r i z o n t a l g r i z z l y l a y o u t . There i s a s i g n i f i c a n t d i f f e r e n c e i n t h e magni tude and range o f t h e r a t i n g s between t h e two d e p o s i t s and t h i s would i n d i c a t e a pronounced d i f f e r e n c e i n behav iour d u r i n g t h e min ing . A t Shabanie Nine, cav ing took p l a c e o n l y a f t e r a l a r g e a rea had been undercut , f r agmen ta t i on was poor and no suppo r t problems were exper ienced on t h e e x t r a c t i o n l e v e l . A t K i n g Nine, t h e orebody caved r e a d i l y and t h e inhomogenui ty (10 - 60 r a t i n g s ) meant good f ragmen ta t i on i n c l a s s e s 5 and 4 m a t e r i a l b u t poor f r a g m e n t a t i o n i n t h e c l a s s 3. Severe suppor t problems were exper ienced on t h e e x t r a c t i o n h o r i z o n because o f t h e c l a s s e s 5 and 48 zones and l a r g e wedge f a i l u r e s . As t h e p r e d i c t i o n s based on t h e r o c k mass c l a s s i f i - c a t i o n s were proved i n p r a c t i c e , subsequent m in ing o p e r a t i o n s were changed, based on c l a s s i f i c a t i o n data.

    J o i n t spac ing and j o i n t c o n d i t i o n a r e s ig - n i f i c a n t f a c t o r s i n d e s i g n i n g open s topes o r c u t - a n d - f i l l stopes. The o r i e n t a t i o n and spac ing o f t h e j o i n t s w i l l de te rm ine t h e s i z e o f t h e p o t e n t i a l l y u n s t a b l e wedge which r e q u i r e s suppo r t i n t h e back o f t h e s tope o r whose f a i l u r e may a l t e r t h e shape o f t h e p i l l a r s . Whether t h e wedge w i l l d i s s o c i a t e f rom i t s h o s t r o c k mass w i l l be i n f l u e n c e d by t h e c o n d i t i o n o f t h e j o i n t s . Ground w i t h w i d e l y spaced j o i n t s w i l l have a h i g h i n - s i t u c l a s s i f i c a t i o n r a t i n g , b u t i f t h e j o i n t o r i e n t - a t i o n i s un favou rab le i n t h e back o f a s tope and t h e c o n d i t i o n r a t i n g s a r e low, t h e n t h e suppor t o f t hese l a r g e , p o t e n t i a l l y u n s t a b l e wedges becomes c o s t l y , as t h e c a b l e b o l t s must

    Adjusted Rat ings: - 60 x 0,63 = 38 (4A)

    B - 60 x 0,50 = 30 (48) j A

    T o t a l P o s s i b l e Adjustment

    75% 120 - 76%

    120 - 60%

    70%

    80%

    Assessed, b u t n o t measured, c l a s s i f i c a t i o n r a t i n g s made by t h e au tho r o f exposures seen on t h e u s u a l b r i e f v i s i t s t o m in ing operati-ons, wh ich shou ld be regarded as " b a l l pa rk " f i g u r e 9 a r e g i v e n below.

    A

    95 / 90 95 j 90

    i 80 i 75 90 85

    I N i n e 1 Orebody ! I

    ' 60-80 , K i d d Creek I

    / Na t tagami j 60-80; minor BO- q90 and 40-60

    J e f f r e y 10-10

    Cass iar* 10-30

    I I FOX 70-90 I I CreightOn 70-90 I Cl imax 30-60

    97 - -

    63%

    RATIO OF SURFACE AREA OF THE ORE/UNPAY INTERFACE TO THE CONTAINED ORE,WHICH DETERMINES ORE LOSSES AND DILUTION

    97

    50%

    / Lakeshore , 1 20-60 i i I San Nanue l , 15-10 i 1 mount I s a .

    I t i s a t t h e c o n t a c t between o r e and waste t h a t o r e l o s s e s and d i l u t i o n occur. The r a t i o o f t h e con ta ined o re t o t h e ore/waste i n t e r f a c e i s r e l a t e d t o v a r i a t i o n s i n shape and s i z e o f o rebod ies and w i l l g i v e an i n d i c a t i o n o f t h e magni tude o f o r e l o s s and d i l u t i o n . If we cons ide r t h e shapes A and B ( ~ i g . 5 ) , t h e n t h e r a t i o o f con ta ined o r e (s.G. = 2,8) t o a square met re o f s u r f a c e a rea i s A = 65 t / m 2 and 8 = 140 t / m z . T h i s does n o t mean t h a t , i n t h e case o f A, d i l u t i o n and o r e l o s s w i l l be 2,15 t i m e s t h a t o f 8, b u t t h a t , i f caved, A w i l l n o t be as v i a b l e as 8. I f t h e draw h e i g h t i s reduced t o 50 m i n A and 100 m i n 8, t h e n t h e r a t i o s a r e A = 34,5 t /mz and 0 = 93,3 t / m 2 and a f a c t o r o f 2,7. I n t h i s case, i n - s i t u o r e losses, which a re r e l a t e d t o l a y o u t and shape r e g a r d l e s s o f draw h e i g h t , wou ld be

    P e r i p h e r a l

    70-90; 1

    i 70-90 1 S t r a t h c o n a 50-70 / B e l l Nine* ' 10-60 * Measured ,

    g r e a t e r and d i l u t i o n would be h i g h e r because of t h e tendency t o overdraw l i m i t e d draw h e i g h t s . I n f a c t , i n t h e second case o f A, a method

    m ino r 50-60

    F.W. 6-15 H.W. 30-50

    I F.W. 70-90 H.W. 40-90

    F.W. 80-90

    I

    I 10-70

    o t h e r t h a n c a v i n g may be economica l l y more sound.

    4

    I f t h e o n l y m i n i n g method s e l e c t i o n tech- n i q u e used was t o employ. t h e same method a s your ne ighbour because bo th d e p o s i t s were

  • CAVE

    D GR

    OUND

    MA

    SS

    MOV

    EMEN

    T ON

    /'

    HORI

    ZONT

    rU,

    STRE

    SS

    REM

    OVED

    c

    SHEA

    R A

    S TO

    E RE

    DUCE

    D

    ORE

    MIG

    RATI

    ON

    GOOD

    FR

    AGME

    NTAT

    ION

    UNDE

    RCUT

    AD

    VANC

    E (R

    U)

    RELA

    TED

    TO

    RATE

    OF

    A

    ND

    PO

    INT

    LOAD

    S.

