+ All Categories
Home > Documents > Selorm Modzabi, Marianna A. Busch and Kenneth W. Busch Baylor University One Bear Place #97348

Selorm Modzabi, Marianna A. Busch and Kenneth W. Busch Baylor University One Bear Place #97348

Date post: 19-Mar-2016
Category:
Upload: millie
View: 16 times
Download: 0 times
Share this document with a friend
Description:
Selection of appropriate chiral selectors for chiral analysis by regression modeling of spectral data. Selorm Modzabi, Marianna A. Busch and Kenneth W. Busch Baylor University One Bear Place #97348 Waco, TX 76798. Need for chiral analysis*. Pharmaceutical industry Drug development - PowerPoint PPT Presentation
Popular Tags:
27
Selection of appropriate chiral selectors for chiral analysis by regression modeling of spectral data Selorm Modzabi, Marianna A. Busch and Kenneth W. Busch Baylor University One Bear Place #97348 Waco, TX 76798
Transcript
Page 1: Selorm Modzabi, Marianna A. Busch and Kenneth W. Busch Baylor University One Bear Place #97348

Selection of appropriate chiral selectors for chiral analysis by regression modeling

of spectral data

Selorm Modzabi, Marianna A. Busch and Kenneth W. BuschBaylor University

One Bear Place #97348Waco, TX 76798

Page 2: Selorm Modzabi, Marianna A. Busch and Kenneth W. Busch Baylor University One Bear Place #97348

Need for chiral analysis*• Pharmaceutical industry

– Drug development– Process control

• Agro-chemical industry• Food and beverage industry• Fragrance industry• Basic research

*Chiral Analysis, K. W.Busch & M. A. Busch Eds., Elsevier, 2006

Page 3: Selorm Modzabi, Marianna A. Busch and Kenneth W. Busch Baylor University One Bear Place #97348

CHIRAL ANALYSIS BY REGRESSION MODELING OF SPECTRAL DATA

(CARMSD)

Modern chemical instrumentation allows us to combine—•Multivariate (multi-wavelength) data collectionwith•Multivariate modelingto give a powerful combination that can extract latent information from the multivariate data that would not be possible with univariate measurements

Page 4: Selorm Modzabi, Marianna A. Busch and Kenneth W. Busch Baylor University One Bear Place #97348

Basic Strategy of CARMSD1. Calibration Phase

1) Prepare a set of calibration samples

• Same total concentration of chiral analyte

• Different known enantiomeric compositions

• Fixed concentration of chiral auxiliary

Page 5: Selorm Modzabi, Marianna A. Busch and Kenneth W. Busch Baylor University One Bear Place #97348

Basic Strategy of CARMSD1. Calibration Phase

2) Collect spectral data on the calibration set

3) Perform PLS-1 regression modeling

Page 6: Selorm Modzabi, Marianna A. Busch and Kenneth W. Busch Baylor University One Bear Place #97348

Basic Strategy of CARMSD2. Validation Phase

1) Prepare a new set of validation samples

2) Collect spectral data3) Enter the spectral data into the

regression model and predict the enantiomeric compositions

4) Compare the predicted enantiomeric compositions with the known values

Page 7: Selorm Modzabi, Marianna A. Busch and Kenneth W. Busch Baylor University One Bear Place #97348

CARMSD•Clearly the chiral auxiliary is at the heart of the CARMSD method.•Regression modeling depends on changes in the spectral signature with enantiomeric composition of the sample. •The larger these spectral changes are, the easier it is to develop robust regression models.

Page 8: Selorm Modzabi, Marianna A. Busch and Kenneth W. Busch Baylor University One Bear Place #97348

CARMSD

• Chiral Selectors used to date– Cyclodextrins– Modified cyclodextrins– Surfactants & mixed cyclodextrins– Chiral Surfactants– Chiral Ionic Liquids

Page 9: Selorm Modzabi, Marianna A. Busch and Kenneth W. Busch Baylor University One Bear Place #97348

Enantiomer-CD transient inclusion complexes

C

CH3

ClH

BrC

CH3

H Cl

Br

Enantiomeric pair

Diastereomeric pair(hypothetical)

CDCD

Enantiomeric discrimination by transient noncovalent complex

formation with cyclodextrins— An Example

C

a

d bc

C

a

b dc

Page 10: Selorm Modzabi, Marianna A. Busch and Kenneth W. Busch Baylor University One Bear Place #97348

