+ All Categories
Home > Documents > Seth Lynne Wei Tech Report

Seth Lynne Wei Tech Report

Date post: 04-Apr-2018
Category:
Upload: kashif-masud
View: 214 times
Download: 0 times
Share this document with a friend

of 39

Transcript
  • 7/30/2019 Seth Lynne Wei Tech Report

    1/39

    Technical Report No: ND08 - 08

    HYDRAULIC AND KINETIC MODELING OF A

    FULL-SCALE MOVING BED BIOFILM REACTOR

    FOR TERTIARY NITRIFICATION

    by

    Seth N. Lynne

    Wei Lin

    Dept. of Civil Engineering, North Dakota State University

    Fargo, North Dakota

    November 2008

    North Dakota Water Resources Research Institute

    North Dakota State University, Fargo, North Dakota

  • 7/30/2019 Seth Lynne Wei Tech Report

    2/39

    Technical Report No: ND08 - 08

    HYDRAULIC AND KINETIC MODELING OF AFULL-SCALE MOVING BED BIOFILM REACTOR

    FOR TERTIARY NITRIFICATION

    by

    Seth N. Lynne1

    Wei Lin2

    WRRI Graduate Research Fellow1

    and Associate Professor2

    Department of Civil EngineeringNorth Dakota State University

    Fargo, ND 58105

    November 2008

    The work upon which this report is based was supported in part by federal funds provided by

    the United States of Department of Interior in the form of ND WRRI Graduate Research

    Fellowship for the graduate student through the North Dakota Water Resources Research

    Institute.

    Contents of this report do not necessarily reflect the views and policies of the US Department

    of Interior, nor does mention of trade names or commercial products constitute their

    endorsement or recommendation for use by the US government.

    Project Period: March 1, 2004 February 28, 2005

    Project Number: 2004ND52B

    North Dakota Water Resources Research Institute

    Director: G. Padmanabhan

    North Dakota State University

    Fargo, North Dakota 58105

  • 7/30/2019 Seth Lynne Wei Tech Report

    3/39

    ACKNOWLEDGEMENT

    StipendsupportfortheResearchFellow,SethLynne,wasprovidedbytheNorthDakota

    WaterResourcesResearchInstitute.WethanktheCityofMoorhead,MN,forproviding

    opportunitiesandadditionalfinancialsupportforthisproject. Wewouldalsoliketoacknowledge

    Dr.Zimmerman,CityEngineerofMoorhead,andtheMoorheadWastewaterTreatmentFacilitystafffortheirtime,supportandassistance.

    ABSTRACT

    Afullscalemovingbedbiofilmreactor(MBBR),utilizedforseparatestagenitrification,was

    examinedforthefirst24monthsfollowingsystemcommencement. Toevaluatethefactors

    affectingtheperformanceoftheMBBR,amonitoringprogramwasdeveloped. Monitoringdata

    revealedthattheMBBRprocessmeteffluentammoniadesigncriteriaduringbothcoldandwarm

    weatherperiods. Evaluationsindicatedthatsystemperformanceishighlydependentuponthe

    proceduresforreturningbiosolidssupernatanttothefacilityheadworks. Becauseofhigh

    ammoniaconcentrationsassociatedwiththesupernatant,equalizedflowwasrecommendedtoreducethevariabilityininfluentammonialoadingdistributedtotheMBBR.

    ToinvestigatethehydrauliccharacteristicsoftheMBBRbasin,traceranalyseswereperformed.

    TraceranalysesindicatedthattheMBBRcanbesimulatedastwocontinuousflowstirredtank

    reactorsinserieswithhydraulicdeficienciesrepresentedasbypassflow. Inadditiontothetracer

    studies,aseriesofammoniadistributionmonitoringwasconductedtofurtherevaluatethe

    hydrauliccharacteristicsoftheMBBR. Hydraulicanalysesdemonstratedthatbasinperformance

    couldbeimprovedbyoptimizinginfluentflowdistribution,therebyreducingtheprobabilityfor

    shortcircuiting.

    Laboratorybenchscaleanalyses,designedtosimulatethefullscalesystem,wereconductedto

    evaluatenitrificationkineticsoftheMBBR. Ammoniareductiondatafromthebenchscaletests

    werestatisticallyfittoanattachedgrowthMonodtypemodel. Althoughthekineticparameters

    providedanexcellentfittotheobserveddata,variabilityexistedbetweenthemeasuredkinetic

    valuesforeachbenchscaletest.

    Utilizingthefullscalemonitoringresults,thehydraulicsimulation,andthekineticparameters

    obtainedfromthebenchscaleanalyses,acombinedmodelforthefullscaleMBBRsystemwas

    developed. FullscalemodelsimulationsindicatedthattheMBBRprocessperformancewas

    affectedmoresignificantlybybasinphysicalcharacteristics,asopposedtonitrificationkinetics,

    whenconsiderablehydraulicdeficienciesexist. However,whentheMBBRsystemwasoptimized

    withrespecttohydraulics,theprocessperformancewasobservedtobehighlydependentupon

    nitrificationkinetics. Considerationmustbegiventobothkineticandhydrauliccharacteristicsto

    ensuremaximumperformanceforMBBRsystems.

    Keywords:MovingBedBiofilmReactor(MBBR),Nitrification,Ammonia,KineticModel

    ii

  • 7/30/2019 Seth Lynne Wei Tech Report

    4/39

    TABLEOFCONTENTS

    ACKNOWLEDGEMENT ii

    ABSTRACT...................................................................................................................................ii

    TABLEOF

    CONTENTS

    ..................................................................................................................

    iii

    LISTOFTABLES..........................................................................................................................iv

    LISTOFFIGURES........................................................................................................................iv

    INTRODUCTION..........................................................................................................................1

    DescriptionofWaterProblemAddressed......................................................................... 1

    Objectives........................................................................................................................... 2

    BACKGROUND............................................................................................................................3

    SelectionofNitrificationProcess....................................................................................... 3

    MoorheadMBBRNitrificationSystem..........4

    PreviousMBBRAnalysis..................................................................................................... 7

    INVESTIGATIVEAPPROACH.......................................................................................................10

    ExperimentalDesign......................................................................................................... 10

    MaterialsandMethods.................................................................................................... 10

    RESULTSANDMODELDEVELOPMENT.......................................................................................12

    AnalysisoftheFullScaleMBBRMonitoringDiscussion..................................................12

    HydraulicAnalysis............................................................................................................. 16

    TracerStudies............................................................................................................................ 17

    NH3NDistributionintheMBBR............................................................................................... 19

    HydraulicAnalysisDiscussion................................................................................................... 21

    NitrificationKinetics......................................................................................................... 21

    FullScaleMBBRSimulation............................................................................................. 25

    SUMMARYANDCONCLUSIONS................................................................................................32

    REFERENCES.............................................................................................................................34

    iii

  • 7/30/2019 Seth Lynne Wei Tech Report

    5/39

    iv

    LISTOFTABLESTable Page

    Table1.EffluentNH3NLimits............................................................................................... 2

    Table2.MBBRDesignCriteria............................................................................................... 7

    Table3.TracerEvaluationSetup......................................................................................... 11Table4.SeasonalMBBRPerformance................................................................................. 13

    Table5.MBBRConditionsDuringSupernatantReturn.......................................................15

    Table6.MBBRFlowConditionsDuringTracerAnalysis......................................................17

    Table7.FullScaleTracerAnalysisSummary....................................................................... 18

    Table8.MBBRConditionsDuringNH3NDistributionAnalysis..........................................20

    Table9.SummaryofLaboratoryBenchScaleAnalysis.......................................................24

    Table10.FullScaleMBBRDatafortheDateofEachBenchScaleAnalysis.......................25

    LISTOFFIGURESFigure Page

    Figure1.Moorhead,MN,WWTFFlowDiagram................................................................... 5

    Figure2.MoorheadMBBRSchematic................................................................................... 6

    Figure3.FullScaleMBBRInfluentNH3N.............................................................................. 8

    Figure4.FullScaleMBBREffluentNH3N............................................................................. 8

    Figure5.PreviousFullScaleSimulation................................................................................ 9

    Figure6.MBBRNH3NMonthlyAverageData.................................................................... 13

    Figure7.SupernatantReturnFlowandMBBRPerformance..............................................14

    Figure8.JanuaryMarch2004SupernatantFlowandMBBRResponse............................15

    Figure9.TracerTestNo.4Response(at6.60MGDand4,500scfm).................................18

    Figure10.EffectiveVolumeasaFunctionofInfluentFlow................................................19

    Figure11.NH3NDistributionNo.1(at4.40MGDand4,500scfm)...................................20

    Figure12.LaboratoryBenchScaleData.............................................................................. 24

    Figure13.FullScaleMBBRModel....................................................................................... 26

    Figure14.FullScaleSimulation,January2004................................................................... 26

    Figure15.FullScaleSimulation,June2004........................................................................ 27

    Figure16.EffluentNH3NasaFunctionofInfluentNH3NandBypassFlow.....................28

    Figure17.MaximumSubstrateUtilizationRateSensitivity,BypassFlow=0%....................29Figure18.MaximumSubstrateUtilizationRateSensitivity,BypassFlow=30%..................29

    Figure19.HalfSaturationConstantSensitivity,BypassFlow=0%......................................30

    Figure20.HalfSaturationConstantSensitivity,BypassFlow=30%....................................31

  • 7/30/2019 Seth Lynne Wei Tech Report

    6/39

    INTRODUCTION

    Thisresearchsoughttoidentifythefactorsaffectingtheperformanceofafullscalemoving

    bedbiofilmreactorutilizedfornitrification. Amonitoringplanwasdevelopedtoevaluatethe

    parametersaffectingthestabilityoftheprocess. Utilizingthemonitoringdata,inconjunction

    withbasinhydraulicanalysesandkineticparameters,amodeloftheprocesswaspresented,whichcanbeutilizedtoexamineoperationalproceduresastheyrelatetoafullscalenitrifying

    system.

    DescriptionofWaterProblemAddressed

    Highconcentrationsofammoniainwastewaterdischargeshavebeenshowntobetoxictofish

    andmarinebiotaaswellastocausedissolvedoxygen(DO)depletioninreceivingstreams,

    especiallyduringperiodsoflowriverflow. Becauseammoniaisalsoanutrient,dischargecan

    contributetoalgalbloomsandeutrophicationinaquaticsystems. WhentheCityofMoorhead

    WastewaterTreatmentFacility(WWTF)wasdesignedintheearly1980s,noammoniadischarge

    limitwasimplemented,andtreatmentprocessesweredesignedwithoutconsiderationforammoniaremoval. SinceoperationoftheMoorheadWWTFbeganin1983,thetypicaldischarge

    concentrationofammonianitrogen(NH3N)totheRedRiveroftheNorthwasnear19milligrams

    perliter(mg/L).