    CAVI

    NG I

    RC)

    AND

    DR

    IFT

    INCR

    EASE

    D VE

    RTIC

    AL

    FAIL

    UR

    E (O

    F)

    RC

    (RU)

    DF

  • MASS UNDERGROUND MINING METHODS

    l a r g e and c o n t a i n e d t h e same m i n e r a l , t h e n t h e above t e c h n i q u e would, a t l e a s t , i n d i c a t e whether s i m i l a r r e s u l t s c o u l d b e e x p e c t e d i f . e l l o t h e r f a c t o r s were common.

    Area = 40 000 m2 P e r i m e t e r = 1 720 m Ore = 112 000 t / m s t r i k e . . . Ore

    - 1 1 2 000 = 6 5 t/",2 mZ s u r f a c e a r e a - 1 720

    Area = 40 000 m2 P e r i m e t e r = 800 m Ore = 112 000 t / m s t r i k e . . Ore

    -

    m2 s u r f a c e a r e a = 140 t / m

    - 800

    FIGURE 5

    CAVABILITY AND FRAGMENTATION DATA OF OREBODY AND H A N G I N G W A L L

    Block c a v i n g o r p a n e l r e t r e a t c a v i n g is t h e l o w e s t - c o s t underground min ing method, p r o v i d e d t h a t d r a w p o i n t s i z e and h a n d l i n g f a c i l i t i e s a r e t a i l o r e d t o s u i t t h e caved m a t e r i a l , and t h e e x t r a c t i o n h o r i z o n c a n b e e c o n o m i c a l l y main- t a i n e d f o r t h e l i f e o f draw. I n t h e c a s e o f i s o l a t e d o r e b o d i e s , n o t o n l y must t h e u n d e r c u t a r e a b e s u c h t h a t a n orebody c a v e i s i n i t i a t e d , b u t a l s o t h a t t h e h a n g i n g w a l l c a v e s a t t h e r e w i r e d r a t e . I n s u b - l e v e l c a v i n g o p e r a t i o n s , t h e c a v e must f o l l o w t h e r e t r e a t o r t h e hangirq- w a l l h a s t o be u n d e r c u t s o t h a t t h e p r o d u c t i o n a r e a i s o v e r l a i n by caved ground .

    Two f o r m s o f c a v i n g a r e r e c o g n i s e d : S t r e s s c a v i n g o c c u r s when s l o u g h i n g from t h e back t a k e s p l a c e and t h e c a v e p r o g r e s s e s upwards. I n t h i s c a s e , t h e s i z e o f t h e a r e a u n d e r c u t r e q u i r e d t o i n i t i a t e t h e c a v e i s d e p e n d e n t on t h e r a t i o o f s t r e s s , t h e r o c k mass s t r e n g t h and t h e o r i e n t a t i o n o f j o i n t s . S u b s i d e n c e c a v i n g o c c u r s ( a ) when p r e v i o u s min ing h a s removed l a t e r a l r e s t r a i n t and t h e r e is a r a p i d f a l l o f b l o c k s w i t h l i m i t e d b u l k i n g , o r ( b ) when t h e r a t e o f u n d e r c u t t i n g e x c e e d s t h e r a t e o f f a i l - u r e o f t h e back u n t i l t h i s f a i l s e n masse w i t h t h e p o s s i b i l i t y o f an a i r b l a s t . The r a t e o f u n d e r c u t t i n g s h o u l d be such t h a t i t i s s l o w e r t h a n t h e f a i l u r e o f t h e back, b u t f a s t e r t h a n t h e f a i l u r e o f t h e e x t r a c t i o n h o r i z o n c a u s e d by h i g h a b u t m e n t s t r e s s e s . The s t r e s s c h a n g e s t h a t a n e x t r a c t i o n h o r i z o n i s s u b j e c t e d t o i n a c a v i n g o p e r a t i o n a r e i l l u s t r a t e d i n F i g . 6.

    The r o c k mass s u r r o u n d i n g t h e e x t r a c t i o n o p e n i n g s i s s u b j e c t e d t o f o u r s t r e s s c y c l e s i n a l l c a v i n g s i t u a t i o n s and a f i f t h c y c l e i f t h e r e t r e a t i s t o w a r d s an u n f a v o u r a b l e m a j o r g e o l - o g i c a l s t r u c t u r e . The s t a g e s a r e -

    ( 1 ) a d j u s t m e n t o f t h e r o c k mass t o t h e o p e n i n g s ;

    ( 2 ) a b u t m e n t s t r e s s e s ahead o f t h e u n d e r c u t , and r e - d i s t r i b u t i o n o f s t r e s s e s a r o u n d t h e caved a r e a ;

    ( 3 ) u p l i f t a f t e r t h e u n d e r c u t i s c o m p l e t e , w i t h t h e removal o f t h e v e r t i c a l s t r e s s e s ;

    ( 4 ) v e r t i c a l l o a d i n g on t h e a p e x e s from p o i n t l o a d s and a n i n c r e a s i n g column o f caved m a t e r i e l ; and

    ( 5 ) h i g h t o e s t r e s s e s i f wedge f a i l u r e o c c u r s a g a i n s t a s t r u c t u r a l f e a t u r e .

    With r e f e r e n c e t o ( 4 ) above , i t s h o u l d b e n o t e d t h a t t h e a v e r a g e v e r t i c a l s t r e s s on t h e a p e x e s ( e x t r a c t i o n l e v e l p i l l a r s ) i s r e l a t e d t o t h e draw a r e a and t h e h e i g h t o f c a v e . Cave model s t u d i e s ( ~ e s l o ~ and l e u b s c h e r , 1 9 8 1 ) h a v e shown t h a t , f o r dynamic c o n d i t i o n s , w i t h h e i g h t t o b a s e r a t i o s o f 1:1, 2:1, 3:1, 4 : l and 5:1, t h e a v e r a g e v e r t i c a l s t r e s s on t h e b a s e i s a p p r o x i m a t e l y 535, 30%, 22% 17% and 14% r e s p e c t i v e l y o f t h e mass o f t h e caved g r o u n d .

