+ All Categories
Home > Documents > Sergey Kryzhevich - BCAM€¦ · This is a space 𝑋, consisting of 𝐢1smooth pairs 𝑓, π‘Ÿ....

Sergey Kryzhevich - BCAM€¦ · This is a space 𝑋, consisting of 𝐢1smooth pairs 𝑓, π‘Ÿ....

Date post: 30-Apr-2020
Category:
Upload: others
View: 1 times
Download: 0 times
Share this document with a friend
23
Sergey Kryzhevich BCAM, Bilbao , 13 February 2013
Transcript
Page 1: Sergey Kryzhevich - BCAM€¦ · This is a space 𝑋, consisting of 𝐢1smooth pairs 𝑓, π‘Ÿ. The topology is minimal one there for any pair (𝑓0, π‘Ÿ0) and any 𝑅> 0 the

Sergey Kryzhevich

BCAM, Bilbao , 13 February 2013

Page 2: Sergey Kryzhevich - BCAM€¦ · This is a space 𝑋, consisting of 𝐢1smooth pairs 𝑓, π‘Ÿ. The topology is minimal one there for any pair (𝑓0, π‘Ÿ0) and any 𝑅> 0 the

1) Vibro-impact systems: definitions and main properties. 2) Grazing bifurcation(s). 3) Estimates on eigenvalues 4) Homoclinic points. 5) Smale horseshoes.

Page 3: Sergey Kryzhevich - BCAM€¦ · This is a space 𝑋, consisting of 𝐢1smooth pairs 𝑓, π‘Ÿ. The topology is minimal one there for any pair (𝑓0, π‘Ÿ0) and any 𝑅> 0 the

1. Vibro-impact systems. Mathematical models: Newton, Hook, Peterka,74,

Pesin-Bunimovich-Sinai, 85 (for billiards), Schatzmann, 98 – the most general model, Babitsky, 98 review,…

2. Grazing bifurcation. Nordmark, 91, Ivanov, 94, Dankowitz et al 02, Budd et al, 08,…

Page 4: Sergey Kryzhevich - BCAM€¦ · This is a space 𝑋, consisting of 𝐢1smooth pairs 𝑓, π‘Ÿ. The topology is minimal one there for any pair (𝑓0, π‘Ÿ0) and any 𝑅> 0 the

Fig. 1. An example of single degree-of-freedom vibro-impact system

1 – point mass, 2 – spring, 3 - delimiter, 4 – damping element

Page 5: Sergey Kryzhevich - BCAM€¦ · This is a space 𝑋, consisting of 𝐢1smooth pairs 𝑓, π‘Ÿ. The topology is minimal one there for any pair (𝑓0, π‘Ÿ0) and any 𝑅> 0 the

𝐽 = [0,πœ‡βˆ—] - values of parameter; 𝑓 𝑑, π‘₯, 𝑦, πœ‡ :𝑅3 Γ— 𝐽 β†’ 𝑅 - a 𝐢2 smooth function, . 𝑓 𝑑 + 𝑇, π‘₯,𝑦, πœ‡ ≑ 𝑓(𝑑, π‘₯,𝑦, πœ‡) Consider a system of 2 o.d.e.s οΏ½Μ‡οΏ½ = 𝑦; οΏ½Μ‡οΏ½ = 𝑓(𝑑, π‘₯,𝑦, πœ‡) (1) Denote the set of corresponding right hand sides by 𝑋𝑓 = 𝑋𝑓(𝐽,𝑛,𝑇) Denote 𝑧 = (π‘₯,𝑦)

. . .

Page 6: Sergey Kryzhevich - BCAM€¦ · This is a space 𝑋, consisting of 𝐢1smooth pairs 𝑓, π‘Ÿ. The topology is minimal one there for any pair (𝑓0, π‘Ÿ0) and any 𝑅> 0 the

Eq. (1) is satisfied for π‘₯ > 0. If π‘₯ = 0 the following impact conditions take place: If π‘₯ 𝑑0 βˆ’ 0 = 0 then 𝑦 𝑑0 + 0 = βˆ’π‘Ÿπ‘¦ 𝑑0 βˆ’ 0 , π‘₯ 𝑑0 + 0 = π‘₯(𝑑0 βˆ’ 0) (2) . Here π‘Ÿ = π‘Ÿ πœ‡ ∈ 0,1 is a 𝐢2 smooth function. Denote by (*) the VIS defined by Eq. (1) and impact conditions (2) Let .