    Inthemid1990s,thereachoftheRedRiveroftheNorthfromthecitiesofMoorhead,MN,

    andFargo,ND,totheconfluencewiththeBuffaloRiverinMinnesotawasidentifiedasimpaired

    forbothammoniaanddissolvedoxygen(i.e.,violatingwaterqualitystandardsforthese

    parametersatlowriverflow)(Zimmermanetal.,2003). In1994,aworkgroupwasformedto

    addressthisimpairmentandprepareaTotalMaximumDailyLoad(TMDL)studytoestablish

    allowableloadingsoffivedaycarbonaceousbiochemicaloxygendemand(CBOD5)andammonia

    dischargedfromthecitiesofFargoandMoorheadwastewatertreatmentfacilitiesand

    correspondingpermitlimitsforthetreatedwastewaterdischarges. In1999,theUSEPArevisedits

    waterqualitycriterionforammonia. Thepreviousammoniacriterionwasbasedondissolved

    oxygenlevelsaswellastoxicity. Thecriterionwasrevisedforammoniatoxicityandunrelatedto

    dissolvedoxygenimpactsassociatedwithammoniadischarges. TheMinnesotaPollutionControl

    Agencysubsequentlyadoptedasitespecificstandardforammoniafortheimpairedreachofthe

    RedRiveroftheNorthbasedonthenewcriteriaanddevelopedanewdischargelimitfortheCity

    ofMoorhead. ThelimitisseasonalandbasedonflowintheRedRiveroftheNorth. Compliance

    ismaintainedonlyduringthemonthsofJunethroughSeptemberwhenflowintheRedRiveris

    commonlylow. AlthoughtheeffluentNH3Nconcentrationlimitof19mg/Lremainsconstantfor

    allriverflows,themasslimitissignificantlyreducedatlowriverflows(lessthanfiftycubicfeet

    persecond). Therefore,inadditiontoeffluentNH3Nconcentration,theWWTFmustalsomonitor

    NH3NloadingtotheRedRiver. BecausetheeffluentflowfromtheWWTFisrelativelyconstant

    duringperiodsoflowriverflow,themassloadinglimitationequatestoaneffluentNH3Nconcentrationofapproximately8mg/L. TheNationalPollutantDischargeEliminationSystem

    permitforthefacilitycontainstheeffluentNH3NlimitsshowninTable1.

    AcompliancedateofSeptember30,2003,wasalsoestablished. TheCityofMoorhead

    developedafacilityplanand,basedonthatplan,constructedaninnovativeprocess,theattached

    growthmovingbedbiofilmreactor(MBBR),tomeetthenewlimitsatacostof$3.3millionin

    2002.

    1

  • 7/30/2019 Seth Lynne Wei Tech Report

    7/39

    Table1.MoorheadWastewaterTreatmentFacilityEffluentNH3NLimits.

    EffectivePeriod ApplicableRiverFlow LimitType Limit

    JuneSeptember Allriverflows CalendarMonthAverage 19mg/L

    Greaterthan1.42m3/sec

    (50cfs1)

    CalendarMonthAverage 647kg/day

    (1,427lb/day)

    Lessthan1.42m3/sec

    (50cfs1)

    CalendarMonthAverage 108kg/day

    (238lb/day)1cfs=Cubicfeetpersecond.

    Atthetimeofconstruction,theprocesswastheonlyfullscaleseparatestagenitrifyingMBBR

    inthecountry. TheMBBRprocessutilizesfloatingmediaplacedinanaerationbasin. Inthebasin,

    anaerationsystemsuppliesoxygenandprovidesmixingfortheprocesswhilethemediasupply

    thenecessarysurfaceareaforattachedgrowthofnitrifyingbacteria.

    Assessmentofthisnew,innovativeprocessisnecessarytoevaluatetheoperational

    parametersaffectingtheperformanceoftheMBBRsystem. Abetterunderstandingofthe

    processgainedbystudyingthekeyparametersviaakineticmodelwillresultinimproved

    operationalstabilityandreducedeffluentconcentrationsofammonia,thusimprovingtheoverall

    waterqualityoftheRedRiveroftheNorth.

    ResearchObjectives

    Theultimategoalofthisresearchistoidentifyandevaluatethecriticaldesignandoperational

    parametersaffectingthenitrificationrateinafullscaleMBBRprocess. Toaccomplishthisgoal,

    theprimaryobjectivesoftheresearchinclude:

    1. collectandevaluatefullscalemonitoringdatafortheMBBRsystemundervariousflowand

    ammonialoadingconditions;

    2. evaluatethehydrauliccharacteristicsofthebasintobetterunderstandtheflowof

    wastewaterthroughthesystemandselectanappropriatehydraulicmodel;

    3. studynitrificationkineticsandchooseasuitablemodeltoevaluatethepertinentkinetic

    parametersoftheprocess;and

    4. utilizethemonitoringdataincombinationwiththehydraulicandkineticparametersto

    developanappropriatemodelforthefullscaleMBBRsystem.

    ImprovedunderstandingofthetertiarynitrifyingMBBRsystemisnecessarytoenhancethe

    operationalstabilityofthefullscalesystemandthus,optimizetheeffluentammonia

    concentrationdischargedtotheRedRiveroftheNorth.

    Otherbenefitsincludedinthestudyarerelatedtotheuniquenessoftheprocess. This

    researchwillbewidelyapplicabletotheMBBRprocessingeneral,andthus,expandthebodyofcurrentknowledgeassociatedwiththenewandinnovativeprocess. Asmentionedearlier,atthe

    timeofconstructiontheMoorheadprocesswastheonlyseparatestagenitrifyingmovingbed

    biofilmreactorinthecountry. AttentionhasbeengrowingwithregardtotheMBBRprocess. Asa

    separatestagesystem,anopportunityispresentedtostudyandevaluatethefullscalesystem,

    andthus,providevaluableoperationalanddesigninformationwhichmaybeutilizedinsimilar

    systems;notonlyforseparatestagesystems,butalsoincombinationwithactivatedsludge.

    2

  • 7/30/2019 Seth Lynne Wei Tech Report

    8/39

    BACKGROUND

    InthissectionthehistoryregardingthenitrificationstudiesattheMoorheadWWTFis

    portrayedandtherationaleusedbytheCityofMoorheadtoultimatelyselectMBBRasthe

    treatmentsystemispresented. PreviousanalysisoftheMoorheadMBBRsystemisalso

    summarized.

    SelectionofNitrificationProcess

    TheissueofammoniareductionhasbeenstudiedextensivelybytheCityofMoorheadWWTF

    andatNorthDakotaStateUniversity. TheCityofMoorhead,Minnesotaoperatesanadvanced

    WWTFwithadesignflowof22,710m3/d(6mgd)andcontinuousdischargetotheRedRiverofthe

    North. TheWWTFservesthecommunitiesofMoorhead,Dilworth,andtheTownofOakport,MN.

    Theliquidtreatmentprocessesincludebarscreens,aeratedgrittanks,flowequalization,primary

    clarification,highpurityoxygenactivatedsludgesecondarytreatment,finalclarification,polishing

    ponds,andchlorination/dechlorinationdisinfection. BecauseoflowpHandshortsludge

    retention

    time

    (SRT)

    in

    the

    high

    purity

    oxygen

    activated

    sludge

    system,

    nitrification

    was

    not

    achievableundertheexistingtreatmentsystemattheMoorheadWWTF.

    Klecker(1998)studiedthefeasibilityofusingtheexistingpolishingpondsattheMoorhead

    WWTFfornitrification. TheresultsofKleckersstudyindicatedthepolishingpondsprovidedan

    appropriatedetentiontime,butthelowbiomassconcentrationinthepondslimitedtheremoval

    efficiencyofthenitrificationprocess. Kleckerrecommendedthatmodifiedoperationbe

    evaluatedtoachievenitrificationonafullscale.

    BasedonKleckersstudy(1998)andtheresearchofZimmerman(2003),itwasdeterminedto

    convertoneoftheexistingpolishingpondsattheMoorheadWWTFtoanitrificationbasin.

    Feasibilityofthefullscalenitrificationprocesswasevaluatedbyapilotscalestudyusinga

    separatestageattachedgrowthprocess. Fromthestudy,Zimmermanetal.,(2003)foundthe

    additionofthemediatothebasinallowedforthedevelopmentofasuitablebiomasspopulation.

    Basedontheresultsofthisstudy,aMBBRwasselectedfornitrificationattheMoorheadWWTF.

    TheMBBRisaninnovative,attachedgrowthprocessthatusessmallplasticmediatoprovidea

    surfaceforthegrowthofbacteria. TheMBBRsystemisflexibleandcanberetrofitintoalmostany

    sizeorshapeoftank. Mechanicalmixersoraerationsystemsareutilizedformixingthereactor.

    Screensareusedtocontainthemediawithinthereactor. Returnflowisunnecessaryand

    backwashingofthescreensisnotrequired. Coarsebubbleaerationiscommonlyusedinthe

    reactor. Mediavolumeinthereactoriscontingentonorganicandhydraulicloading,temperature,

    theoxygentransfercapabilityoftheaerationsystem,andtherequiredleveloftreatment. The

    MBBRprocessisrelativelynew,withthefirstinstallationin1990(RustenandNeu,1999). Asof

    2000,about100installationswerereportedwithmostoftheselocatedinEurope(Water

    EnvironmentResearchFoundation,2000).

    BecausereturnactivatedsludgeflowisnotrequiredfortheMBBRprocess,thedesignismorestraightforwardthanthedesignofcombinedattachedandsuspendedgrowthsystems(i.e.,

    integratedfixedfilmactivatedsludgeorIFASprocess). TheMBBRdesigncanbecomplicated,to

    someextent,becausethereisnogenerallyacceptedcomprehensivemodel. Therefore,system

    designisnormallylimitedtoempiricalrelationships,andoften,sitespecificpilottesting.

    Fortypicaldesign,thefullscaleMBBRcanachieve90%ammoniaremovalatNH3Nloadingsof

    1.0grampersquaremeterofmediasurfaceareaperday(g/m2/d)withadissolvedoxygen(DO)

    concentrationgreaterthan5mg/LandaneffluentNH3Nconcentrationgreaterthan3mg/L. For

    3

  • 7/30/2019 Seth Lynne Wei Tech Report

    9/39

    90%removalatDOconcentrationsgreaterthan5mg/L,buteffluentNH3Nconcentrationsless

    than3mg/L,thedesignloadingdropsto0.45g/m2/d(degaardetal.,1994).

