+ All Categories
Home > Documents > September, Blankenburg · Page 3 Hydrograph (average hydrological year) 0 10 20 30 40 50 60 70 80...

September, Blankenburg · Page 3 Hydrograph (average hydrological year) 0 10 20 30 40 50 60 70 80...

Date post: 28-Sep-2020
Category:
Upload: others
View: 1 times
Download: 0 times
Share this document with a friend
34
The BodeScreening – Assessment of the ecological conditions of the Bode river system Dietrich Borchardt, Michael Rode , Markus Weitere, Karsten Rinke & Co 24th. September, 2011, Blankenburg
Transcript
Page 1: September, Blankenburg · Page 3 Hydrograph (average hydrological year) 0 10 20 30 40 50 60 70 80 01. Okt 96 31. Okt 96 30. Nov 96 31. Dez 96 30. Jan 97 01. Mrz 97 01. Apr 97 01.

The Bode‐Screening –

Assessment of the ecological conditions  of the Bode river system

Dietrich Borchardt, Michael Rode , Markus Weitere, Karsten

Rinke

& Co24th. September, 2011, Blankenburg

Page 2: September, Blankenburg · Page 3 Hydrograph (average hydrological year) 0 10 20 30 40 50 60 70 80 01. Okt 96 31. Okt 96 30. Nov 96 31. Dez 96 30. Jan 97 01. Mrz 97 01. Apr 97 01.

Page 2

Our objective: understanding ecological status and functions of surface waters in a catchment

wide perspective

Page 3: September, Blankenburg · Page 3 Hydrograph (average hydrological year) 0 10 20 30 40 50 60 70 80 01. Okt 96 31. Okt 96 30. Nov 96 31. Dez 96 30. Jan 97 01. Mrz 97 01. Apr 97 01.

Page 3

Hydrograph (average hydrological year)

0

10

20

30

40

50

60

70

80

01. O

kt 9

6

31. O

kt 9

6

30. N

ov 9

6

31. D

ez 9

6

30. J

an 9

7

01. M

rz 9

7

01. A

pr 9

7

01. M

ai 9

7

31. M

ai 9

7

01. J

ul 9

7

31. J

ul 9

7

30. A

ug 9

7

30. S

ep 9

7

30. O

kt 9

7

Dis

char

ge [m

³/s]

Hydrograph (average hydrological year)

C-Q: Phosphory = 0,589x0,542-

R20,7 =

0,00

0,05

0,10

0,15

0,20

0,25

0,30

0,35

0 20 40 60 80 100

Discharge (m³/s)

Phos

phor

us (m

g P/

l)Phosphorus - Discharge - Relationship

Understanding

surface

waters

as receptors…

NH

NN

CH3

N

N

N

NHNH

CH3

CH3

CH3

SCH3

NH

NNH

O

O

CH3

Multitude of chemicals

“Key toxicants”

OP

OO

O CH3

CH3

Cl

Cl

Page 4: September, Blankenburg · Page 3 Hydrograph (average hydrological year) 0 10 20 30 40 50 60 70 80 01. Okt 96 31. Okt 96 30. Nov 96 31. Dez 96 30. Jan 97 01. Mrz 97 01. Apr 97 01.

Page 4

Understanding

running

waters

as reactors…

Sewage disposal

Pollutant plumeFast mixing; high turbulence

Plankton

Benthos

Increase of vertical infiltration

velocities by 20 – 30 %

(Schmidt, Borchardt et al.,

Fund. Appl. Limnol., 2009)

Filtr

atio

n of

ent

irew

ater

volu

me

day-

1

(Wei

tere

& A

rndt

. Fre

shw

. Bio

l., 2

002)

Oxidation of 1- 3 g N m-2day-1

(Wagenschein and Rode,

Ecol. Modelling 2008)

Page 5: September, Blankenburg · Page 3 Hydrograph (average hydrological year) 0 10 20 30 40 50 60 70 80 01. Okt 96 31. Okt 96 30. Nov 96 31. Dez 96 30. Jan 97 01. Mrz 97 01. Apr 97 01.