[ ] ( ) ( ){ }0,,,0,,0,0 111 >=βˆ’Γ—Γ—βˆž=Ξ› yryyJ ¡¡R

Page 7: Sergey Kryzhevich - BCAM€¦ · This is a space 𝑋, consisting of 𝐢1smooth pairs 𝑓, π‘Ÿ. The topology is minimal one there for any pair (𝑓0, π‘Ÿ0) and any 𝑅> 0 the

A function 𝑧 𝑑 = col(π‘₯ 𝑑 ,𝑦(𝑑)) is called solution of the VIS (*) with a finite number of impacts on an interval (π‘Ž, 𝑏) if the following conditions are satisfied: there exist instants 𝑑0, … , 𝑑𝑁+1 where 𝑑0 = π‘Ž, 𝑑𝑁+1 = 𝑏 such that 1) The components π‘₯ 𝑑 is continuous, points 𝑑1, … , 𝑑𝑁 are all points of discontinuity for 𝑦(𝑑). 2) The function π‘₯ 𝑑 is non-negative and 𝑑1, … , 𝑑𝑁 are all its zeros. 3) 𝑦 π‘‘π‘˜ + 0 = βˆ’π‘Ÿ πœ‡ 𝑦 π‘‘π‘˜ βˆ’ 0 for all π‘˜ = 1, … ,𝑁 4) The function 𝑧 𝑑 is a solution of system (1) on every segment π‘‘π‘˜ , π‘‘π‘˜+1 .

, , , .

Page 8: Sergey Kryzhevich - BCAM€¦ · This is a space 𝑋, consisting of 𝐢1smooth pairs 𝑓, π‘Ÿ. The topology is minimal one there for any pair (𝑓0, π‘Ÿ0) and any 𝑅> 0 the

Lemma 1. Let 𝑧 𝑑 = col(π‘₯ 𝑑 ,𝑦(𝑑)) - be a solution of (*), corresponding to the value πœ‡0 of the parameter and to the initial data (𝑑0, π‘₯0,𝑦0). Let π‘₯02 + 𝑦02 > 0 and let the considered solution be defined on π‘‘βˆ’, 𝑑+ . Let the function π‘₯(𝑑) have exactly 𝑁 zeros 𝑑1, … , 𝑑𝑁 on the interval (π‘‘βˆ’, 𝑑+). Suppose that 𝑦 π‘‘π‘˜ βˆ’ 0 β‰  0 for all k. Then for any 𝑑 ∈ (π‘‘βˆ’, 𝑑+) βˆ– {𝑑1, … , 𝑑𝑁} there is a neighborhood π‘ˆ of the point 𝑑0, π‘₯0,𝑦0, πœ‡0 such that the mapping 𝑧(𝑑, 𝑑′, π‘₯β€²,𝑦′,πœ‡πœ‡) is smooth with respect to (𝑑′, π‘₯β€²,𝑦′, πœ‡πœ‡) from π‘ˆ. All corresponding solutions have exactly 𝑁 impacts π‘‘π‘˜(𝑑𝑑, π‘₯𝑑,𝑦𝑑,πœ‡π‘‘) over (π‘‘βˆ’, 𝑑+). Impact instants π‘‘π‘˜(𝑑𝑑, π‘₯𝑑,𝑦𝑑, πœ‡π‘‘) and corresponding velocities 𝑦(π‘‘π‘˜ 𝑑𝑑, π‘₯𝑑,𝑦𝑑, πœ‡π‘‘ βˆ’ 0) are smooth functions of 𝑑𝑑, π‘₯𝑑,𝑦𝑑,πœ‡π‘‘ in π‘ˆ.