    OveralltheMBBRprocesswasselectedbasedonanumberofconsiderations. Theprocesswas

    foundtobeacosteffectivealternativeinreducingeffluentammoniaconcentrations. Thedesign

    servedasthemostefficientintermsofexpansionofthefacilitybecausenoadditionalamountof

    landwasrequiredtocomplywiththeammoniatreatmentrequirements,andtheMBBRprocess

    alsodemonstratedtheabilitytoreducetheeffluentammoniaconcentrationstoalimitbelowthe

    permittedlevel(Zimmermanetal.,2004).

    MoorheadMBBRNitrificationSystem

    In2003,theMoorheadWWTFwasupgradedtoincludeaseparatestagefullscaleMBBR

    nitrificationprocesstocomplywiththeseasonaleffluentNH3Nlimits. TheMBBRprocesswas

    constructedbyconvertingtheeasthalfoftheexistingPolishingPondNo.1toanaerationbasin. A

    flowdiagramforthefacilitywiththenewMBBRisshowninFigure1.Aschematicdiagramofthe

    MBBRisshowninFigure2,anddesigncriteriaforinitialandfuture(year2020)conditionsare

    providedinTable2. ThedesignNH3NeffluentinTable2isbaseduponeffluentmassloadingto

    theRedRiver,thusexplainingthevariationinlistedeffluentconcentrations.

    AsystemtobypasstheMBBRexistsbetweenPolishingPondNo.1andControlStructureNo.1.

    Thebypassisautomaticathighflows(greaterthan7.5mgd)toavoidfloodingthebasin. The

    configurationalsoallowstheWWTFtocompletelybypasstheMBBRandprovidestheabilityto

    feedonlyaportionofthetotalplanteffluentflowtothebasin. Bypassoccursduringperiodsof

    highflowwhenammoniaconcentrationsaresignificantlybelowaverageduetodilution.

    MediainthebasinaremanufacturedbyHydroxylPac(HydroxylSystems,Sidney,British

    Columbia,Canada). Themediaelementsaremadeofultravioletresistant,highdensity

    polyethylene;havedimensionsofapproximately22mmindiameterby15mminlength;andhave

    aspecificsurfaceareaof388m2/m3. Thesurfaceareaofthemediasouterportionisnot

    considered,duetothelackofnitrifyingorganisms,asaresultofthecollisionsoccurringbetween

    theindividualmediaelementswithinthebasin. Therefore,thespecificsurfaceareaisdefinedasthesurfaceareaofonlytheinner,protectedportionofthemediaelement. Themediaare

    buoyantandhaveaspecificdensityof0.96g/cm3.

    TheHydroxylPacmediawasselectedbasedontheyearlongpilotstudythattested

    performancecriteria,theabilitytoacquirethemedia,andtheinstallationofacosteffectivebasin

    withtheflexibilitytohandlefutureloading. Thefillfractionofmedia(volumeofthereactor

    occupiedbymedia)inthebasinisabout32%. FutureNH3Nloadingconditionscanbeaddressed

    bytheadditionoffurthermedia(approximately40%byvolumebasedonthemanufacturers

    recommendation).

    4

  • 7/30/2019 Seth Lynne Wei Tech Report

    10/39

    Subnatant

    WasteActivatedSludge

    Primar

    y

    Digester2

    Primary

    Digester1

    GasHold

    ing

    Digester3

    Thickened

    W.A.S.

    Primary

    Clarifier

    Sludge

    Final

    Clarifier

    Effluent

    Outfallto

    RedRiver

    D.A.F.

    Thickener

    2

    D.A.F.

    Thickener

    1

    Equalization

    Bas

    in

    3

    Equalization

    Bas

    in

    2

    Eq.

    Basin

    1

    Grit 1

    Grit 2

    Primary

    Clarifier1

    Primary

    Clarifier2

    HighPurityOxygen

    ActivatedSludge1

    HighPurityOxygen

    ActivatedSludge2

    Final

    Clarifier

    1

    Final

    Clarifier

    2

    Final

    Clarifier

    3

    Final

    Clarifier

    4

    ReturnActivatedSludge

    Chlorination/

    DechlorinationBuilding

    Polishing

    Pond1

    (1.1acres)

    Po

    lishingPond2

    (3.0acres)

    PolishingPond3

    (4.9acres)

    Air

    Blower

    Bldg.

    Cl2

    Contact

    Cl2

    Chlorine

    Mix

    PondEffluent

    SulfurDioxide

    Nitrification

    MBBR

    Biosolids

    Storage

    Digested

    Biosolidsfrom

    Digester3

    Decantto

    Equalization

    Basin1

    Land

    Applied

    Biosolids

    Screw

    Pumps

    BarScreens

    Influent

    Decantfrom

    BiosolidsStorage

    DigestedBiosolids

    toBiosolids

    Storage

    F

    igure1.

    Moorhead,

    MN,

    WWTFFl

    owDiagram.

    5

  • 7/30/2019 Seth Lynne Wei Tech Report

    11/39

    Figure2.MoorheadMBBRSchematic.

    6

  • 7/30/2019 Seth Lynne Wei Tech Report

    12/39

    Table2.MBBRDesignCriteria.

    Parameter

    Initial

    Annual

    Average

    Initial

    Maximum

    Month

    2020

    Annual

    Average

    2020

    Maximum

    Month

    BasinDimensions(LxWxD),m(ft) 42x24.4x2.9(138x80x9.5)

    BasinVolume,m3(ft3) 2,970(104,880)

    MediaVolume,m3(ft3) 950

    (33,560)

    950

    (33,560)

    1,604

    (57,000)

    1,604

    (57,000)

    MediaVolume,%fill 32 32 54 54

    Flow,m3/d(mgd1) 18,173

    (4.8)

    24,610

    (6.5)

    22,710

    (6.0)

    34,075

    (9.0)

    InfluentNH3N,mg/L 17 17 17 17

    InfluentNH3N,kg/d(lb/day) 308

    (680)

    417

    (920)

    385

    (850)

    578

    (1,275)

    InfluentNH3N,g/m2/d 0.84 1.13 0.62 0.93

    Predictedremoval,% 64.7 74.1 71.8 81.2

    EffluentNH3N,mg/L 6.0 4.4 4.8 3.2

    EffluentNH3N,kg/d(lb/day) 108

    (238)

    108

    (238)

    108

    (238)

    108

    (238)

    Oxygenrequired,kg/d(lb/day) 1,185

    (2,614)

    1,428

    (3,149)

    1,363

    (3,006)

    2,156

    (4,755)

    Airforoxygenrequirements,standard

    m3/min(scfm2)

    125

    (4,418)

    151

    (5,322)

    144

    (5,082)

    228

    (8,038)1mgd=Milliongallonsperday.

    2scfm=Standardcubicfeetperminute.

    PreviousMBBRAnalysis

    ThefullscaleMBBRprocesswasplacedintooperationonApril1,2003. Atthetime,effluent

    flowfromPolishingPondNo.1wasdirectedthroughtheMBBRbasin. Noseedbiomasswasused

    fortheMBBRstartup(Zimmermanetal.,2004). WhenMBBReffluentNH3Nconcentrationsfell

    to6.0mg/Lorless,thestartupphasewasconsideredcomplete. Influentandeffluentammonia

    nitrogen,asmeasuredacrosstheMBBRbasinsincestartupin2003,areshowninFigures3and4,

    respectively. Designandaveragemonthlyconcentrationsaswellasmaximumandminimum

    monthlyvalues(representedbyupperandlowerbars)arealsoshowninthefigures.

    AsevidentbytheeffluentNH3Ndata,thesystemrequiredapproximatelytwomonthsto

    developastablenitrifyingbiomass(Zimmermanetal.,2004). Althoughtheinfluent

    concentrationshavebeenvariableandconsistentlyexceededthedesignvalue(17mg/L),the

    systemhasachievedthedesigneffluentconcentrationduringthemonthswhenpermitlimitsare

    applicable. Duringsystemstartup,Zimmermanetal.(2004)notedthatthevariabilitywasthe

    resultofatleasttwofactors:occasionalwetweatherflowwhichdilutesinfluentNH3N

    concentrationsandoperationalproceduresforreturningsupernatant(typicalNH3N

    concentrationsbetween1,500and2,000mg/L)fromthebiosolidsstoragefacilitytotheWWTF

    7

  • 7/30/2019 Seth Lynne Wei Tech Report

    13/39

    headworks(refertoFigure1). Performancewasonlyslightlyreducedduringcolderweather

    monthswhenpermitlimitswerenotineffect(Zimmermanetal.,2004).

    0

    10

    20

    30

    40

    50

    60

    70

    80

    Apr0

    3

    May

    03

    Jun0

    3Jul0

    3

    Aug03

    Sep03

    Oct0

    3

    Nov0

    3

    Dec03Jan

    04

    Feb0

    4

    Mar04

    Apr0

    4

    May

    04

    Jun0

    4Jul0

    4

    Aug04

    Sep04

    Oct0

    4

    Nov0

    4

    Dec04Jan

    05

    Feb0

    5

    Mar05

    Apr0

    5

    InfluentNH3

    N(mg/L)

    Avg Design

    Figure3.FullScaleMBBRInfluentNH3N.

    0

    10

    20

    30

    40

    50

    60

    70

    Apr0

    3

    May

    03

    Jun0

    3Jul0

    3

    Aug03

    Sep03

    Oct0

    3

    Nov0

    3

    Dec03Jan

    04

    Feb0

    4

    Mar04

    Apr0

    4

    May

    04

    Jun0

    4Jul0

    4

    Aug04

    Sep04

    Oct0

    4

    Nov0

    4

    Dec04Jan

    05

    Feb0

    5

    Mar05

    Apr0

    5

    EffluentNH3

    N(mg/L)

    Avg Design

    Figure4.FullScaleMBBREffluentNH3N.

    8

  • 7/30/2019 Seth Lynne Wei Tech Report

    14/39

    Basedupontheresultsofthepilotstudy,Zimmerman(2003)andhiscoinvestigators

    suggestedthenitrificationrateoftheMBBRcouldbesimulatedasanempiricalfirstorderdecay

    modelasshownbelow.