  • DESIGN AND OPERATION OF CAVING AND SUBLEVEL STOPING MINES

    u n i f o r m ( ~ e s l o ~ and Laubscher, 1981). The

    Average V e r t i c a l S t r e s s i n WPa on E x t r a c t i o n L e v e l s w i t h D iameters o f -

    I I

    TABLE II

    The i n c r e a s e i n v e r t i c a l s t r e s s w i t h s t a t i c c o n d i t i o n s w i l l be app rox ima te l y 10% and s t r e s s e s i n t h e c e n t r e o f t h e a rea under draw w i l l be h i g h e r t han a t t h e s ides . Smal l , h i o h l y p r o d u c t i v e areas a r e p r e f e r a b l e t o large, l ow-p roduc t i ve areas. Hung-up areas w i t h w e l l developed arches, l a r g e wedges s u p p o r t i n g c o l - umns o f caved m a t e r i a l and c o n s o l i d a t e d mat- e r i a l w i l l concen t ra te t h e v e r t i c a l s t r e s s . I n t h e case o f a 200-m-diameter e x t r a c t i o n l e v e l w i t h a 5 : l r a t i o a able 11) p o i n t l o a d s o f 100 MPa (14 500 p s i ) o r h i g h e r , c o u l d be expected. The chances o f h i g h s t r e s s concen- t r a t i o n s a r e reduced i f t h e f r a g m e n t a t i o n i s u n i f o r m .

    The a r c h i n g s t r e s s e s a re imposed on t h e sur- rounding r o c k mass o r p r e v i o u s l y caved areas, r e s u l t i n g i n an i nc reased v e r t i c a l s t r e s s on t h e i r bases. T h i s i s one o f t h e reasons why t h e "checker board" cave l a y o u t was n o t success fu l . The a r c h i n g s t r e s s e s i n c r e a s e t h e anq le o f f r i c t i o n on j o i n t s , and, t h e r e f o r e , t h e ang le o f cave can va ry f rom depth t o sur- face. Near su r face , where l a t e r a l r e s t r a i n t i s l i m i t e d , t o p p i n g o f b l o c k s i s common w i t h low cave ana les ( ~ e s l o ~ , 1974).

    The e f f e c t o f deeth on c a v i n g must be re - l a t e d more t o t h e geology, p o t e n t i a l mass move- ments and m i n i n g induced s t r e s s e s t h a n t h e mass o f t h e caved m a t e r i a l .

    I f t h e orebody i s p r i m a r i l y broken, as i n sub - l eve l cav ing o r a sh r i nkage o p e r a t i o n w i t h a f o l l o w i n g cave, t hen h a n g i n g w a l l f ragment- a t i o n w i l l have an e f f e c t on d i l u t i o n . I n s ~ c h cases, a f i n e l y f ragmented h a n g i n g w a l l w i l l i n c r e a s e t h e d i l u t i o n percentage.

    I n b l o c k o r pane l r e t r e a t cav ing , f r a g - m e n t a t i o n has a b e a r i n g on p r o d u c t i v i t y and, t h e r e f o r e , i n f l u e n c e s des ign parameters and c o s t o f , and damage from, secondary b l a s t i n g , as w e l l as damage t o t h e major apex.

    Un i fo rm, good f ragmen ta t i on and poor heteroqeneous f ragmen ta t i on can be c l a s s e d as t h e end members o f a s e r i e s d e p i c t i n g l ow t o n i g h d i l u t i o n , p rov ided t h e r e i s i n t e r a c t i o n between t h e drawpoin ts , and draw r a t e s a r e

    cav ing o f an orebody w i t h good f ragmen ta t i on l e a d s t o s i g n i f i c a n t bu l k i ng , w i t h as much as 30% o f t h e o r e drawn b e f o r e the ore/waste i n t e r f a c e i s a f f e c t e d , and d i l u t i o n w i l l r e p o r t i n t h e d rawpo in t a f t e r 70% o f t h e o re has been drawn. A t t h e o t h e r end o f t h e scale, b u l k i n g i s l i m i t e d , channelways r a p i d l y develop as f i n e r m a t e r i a l i s drawn o f f and f i n e d i l u t i o n can e n t e r t h e drawpoin t a f t e r 40% o f t h e o r e has been drawn.

    Caving r e s u l t s i n pr imary f ragmenta t ion , which i s t h e p a r t i c l e s i z e developed i n t h e f a i l u r e zone o f t h e advancing cave, end second- a r y f ragmenta t ion , which occurs i n t h e draw column. Pr imary f ragmenta t ion i s determined by t h e s t r e s s e s i n t h e cave back and t h e s t r e n g t h and o r i e n t a t i o n o f t h e j o i n t s w i t h r e s p e c t t o t hose s t resses. S t r e s s cav ing w i l l r e s u l t i n b e t t e r f ragmenta t ion than subsidence c a v i n g where t h e r e i s a r a p i d s e t t l i n g o f m a t e r l a l w i t h l i t t l e bu l k i ng . Secondary f r a g m e n t a t i o n occu rs i n t h e draw column; however, as s t r e s s e s i n moving m a t e r i a l a re n o t h igh , secondary f ragmen ta t i on i s n o t as pro- nounced as g e n e r a l l y be l ieved. As a r c h i n g deve lops above t h e e x t r a c t i o n hor izon, second- a r y f r a q m e n t a t i o n can occur, p rov ided t h e apexes a r e s t r o n g e r t h a n t h e caved m a t e r i a l . An a rch o f c l a s s 2 rock aga ins t a c l a s s 4 ma jo r apex w i l l r e s u l t i n f a i l u r e o f t h e apex u n l e s s t h e a rch i s des t royed o r j o i n t s a r e now o r i e n t a t e d a t a more favou rab le ang le f o r shear f a i l u r e . Fragmenta t ion has been s t u d i e d a t d rawpo in t s by v i s u a l obse rva t i ons and by diamond d r i l l i n g l a r g e b l o c k s up t o 10 m x 7 m x 5 m which had moved 100 m i n a drew column. J o i n t spac ing d a t a i n d i c a t e d t h a t b l o c k s of t h i s magni tude shou ld n o t occur i f f a i l u r e i s r e l a t e d t o t h e o v e r a l l j o i n t e d spacing. How- ever, t h e diamond d r i l l i n g showed t h a t j o i n t s w i t h h i g h c o n d i t i o n r a t i n g s were present ; t h e r e f o r e , t h e b l o c k s were de f i ned by t h e spac ing o f t h e j o i n t s w i t h l owes t c o n d i t i o n r a t i n g s (weakest ) .

    R.Q.D. has been used by o t h e r s t o determine c a v a b i l i t y and f ragmenta t ion , b u t t h i s i s an i n a c c u r a t e method because o f t h e 100 mm l i m i t - a t i o n . 0,s m b l o c k s would g i v e h i g h R.P.D. va lues , b u t anyone i n v o l v e d i n cav ing would be happy t o have t h a t k i n d o f f ragmenta t ion .