Chiral selectors used to date

Chiral selector Analyte concentration Prediction error (RMSEP) range

Cyclodextrins (CDs)

3.75 – 7.50 mM 0.02 – 0.07

Modified cyclodextrins (MCDs)

7.5 mM 0.05 – 0.6

Chiral surfactants (CSs) 1.5 – 6 % w/v

1.0 x 10-4 - 5.0 x 10-6

M0.02 – 0.05

Chiral ionic liquids (CILs) 30 and 150 mM

5 mM 0.05 – 0.09

Analyte to selector (CDs, MCDs) mole ratio: = 1 : 2RMSEP = xip – xi)2/n]1/2 : xi = known mole fraction, xpi = predicted mole fraction & n = total samplespredicted

Chiral analytes: amino acids, pharmaceuticals, other organics

Page 11: Selorm Modzabi, Marianna A. Busch and Kenneth W. Busch Baylor University One Bear Place #97348

Problems with CDs

•Limited Solubility•Extent of interaction depends on formation constant of inclusion complex•Possibility of more than one complex in solution (R—CD, CD—R—CD, etc.)•Inclusion complex formation depends on size of analyte in relation to cyclodextrin

Page 12: Selorm Modzabi, Marianna A. Busch and Kenneth W. Busch Baylor University One Bear Place #97348

What about other possible chiral auxiliaries?

Page 13: Selorm Modzabi, Marianna A. Busch and Kenneth W. Busch Baylor University One Bear Place #97348

Formation of quaternary ammonium salts of carboxylic acids

Use of Chiral AminesIon-pair formation as a means of enantiomeric discrimination

R CO

OH+ RNH2

R CO

O- +NH3R

Page 14: Selorm Modzabi, Marianna A. Busch and Kenneth W. Busch Baylor University One Bear Place #97348

Chiral selector: (S)-1-phenylethylamine (S-PEA)

CARMSD with a Homochiral Amine

Determination of enantiomeric composition of Tyrosine with (S)-phenylethylamine using UV spectroscopy

Diastereomeric ion pairs

Zwitterion

+NH3

O

O-

HO

H2N CH3

H3N+ CH3

NH2

O

O-

HO

+D

S

SD

+NH3

O

O-

HO

H2N CH3

H3N+ CH3

NH2

O

O-

HO

+L

S

SL

Page 15: Selorm Modzabi, Marianna A. Busch and Kenneth W. Busch Baylor University One Bear Place #97348

Use of (S)-1-phenylethylamineDetermination of enantiomeric composition of Tyrosine

(Tyr to S-PEA ratio = 1 : 1)

Mean centered UV spectra for different compositions of D- and L-Tyrosine + (S )-PEA

-0.04

-0.03

-0.02

-0.01

0

0.01

0.02

0.03

0.04

285 305 325 345 365 385 405

Wavelength/nm

Mea

n ce

nter

ed A

bsor

banc

e

I sobestic point(339 nm)

-Two diff erent absorbing species: D- & L- Tyr quaternary salts-Solutions contain identical sum of Tyr species-Relative amounts determine by ratio of D- and L-Tyr -Tyr species have identical absorptivity at 339nm

-0.1

0.4

0.9

1.4

1.9

2.4

2.9

3.4

3.9

4.4

250 260 270 280 290 300 310 320 330 340 350

Wavelength/nm

Abs

orba

nce

Original spectra

Isosbestic point(343 nm)

Page 16: Selorm Modzabi, Marianna A. Busch and Kenneth W. Busch Baylor University One Bear Place #97348

Effect of pH on spectrum

Effect of varying PEA/Tyrmol ratios at neutral pH

Effect of varying PEA/Tyr mol ratios in acid solution

UV spectra: 2.5 mM L-Tyrosine + 2.5 mM PEA

-0.1

0.4

0.9

1.4

1.9

2.4

2.9

3.4

3.9

236 256 276 296 316 336 356

Wavelength/nm

Abs

orba

nce

2.5mM PEA

2.5mM Tyr

PEA1 : 8Tyr

PEA2 : 7Tyr

PEA3 : 6Tyr

PEA4 : 5Tyr

PEA4.5 : 4.5 Tyr

PEA5 : 4Tyr

PEA6 : 3Tyr

PEA7 : 2Tyr

PEA8 : 1Tyr

2.5 mM Tyr

PEA : Tyr 1 : 1

2.5 mM PEA

236 - 252 nm: hyperchromic effect

289 - 313 nm : hyperchromic effect

UV spectra: 2.5 mM L-Tyrosine + 2.5 mM PEA (Solution acidified with HCL)