    )1(maxkL

    L eRR

    = , (23)where RL=NH3NremovalrateatloadingL,g/m

    2/d

    L=NH3Nloading,g/m2/d

    Rmax=maximumNH3Nremovalrate,g/m2/d

    k=removalratecoefficient,(g/m2/d)1

    Basedonthedatagatheredfromthepilotstudy,Rmaxandkwerefoundtobe1.30g/m2/dand

    0.93(g/m2/d)1,respectively. TheequationwasderivedfromaverageNH3Nloadingsrangingfrom

    0.45to1.58g/m2/dandforaverageeffluenttemperaturesrangingfrom15to21C. Forthefull

    scalesystem,Zimmermanetal.,(2004)dividedtheresultsintotwotemperatureregimes,onefor

    coldweatherperiods(11to14C)andoneforwarmweatherperiods(17to21C). TheresultsofthemodelaredisplayedinFigure5.

    TheempiricalrelationshipinEquation(23)impliesnitrificationintheMBBRisprimarily

    dependentuponNH3Nloading. However,anumberofotherparameterswererecognizedas

    affectingtheprocess. FurtherresearchofthenewMBBRprocesswasrecommendedtoresolve

    unansweredquestionsregardingthenitrificationrateanditsrelationshiptoammonia

    concentration,dissolvedoxygenconcentration,basinconfiguration,anddetentiontime,aswellas

    influentloading(Zimmermanetal.,2004). Theseparameters,aswellasbasinalkalinity,

    temperature,nitrificationkinetics,biomasscharacteristics,andsystemhydraulicswillbeexplored

    astheyrelatetothenitrificationefficiencyoftheMBBR.Developingdefinitiverelationships

    requireevaluationwheretheseparametersaremaintainedasindependentvariables.

    0.00

    0.20

    0.40

    0.60

    0.80

    1.00

    1.20

    1.40

    0.00 0.20 0.40 0.60 0.80 1.00 1.20 1.40

    NH3NLoading(g/m2/d)

    NH3

    NRemoval(g/m2/d)

    Pilot(1521C) Actual(1721C) Actual(1114 C)

    100%Removal 80%Removal 60%Removal

    o o o

    Figure5.PreviousFullScaleSimulation.

    9

  • 7/30/2019 Seth Lynne Wei Tech Report

    15/39

    INVESTIGATIVEAPPROACH

    AdescriptionofthemonitoringprogramdevelopedtostudythefullscaleMBBRsystemis

    presented. Testingproceduresaswellashydraulicandkineticexperimentaldesignsandmethods

    aredetailedwithin.

    ExperimentalDesign

    ToeffectivelymonitortheMBBRbasinandestablishanunderstandingofthesystem,a

    detailedmonitoringplanwasdevelopedandmaintained. Thefullscalesystemwascontinuously

    monitoredsinceoperationalstartupthroughthepresenttime. Effluentflowrate,aswellas

    airflowandairpressuretothebasinhasbeencontinuouslymonitored. Regularmonitoringhas

    beencarriedoutforMBBRtemperature,DO,pH,CBOD5,solubleCBOD5(SBOD5),totalsuspended

    solids(TSS),totalKjeldahlnitrogen(TKN),NH3N,nitritenitrogen(NO2N),nitratenitrogen(NO3

    N),andalkalinity. Periodicgrabsampleanalysis,conductedfivedaysperweek,hasbeenutilized

    fortemperature,DO,andpH. Allotherparameterswerebasedon24hourflowcomposite

    samples

    and

    were

    performed

    at

    a

    rate

    varying

    from

    once

    per

    week

    to

    four

    times

    per

    week.

    ToinvestigatethehydrauliccharacteristicsoftheMBBRbasin,severaldyetestswere

    performed. Byanalyzingthetracer(dye)concentrationpresentinthebasineffluentandfitting

    theoreticaltraceroutputresponsecurvestothefieldmeasuredeffluentdyedata,thehydraulic

    performanceoftheMBBRcanbedetermined. TheMBBRbasinwasassumedtoperform

    hydraulicallyasaseriesofcontinuousflowstirredtankreactors(CFSTR).

    Inadditiontothetracerstudies,NH3Ndistributionmonitoringthroughoutthebasinwas

    conductedtofurtherevaluatethehydrauliccharacteristicsoftheMBBR. Todetermineifthe

    MBBRbasinwasexperiencingzonesofpoormixingorshortcircuiting,NH3Nconcentrationswere

    examinedacrossandthroughoutthebasin.

    ThenitrificationratekineticsoftheMBBRbasinwereevaluatedbyconductingseveralbench

    scalebatchanalyses. Eachkineticexperimentwasdesignedtorepresentthenitrificationprocess

    occurringwithinthefullscaleMBBR. NH3Noxidationwasanalyzedasafunctionofmedia

    specificsurfaceareawhilekeepingallothervariables(i.e.,temperatureandDO)relatively

    constant. ByfittingtheNH3Nreductioninthebenchscaletests,anappropriatemodelforthe

    nitrificationkineticsoccurringinthefullscaleMBBRcanbeselected.

    MaterialsandMethods

    ThesampleanalysesofMBBRtemperature,DO,pH,CBOD5,SBOD5,TSS,TKN,NH3N,NO2N,

    NO3N,andalkalinitywereallperformedattheMoorheadWWTFlaboratory. Allanalyseswere

    conductedaccordingtotheStandardMethodsfortheExaminationofWaterandWastewater

    (APHAetal.,1998). Whereapplicable,proceduresestablishedforlaboratorycertificationthrough

    theMinnesotaDepartmentofHealth(1990)werealsoutilized. Qualityassuranceandquality

    controlprocedureswereusedduringallanalysesandincludedatleastonereagentblankper

    analysisset,atleastoneduplicateanalysispersetwithatleasttenpercentofallsamplesbeing

    duplicateanalyses,andatleastonespikedsampleanalysispersetwithatleasttenpercentofall

    samplesbeingspikedsampleanalyses.

    Atotaloffourtracer(dye)studieswereconductedtoevaluatethehydrauliccharacteristicsof

    theMBBRbasin. Fourdifferentinfluentflowratesandtwodifferentair(mixing)flowrateswere

    utilizedtoevaluatethehydraulicimpactsassociatedwithdifferentflowandmixingrates. The

    10

  • 7/30/2019 Seth Lynne Wei Tech Report

    16/39

    tracerevaluationswereperformedusingapulseinputof208L(55gallons)ofRhodamineWTdye

    (Norlab,Inc.,Amherst,Ohio). Dyewasaddedatasinglepointneartheinfluentpipeinthreeof

    thetests. Inafourthtest,designedtoevaluateinfluentflowdistribution,influentflowwassplit,

    aswellasdye,andinjectedintothebasinattwopoints,oneattheinfluentpipeandonedirectly

    oppositetheinfluentpipe. Dyewasaddedduringnormaloperationwithcontinuousflowthrough

    theMBBRbasinforallfourtests. Aftertheadditionofdye,effluentsampleswerecollectedfrom

    theMBBReffluentcontrolstructureatselectedtimeintervals. Theabsorbanceoffilteredeffluent

    sampleswasmeasuredatawavelengthof555.6nmonaspectrophotometer(HachCompany,

    Loveland,Colorado). Thedyeconcentrationwasdeterminedbaseduponacalibrationcurvefor

    dyeconcentrationversusabsorbance(alsoatawavelengthof555.6nm)developedfromknown

    dilutionsofdyeinfilteredPolishingPondNo.1effluent. Table3specifiesthesetupforeachof

    thefourtracerstudies. Influentflowisreportedforthedurationofeachtestperiod.

    Table3.TracerEvaluationSetup.

    TestNo. InfluentFlowRate

    m3/d(mgd1)

    Airflow

    standardm3/min(scfm2)

    InjectionPoint

    1

    16,656

    (4.40)

    127

    (4,500)

    Influent

    pipe

    2 17,942(4.74) 127(4,500) Influentpipe&

    directlyopposite

    3 20,214(5.34) 212(7,500) Influentpipe

    4 24,984(6.60) 127(4,500) Influentpipe1mgd=Milliongallonsperday.

    2scfm=Standardcubicfeetperminute.

    AnalysisofNH3Ndistributionwithinthebasinwasconductedtofurtherexaminethehydraulic

    characteristicsoftheMBBRsystem. Grabsampleswerecollectedandanalyzedfromthebasinat

    tendifferentsamplelocationsaroundtheperimeter. RefertoFigure2forsamplelocationsand

    identifications. TheproceduresforthegrabsampleanalysesfollowedandwereconductedaccordingtotheprovisionsoftheStandardMethodsfortheExaminationofWaterand

    Wastewater(APHAetal.,1998).

    FromDecember2003throughMay2005,thirteenlaboratorybenchscalebatchtestswere

    conductedtoevaluatethenitrificationratekineticsoftheMBBRprocess. Samplesofmediawere

    collecteddirectlyfromthefullscaleMBBRtoensureanestablishedpopulationofnitrifying

    biomass. Themediawasplacedin15Liter(4gallon)benchscalebatchreactorscontainingnon

    nitrifiedeffluentfromPolishingPondNo.1. Themediafillfractioninthevarioustestsranged

    fromlessthanonepercent(

  • 7/30/2019 Seth Lynne Wei Tech Report

    17/39

    RESULTSANDMODELDEVELOPMENT

    Monitoringandexperimentalresultsareprovidedwithintoillustratethedesignand

    operationalparametersidentifiedasaffectingtheperformanceofthefullscaleMBBRsystem.

    Fullscalemonitoring,basinhydraulicanalysis,andnitrificationkinetictestingresultsand

    discussionsareincluded.

    AnalysisoftheFullScaleMBBRMonitoringData

    TheaveragemonthlyinfluentandeffluentNH3NconcentrationsfromApril2003toApril2005

    areshowninFigure6. NH3NremovalefficiencythroughtheMBBRbasinisillustratedinthe

    figure. AsevidentbytheremovaldatainFigure6,theefficiencyofnitrificationintheMBBRwas

    reducedduringperiods(JanuarytoMarch2005)ofhighinfluentTSSandCBOD5concentrations.

    WhentheCBOD5concentrationswereelevatedintheMBBRduringtheseperiods(>20mg/L),

    competitionfromheterotrophicbacteriareducedthegrowthandefficiencyofnitrifying

    microorganisms. TheperiodsofelevatedTSSandCBOD5wereassociatedwithpoorsettlinginthe

    finalclarifiersandactivatedsludgesystemupsets.AsindicatedbythedataintheFigure6,theinfluentNH3NconcentrationstotheMBBRbasin

    commonlyexceededthedesigninfluentconcentrationof17.0mg/L. Despitethehigherthan

    expectedinfluentconcentrations,theaverageeffluentNH3Nwaswellbelowthe8.0mg/Llimit

    permittedduringsummermonths. Table4providesaseasonalandoverallcomparisonofthe

    MBBRbasinforthefirst24monthsofoperation.