Page 9: Sergey Kryzhevich - BCAM€¦ · This is a space 𝑋, consisting of 𝐢1smooth pairs 𝑓, π‘Ÿ. The topology is minimal one there for any pair (𝑓0, π‘Ÿ0) and any 𝑅> 0 the

This is a space 𝑋, consisting of 𝐢1smooth pairs 𝑓, π‘Ÿ . The topology is minimal one there for any

pair (𝑓0, π‘Ÿ0) and any 𝑅 > 0 the set

οΏ½ 𝑓, π‘Ÿ : sup𝑑,𝑧,πœ‡ βˆˆπ‘€

( 𝑓 𝑑, 𝑧, πœ‡ βˆ’ 𝑓0 𝑑, 𝑧, πœ‡ + οΏ½πœ•π‘“πœ•π‘§

𝑑, 𝑧, πœ‡

βˆ’πœ•π‘“0πœ•π‘§

𝑑, 𝑧, πœ‡ οΏ½ + οΏ½πœ•π‘“πœ•πœ‡

𝑑, 𝑧, πœ‡

βˆ’πœ•π‘“0πœ•πœ‡

𝑑, 𝑧, πœ‡ οΏ½ + |π‘Ÿ πœ‡ βˆ’ π‘Ÿ0(πœ‡)|) < 𝑅�

is open.

Page 10: Sergey Kryzhevich - BCAM€¦ · This is a space 𝑋, consisting of 𝐢1smooth pairs 𝑓, π‘Ÿ. The topology is minimal one there for any pair (𝑓0, π‘Ÿ0) and any 𝑅> 0 the

β€œStiff” model with a perturbation οΏ½Μ‡οΏ½ = 𝑦; οΏ½Μ‡οΏ½ = 𝑓 𝑑, π‘₯,𝑦 + 𝑔 𝑑, π‘₯,𝑦 ; 𝑔 𝐢1 < πœ€ We assume conditions (2) take place. β€œSoft” model with a perturbation. οΏ½Μ‡οΏ½ = 𝑦; οΏ½Μ‡οΏ½ = 𝑓 𝑑, π‘₯,𝑦 + 𝑔 𝑑, π‘₯,𝑦 + β„Ž(πœ…, 𝑑, π‘₯,𝑦); 𝑔 𝐢1 < πœ€ β„Ž πœ…, 𝑑, π‘₯,𝑦 = βˆ’2π›Όπœ…πœ’βˆ’ π‘₯ 𝑦 βˆ’ 1 + 𝛼2 πœ…2πœ’βˆ’ π‘₯ x, 𝛼 = βˆ’log π‘Ÿ/πœ‹. Ο‡Μ² =1 if x <0 and Ο‡Μ² =0 if xβ‰₯0; addition of functions h replaces the conditions of impact. Consider stroboscopic (period shift) mappings for both

of these models. Call them 𝑆𝑔,π‘Ÿ and 𝑆𝑔,π‘Ÿ,πœ… Hyperbolic invariant sets persist for small πœ€ and big πœ… and

small changes in π‘Ÿ.

1kΞ΄

Page 11: Sergey Kryzhevich - BCAM€¦ · This is a space 𝑋, consisting of 𝐢1smooth pairs 𝑓, π‘Ÿ. The topology is minimal one there for any pair (𝑓0, π‘Ÿ0) and any 𝑅> 0 the

Fig. 2. A Β«softΒ» model of impact, Β«suturedΒ» from two linear systems. A delimiter is replaced with a very stiff spring.

Page 12: Sergey Kryzhevich - BCAM€¦ · This is a space 𝑋, consisting of 𝐢1smooth pairs 𝑓, π‘Ÿ. The topology is minimal one there for any pair (𝑓0, π‘Ÿ0) and any 𝑅> 0 the

Fig. 3. A grazing bifurcation. Here the case Β΅>0 corresponds to existence of a low-velocity impact, we can select Β΅ equal to this velocity. Β΅=0 corresponds to a tangent motion (grazing), the case Β΅<0 corresponds to passage near delimiter without impact.