    H y d r a u l i c r a d i u s , which i s area d i v i d e d by p e r i m e t e r i s o f t e n used t o d e f i n e t h e undercut area, and, i n t h e f o l l o w i n g t a b l e (III), i t s r e l a t i o n s h i p t o t h e ad jus ted r a t i n g s i s shown.

    I n F i g . 7, T a y l o r has shown t h a t , by apply- i n g ad jus tmen ts t o t h e i n - s i t u r a t i n g s , t h e assessment o f c a v a b i l i t y of t h e b lock can be e s t a b l i s h e d f o r i t s m i n i n g l i f e ( ~ a y l o r , 1980).

    The i n t r o d u c t i o n o f l a r g e L.H.D. equipment t o underground m i n i n g opera t ions , and improve- ments i n suppo r t techniques, have meant t h a t

  • DESIGN AND OPERATION OF CAVING AND SUBLEVEL STOPING MINES ; a t i s f a c t o r y i n t h e u p p e r l e v e l s o f t h e m i n e , THE MINING SEQUENCE I S DETERMINED BY THE ~t g r a a t e r d e p t h s w i t h i n c r e a s e d s t r e s s e s , a EFFECT OF A PRODUCTION BLOCK O N c h a n q e may b e n e c e s s a r y . SURROUNDING OREBODIES A N D INSTALLATIONS

    Orebody s h a p e and d i p w i l l d e t e r m i n e w h e t h e r A m i n i n g s e q u e n c e w i l l be r e q u i r e d w h e t h e r a h o r i z o n t a l o r i n c l i n e d f o o t w a l l d r a w p o i n t t h e d e p o s i t c o n s i s t s o f a s i n g l e m a s s i v e o r e - l a y o u t o r a c o m b i n a t i o n o f t h e two i s u s e d . I n c o m p a r i n g t h e two l a y o u t s f o r , s a y , a n o r e - body d i p p i n g a t l e s s t h a n 5 0 a n d h a v i n g a t h i c k n e s s n o t e x c e e d i n g 100 m , t h e n t h e h o r i z - o n t a l w i l l b e more p r o d u c t i v e i n t h e e a r l y s t a g e s , b u t u l t i m a t e o r e l o s s e s w i l l b e h i g h e r .

    The o r i e n t a t i o n o f t h e e x t r a c t i o n d r i f t , w i t h r e s p e c t t o t h e m a j o r g e o l o g i c a l s t r u c - t u r e s , p a r t i c u l a r l y s h e a r z o n e s , m u s t t a k e p r e c e d e n c e o v e r t h a d r a w p o i n t o r i e n t a t i o n . The s i z e o f d r i f t s and d r a w p o i n t o p e n i n g s w i l l b e i n f l u e n c e d by t h e s t r e n g t h o f t h e r o c k m a s s i n w h i c h t h e y a r e b e i n q d e v e l o p e d a n d t h e e x p e c t e d f r a g m e n t a t i o n . D r a w p o i n t l i f e d e p e n d s on t h e h e i g h t o f d r a w a n d p r o d u c t i o n p o t e n t i a l , w h i c h l a t t e r i s d i c t a t e d by f r a g - m e n t a t i o n , s i z e o f d r a w p o i n t o p e n i n g a n d l a s h i n g t e c h n i q u e . The p r o d u c t i o n r e q u i r e - men t f r o m a d r a w p o i n t c a n n o t e x c e e d t h e p r o d u c t i o n p o t e n t i a l and w i l l , t h e r e f o r e , d i c t a t e t h e number o f w o r k i n g d r a w p o i n t s r e q u i r e d . The v a l u e d i s t r i b u t i o n m u s t b e

    body o r a s e r i e s o f d i s c o n n e c t e d o r e b o d i e s a s a t S h a b a n i e Mine ( ~ i g . 1 ) . The s e q u e n c e t h a t i s a d o p t e d mus t b e s u c h t h a t s u b s e q u e n t o p e r - a t i o n s a r e n o t p r e j u d i c e d .

    I n t h e c a s e o f a m a s s i v e d e p o s i t wh ich w i l l b e cave-mined, t h e h e i g h t o f draw w i l l h a v e t o b e e s t a b l i s h e d , a n d , t h e r e f o r e , t h e v e r t i c a l i n t e r v a l o f t h e e x t r a c t i o n h o r i z o n s . Wore t h o u g h t i s r e q u i r e d i n t h e s e l e c t i o n o f t h e e x t r a c t i o n h o r i z o n i n t e r v a l t h a n r e l y i n g on t h e p r s m i s e - t h a t b e c a u s e Company ' X ' u s e s 1 0 0 m o r 200 m t h i s i s c o r r e c t . T h e r e mus t b e c o n t i n - u i t y o f p r o d u c t i o n , and t h e c a v i n g o f t h e l o w e r h o r i z o n m u s t n o t a f f e c t t h e u p p e r h o r i z o n . I f t h e o r s b o d y i s l a r g e i n t h a t t h e h o r i z o n t a l a x e s are more t h a n t w i c e t h e p r o p o s e d h e i g h t , t h e n s e q u e n c e p r o b l e m s are n o t l i k e l y . How- e v e r , i n o r e b o d i e s w i t h s m a l l e r p l a n d i m e n s i o n s , s e q u e n c e p r o b l e m s d o e x i s t , and sound geo log- i c a l k n o w l e d g e a n d a n a s s e s s m e n t o f t h e p o t e n t i a l f a i l u r e p a t t e r n i s r e q u i r e d . The i d e a l d r a w h e i g h t w i l l b e b a s e d on o r e b o d y

    t a k e n i n t o c o n s i d e r a t i o n , a s h i g h - v a l u e , l ong- v a l u e , c o s t o f e x t r a c t i o n h o r i z o n , economic l i f e d r a w c o l u m n s w i l l p e r m i t g r e a t e r e x p e n d i - l i f e o f e x t r a c t i o n h o r i z o n and p r o d u c t i o n t u r e on t h e e x t r a c t i o n l e v e l and d r a w p o i n t s p o t e n t i a l p e r d r a w p o i n t . F o r example , t h e t h a n t h o s e w i t h l o w - v a l u e , s h o r t - l i f e d r a w i d e a l d r a w h e i g h t may b e 150 m, b u t i f t h e c o l u m n s . o r e b o d y p l a n d i m e n s i o n s a r e 200 rn x 200 m w i t h