    TheNH3NremovalacrosstheMBBRbasinwasreducedduringcoldweathermonthswhen

    comparedtowarmermonths. Duringthecoldweathermonths,theaverageinfluentNH3N

    concentrationswereslightlyelevated,howeverastheaverageloadingremainedrelatively

    unchangedduringcoldandwarmweathermonths,thedataappearedtoindicatetemperature

    hadaneffectontheperformanceoftheMBBR.

    Theoperationalproceduresandschedulingofbiosolidssupernatantreturnflowhasbeen

    erratic. ThereturnflowofthesupernatanttotheWWTFheadworksappearedtodirectlyaffect

    theperformanceoftheMBBRbasinastheNH3Nconcentrationofthesupernatantwastypically

    between1,500and2,000mg/L.

    12

  • 7/30/2019 Seth Lynne Wei Tech Report

    18/39

    0

    5

    10

    15

    20

    25

    30

    35

    Apr03M

    ay03Jun

    03Jul03Au

    g03Se

    p03Oct03No

    v03De

    c03Jan04Feb

    04M

    ar04Apr04M

    ay04Jun

    04Jul04Au

    g04Se

    p04Oct04No

    v04De

    c04Jan05Feb

    05M

    ar05Apr05

    NH3

    N

    (mg/L)

    0

    10

    20

    30

    40

    50

    6070

    80

    90

    100

    NH3

    N

    Removal(%

    )

    InfluentNH3N EffluentNH3N

    EffluentNH3NSummerLimit(8mg/L) InfluentNH3NDesign(17mg/L)

    NH3NRemoval Figure6.MBBRNH3NMonthlyAverageData.

    Table4.SeasonalMBBRPerformance.

    Parameter JuneSeptember

    (warmweather)

    DecemberMarch

    (coldweather)

    Overall

    (24months)

    EffluentTemperature,C 18.7 12.0 15.3

    InfluentNH3N,mg/L 20.8 24.4 22.3

    NH3NLoading,g/m2/d 0.98 0.96 0.97

    NH3NRemoval,% 88.0 63.6 75.2

    EffluentNH3N,mg/L 2.75 10.0 6.84

    AsillustratedbythedatainFigure7,periodsofsupernatantreturnalsocorrelatedwithperiodsofhighinfluentNH3Nconcentrations. Theinformationcontainedinthefollowingfigures

    soughttoprovideaclearerunderstandingoftheimpactofsupernatantreturnonthe

    performanceoftheMBBRsystem. Figure8showedthetotalMBBRbasinNH3Nloading,the

    portionoftheNH3Nloadingcontributedbythesupernatant,influentandeffluentNH3N,and

    headworkssupernatantreturnflowdatafortheperiodofJanuarytoMarch2004. Asevidentby

    thedatainthefigure,thesupernatantloadrepresentedasignificantportionofthetotalMBBR

    NH3Nloading.

    13

  • 7/30/2019 Seth Lynne Wei Tech Report

    19/39

    0

    10

    20

    30

    40

    50

    60

    70

    80

    A

    pr03

    M

    ay03

    Jun

    03Jul03

    Aug

    03

    Sep

    03

    O

    ct03

    Nov

    03

    D

    ec03Jan

    04

    Feb

    04

    M

    ar04

    A

    pr04

    M

    ay04

    Jun

    04Jul0

    4

    Aug

    04

    Sep

    04

    O

    ct04

    Nov

    04

    D

    ec04Jan

    05

    Feb

    05

    M

    ar05

    A

    pr05

    NH3N(mg/L)

    5

    10

    15

    20

    25

    30

    35

    40

    45

    SupernateFlow(GP

    M)

    InfluentNH3N EffluentNH3N SupernateFlow

    Figure7.SupernatantReturnFlowandMBBRPerformance.AtthebeginningofJanuary2004,theCityofMoorheadWWTFwasreturningbiosolids

    supernatanttotheheadworksatarateofapproximately26gallonsperminute(GPM).

    Coincidently,theNH3NloadingandinfluentandeffluentconcentrationsintheMBBRbasinwere

    abovethepreviouslyreportedaveragevalues(approximately0.97g/m2/d,22mg/L,and7.0mg/L,

    respectively).

    However,whentheWWTFceasedsupernatantreturnflowonJanuary9,2004theloadingas

    wellasinfluentandeffluentNH3NconcentrationsintheMBBRreturnedtoaveragelevels.

    January2004wasalso(aspreviouslyreported),onaverage,thecoldestmonthsincetheoperation

    oftheMBBRbegan,indicatingthebasinisimpactedmoreprofoundlybysupernatantreturnthan

    temperature. InFebruary2004,supernatantwasagainflowingandtheMBBRbasinNH3Nloading

    andconcentrationsrespondedbyincreasingaboveaveragelevels. Theflowofsupernatantwas

    heldrelativelyconstantduringthemiddleofFebruary2004andtheMBBRbasinappearedto

    acclimateastheeffluentNH3Nconcentrationsplateauandeventuallydecline. However,as

    evidentbythedata,whensupernatantflowwasincreasedthroughoutMarch2004theNH3N

    againascendedbeyondaverageconditions. TheMBBRbasinNH3Nloadingandconcentrations

    respondedalmostimmediatelyoncethesupernatantreturnflowwasreducedonMarch21,2004.

    Becauseofthelowgrowthrateofnitrifyingorganisms,theMBBRisnotabletorespond

    immediatelytotheadditionalNH3Nloadingassociatedwiththesupernatantreturn. However,

    followingperiodsofconsistent,steadyreturnflowrates,itappearsthenitrifiersareabletoadapttotheincreasedNH3Nconditions. Itshouldbenoted,theMBBRcannotachievethesame

    effluentNH3Nconcentrationsatlowerloadings,whencomparedtohigherloadings,duetolower

    nitrifiergrowthratesatreducedloadings(degaardetal.,1994).Whensupernatantreturnwas

    occurringduringthesixmonthperiodin2004,theflow,NH3Nloading,andNH3Ninfluent

    concentrationsforboththeMBBRbasinandthesupernatantareshowninTable5.

    14

  • 7/30/2019 Seth Lynne Wei Tech Report

    20/39

    0

    5

    10

    15

    20

    25

    30

    35

    40

    45

    50

    1Jan0

    4

    8Jan0

    4

    15Jan

    04

    22Jan

    04

    29Jan

    04

    5Feb

    04

    12Feb

    04

    19Feb

    04

    26Feb

    04

    4Mar0

    4

    11Ma

    r04

    18Ma

    r04

    25Ma

    r04

    NH3

    N(mg/L)and

    SupernateFlow(G

    PM)

    0.0

    0.2

    0.4

    0.6

    0.8

    1.0

    1.2

    1.4

    1.6

    1.8

    2.0

    NH3NLoading(g/m

    2/d)

    SupernateFlowrate InfluentNH3N

    EffluentNH3N TotalMBBRNH3NLoading

    SupernatantNH3NLoading

    Figure8.JanuaryMarch2004SupernatantFlowandMBBRResponse.

    Table5.MBBRConditionsDuringSupernatantReturn.

    Parameter

    TotalMBBR

    Conditions

    Supernatant

    Conditions

    Flow

    Minimum

    Average

    Maximum

    3.53mgd1

    4.22mgd

    8.22mgd

    1.00gpm2

    22.5gpm

    41.0gpm

    InfluentNH3N

    Minimum

    Average

    Maximum

    13.4mg/L

    27.1mg/L

    42.9mg/L

    1,254mg/L

    1,813mg/L

    2,149mg/L

    NH3NLoading

    Minimum

    Average

    Maximum

    0.57g/m2/d

    1.18g/m2/d

    1.98g/m2/d

    0.13g/m2/d

    0.78g/m2/d

    1.30g/m2/d1mgd=Milliongallonsperday.

    2gpm=Gallonsperminute.

    Asevidentbytheabovedata,timesofsupernatantreturncorrelatedwithperiodsofNH3N

    loadingthatexceededtheMBBRdesignmaximumvalueof1.13g/m2/d. Theimpactsfromthe

    additionalNH3Nloadingassociatedwiththesupernatantreturnwereintentionallyexcluded

    duringthedesignoftheMBBR. Duringmonthswhenpermitlimitsareenforced,theWWTF

    establishedoperationalprocedurestoceasesupernatantreturnactivitiestoavoidNH3N

    15

  • 7/30/2019 Seth Lynne Wei Tech Report

    21/39

    dischargeviolations. Althoughthereturnofsupernatantistemporarilyhaltedwhenpermit

    limitationsareenforced,toimprovetheoperationalstabilityoftheMBBRandreducetheoverall

    NH3NconcentrationsdischargedtotheRedRiver,theMoorheadWWTFshouldexploreequalized

    returnflowofsupernatant.

    TheMoorheadMBBRbasinwasmonitoredundervariousflowandloadingconditionstogain

    animprovedunderstandingofthesystemandtoevaluatethecurrentoperationalpractices. Flow

    throughtheMBBRhadvariedinresponsetowetweatherconditions,butduringtheremainderof

    thetwentyfourmonthperiodsinceoperationwasinitiated,theflowremainedrelativelystable

    andwellwithinthedesignconditions. TheMBBRdemonstratedthecriteriaofaneffectivetertiary

    nitrifyingsystemeventhoughtheaverageinfluentloading(0.97g/m2/d)hadbeenconsistently

    greaterthanaveragedesignloading(0.84g/m2/d). DespitethehigherthananticipatedNH3N

    loadings,theNH3Nremovalefficiencyofthebasinwasonaverage75.2%;morethan10%higher

    thanthepredictedrate(refertoTable2).

    Sinceoperationbegan,theoverallperformanceoftheMBBRbasinhadbeenvariable. Colder

    temperaturesappearedtoreducethenitrificationrateinthebasin. Althoughtheremoval

    efficiencywasreducedincoldweathermonthstheMBBRbasinconsistentlyremovedmorethan

    64%oftheinfluentNH3Nreceivedduringthecolderperiods. Therefore,thesystemhas

    demonstratedtheabilitytooxidizeammoniaevenatlowtemperatures. BecausethesystemrarelyexperiencedpHshifts,thenitrifyingorganismswithintheMBBRappearedtoacclimateto

    thelowerthanoptimumpHcondition.