Page 5

Focal

themes

and sampling

locations

Water quality along

land‐use

gradients

Urban  watersheds

and their contribution

to  the

contamination of benthic

habitats

Food‐web interactions and biological control

of 

eutrophication

Carbon dynamics

of  coupled

stagnant

and  running

water

systems

Page 6: September, Blankenburg · Page 3 Hydrograph (average hydrological year) 0 10 20 30 40 50 60 70 80 01. Okt 96 31. Okt 96 30. Nov 96 31. Dez 96 30. Jan 97 01. Mrz 97 01. Apr 97 01.

Page 6

Water quality along land‐use gradients

Page 7: September, Blankenburg · Page 3 Hydrograph (average hydrological year) 0 10 20 30 40 50 60 70 80 01. Okt 96 31. Okt 96 30. Nov 96 31. Dez 96 30. Jan 97 01. Mrz 97 01. Apr 97 01.

Page 7

Online Water Quality Measurement Stations

Page 8: September, Blankenburg · Page 3 Hydrograph (average hydrological year) 0 10 20 30 40 50 60 70 80 01. Okt 96 31. Okt 96 30. Nov 96 31. Dez 96 30. Jan 97 01. Mrz 97 01. Apr 97 01.

Page 8

Measurement Sensors and Automatic SamplersSensors

Sampler

Online-Data

Page 9: September, Blankenburg · Page 3 Hydrograph (average hydrological year) 0 10 20 30 40 50 60 70 80 01. Okt 96 31. Okt 96 30. Nov 96 31. Dez 96 30. Jan 97 01. Mrz 97 01. Apr 97 01.

Page 9

Additional parameters

Sampling with automated samplers:

Phosphorus components (TP, SRP) for load and nutrient turnover (low flow and highflow)

Delta 18O and Deuterium for Runoff component analyses (together with WG Isotope Hydrology)

15N and 18O measurements of nitrate ( low flow periods),differentiation between algal uptake and denitrification

Page 10: September, Blankenburg · Page 3 Hydrograph (average hydrological year) 0 10 20 30 40 50 60 70 80 01. Okt 96 31. Okt 96 30. Nov 96 31. Dez 96 30. Jan 97 01. Mrz 97 01. Apr 97 01.

Page 10

Online data of e.g. SAK, Nitrate-N and Water Level

Gauge station Meisdorf

0

10

20

30

40

50

60

70

80

1 501 1001 1501 2001 2501 3001

Time (10 min)

Wat

erle

vel [

cm]

0

0,5

1

1,5

2

2,5

Nitr

ate-

N (m

g/l)

Water levelSAKNitrate-N

SAK

(mg/

l)

Page 11: September, Blankenburg · Page 3 Hydrograph (average hydrological year) 0 10 20 30 40 50 60 70 80 01. Okt 96 31. Okt 96 30. Nov 96 31. Dez 96 30. Jan 97 01. Mrz 97 01. Apr 97 01.

Page 11

Primary production and nitrate uptake  at gauge station Stassfurt

12000 16000 200000

10

20

30

40

50

60

70

80

Chl a

Chl

a (m

g/l)

Time (min)

15000 15200 15400 15600 15800 160000

10

20

30

40

50

60

70

Chl a

Chl

a (m

g/l)

Time (min)

Chla

17000 17100 17200 17300 174000,0

0,1

2,8

3,0

Nitrate-N

Nitr

ate-

N (m

g/l)

Time (10 min)

Nitrat-N

Page 12: September, Blankenburg · Page 3 Hydrograph (average hydrological year) 0 10 20 30 40 50 60 70 80 01. Okt 96 31. Okt 96 30. Nov 96 31. Dez 96 30. Jan 97 01. Mrz 97 01. Apr 97 01.