    t w o m a j o r j o i n t s e t s a t r i g h t a n g l e s and An i m p o r t a n t d e s i g n f e a t u r e i s t h e b a s i c d i p p i n g a t 45O, a n d f a i l u r e c a n b e e x p e c t e d

    s t r e n g t h o f t h e e x t r a c t i o n s t r u c t u r e : t h e s i z e a l o n g t h e s e j o i n t s , t h e n i t w i l l n o t b e poss- o f t h e o p e n i n g s , t h e s p a c i n g o f t h e d r a w p o i n t s , i b l e t o s tar t p r o d u c t i o n on t h e l o w e r e x t r a c t - t h e s i z e o f t h e p i l l a r s ( a p e x e s ) a n d t h e s u r - i o n h o r i z o n i f t h e p l a n n e d p r o d u c t i o n r a t e is, f a c e a r e a o f e x p o s e d r o c k f a c e . When a n s a y , 200 0 0 0 t o n n e s p e r month. T h i s i s b a s e d L.H.D. l a y o u t was p r o p o s e d f o r B e l l Mine , on t h e p r o d u c t i o n a r e a b e i n g o f s u f f i c i e n t Q u e b e c , t o r e p l a c e t h e g r i z z l y l a y o u t , a m a j o r s i z e t o a l l o w f o r u n d e r c u t t i n g , c o m m i s s i o n i n g o b j e c t i o n was t h e s i z e o f t h e L.H.D. d r i f t s i n o f d r a w p o i n t s , p r o d u c i n g d r a w p o i n t s , hung-up a r o c k m a s s w h i c h had p r e s e n t e d s u p p o r t d r a w p o i n t s a n d m a i n t e n a n c e o f d r a w p o i n t s . p r o b l e m s . However , t h e s u r f a c e a r e a o f E i t h e r t h e p r o d u c t i o n r a t e i s r e d u c e d o r t h e e x p o s e d r o c k i n t h e q r i z z l y l a y o u t , i n c l u d i n g d raw h e i g h t i s r e d u c e d . I f t h e j o i n t s e t s t w o metres o f o r e p a s s , was g r e a t e r t h a n f o r t h e d i p a t 45O i n o n e d i r e c t i o n and 6S0 i n t h e L.H.D. l a y o u t . T h i s mean t t h a t d e v e l o p m e n t , o t h e r , c h a n g i n g t h e d i r e c t i o n o f m i n i n g c o u l d c o n i n g a n d u n d e r c u t b l a s t damage w e r e more mean a h i g h e r d r a w h e i g h t . e x t e n s i v e i n r e l a t i o n t o t h e vo lume o f r o c k i n t h e p i l l a r s , a n d t h e s u p p o r t r e q u i r e m e n t s w e r e g r e a t e r . W h i l s t t h e d r i f t s p a n s w e r e l a r g e r i n t h e L.H.D. l a y o u t , t h i s w a s o f f s e t by t h e b i g q e r vo lume o f r o c k i n t h e a p e x e s ( p i l l a r s ) i n r e l a t i o n t o t h e vo lume o f o p e n i n g . T h e o b j e c t i s t o d e s i g n a s t r u c t u r e w h i c h w i l l g i v e minimum p r o b l e m s ( l o w c o s t s ) a n d opt imum o r e e x t r a c t i o n . I t i s p o i n t l e s s t o d e s i g n f o r maximum e x t r a c t i o n when c o n t i n u e d c o l l a p s e

    I n t h e c a s e o f d i s c o n n e c t e d o r e b o d i e s , t h e m i n i n q o f t h e i n d i v i d u a l o rebody may n o t p r e s e n t a p r o b l e m , b u t i t i s t h e i n f l u e n c e on a d j a c e n t o r e b o d i e s and i n s t a l l a t i o n s t h a t must b e a s s e s s e d . H e r e , m a j o r g e o l o g i c a l s t r u c t u r e s a n d / o r l i t h o l o g i c a l c h a n g e s c a n p l a y a s i g n i f - i c a n t p a r t . I n a m a j o r chrome m i n i n g o p e r a t i o n i n Zimbabwe, t h e ch rome o r e o c c u r s i n p o d s o f v a r y i n g s i z e a n d h a s b e e n s u c c e s s f u l l y mined

    a n d r e p a i r work mean i t i s o n l y p o s s i b l e t o by o p e n s t o p i n g f o r many y e a r s . However, e x t r a c t h a l f t h e o r e a t a c o s t h i g h e r t h a n t h e t h e b o d i e s a r e i n c r e a s i n g i n s i z e , t h e i n t e r - v a l u e o f t h e o r e . The s t r o n g e s t d e s i g n w i l l j a c e n t p i l l a r s a r e d e c r e a s i n g and t h e s u r r o u n d - b e when t h e o p e n i n g i s s u r r o u n d e d by m o s t r o c k ; i n g c o u n t r y r o c k i s becoming l e s s c o m p e t e n t , t h a t is , w i t h s i n g l e - s i d e d f o o t w a l l d r a w p o i n t q and management is, t h e r e f o r e , c o n c e r n e d a b o u t a n d t h e w e a k e s t d e s i g n when t h e a p e x i s c u t on t h e r e g i o n a l s t a b i l i t y . W i l l t h e h a n g i n g w a l l b o t h s i d e s down t o f l o o r l e v e l w i t h l a r g e , f a i l ? W i l l t h e r e b e i n t e r a c t i o n b e t w e e n c l o s e l y - s p a c e d o p p o s i t e d r a w p o i n t s a n d i n d i v - c a v i t i e s , a n d w h a t w i l l t h e e f f e c t b e on i d u a l d r a w p o i n t o r e p a s s e s . s h a f t s ? I n a c o m p l e x g e o l o g i c a l e n v i r o n m e n t ,

  • MASS UNDERGROUND MINING METHODS

    TABLE I V

    i I

    Ad jus ted Class Depth # I r

    t h e r e g i o n a l geology must be known and t h e d a t a ope ra t i on . Both o rebod ies are l a rge , a t p l o t t e d on t r a n v e r s e and l o n g i t u d i n a l sec t i ons , depths o f 600 and 1 000 met res r e s p e c t i v e l y as w e l l as th ree-d imens iona l models, which w i l l below sur face. cover t h e area o f m i n i n g and s h a f t s .