-0.05

0.45

0.95

1.45

1.95

2.45

2.95

3.45

3.95

236 256 276 296 316 336 356

Wavelength/nmA

bsor

banc

e PEA1 : 9Tyr

PEA2 : 8Tyr

PEA3 : 7Tyr

PEA4 : 6Tyr

PEA5 : 5Tyr

PEA6 : 4Tyr

PEA7 : 3Tyr

PEA8 : 2Tyr

PEA9 : 1Tyr

236 - 252 nm : no hyperchromic effect

289 - 313 nm : no hyperchromic effect

PEA : Tyr 1 : 1

Page 17: Selorm Modzabi, Marianna A. Busch and Kenneth W. Busch Baylor University One Bear Place #97348

Job’s Plot

Job’s plot in neutral solution indicating 1:1 ion pair formation

Job’s plot in acid solution indicating lack of ion pair formation

Job's Plot: 2.5 mM Tyrosine + 2.5 mM (S)-PEA

0

0.5

1

1.5

2

2.5

0 0.05 0.1 0.15 0.2 0.25 0.3 0.35 0.4 0.45 0.5 0.55 0.6 0.65 0.7 0.75 0.8 0.85

Volume of (S)-PEA/ml

Abs

orba

nce

at 2

43 n

m

Job's Plot: 2.5 mM L-Tyrosine + 2.5 mM PEA (solutions acidified with HCl)

0.49

0.5

0.51

0.52

0.53

0.54

0.55

0.56

0.57

0 0.1 0.2 0.3 0.4 0.5 0.6 0.7 0.8 0.9 1

Volume of S-PEA/mlA

bsor

banc

e at

243

nm

Page 18: Selorm Modzabi, Marianna A. Busch and Kenneth W. Busch Baylor University One Bear Place #97348

Determination of enantiomeric composition of Tyrosine with (S)-

phenylethylamine using UV spectroscopy— PLS1 Calibration Model

PlotsRandomly Selected Calibration Samples: 0.0500, 0.150, 0.300, 0.400, 0.500, 0.650, 0.850, 0.950

-5

-4

-3

-2

-1

0

1

2

3

4

5

317 367 417 467 517

Wavelength/nm

Reg

ress

ion

coef

ficie

nt

D-TyrL-Tyr

Page 19: Selorm Modzabi, Marianna A. Busch and Kenneth W. Busch Baylor University One Bear Place #97348

Cross validation of calibration samples: 0.0500, 0.150, 0.300, 0.400, 0.500, 0.650, 0.850, 0.950

Actual D-Tyr mole fraction

Predicted D-Tyr mole fraction

Predicted L-Tyr mole fraction

0.100 0.101 0.899 (0.900)0.250 0.250 0.750 (0.750)0.300 0.303 0.697 (0.700)0.400 0.401 0.599 (0.600)0.450 0.462 0.538 (0.550)0.650 0.659 0.341 (0.350)0.750 0.758 0.242 (0.250)0.800 0.802 0.198 (0.200)0.900 0.901 0.099 (0.100) RMSEP: D-Tyr & L-Tyr = 0.006Values in bracket = Actual mole fraction of L-Tyr

Determination of enantiomeric composition of Tyrosine with (S)-

phenylethylamine using UV spectroscopy— Results of CARMSD

Cross validation plot

Page 20: Selorm Modzabi, Marianna A. Busch and Kenneth W. Busch Baylor University One Bear Place #97348

Determination of enantiomeric composition of Phenylalanine with (S)-

phenylethylamine using UV spectroscopy- Results of CARMSD

Cross validation of calibration samples: 0.0500, 0.100, 0.200, 0.392, 0.500, 0.527, 0.700, 0.950

Actual D-Phe mole fraction

Predicted D-Phe mole fraction

Predicted L-Phe mole fraction

0.150 0.185 0.823 (0.850)0.267 0.264 0.738 (0.733)0.352 0.348 0.649 (0.648)0.468 0.464 0.529 (0.532)0.486 0.483 0.515 (0.514)0.527 0.524 0.465 (0.473)0.600 0.597 0.397 (0.400)0.650 0.640 0.346 (0.350)0.819 0.814 0.161 (0.181)RMSEP: D-Phe = 0.013 & L-Phe = 0.011Values in bracket = Actual mole fraction of L-Phe