Page 13: Sergey Kryzhevich - BCAM€¦ · This is a space 𝑋, consisting of 𝐢1smooth pairs 𝑓, π‘Ÿ. The topology is minimal one there for any pair (𝑓0, π‘Ÿ0) and any 𝑅> 0 the

There exists a continuous family of Π’ – periodic solutions πœ‘ 𝑑, πœ‡ = (πœ‘π‘₯ 𝑑,πœ‡ ,πœ‘π‘¦ 𝑑, πœ‡ ) of system (*), satisfying following properties: 1) For any πœ‡ ∈ 𝐽 the component πœ‘π‘₯ 𝑑,πœ‡ has exactly 𝑁 + 1 zeros 𝑑0 πœ‡ , … , 𝑑𝑁(πœ‡) over the period [0,𝑇). 2) Velocities π‘Œπ‘˜(πœ‡) = 𝑦(π‘‘π‘˜(πœ‡) βˆ’ 0) are such that π‘Œπ‘˜ πœ‡ β‰  0 for all πœ‡ β‰  0, π‘Œ0(0) = 0, π‘Œπ‘˜ 0 β‰  0 for π‘˜ = 1, … ,𝑁. 3) Instants π‘‘π‘˜(πœ‡) and impact velocities π‘Œπ‘˜(πœ‡) continuously depend on the parameter πœ‡ ∈ 𝐽.

, ,

.

.

Condition 1.

Page 14: Sergey Kryzhevich - BCAM€¦ · This is a space 𝑋, consisting of 𝐢1smooth pairs 𝑓, π‘Ÿ. The topology is minimal one there for any pair (𝑓0, π‘Ÿ0) and any 𝑅> 0 the

Fig. 4. Curve Π“. Homoclinic points arizing due to bent of unstable (Π°) or stable (b) manifold. Here we consider case 1 – presence of periodic motions with a

low impact velocity.

(a) (b)

Page 15: Sergey Kryzhevich - BCAM€¦ · This is a space 𝑋, consisting of 𝐢1smooth pairs 𝑓, π‘Ÿ. The topology is minimal one there for any pair (𝑓0, π‘Ÿ0) and any 𝑅> 0 the

Period shift map π‘†πœ‡,πœƒ(𝑧0) = 𝑧(𝑇 βˆ’ πœƒ,βˆ’πœƒ, 𝑧0, πœ‡) Here ΞΈ > 0 is a small parameter, π‘§πœ‡,πœƒ = πœ‘(βˆ’πœƒ, πœ‡) be the fixed point. Let

𝐴 = limπœ‡,πœƒβ†’ 0

πœ•π‘§πœ•π‘§0

𝑇 βˆ’ πœƒ,πœƒ, 𝑧0,πœ‡ =π‘Ž11 π‘Ž12π‘Ž21 π‘Ž22

be the matrix, corresponding for motion out of grazing Condition 2. π‘Ž12 > 0 , Tr 𝐴 < βˆ’1.

π΅πœ‡,πœƒ =πœ•π‘§πœ•π‘§0

πœƒ,βˆ’πœƒ, 𝑧0, πœ‡

=βˆ’π‘Ÿ 0

βˆ’π‘Ÿ + 1 𝑓 0,0,0

π‘Œ0 πœ‡βˆ’π‘Ÿ (𝐸 + 𝑂(Β΅+ΞΈ))

.

Page 16: Sergey Kryzhevich - BCAM€¦ · This is a space 𝑋, consisting of 𝐢1smooth pairs 𝑓, π‘Ÿ. The topology is minimal one there for any pair (𝑓0, π‘Ÿ0) and any 𝑅> 0 the

π·π‘†πœ‡,πœƒ π‘§πœ‡,πœƒ = π΄π΅πœ‡,πœƒ(𝐸 + 0(πœ‡ +\theta)) Trace is big if π‘Ž12 β‰  0, determinant is bounded. Eigenvalues πœ†+ β†’ ∞ as πœ‡ β†’ 0 and πœ† βˆ’ β†’ 0 as πœ‡ β†’ 0. Corresponding eigenvectors:

𝑒+ =π‘Ž21π‘Ž22 + O(πœ‡ + πœƒ),

π‘’βˆ’ = 01 + O(πœ‡ + πœƒ).