    1 I

    100 m Angle 75O t o o f

    500 m cave 1 750 - 650 Approximate e x t e n t o f f a i l u r e zone

    1

    Cave angles a r e o f t e n used t o d e f i n e t h e l i m i t o f ground f a i l u r e . T h i s i s n o t c o r r e c t because a f a i l u r e zone ex tends beyond t h e cave boundary, and t h i s zone i s n o t d e f i n e d by ang les b u t by d i s t a n c e s a long t h e weakest r o c k mass i n t h e a rea and t h e ad jus tment o f t h e sur round ing r o c k mass t o t h e s t r e s s e s induced by t h e min ing ope ra t i on . P rov ided a l l ma jor weak s t ruc tu res , t h e r e g i o n a l s t r e s s e s and t h e e x t e n t o f t he m i n i n g o p e r a t i o n s have been recognised, t a b l e I V can serve as a rough gu ide f o r bo th angle o f cave and t h e e x t e n t o f t h e f a i l u r e zone, and i s based on m o n i t o r i n g sever- a l min ing opera t ions .

    THE NEED OR NOT TO MAINTAIN REGIONAL STABILITY

    5

    45' - 35'

    35 O

    W h i l s t cave m i n i n g may be t h e obv ious method a t t h e s t a r t o f an underground o p e r a t i o n i s i t t h e c o r r e c t one f o r t h e whole d e p o s i t ? Does another method have t o be used f o r t h e l i f e o f t h e depos i t , o r can a change be made a t a l a t e r stage? The l a t t e r would be p r e f e r a b l e because a background o f knowledge on ground behaviour i n t h a t s t r e s s environment would be b u i l t up.

    4

    55O - 45O

    45' - 35"

    2

    750 - 650

    65' - 55'

    Whether t h e r e i s a need t o m a i n t a i n r e g i o n a l i s n o t o n l y w i t h r e f e r e n c e t o t h e e f f e c t o f caved ground on s u r f a c e o r i n s t a l l a t i o n s , b u t a r e imposs ib le m i n i n g c o n d i t i o n s go ing t o be c rea ted by cave m in ing? Mass movements cannot be c o n t r o l l e d . I n c e r t a i n complex env i ron- ments o f d i p p i n g d i s c r e t e orebod ies , incompet- e n t f o o t w a l l s and h i g h r e g i o n a l s t resses, t h e n mass movement o f t h e ground between caved ore- bod ies w i l l mean i n t o l e r a b l e s t r e s s e s i n t h e f o o t w a l l e x t r a c t i o n open ings o f t h e down-dip orebodies.

    3

    650 - 550

    55' - 45'

    The reasons f o r t h e s e l e c t i o n o f m i n i n g methods f o r t h e Nt . I s a 1100 Orebody and Henderson orebod ies wou ld make an i n t e r e s t i n g comparison. I n t h e case o f Nt . I sa , r e g i o n a l s t a b i l i t y i s be ing m a i n t a i n e d by f i l l i n g l a r g e stopes, and Henderson i s a b l o c k c a v i n g

    100 m 1 200 m 1

    30 m

    Another f a c t o r wh ich has r e c e i v e d g r e a t e r emphasis i n r e c e n t y e a r s i s t h e p r o t e c t i o n o f t h e environment and t h e d i s p o s a l o f t o x i c t a i l i n g s as fill i n stopes. W h i l s t a caved landscape may be u n a t t r a c t i v e i n t h e s h o r t term, i n a r i d c l i m a t e s t h e long-term b e n e f i t s would be water s to rage and improv ing ground water resources.

    50 m

    MODEL STUDIES

    The b e n e f i t s o f mathemat ica l model i n v e s t i - g a t i o n s a r e d i r e c t l y p r o p o r t i o n a l t o t h e sim- p l i c i t y o f t h e orebody geometry and t h e geolog- i c a l environment. I f assumpt ions a r e made, and i t must never be f o r g o t t e n t h a t t h e y were made, t h e n these s t r e s s a n a l y s i s programmes can p r o v i d e some u s e f u l i n f o r m a t i o n on m i n i n g induced s t resses.

    THE ROLE OF ROCK MECHANICS

    So o f t e n r o c k mechanics i s i n t r o d u c e d as a c rash programme when t h e mine expe r iences severe ground problems which a f f e c t p r o d u c t i o n , and answers a r e expected o v e r n i g h t a f t e r l o c a l pe rsonne l admi t d e f e a t . A s imp le low-cost m o n i t o r i n g and o b s e r v a t i o n programme r e l a t e d t o sound g e o l o g i c a l and c l a s s i f i c a t i o n d a t a can be s e t up as a r o u t i n e i n v e s t i g a t i o n by mine s t a f f . T h i s w i l l p r o v i d e a background o f d a t a on wh ich sound d e c i s i o n s can be made by o p e r a t i n g p e r s o w n e l o r w i t h t h e a s s i s t a n c e o f c o n s u l t a n t s . The r e l u c t a n c e t o m o n i t o r ground behav iou r w h i l s t e v e r y t h i n g i s o o i n g w e l l must be a men ta l a t t i t u d e o f "it won' t happen here" o r " w e ' l l c r o s s t h a t b r i d g e when we reach it". T a l k r o c k mechanics t o some o p e r a t o r s and t h e y immed ia te l y t h i n k o f c o n s u l t a n t ' s f e e s and expens ive i n s t r u m e n t a t i o n , and w i l l g l a d l y quote examples o f where i t has n o t been o f b e n e f i t . Parker (1973), i n h i s e x c e l l e n t s e r i e s o f a r t i c l e s , has shown t h e b e n e f i t s o f s imp le m o n i t o r i n g . The au tho r has been i n v o l v e d i n r o c k mechanics i n v e s t i g a t i o n s on h i s Company's mines s i n c e 1964, and t h e d a t a acou i red has been i n v a l u a b l e i n making

  • - - -

    --

    r

    3L

    OC

    ::

    P1

    ,AN

    NI

    NG

    S

    CH

    ED

    UL

    E

    DATE

    : I J

    OP

    ~O

    M:

    .-

    7ORK

    A

    fPLI

    Cff

    iLE

    TO A

    N OR

    EBOD

    Y OR

    lW

    OR

    SU

    B-D

    IVIS

    ION

    01'

    LARG

    E OR

    EBOD

    Y

    BL

    OC

    K(S

    ) :