Page 12

Qualified

sampling

(dry

weather

period, base

flow, cold

temperatures)

Page 13: September, Blankenburg · Page 3 Hydrograph (average hydrological year) 0 10 20 30 40 50 60 70 80 01. Okt 96 31. Okt 96 30. Nov 96 31. Dez 96 30. Jan 97 01. Mrz 97 01. Apr 97 01.

Page 13

ParametersBasic parameters:

Alkalinity (KS 4.3)pH

Anions:ChlorideSulfate

Sensor‐Data:ConductivityTurbidityChlorophyll

Carbon:TICpCO2DOCSUVA 254POC (TOC – DOC)POC Sediment

Macro-nutrients:SilikateAmmoniaNitrateSRPTP surface flow & sedimentN:P Stöchiometry

Biofilms:POCStöchiometry

Potentiall hazardoussubstances:

ArsenicCadmiumCopperNickelLeadZinc

Page 14: September, Blankenburg · Page 3 Hydrograph (average hydrological year) 0 10 20 30 40 50 60 70 80 01. Okt 96 31. Okt 96 30. Nov 96 31. Dez 96 30. Jan 97 01. Mrz 97 01. Apr 97 01.

Page 14

Example: Ammonia

Page 15: September, Blankenburg · Page 3 Hydrograph (average hydrological year) 0 10 20 30 40 50 60 70 80 01. Okt 96 31. Okt 96 30. Nov 96 31. Dez 96 30. Jan 97 01. Mrz 97 01. Apr 97 01.

Page 15

Example: Soluble

Reactive

Phosphorus

Page 16: September, Blankenburg · Page 3 Hydrograph (average hydrological year) 0 10 20 30 40 50 60 70 80 01. Okt 96 31. Okt 96 30. Nov 96 31. Dez 96 30. Jan 97 01. Mrz 97 01. Apr 97 01.

Page 16

Biofilm: POC

Page 17: September, Blankenburg · Page 3 Hydrograph (average hydrological year) 0 10 20 30 40 50 60 70 80 01. Okt 96 31. Okt 96 30. Nov 96 31. Dez 96 30. Jan 97 01. Mrz 97 01. Apr 97 01.

Page 17

Biofilm: Stöchiometry

0 50 100 150 200 250 300 350 400 450 5000

10

20

30

40

50

60

C:P Biofilm

N:P

Bio

film

N:P Quota highly correlated with C:P Quota(→ Nutrient limitation solely by P)

Page 18: September, Blankenburg · Page 3 Hydrograph (average hydrological year) 0 10 20 30 40 50 60 70 80 01. Okt 96 31. Okt 96 30. Nov 96 31. Dez 96 30. Jan 97 01. Mrz 97 01. Apr 97 01.

Page 18

Heavy metals: CopperSediment

Page 19: September, Blankenburg · Page 3 Hydrograph (average hydrological year) 0 10 20 30 40 50 60 70 80 01. Okt 96 31. Okt 96 30. Nov 96 31. Dez 96 30. Jan 97 01. Mrz 97 01. Apr 97 01.

Page 19

Urban

watersheds and contamination of sediments

Sources Sinks

Element concentrations

C, N, P, Al, Co, Fe, Ti, V, Cd, Cr, Cu, Ni, Pb, Zn

i = 1, …, n

sample, j = 1, …, m Element and k = 1, …, p

sourcex –

concentration

in receptor, g –

contribution

and f –

concentration

in source

Hypothesis

and modelling

approach:

Source

contribution

of key

contaminants

can

be

assessed

by

linear mixing

models

Telse

David, Dietrich Borchardt, Wolf von Tümpling, Peter Krebs (2011). Urban wet weather discharge as 

source of sediment associated elements in a river bed. Water and

Environment (subm.).

Page 20: September, Blankenburg · Page 3 Hydrograph (average hydrological year) 0 10 20 30 40 50 60 70 80 01. Okt 96 31. Okt 96 30. Nov 96 31. Dez 96 30. Jan 97 01. Mrz 97 01. Apr 97 01.