    InregardtothefullscaleMBBRbasinmonitoring,theoperationalreturnofsupernatantfrom

    thebiosolidsstoragefacilitytotheheadworksoftheWWTFhasbeenshowntohavethegreatest

    impactontheoverallperformanceoftheMBBRbasin. Asevidentbythedata,thesupernatant

    loadrepresentsasignificantportionofthetotalMBBRNH3Nloading. Becauseofthelowgrowth

    rateofnitrifyingbacteria,theMBBRbasinwasunabletorespondimmediatelytotheelevated

    NH3Nloadingassociatedwiththesupernatantreturnflow. Becauseofthevariabilityininfluent

    NH3Nconcentrationsandloadingsduetothereturnofsupernatant,equalizedandregularly

    scheduledsupernatantflowshouldbeimplementedattheMoorheadWWTF. Theproposed

    actionwill

    result

    in

    more

    consistent

    loading

    to

    the

    basin

    and

    would

    allow

    for

    greater

    treatment

    efficiencyacrosstheMBBR,duetotheobservedadaptabilityofnitrifyingbacteriainthesystem.

    BecauseequalizedreturnflowwillonlystabilizetheNH3NloadingtotheMBBR,sidestream

    treatmentofthesupernatantcouldalsobeexploredtoreducethepotentialforoverloadingthe

    system. SidestreamtreatmentwillreducetheadditionalNH3Nloadingassociatedwiththe

    supernatant;howevertheincreasedcoststotreatthesupernatantseparatelymayprohibitthis

    action. Theadditionofmediatothebasincouldalsobeexplored,astheadditionalsurfacearea

    willallowforgreaterbiomasswithintheMBBR.

    HydraulicAnalysis

    To

    examine

    the

    hydraulic

    characteristics

    and

    select

    an

    appropriate

    hydraulic

    model

    to

    simulate

    thefullscaleMBBRsystem,tracerstudieswereperformed. Additionally,NH3Ndistributioninthe

    MBBRwascarriedouttoevaluateflowthroughthebasinandevaluatethepotentialforbasin

    shortcircuitingand/ordeadzones.

    16

  • 7/30/2019 Seth Lynne Wei Tech Report

    22/39

    TracerStudies

    Formodelingpurposes,anunderstandingofflowthroughtheMBBRbasinwasnecessaryto

    determinehowthereactorbehaveshydraulically. Toevaluatethehydrauliccharacteristicsofthe

    MBBRbasin,aseriesofpulseinputtracerstudieswereperformed. Atotaloffourtracerstudies

    wereconductedatfourinfluentflowratesandtwodifferentair(mixing)flowrates. Variousflow

    rates,measuredforthedurationofeachtest,wereutilizedtoevaluatethechangeinbasin

    hydrauliccharacteristicsassociatedwithflow. Increasedmixingwasalsoexaminedtodetermine

    ifelevatedaeration(mixing)reducedthepotentialfordeadzoneswithintheMBBR. Inonetest,

    flowwasequallysplitbetweenopposingendsoftheinletsideoftheMBBRbasintoevaluatethe

    impactsassociatedwithimprovedinfluentflowdistribution. Theflowconditionsforallfourtracer

    analysesaredisplayedinTable6.

    Table6.MBBRFlowConditionsDuringTracerAnalysis.

    Test

    No. OperationalConditions

    Air(Mixing)

    Flow(scfm1)

    Influent

    Flow(mgd2)

    1 Averagedailyflow,normalmixing 4,500 4.402 Splitinfluentflow,normalmixing 4,500 4.74

    3 Elevatedaeration(mixing)rate 7,500 5.34

    4 Peakflow,normalmixing 4,500 6.601scfm=Standardcubicfeetperminute.

    2mgd=Milliongallonsperday.

    Basedupontheeffluenttracerdataobtainedfromthestudies,thehydrauliccharacteristicsof

    theMBBRbasinwereevaluatedbyassumingthesystemperformedasanumberofequalvolume,

    continuousflowstirredtankreactors(CFSTRs)inseries. Thetrendingoftracerdataindicatedthe

    systembehavesmoresimilartoaseriesofCFSTRsasopposedtoasingleCFSTRoraplugflow

    reactor. TosimulatethetracerresponsethroughtheseriesofCFSTRs,thefollowingnonreactive

    pulseinputtracerequationwasutilizedassuggestedbyTchobanoglousandSchroeder(1987).

    = n

    tn

    oT e

    n

    t

    n

    CC /

    1

    /)!1(

    , (42)

    where CT=theoreticaleffluentdyeconcentrationattimet,mL/L

    Co=initialdyeconcentration,mL/L

    t=time,min

    n=numberofCFSTRsinseries

    =

    hydraulic

    detention

    time,

    min

    =totalreactorvolume/flowrate

    UsingEquation(42),theactualeffluenttracerresponsecurvewasstatisticallyfittoa

    theoreticaleffluenttracerresponsecurvebyadjustingtheeffectivebasinvolumetominimizethe

    errorbetweentheactualandtheoreticalcurves,utilizingthemethodofleastsquares. The

    effectivebasinvolumedoesnotcontainthereactorvolumeassociatedwithstagnantflow,or

    deadzones(i.e.,effectivevolume=totalvolumestagnantvolume). Asaresult,thepotentialfor

    17

  • 7/30/2019 Seth Lynne Wei Tech Report

    23/39

    flowtoshortcircuitorbypasstheMBBRbasinisrepresentedbythedeadvolumeofthebasinfor

    eachflowrateandmixingcondition.

    TheresultofatypicaltracerstudywaspresentedinFigure9.Theactualfullscalefield

    measuredbasineffluentdyeconcentrations,theoreticaltracerresponsecurvesfor2and3ideal

    CFSTRs,andbestfittracerresponsecurveswithassumedeffectivevolumeswereincludedinthe

    figure. Table7summarizestheresultsofthefourfullscaletracerstudies.

    0.00

    0 50 100 150 200 250 300Time(min)

    0.01

    0.02

    0.03

    0.04

    0.05

    0.06

    0.07

    0.08

    0.09

    0.10

    EffluentDyeConcentration(mL/L)

    Actual 2CFSTRs 2CFSTRs,92%effectivevolume 3CFSTRs

    Figure9.TracerTestNo.4Response(at6.60MGDand4,500scfm).

    Table7.FullScaleTracerAnalysisSummary.

    Test

    No.

    Influent

    Flow

    Condition

    Air

    (Mixing)

    Flow

    (scfm1)

    Influent

    Flow

    (mgd2)

    Theoretical

    HDT3

    (hours)

    Effective

    Volume

    (%)

    Effective

    HDT3

    (hours)

    R

    1 Normaloperation 4,500 4.40 4.3 76 3.3 0.86

    2 Splitflow 4,500 4.74 4.5 85 3.8 0.72

    3 Normaloperation 7,500 5.34 3.5 81 2.9 0.91

    4 Normaloperation 4,500 6.60 2.8 92 2.6 0.871scfm=Standardcubicfeetperminute.

    2mgd=Milliongallonsperday.

    3HDT=Hydraulicdetentiontime.

    TheresultsofthetracerstudiesindicatedtheMBBRbasincouldbehydraulicallymodeledas

    twoequalvolumeCFSTRsinserieswithaneffectivevolumelessthanthefullbasinvolume. The

    traceranalysisimpliedtheMBBRbasinwassubjecttosomedegreeofshortcircuitingbetween

    18

  • 7/30/2019 Seth Lynne Wei Tech Report

    24/39

    theinfluentpipeandeffluentcontrolstructure. Tofurtherillustratethedegreeofshortcircuiting

    asitrelatestoflowthroughtheMBBR,thebasineffectivevolumeasafunctionofflowratewas

    presentedinFigure10. Asevidentbytheresults,alinearrelationshipexistedbetweenbasinflow

    andeffectivevolumefornormaloperationwithrespecttoinfluentflowdistribution. Thesplit

    flowconditionwasperformedtoevaluatethehydraulicimpactsassociatedwithimproved

    influentflowdistribution,andtherefore,wasexcludedfromtherelationshipcalculation.

    y=0.0723x+0.435

    R2=0.9851

    0%

    10%

    20%

    30%40%

    50%

    60%

    70%

    80%

    90%

    100%

    4.0 4.5 5.0 5.5 6.0 6.5

    Flowrate(MGD)

    Effective

    MBBRVolume(%)

    7.0

    NormalOperation SplitInfluent Increased(Air)Mixing

    Figure10.EffectiveVolumeasaFunctionofInfluentFlow.Theshortcircuitingofinfluentflowtotheeffluentstructureappearedtoberelatedtotheinlet

    pipingarrangementwhichdischargestheinfluentflowinadirectiontransversetoflowthrough

    theMBBRbasin. AsapparentbythedatainFigure10,higherflowrates,withgreater

    momentums,distributedinfluentflowsfurtheracrosstheinfluentendofthebasin(Figure2)

    resultinginbetterdistributionandanincreasedeffectivebasinvolume. Enhancedmixing

    intensityintheMBBRbyincreasedairflowdidnotappeartoimprovethebasineffectivevolume,

    asshownbytheincreasedmixingdatumpointinFigure10. Bysplittingtheinfluentflow

    betweenthetwoopposingsidesattheinfluentendoftheMBBRbasin,thedataindicatedan

    increaseineffectivevolumeduetoimprovedinfluentflowdistribution,asevidentbythesplit

    influentdatumpointinFigure10.

    NH3NDistributionintheMBBR

    TofurtherexaminethehydrauliccharacteristicsoftheMBBR,NH3Ndistributiontestingwas

    performed. NH3Nconcentrationswereexaminedacrossandthroughoutthebasintodetermine

    iftheMBBRwasexperiencingzonesofpoormixingorshortcircuiting. TheNH3Ndistribution

    analyseswereperformedatthreeseparateflowratesandtwodifferentaeration(mixing)rates.

    Theelevatedmixingscenariowasperformedtodetermineifincreasedaerationloweredthe

    19

  • 7/30/2019 Seth Lynne Wei Tech Report

    25/39

    potentialforzonesofpoormixingwithintheMBBR. ConditionsintheMBBRbasinduringeachof

    thethreeNH3NdistributiontestsarelistedinTable8.

    Table8.MBBRConditionsDuringNH3NDistributionAnalysis.

    Test

    No.