    'XCRK

    APP

    LICA

    BLE

    TO

    SPEC

    IFIC

    Bm

    KS

    19

    19

    19

    3

    19

    19

    19

    Ass

    ess

    Sha

    fts,

    Pum

    ps,

    Hoi

    st m

    I

    Re~

    tsw

    C

    omp~

    e.es

    scrs

    , S

    ervl

    ceaa

    y P

    rc&

    ~c;i

    en

    etc

    . r

    ae

    -.g

    a-

    .d L

    oaZ

    Frg

    Cqu

    ipne

    nt

    etc

    .

    c. 0 5 +a 2

    19

    19

    rn

    W

    U

    e

    U

    rl

    C( m

    FIG

    URE

    8

    19

    19

    Spe

    cifi

    c V

    alua

    tion

    , L

    ayou

    t an

    d R

    ock

    Mec

    hani

    cs I

    hil

    lin

    g

    Clo

    eely

    Sp

    aced

    D

    ri

    U

    Fin

    al

    (~lt

    l-e t

    laa

    sifi

    ca

    t inn

    Cub

    e V

    alua

    tion

    C

    ompl

    eted

    -

    Inv

    esti

    gate

    I.

    lmFn

    g M

    etho

    ds

    En

    m

    Sequ

    ence

    C

    orre

    ct

    Gen

    eral

    Ore

    body

    S

    pecF

    fica

    tion

    s fo

    r se

    quen

    ce

    Gen

    eral

    Roc

    k !l

    echa

    nics

    '

    Ass

    essm

    ent

    for

    se

    quen

    ce

    Cve

    rall

    M

    Fnin

    g Se

    quen

    ce

    7rid

    eI.y

    Sp

    aced

    m

    ni

    ng

    hp

    lora

    to~

    y

    ~u

    tl-e

    19

    -

    Pro

    duct

    ion

    Bve

    lopm

    ent

    plan

    ning

    O

    utl-

    e &

    2la

    ssif

    icat

    ion

    Ire

    lid

    na

    ry

    Ore

    body

    S

    peci

    fica

    tion

    s

    Def

    ine

    Ore

    Res

    erve

    B

    lock

    s

    lTel

    Fnl

    nnry

    R

    ock

    biec

    hani

    cs

    Ass

    esm

    ent

    Prl

    3ary

    P

    rodu

    ctio

    n L

    ayou

    t

    PrL

    -ary

    A

    cces

    s 3e

    velo

    pmen

    t

    rn

    19

    Fin

    al

    Om

    bndy

    S

    jeci

    ficat

    lona

    Fin

    al

    Roc

    k M

    echa

    nics

    A

    saes

    smsn

    t

    bin

    s

    --JP==

    mu

    c

    on

    tml

    pms-

    3nll

    lmg

    Co2

    sler

    Inte

    rmed

    iate

    O

    rebo

    dy

    Spe

    cifi

    cati

    0r.s

    -

    Cub

    e V

    alua

    tion

    Inte

    rmed

    iate

    R

    ock

    hlec

    hani

    c r

    Ass

    essn

    ent

    --

    Dec

    ide

    on

    w

    Met

    hod

    =O

    pe

    Acc

    ess

    an

    d V

    enti

    lati

    on

    ~a

    yo

    uts

    min

    ary

    Acc

    ess

    Iayo

    ut

    Exp

    lora

    tory

    D

    evel

    opm

    ent

    Lay

    out

    Acc

    ess

    for

    Exp

    lora

    tory

    D

    evel

    omen

    t '

    w a

    rn

    a

    *

    o

    PI

    rn

    w

    e:

    CRAS

    HING

    -

    RATE O

    P

    PROL

    UCT

    ION

    lWJ.

    !I'E

    DlW

    MH

    MC

    rn

    OD

    VIM

    mwm

    CAVE

    INIT

    UTI

    OA

    -

    KTLL

    PRO

    IDCT

    IOA

    IR ?

    HE

    KJ

    mr

    nG

    nu7

    Stop

    e A

    CCeS

    S D

    evel

    opm

    ent

    !2

    Roc

    k M

    scha

    nlcs

    M

    onit

    orin

    g Pi

    -ogr

    ame

    Inst

    all

    D

    esig

    n

    Exp

    lora

    tory

    D

    evel

    omen

    t Tm

    yout

    Acc

    ess

    for

    Exp

    lora

    tory

    3e

    velo

    pnen

    t

    Def

    ine

    1- B

    lock

    s

    De

    Sm

    su

    ppor

    t ~

    yst

    en

    s

    Stop

    e Fr

    oduc

    tion

    Lay

    out

    Ore

    pass

    Sy

    stem

    C

    onpl

    ete

    Inv

    esti

    gate

    S

    haft

    s,

    Com

    pres

    sore

    , -pa

    , e

    tc.

    E~

    plo

    rato

    ry

    Dev

    elop

    men

    t

    Pro

    duct

    ion

    . ha

    mm

    ing

    an

    d L

    oadi

    ng

    Equ

    ipm

    ent

    Stop

    e P

    rodu

    ctio

    n D

    e~

    elo

    pn

    t w

    ith

    co

    nc

    urre

    nt

    mp

    po

    rt

  • MASS UNDERGROUND MINING METHODS

    dec i s ions t o change m i n i n g methods.. The t h i n g t o guard aga ins t i s ove r -e labo ra t i on ; s imple, e f f e c t i v e m o n i t o r i n g t o p r o v i d e background d a t a can be done on any mine w i t h o u t n e c e s s a r i l y an i nc rease i n s t a f f .

    ADHERENCE TO A LOGICAL PLANNING SCHEDULE

    Successfu l mine p l a n n i n g depends on adher- ence t o a schedule based on t h e c a p a b i l i t i e s o f t h e o rgan i sa t i on . F i g . 8 i n d i c a t e s departmen- t a l r o l e s and t h e sequence o f even ts l e a d i n g t o underground s x p l o i t a t i o n . Our exper ience has shown t h a t p r o d u c t i o n problems occur when t h e r e i s a depar ture f rom these procedures and expediency i s a l l o w e d t o p l a y an i m p o r t a n t par t . The t i m i n g o f t h e schedule i s based on t h e commissioning o f m i n i n g b l o c k s i n a complex g e o l o g i c a l environment i n t h e c o r r e c t p roduct - i o n sequence, w i t h t h e work done by t h e perm- anent mine s t a f f . The p e r i o d between e x p l o r a t i o n and p r o d u c t i o n can be reduced i f t h e geology i s s imp le and/or more e f f o r t and money a re p u t i n t o o b t a i n i n g t h e i n f o r m a t i o n and i n c r e a s i n g development r a t e s .