Page 20

Sampling

design

urban watershed and contamination of sediments

Page 21: September, Blankenburg · Page 3 Hydrograph (average hydrological year) 0 10 20 30 40 50 60 70 80 01. Okt 96 31. Okt 96 30. Nov 96 31. Dez 96 30. Jan 97 01. Mrz 97 01. Apr 97 01.

Page 21

Rainfall, discharge

in the

River Bode and  overflow

events

Telse

David, Dietrich Borchardt, Wolf von Tümpling, Peter Krebs (2011). Stormwater

effluents and element 

fingerprints of river sediments. Water Environment Research (subm.).

Page 22: September, Blankenburg · Page 3 Hydrograph (average hydrological year) 0 10 20 30 40 50 60 70 80 01. Okt 96 31. Okt 96 30. Nov 96 31. Dez 96 30. Jan 97 01. Mrz 97 01. Apr 97 01.

Page 22

Source

contribution

of stormwater

effluents

for suspended

sediments

and Cu 

David, T., Krebs, P., Borchardt D. and W. von Tümpling

(2011). Element patterns

for

particulate

matter in 

stormwater

effluents. Wat. Sc. Tech. 63 (12), 3013 ‐3019.

Page 23: September, Blankenburg · Page 3 Hydrograph (average hydrological year) 0 10 20 30 40 50 60 70 80 01. Okt 96 31. Okt 96 30. Nov 96 31. Dez 96 30. Jan 97 01. Mrz 97 01. Apr 97 01.

Page 23

Modelling

of receptor

contamination

for different elements

and verification

for

Cu

Telse

David, Dietrich Borchardt, Wolf von Tümpling, Peter Krebs (2011). Stormwater

effluents and element 

fingerprints of river sediments. Water Environment Research (subm.).

Page 24: September, Blankenburg · Page 3 Hydrograph (average hydrological year) 0 10 20 30 40 50 60 70 80 01. Okt 96 31. Okt 96 30. Nov 96 31. Dez 96 30. Jan 97 01. Mrz 97 01. Apr 97 01.

Page 24

The

Rappbode

Reservoir Observatory

Photo: André Künzelmann (UFZ)

located at Rappbode reservoir (Harz Mountains, Germany)Investment: about 500.000 €Countinuous monitoring of nutrient and carbon fluxes and corresponding ecosystem dynamics

Rappbode ReservoirOne main reservoir and 3 pre-damsDrinking water supplyfor over 1 Mio peopleSurface area: 395 haVolume: 113 Mio m3

Max. depth: 89 mmesotrophic

Page 25: September, Blankenburg · Page 3 Hydrograph (average hydrological year) 0 10 20 30 40 50 60 70 80 01. Okt 96 31. Okt 96 30. Nov 96 31. Dez 96 30. Jan 97 01. Mrz 97 01. Apr 97 01.

Page 25

Talsperrenbetrieb Sachsen-Anhalt

main reservoirthree pre-dams

Four inflow stations

Real-time & continuousmeasurement of- temperature- conductivity- turbidity- nitrate- DOC

and event-dependentwater sampling byautomated watersamplers

Page 26: September, Blankenburg · Page 3 Hydrograph (average hydrological year) 0 10 20 30 40 50 60 70 80 01. Okt 96 31. Okt 96 30. Nov 96 31. Dez 96 30. Jan 97 01. Mrz 97 01. Apr 97 01.

Page 26

Three connecting stations

Continuousmeasurement of- temperature- conductivity- turbidity- nitrate- DOC- oxygen- chlorophyll

Talsperrenbetrieb Sachsen-Anhalt

Page 27: September, Blankenburg · Page 3 Hydrograph (average hydrological year) 0 10 20 30 40 50 60 70 80 01. Okt 96 31. Okt 96 30. Nov 96 31. Dez 96 30. Jan 97 01. Mrz 97 01. Apr 97 01.