Page 17: Sergey Kryzhevich - BCAM€¦ · This is a space 𝑋, consisting of 𝐢1smooth pairs 𝑓, π‘Ÿ. The topology is minimal one there for any pair (𝑓0, π‘Ÿ0) and any 𝑅> 0 the

Theorem 2. Let Conditions 1 and 2 be satisfied. Then there exist values πœ‡0,πœƒ0 such that for all πœ‡ ∈ 0, πœ‡0 ,πœƒ ∈ (0,πœƒ0) there exist a natural number m and a compact set πΎπœ‡,πœƒ, invariant with respect to π‘†πœ‡,πœƒ and such that the following statements are true. 1) There exists a neighborhood π‘ˆπœ‡,πœƒ of the set πΎπœ‡,πœƒ such that the reduction π‘†πœ‡,πœƒ|π‘ˆπœ‡,πœƒ is a local diffeomorphism. The invariant set πΎπœ‡,πœƒ is hyperbolic 2) The invariant set πΎπœ‡,πœƒ of the diffeomorphism π‘†πœ‡,πœƒ|π‘ˆπœ‡,πœƒ is chaotic in Devaney sense, i.e. it is infinite, hyperbolic, topologically transitive (contains a dense orbit) and periodic points are dense there.

Page 18: Sergey Kryzhevich - BCAM€¦ · This is a space 𝑋, consisting of 𝐢1smooth pairs 𝑓, π‘Ÿ. The topology is minimal one there for any pair (𝑓0, π‘Ÿ0) and any 𝑅> 0 the

Fig .11. Description of the experiment and bifurcation diagrams, demonstrating presence of chaos in a

neighborhood of grazing

Molenaar et al. 2000

Page 19: Sergey Kryzhevich - BCAM€¦ · This is a space 𝑋, consisting of 𝐢1smooth pairs 𝑓, π‘Ÿ. The topology is minimal one there for any pair (𝑓0, π‘Ÿ0) and any 𝑅> 0 the

Ing et al., 2008; Wiercigroch & Sin, 1998 (see also Fig. 2)

Fig. 12. Bifurcation diagrams and chaotic dynamics on the set of central leaves in a neighborhood of a periodic point.

Page 20: Sergey Kryzhevich - BCAM€¦ · This is a space 𝑋, consisting of 𝐢1smooth pairs 𝑓, π‘Ÿ. The topology is minimal one there for any pair (𝑓0, π‘Ÿ0) and any 𝑅> 0 the

Akhmet, M. U. (2009). Li-Yorke chaos in systems with impacts. Journal of Mathematical Analysis & Applications, 351(2), 804-810.

di Bernardo, M., Budd C. J., Champneys A. R. & Kowalczyk P. (2007) Bifurcations and Chaos in Piecewise-Smooth Dynamical Systems: Theory and Applications. New York, Springer.

Babitsky, V. I. (1998) Theory of Vibro-Impact Systems and Applications, Berlin, Germany, Springer.

Banerjee, S., Yorke, J. A. & Grebogi, C. (1998) Robust chaos. Physical Review Letters, 80(14), 3049-3052.

Budd, C. (1995) Grazing in impact oscillators. In: Branner B. & Hjorth P. (Ed.) Real and Complex Dynamical Systems (pp. 47-64). Kluwer Academic Publishers.

Bunimovich L.A., Pesin Ya. G., Sinai Ya. G. & Jacobson M. V. (1985) Ergodic theory of smooth dynamical systems. Modern problems of mathematics. Fundamental trends, 2, 113-231.

Chernov N., Markarian R. (2001) Introduction to the ergodic theory of chaotic billiards. IMCA, Lima.

Chillingworth, D.R.J. (2010) Dynamics of an impact oscillator near a degenerate graze. Nonlinearity, 23, 2723-2748.