    DEGREE OF SOPHISTICATION POSSIBLE

    Wining o p e r a t i o n s a r e world-wide, b u t t h e s e l e c t i o n o f a m i n i n g method must recogn ise t h e s o c i a l environment. I n i n d u s t r i a l i s e d count- r i e s w i t h h i g h wages and a r e l u c t a n c e f o r people t o make m i n i n g a career , i n c r e a s e d mechanisat ion has meant g r e a t e r e f f i c i e n c i e s , l a b o u r s a t i s f a c t i o n and con t i nued economic opera t ions . The techn iques developed i n these areas a re o f t e n a p p l i e d i n deve lop ing c o u n t r i e s where l a b o u r - i n t e n s i v e methods would be more s u i t a b l e because o f t h e l a r g e numbers n o t g a i n f u l l y employed. However, once mech- a n i s a t i o n i s i n t r o d u c e d , a l b e i t on a s m a l l scale, manual l a b o u r no l o n g e r becomes a t t r a c t i v e t o t h e l o c a l s . Wechanisat ion i s increased, bu t t h e l a b o u r f o r c e s remain l a r g e because wastage i s l i m i t e d and Governments a r e a g a i n s t i nc reases i n unemployment. The ma jo r problem i s t h e maintenance o f t h e equipment i n c o u n t r i e s w i t h a predominance o f u n s k i l l e d labour , and " l o c a l i s a t i o n " i s a ~ o l i t i c a l p la t f o rm. S k i l l s have t o be impor ted, l o c a l personne l have t o be employed a t wages wh ich may be low by wes te rn standards, bu t , because o f t h e numbers i n v o l v e d , t h e wage b i l l , i n c l u d i n g t h e p r o v i s i o n o f s o c i a l se rv i ces , i s ex t remely h igh . "Cheap l a b o u r " i s a misnomer today because wages a r e b e i n g f o r c e d up b y minimum wage l a w s a t r a t e s f a r i n excess o f i nc reases i n p r o d u c t p r i c e s , w i t h l i t t l e o r no compensatory i n c r e a s e i n e f f i c i e n c y . Therefore, i n a c o u n t r y w i t h "cheap labour" , t h e c o s t pe r tonne mined c o u l d be h i g h e r t h a n i n t h e U n i t e d S t a t e s o r Canada. The remote- ness o f t h e o p e r a t i o n s f rom t h e source o f equipment and spa res i s a problem. Nanu- f s c t u r e r s w i l l n o t p r o v i d e t h e necessary back- up s e r v i c e u n l e s s s u f f i c i e n t u n i t s a r e i n use,

    and companies w i l l n o t buy t h e u n i t s u n l e s s t h e r e i s a back-up se rv i ce .

    M i n i n g pe rsonne l t r a i n e d i n i n d u s t r i a l i s e d c o u n t r i e s w i l l n a t u r a l l y i n t r o d u c e techn iques w i t h which t h e y a r e f a m i l i a r . The b u l k o f t e c h n i c a l j o u r n a l s o r i g i n a t e i n i n d u s t r i a l i s e d c o u n t r i e s and a l l a r t i c l e s a r e d i r e c t e d t o i nc reased tonnages w i t h reduced l abou r ; nobody e x t o l s t h e " v i r t u e s " o f manually-worked g r i z z l y drawpoin ts , o r hand- lash ing development ends.

    M i n i n g companies a r e always regarded as be ing weal thy, and, thus , t h e u s u a l a t t i t u d e i s t h a t a l a r g e percentage o f t h e o r o f i t must be r e t a i n e d by t h e Sta te ; t h e r e f o r e , t b e planned p r o f i t marg in may have t o be t w i c e t h a t acceptab le i n t h e Company's home coun t r y . T h i s means t h a t t h e method s e l e c t i o n p rocess must be comprehensive, as t h e r e c o u l d be l i t t l e room f o r manoeuvre once m in ing has s t a r t e d .

    CONCLUSIONS

    An a t temp t has been made t o p r o v i d e some g u i d e l i n e s i n t h e s e l e c t i o n o f mass m i n i n g methods, and i t i s concluded t h a t , i f t h e c o r r e c t d a t a i s ob ta ined and p r o p e r l y analysed, t h e c o r r e c t s e l e c t i o n can be made. The co r - r e c t s e l e c t i o n means t h e h i g h e s t p r o d u c t i v i t y a t t h e l owes t cos t , t h e h i g h e s t m i n e r a l r ecove ry and t h e minimum problems.

    ACKNOWLEDGEMENTS

    The au tho r w ishes t o express h i s g r a t i t u d e t o Nessrs. T. G. Hes lop and 0. 3. C a t h e r a l l f o r t h e i r c o n s t r u c t i v e c r i t i c i s m and t o Mrs. C. W. Jansen f o r t y p i n g t h i s paper.

    REFERENCES

    Carpenter, L.R. and Woolfe, B.R., 1972, "R io Blanco", N i n i n q Waqazine, Way, 1972, pp. 333-339.

    Heslop, T.G., 1974, " F a i l u r e by O v e r t u r n i n g i n Ground Ad jacent t o Cave Wining a t Havelock Wine", Proc. T h i r d Congress, x. Soc. Rock Wech., Denver, 1974, Vol . 2, P a r t B, pp. 1085-1089.

    Heslop, T.G. and Laubscher, D.H., 1981, "Draw C o n t r o l i n Caving Opera t i ons on Southern A f r i c a n C h r y s o t i l e Asbestos Nines", s. Conf. on Cavinq and Sub-Level S top inq, S.M.E. - A.I.W.E., Denver, Nov., 1981.

    Kendr ick , R., 1970, " I n d u c t i o n Caving o f t h e Urad Nine", W in inq Conq. J., Vol. 56, Oct., 1970, pp. 39-44.

    Laubscher, D.H., 1968, "The O r i g i n and Occur- rence o f C h r y s o t i l e Asbestos i n t h e Shabanie and Washaba Areas o f Rhodesia". Svm~os ium on

    . . .

    t h e Rhodesian Basement Complex. Trans. Geol. Soc. o f S.A., Annex. t o Vo l . LXXI, -. -

  • Y

    I-+

    '=

    0

    'n

    p r

    l-1

    " tU

    u

    I-

    Zrt

    -p

    'n

    o zr

    -1

    ' m

    W

    'n

    r mu

    N

    -w

    1

    -0

    [U

    'nu I- 0

    -1.

    ar

    t

    -.

    4 r

    . 4"

    W n

    0

    01

    " I-"

    . I


Recommended