    OperationalConditions

    Air(Mixing)

    Flow(scfm1)

    Influent

    Flow(mgd2)

    Influent

    NH3N

    (mg/L)

    Basin

    Temp.(C)

    1 Averagedailyflow,normalmixing 4,500 4.40 13.9 14.2

    2 Elevatedaeration(mixing) rate 7,500 5.34 15.5 16.9

    3 Peakflow,normalmixing 4,500 6.60 15.5 16.91scfm=Standardcubicfeetperminute.

    2mgd=Milliongallonsperday.

    OneoftheNH3NdistributionresultsaredisplayedinFigure11. Theinletpipeislocatedat

    SamplePoint2,andtheeffluentstructureispositionedadjacenttoSamplePoint6inthe

    followingfigure. ThecorrespondingsamplelocationsarealsoidentifiedinFigure2.

    EastMiddle

    West

    0

    1

    2

    3

    4

    5

    6

    7

    8

    NH3N(mg/L)

    2

    3

    4

    5

    6

    1

    10

    98

    7

    Figure11.NH3NDistributionNo.1(at4.40MGDand4,500scfm).

    AllofthedistributiondataindicatedhigherNH3Nconcentrationsatornearthebasininlet

    (SamplePoint2). DuringnormalMBBRbasinoperationatlowerinfluentflowrates,asteepNH3N

    concentrationgradientexistedattheinletendtransversetotheflowthroughtheMBBR. An

    increaseinaeration(mixing)rateoranincreaseininfluentflowhadthepropensitytomovethe

    highestNH3Nconcentrationtowardthemiddleoftheinfluentendindicatingaslight

    improvementwithregardtoinfluentdistribution. Forallthreescenarios,aconsiderable

    differenceinNH3Nconcentrationsexistedbetweenpairedsamplepointslocatedalongthe

    longitudinalsidesoftheMBBRbasin. NH3Nconcentrations,alongthelongitudinalsideofthe

    basincontainingtheinletpipe,weremeasurablygreaterthanthosealongtheopposite(east)side

    ofthebasin. Thetrendconfirmedinfluentflowshortcircuitedalongtheinletsideofthebasin

    andcontributedtoanincreasedeffluentNH3Nconcentration.

    20

  • 7/30/2019 Seth Lynne Wei Tech Report

    26/39

    HydraulicAnalysisDiscussion

    ToevaluatethedesignandoperationalparametersofthefullscaleMBBR,NH3Ndistribution

    resultswereusedincombinationwiththehydraulictracerevaluations. Tracerstudiesindicated

    theMBBRsystemcanbesimulatedasanumberofCFSTRsinserieswithaneffectivevolumeless

    than

    that

    of

    the

    total

    basin

    volume.

    Recognizing

    the

    influent

    piping

    arrangement

    to

    the

    MBBR

    basindischargesflowinadirectiontransversetotheflowofwastewaterthroughthebasin,the

    NH3Ndistributionresultsindicatedhigherflowrates,withelevatedvelocitiesandmomentum,

    drovetheflowtowardsthecenteroftherectangularbasin,andtherefore,appearedtoimprove

    thedistributionofflowacrosstheinfluentendofthebasin. Byimprovingtheflowdistribution,

    theentirebasinvolumewasmoreeffectivelyutilized,therebyincreasingtheeffectivebasin

    volumeandreducingtheprobabilityforbypassfloworshortcircuiting.

    Byimprovingthedistributionofinfluentflowacrosstheinletsideofthebasinandmore

    effectivelyusingtheentirebasinvolume,thenitrificationperformanceoftheMBBRcouldbe

    improved. FortheMoorheadMBBRconfiguration,severalalternativesforenhancedinfluent

    distributionareavailablesuchastheinstallationofabaffleattheinletpipeortheintroductionof

    influentatmultiplepointsacrosstheinletsideofthebasin. TheNH3Ndistributiondatarevealed

    increasedmixingalone,throughtheuseofhigheraerationrates,withintheMBBRdidnot

    improvetheinfluentflowdistribution. However,anincreaseinmixingfocusedsolelyattheinlet

    wasnotexaminedduringtheproject.

    TheresultsofthehydraulicevaluationsindicatedthatMBBRsystemscanbeoptimizedby

    ensuringevendistributionofinfluentflowtomoreeffectivelyutilizetheentirereactorvolume. In

    additiontoimprovedinfluentpipingarrangements,areactorwithagreaterlengthtowidthratio

    mayalsoimproveinfluentflowdistribution. Cautionshouldbeusedwhendesigningbasinswith

    highlengthtowidthratiosastheseratiosmayresultinelevatedflowthroughvelocitiesandthus

    promotemediamigrationtowardstheeffluentendofthereactor,potentiallyresultinginan

    unevendistributionofmediathroughoutthebasin.

    NitrificationKinetics

    TheMBBRisanattachedgrowthnitrificationsystem. Inattachedgrowthsystems,substrateis

    consumedatthesurfaceofthebiofilm(MetcalfandEddy,2003). Becauseofthebiofilmlayer

    characteristicsonthemedia,theinnerbiomasscanbeconsideredinactivewithrespecttotherate

    ofnitrification(GradyandLim,1999). Therefore,foranalyticalpurposes,theassumptionis

    implementedthatonlythesurfaceareaofthebiofilmpresentonthemediaisactiveand

    contributingtonitrification.

    Datafrombenchscalebatchtestscanbeusedtoindirectlyanalyzenitrificationkineticswith

    thefollowingattachedgrowthsaturationorMonodtyperelationship(MetcalfandEddy,2003):

    NK

    N

    N

    m

    += , (43)

    where =nitrifierspecificgrowthrate,d1

    m=maximumnitrifierspecificgrowthrate,d1

    N=NH3Nconcentration,g/m3

    21

  • 7/30/2019 Seth Lynne Wei Tech Report

    27/39

    KN=halfsaturationconstant,g/m3

    Basedontheabovegrowthkinetics,thenitrificationrateinabatchreactorcanbewrittenas:

    Y

    X

    NK

    Nr

    dt

    dN

    N

    m

    n+

    == , (44)

    where rn=nitrificationrate,g/m3/d

    X=activebiomassconcentrationinthereactor,g/m3

    Y=nitrifieryield,gbiomass/gsubstrateutilized

    Forbiofilmsystems,theactivebiomassconcentrationcanbewrittenas:

    V

    hAX ab

    =

    , (45)

    where A=totalmediasurfacearea,m2

    b=biomassdensity,g/m3

    ha=activebiomassthickness,m

    V=volumeofthereactor,m3

    Assumingthebiomassdensityandactivebiomassthicknessremainrelativelyconstantthroughout

    thebatchtests,Equation(44)canbemodifiedto:

    s

    N

    m ANK

    Nr

    dt

    dN

    += ' , (46)

    where rm=maximumsubstrateutilizationrate,g/m2/d

    = abm hY

    As =specificmediasurfaceareainthereactor,m2/m3

    =V

    A

    BasedonEquations(44)and(46),rnisafunctionofthetotalmediasurfaceareainthereactor.

    IntegratingEquation(46)betweentheinitialNH3Nconcentration(No)andtheNH3N

    concentrationattimet(Nt),thefollowingrelationshipisdeveloped(Tchobanoglousand

    Schroeder,1987):

    )(ln' tot

    oNsm NN

    N

    NKtAr +

    = (47)

    Assumingthequantityofactivenitrifyingbiomasswasdirectlyrelatedtothemediasurface

    areaprovidedwithinthereactor,theexpressioneliminatestheneedtomeasuretheactive

    22

  • 7/30/2019 Seth Lynne Wei Tech Report

    28/39

    nitrifyingbiomass. UsingEquation(47),thebenchscaleNH3Ndatawasplottedasafunctionof

    timetodeterminethenitrificationkineticparameterswherebyrmwasexpressedasgNH3

    N/m2/min. Thehalfsaturationconstant,KN,iscommonlyreportedas1.0mg/Lfornitrifying

    systemswithaveragetemperaturesrangingbetween10and20C(USEPA,1993). Therefore,the

    halfsaturationconstantfortheMBBRbasinwasreasonablyassumedas1.0mg/L. Withthis

    assumption,thermvaluewasstatisticallyfittotheobserveddatafromthebenchscaletestsusing

    linearregressiontechniques.

    Aspreviouslydemonstrated,nitrificationwithintheMBBRbasinappearstobeaffectedby

    temperature. Lowerwatertemperaturesinhibittheactivityandgrowthofnitrifying

    microorganisms(USEPA,1993). Therateofnitrificationhasalsobeenshowntobedependent

    upontemperaturebyaffectingtherateofsubstratediffusiontothebiomass(GradyandLim,

    1999). Usingthefollowingequation(TchobanoglousandSchroeder,1987),rmfromthebench

    scaleanalysiswasadjustedto20C.

    )20(

    20 ''T

    mTm

    o

    rr=

    ]

    , (48)where rm20=maximumsubstrateutilizationrateat20C,g/m2/d

    rmT=maximumsubstrateutilizationrateattemperatureT,g/m2/d

    =temperaturecoefficient:

    =1.047(4 T 20C)

    =1.056(T>20C)

    AlthoughmostmicroorganismsgrowpoorlyoutsidethepHrangeof6to8,nitrifyingbacteria

    areparticularlysensitive(Quinlan,1984). Therateofnitrificationreachesamaximumarounda

    pHof8.5anddeclinesforlowervalues(GradyandLim,1999). Conversely,ifasystemhas

    acclimatedtoalowpH,rmislesseffectedthanifthepHissuddenlyshifted(USEPA,1993). The

    followingequationcanbeutilizedtosimulatetheinfluenceofpHonthemaximumsubstrate

    utilizationrate(Siegrist,1987):

    [ 1)5.6(101'' += pHmom rr , (49)where rm=maximumsubstrateutilizationrateatagivenpH,g/m

    2/d

    rmo=maximumsubstrateutilizationrateatanoptimumpHof8.5,g/m2/d

    Atypicalcurveforammoniareductionversustimeforoneofthethirteenlaboratorybench

    scalekineticanalysesisshowninFigure12. Equation(47)wasutilizedtofittheobservedNH3N

    datatotheMonodtyperelationship. Resultsfromallthirteenbenchscaleanalysesare

    summarizedinTable9. Thedateforeachbenchscalestudywasintendedtorepresenta

    relativelysteadystateperiodofoperationforthefullscaleMBBR. Toillustratetheoperationof

    thefullscaleMBBRduringandprecedingthebenchscaleanalyses,Table10providesfullscale

    MBBRdataforthedayofeachanalysis.