Page 21: Sergey Kryzhevich - BCAM€¦ · This is a space 𝑋, consisting of 𝐢1smooth pairs 𝑓, π‘Ÿ. The topology is minimal one there for any pair (𝑓0, π‘Ÿ0) and any 𝑅> 0 the

Chin W., Ott E., Nusse, H. E. & Grebogi, C. (1995) Universal behavior of impact oscillators near grazing incidence. Physics Letters A 201(2), 197-204.

Devaney, R. L. (1987) An Introduction to Chaotic Dynamical Systems. Redwood City, CA: Addison-Wesley.

Fredriksson, M. H. & Nordmark, A. B. (1997) Bifurcations caused by grazing incidence in many degrees of freedom impact oscillators. Proceedings of the Royal Society, London. Ser. A. 453, 1261-1276.

Π“ΠΎΡ€Π±ΠΈΠΊΠΎΠ² Π‘. П. & МСньшСнина А.Π’. (2005) Бифуркация, приводящая ΠΊ хаотичСским двиТСниям Π² динамичСских систСмах с ΡƒΠ΄Π°Ρ€Π½Ρ‹ΠΌΠΈ взаимодСйствиями. Π”ΠΈΡ„Ρ„Π΅Ρ€Π΅Π½Ρ†. уравнСния, 41(8), 1046-1052.

Holmes, P. J. (1982) The dynamics of repeated impacts with a sinusoidally vibrating table. Journal of Sound and Vibration 84(2), 173-189.

Ing, J., Pavlovskaia E., Wiercigroch M, Banerjee S. (2008) Experimental study of an impact oscillator with a one-side elastic constraint near grazing. Physica D 239, 312-321.

Ivanov, A. P. (1996) Bifurcations in impact systems. Chaos, Solitons & Fractals 7(10), 1615-1634.

Козлов Π’.Π’., Π’Ρ€Π΅Ρ‰Π΅Π² Π”.Π’. (1991) Π‘ΠΈΠ»Π»ΠΈΠ°Ρ€Π΄Ρ‹. ГСнСтичСскоС Π²Π²Π΅Π΄Π΅Π½ΠΈΠ΅ Π² Π΄ΠΈΠ½Π°ΠΌΠΈΠΊΡƒ систСм с ΡƒΠ΄Π°Ρ€Π°ΠΌΠΈ. М.: Изд-Π²ΠΎ ΠœΠ“Π£. 1991. 168 c.

Page 22: Sergey Kryzhevich - BCAM€¦ · This is a space 𝑋, consisting of 𝐢1smooth pairs 𝑓, π‘Ÿ. The topology is minimal one there for any pair (𝑓0, π‘Ÿ0) and any 𝑅> 0 the

Molenaar J, van de Water W. & de Wegerand J. (2000) Grazing impact oscillations. Physical Review E, 62(2), 2030-2041.

Nordmark, A. B. (1991) Non-periodic motion caused by grazing incidence in an impact oscillator. Journal of Sound & Vibration, 145(2), 279-297.

Palis, J., di Melo, W. (1982) Geometric Theory of Dynamical Systems. Springer-Verlag, 1982.

Pavlovskaia, E. ,Wiercigroch, M. (2004) Analytical drift reconstruction for visco-elastic impact oscillators operating in periodic and chaotic regimes. Chaos, Solitons & Fractals 19(1), 151-161.

Smale, S. (1965) Diffeomorfisms with many periodic points. Differential & Combinatorial. Topology. Princeton: University Press, 63-81.

Thomson, J. M. T., Ghaffari, R. (1983) Chaotic dynamics of an impact oscillator. Physical Review A, 27(3), 1741-1743.

Wiercigroch, M., Sin, V.W.T. (1998) Experimental study of a symmetrical piecewise base-excited oscillator, J. Appl. Mech.65, 657-663.

Whiston, G. S. (1987) Global dynamics of a vibro-impacting linear oscillator. Journal of Sound & Vibration, 118(3), 395-429.

Page 23: Sergey Kryzhevich - BCAM€¦ · This is a space 𝑋, consisting of 𝐢1smooth pairs 𝑓, π‘Ÿ. The topology is minimal one there for any pair (𝑓0, π‘Ÿ0) and any 𝑅> 0 the

Recommended