Page 27

One offshore station

Meteorological buoy(wind, temperature, humidity, radiation)

Continuous measurement of- temperature- conductivity- turbidity- nitrate- DOC- oxygen- chlorophyll

Talsperrenbetrieb Sachsen-Anhalt

Page 28: September, Blankenburg · Page 3 Hydrograph (average hydrological year) 0 10 20 30 40 50 60 70 80 01. Okt 96 31. Okt 96 30. Nov 96 31. Dez 96 30. Jan 97 01. Mrz 97 01. Apr 97 01.

Page 28

MOBICOS-Mesocosms

Modular mesocosms•

Laboratory flumes•

Water‐sediment‐columns•

Water columns•

Single, combined, replicable

„By‐pass“

to natural

systems•

Flow‐controls•

Volume‐controls•

Manipulable

dimensions

(physical, chemical, biological)

Mobile location

across

gradients•

„Real water“•

„Real sites“•

„Real replicates“

Large investment

infrastructures

and research

platforms

Page 29: September, Blankenburg · Page 3 Hydrograph (average hydrological year) 0 10 20 30 40 50 60 70 80 01. Okt 96 31. Okt 96 30. Nov 96 31. Dez 96 30. Jan 97 01. Mrz 97 01. Apr 97 01.

MOBICOS: MObile aquatic MesoCOSms

Page 30: September, Blankenburg · Page 3 Hydrograph (average hydrological year) 0 10 20 30 40 50 60 70 80 01. Okt 96 31. Okt 96 30. Nov 96 31. Dez 96 30. Jan 97 01. Mrz 97 01. Apr 97 01.

Page 30

Page 31: September, Blankenburg · Page 3 Hydrograph (average hydrological year) 0 10 20 30 40 50 60 70 80 01. Okt 96 31. Okt 96 30. Nov 96 31. Dez 96 30. Jan 97 01. Mrz 97 01. Apr 97 01.

Page 31

1 Inflow 4 Experimental flume2 Filtration 5 Effluent3 Distribution

Page 32: September, Blankenburg · Page 3 Hydrograph (average hydrological year) 0 10 20 30 40 50 60 70 80 01. Okt 96 31. Okt 96 30. Nov 96 31. Dez 96 30. Jan 97 01. Mrz 97 01. Apr 97 01.

Page 32

Hyporheic nutrient cycling and trophic transfer (Norf 2011)

Stumm & Morgan (1996) Aquatic Chemistry, 3rd edn.

DOCPOC

CH4

NH4+

PONN2

DOCPOC

CH4

NH4+

PON

N2

Oligotrophic:

Eutrophic:

Page 33: September, Blankenburg · Page 3 Hydrograph (average hydrological year) 0 10 20 30 40 50 60 70 80 01. Okt 96 31. Okt 96 30. Nov 96 31. Dez 96 30. Jan 97 01. Mrz 97 01. Apr 97 01.

Page 33

Page 34: September, Blankenburg · Page 3 Hydrograph (average hydrological year) 0 10 20 30 40 50 60 70 80 01. Okt 96 31. Okt 96 30. Nov 96 31. Dez 96 30. Jan 97 01. Mrz 97 01. Apr 97 01.

Page 34

Perspectives

and outlook•

Monitoring•

Continuous

hydrological

monitoring

stations

(discharge; water

quality

etc.)•

Catchment

wide

qualified

sampling

(specific

boundary

conditions) 

Hydromorphological

mapping•

Biological

components

(biota, different trophic

levels, biomass)

Biological

processes

(production, respiration

etc.)

Experiments•

MOBICOS (Benthic‐pelagic‐coupling; hyoprheic

zones)

Modelling•

Multi‐object

calibration

of water

quality

models

Realization

of RWQM No1•

Compartmentilisation

approach

(surface

flow, benthic

layer, 

hyporheic

zone(s))•

Different trophic

levels

Stoichometrie

Synthesis


Recommended