Page 21: Selorm Modzabi, Marianna A. Busch and Kenneth W. Busch Baylor University One Bear Place #97348

Determination of enantiomeric composition of Alanine with(S)-

phenylethylamine using UV spectroscopy- Results of CARMSD

Cross validation of calibration samples: 0.0500, 0.100, 0.250, 0.350, 0.500, 0.650, 0.750, 0.850

Actual L-Ala mole fraction

Predicted L-Ala mole fraction

Predicted D-Ala mole fraction

0.200 0.211 0.789 (0.800)

0.300 0.279 0.721 (0.700)

0.400 0.404 0.596 (0.600)

0.600 0.631 0.369 (0.400)

0.700 0.692 0.308 (0.300)

RMSEP: D-Ala & L-Ala = 0.018

Values in bracket = Actual mole fraction of D-Ala

Page 22: Selorm Modzabi, Marianna A. Busch and Kenneth W. Busch Baylor University One Bear Place #97348

Fischer Esterification

Use of Chiral Alcohols

Esterification results in the formation of true covalent diastereomers

+ ROH + HOHH+

heatC

O

R OHC

O

R OR

Page 23: Selorm Modzabi, Marianna A. Busch and Kenneth W. Busch Baylor University One Bear Place #97348

CARMSD with Homochiral (S)-(+)-1,2-propanediol

Determination of enantiomeric composition of Phenylalanine with (S)-1,2-propanediol using UV spectroscopy

NH2

O

OH

OH

OH

+NH3-Cl

O

O+NH3

-Cl

O

O+NH3

-Cl

O

O

70oC , HCL

OH

D or L-Phe

D- or L hydroxy monoester compound D- or L diester compound

excess

Possible products

Page 24: Selorm Modzabi, Marianna A. Busch and Kenneth W. Busch Baylor University One Bear Place #97348

Determination of enantiomeric composition of Phenylalanine with

1,2-propanediol using UV spectroscopy

Original UV spectra (15 samples)

Mean centered UV spectra (15 samples)

-0.01

-0.008

-0.006

-0.004

-0.002

0

0.002

0.004

0.006

0.008

0.01

222 242 262 282 302 322 342 362 382

Wavelength/nm

Mea

n C

ente

red

Abs

orba

nce

0

0.1

0.2

0.3

0.4

0.5

0.6

0.7

0.8

225 245 265 285 305 325 345

Wavelength/nm

Abs

orba

nce

Page 25: Selorm Modzabi, Marianna A. Busch and Kenneth W. Busch Baylor University One Bear Place #97348

Randomly selected calibration samples: 0.050, 0.150, 0.250, 0.300, 0.500, 0.750, and 0.950

Determination of enantiomeric composition of Phenylalanine with 1,2-propanediol using UV spectroscopy- PLS1 Calibration Model Plots

Page 26: Selorm Modzabi, Marianna A. Busch and Kenneth W. Busch Baylor University One Bear Place #97348

Randomly selected calibration samples: 0.050, 0.150, 0.250, 0.300, 0.500, 0.750, and 0.950

Determination of enantiomeric composition of Phenylalanine with

1,2-propanediol using UV spectroscopy- Results of CARMSD

Actual D-Phe mole fraction

Predicted D-Phe mole fraction

Predicted L-Phe mole fraction

0.103 0.0848 0.915 (0.897)0.400 0.407 0.593 (0.600)0.451 0.425 0.575 (0.549)0.597 0.596 0.404 (0.403)missing 0.773 0.227

(missing)0.801 0.801 0.208 (0.199)0.851 0.859 0.141 (0.149)missing 0.877 0.123

(missing) RMSEP: D-Phe & L-Phe = 0.014Values in bracket = Actual mole fraction of L-Phe

Page 27: Selorm Modzabi, Marianna A. Busch and Kenneth W. Busch Baylor University One Bear Place #97348

CARMSD with noncovalent diastereomers vs. CARMSD with covalent diastereomers

RMSEP figure of merit analysis of chiral discrimination strategies

LEL = lower RMSEP limit and UEL = upper RMSEP limit

0

0.1

0.2

0.3

0.4

0.5

0.6

Cyclodextrins ModifiedCyclodextrins

Chiral Surfactants Chiral Ionic Liquids Covalent/ionic Diatereomers

LEL

UEL

UEL - LEL


Recommended