    Asindicatedbythecoefficientofdetermination(R2)valuesinTable9,allofthelaboratory

    benchscaledataprovidedanexcellentfittotheMonodtyperateexpression. However,the

    maximumsubstrateutilizationrate,afteradjustingtoacommontemperatureandpH,exhibited

    variation,rangingfrom2.024to4.418g/m2/dwithanaverageof3.370g/m2/d. Aspecific

    investigationintothepotentialfactorscausingthevariationwasnotconducted. However,the

    23

  • 7/30/2019 Seth Lynne Wei Tech Report

    29/39

    variationmayhavebeenrelatedtotheconditionsinthefullscaleMBBRatthetimeeachtestwas

    conducted(i.e.,NH3Nloading,DOversusNH3Nratelimitingconditions)and/ortheassumption

    thequantityofactivenitrifyingbiomasswasdirectlyrelatedtothemediasurfaceareaprovided

    withintheMBBRbasin.

    rm=0.0015g/m2/min

    MediaFill=30%

    Date=4/05/2005

    R2=0.9979

    0

    2

    4

    6

    8

    10

    12

    14

    16

    0 20 40 60 80 100 120 140

    NH3

    N(mg/L)

    Time(min)

    BatchData Simulation Figure12.LaboratoryBenchScaleData.

    Table

    9.

    Summary

    of

    Laboratory

    Bench

    Scale

    Analysis.

    Date Measured

    rm

    g/m2/min

    Media

    Fill

    Fraction

    %

    rmT=20C

    pH=8.5

    g/m2/min

    rmT=20C

    pH=8.5

    g/m2/d

    R2

    12/08/030.0018

  • 7/30/2019 Seth Lynne Wei Tech Report

    30/39

    Table10.FullScaleMBBRDatafortheDateofEachBenchScaleAnalysis.

    Date

    Flow

    mgd1

    Influent

    NH3N

    mg/L

    Influent

    NH3N

    g/m2/d

    Effluent

    NH3N

    mg/L

    Effluent

    Temp

    C

    Effluent

    DOmg/L

    EffluentpH

    12/08/03 4.49 12.7 0.59 0.12 13.0 5.4 7.22

    09/22/04 4.91 12.1 0.61 0.30 18.3 8.6 7.24

    09/30/04 4.61 21.5 1.02 4.90 18.1 6.3 7.13

    04/05/05 4.56 14.6 0.68 1.00 16.0 4.3 7.04

    05/03/05 4.25 27.5 1.20 7.70 15.0 4.1 6.95

    05/12/05 4.62 24.6 1.17 7.50 14.0 5.9 6.911mgd=Milliongallonsperday.

    FullScaleMBBRSimulation

    Tofurtherexploreandevaluatethecriticaldesignandoperationalparametersoftheseparate

    stagenitrifyingMBBR,amodelofthesystemwasdevelopedutilizingthedatafromthehydraulic

    andbenchscalekineticstudies. AsimulationprogramconsistingoftwoCFSTRsinserieswithan

    effectivevolumelessthanthetotalreactorvolumecouldbeutilizedtosimulatethehydraulic

    characteristicsoftheMBBRbasin. However,toincorporatetheresultsofthekineticevaluations

    themodelwasmodifiedtoasystemcontainingtwoCFSTRsinserieswithabypassflow

    representinghydraulicinefficiencies. Figure13containsavisualrepresentationofthecombined

    model.

    Theaveragermvalueof3.37g/m2/dobtainedfromthelaboratorybenchscalekineticanalyses

    alongwiththeassumedKNconcentrationof1.0mg/Lwereutilizedformodelinput. Toevaluate

    theunknownbypassflowinthemodel,tworelativelysteadystateperiodsofoperationwere

    selected. Onecoldweatherperiod(January2004)andonewarmweatherperiodwereevaluated(June2004).Toinitiatethemodel,rmwasadjustedfromthevalueof3.37g/m

    2/d(pH=8.5and

    temperature=20C)toreflecttheactualeffluenttemperatureandpHconditionspresentinthe

    fullscaleMBBR,usingEquations(48)and(49). SimulatedeffluentNH3Nconcentrationswere

    matchedtoactualeffluentNH3NconcentrationsfortheactualinfluentflowandinfluentNH3N

    concentrationbyadjustingbypassflowratesasapercentageoftheinfluentflow. Theaverage

    bypassflowvaluewasthencalculatedandinputintothemodel. Effluentconcentrations

    predictedbythemodelarecomparedtoactualeffluentNH3NconcentrationsinFigures14and

    15,respectively.

    25

  • 7/30/2019 Seth Lynne Wei Tech Report

    31/39

    Qbypass,Ci

    Q,Ci Q,Ce

    Q

    Qbypass,Ce1

    Q

    Qbypass,

    Ce2

    where, Q = Influentflow,m3/d

    Qbypass= Bypassedflow,m3/d

    Ci= InfluentNH3Nconcentration,g/m3

    H = DetentiontimeineachCFSTR,days

    Ce1=EffluentNH3NconcentrationfromCFSTR1

    andInfluentNH3NconcentrationtoCFSTR2,g/m3

    Ce2= EffluentNH3NconcentrationfromCFSTR2,g/m3

    CFSTR

    = Continuous

    flow

    stirred

    tank

    reactorKN = Halfsaturationconstant,g/m

    3

    r m = Maximumsubstrateutilitzationrate,g/m2/d

    Ce= EffluentNH3Nconcentration,g/m3

    As= Specificmediasurfaceareawithinthereactor,m2/m3

    (Ce1 Ce2)(KN +Ce2)

    r mA s Ce2 H = H =

    (Ci Ce1)(KN +Ce1)

    r mA s Ce1

    CFSTR1 CFSTR2

    Figure13.FullScaleMBBRModel.

    FortheperiodanalyzedinFigure14,thecomputeddailybypassflowsforthefullscaleMBBR

    rangedfrom10%to26%oftheinfluentflowwithanaveragevalueof17%. Influentflowsranged

    from3.6mgdto3.9mgdwithanaverageof3.7mgd. BasedonFigure10,theaverageflowrate

    wouldcorrespondtoapredictedbasindeadvolumeof30%.

    0

    5

    10

    15

    20

    25

    8Jan 13Jan 18Jan 23Jan 28Jan 2Feb

    Date(2004)

    NH3

    N

    (mg/L)

    0

    1

    2

    3

    4

    5

    Flow

    (mgd)

    Influent Effluent Sim ulatedEffluent Flow

    Figure2.FullScaleSimulation,January2004.

    26

  • 7/30/2019 Seth Lynne Wei Tech Report

    32/39

    ForthetimeexaminedinFigure15,therangeofcalculatedbypassflowswas0.2%to2.6%of

    theinfluentflowwithanaverageof1.2%. Influentflowsrangedfrom4.0mgdto4.7mgdwithan

    averageof4.3mgd. FromFigure10,theaverageflowratewouldcorrespondtoabasindead

    volumeof25%. Althoughadirectcorrelationwasnotestablished,thegeneraltrendbetween

    influentflow,bypassflow,andMBBRdeadvolumeisconsistent;wherebyhigherinfluentflow

    ratesreduceboththepredicteddeadvolumeandthecomputedbasinbypassflow.

    0

    5

    10

    15

    20

    25

    NH3

    N

    (mg/L)

    0

    1

    2

    3

    4

    5

    Flow

    (mgd)

    7Jun 12Jun 17Jun 22Jun 27Jun 2Jul

    Date(2004)

    Influent Effluent Simulated Flow

    Figure15.FullScaleSimulation,June2004.

    Byadjustingtheaveragebypassflowasapercentageofthetotalbasinflow,themodel

    providedanexcellentfittothefullscaleMBBReffluentNH3Ndata.Additionally,themodelofthe

    fullscaleMBBRwasusedtofurtherevaluatetheeffluentNH3Nconcentrationsresultingfrom

    improvedhydraulicefficiencyachievedbyimprovedinfluentdistribution(reducedshortcircuiting

    orbypassflowpercentages). EffluentNH3Nconcentrationsweremodeledasafunctionof

    influentNH3Nconcentration(andloading)forvariousbypassflowpercentagesassumingan

    influentdesignflowof4.8mgd(resultinginaHDTof3.9hours),effluenttemperatureof15C,

    effluentpHof7.0,KNvalueof1.0mg/L,andtheaveragermvalueof3.37g/m2/d.

    ThefullscaleMBBRisdesignedtooperateataminimumDOconcentrationof5mg/L. Based

    onthereportedratioof3.2(Szwerinskietal.,1986)signifyingthechangebetweentheoxygenand

    ammonialimitingregimefornitrification,thetransitionfromDOratelimitingconditionstoNH3N

    ratelimitingconditionswasassumedtooccurataneffluentNH3Nconcentration,inthesecond

    CFSTR,ofapproximately1.6mg/L(refertoFigure13). Thedashedlineinthefollowing

    simulations(Figures16to20)representsthetransitionpointbetweenDOratelimitingconditionsandNH3Nratelimitingconditions. ThetransitionlinewasdevelopedassumingeffluentNH3Nof

    1.6mg/LwasthecriticalconcentrationwithinthemodelCFSTRs. Whenbypasswasequaltozero

    (hydraulicallyidealconditions),theCFSTRNH3NequaledMBBReffluentNH3N,andthereforethe

    transitionlinewasverticalat1.6mg/L. Whenbypassflowexisted,duetolessthanidealhydraulic

    conditions,theweightedaverageeffluentconcentrations,asaffectedbybypass,wasplotted.

    TheresultsofthevariablebypasssimulationwerepresentedinFigure16. Theresults

    indicatedhydraulicimprovementinthefullscaleMBBRcouldsignificantlyincreasetheallowable

    27

  • 7/30/2019 Seth Lynne Wei Tech Report

    33/39

  • 7/30/2019 Seth Lynne Wei Tech Report

    34/39

    0

    5

    10

    15

    20

    25

    3035

    40

    45

    50

    0 5 10 15 20 25 30 35 40

    EffluentNH3N(mg/L)

    InfluentNH3

    N(m

    g/L)

    0.0

    0.5

    1.0

    1.5

    2.0

    2.5

    NH3

    NLoading(g/m

    2/d)

    1g/m2/d 2g/m2/d 3g/m2/d 4g/m2/d

    DORateLimiting

    rm=

    Figure17.MaximumSubstrateUtilizationRateSensitivity,BypassFlow=0%.

    0

    5

    10

    15

    20

    25

    30

    35

    40

    45

    50

    0 2 4 6 8 10 12 14 16 18 20EffluentNH3N(mg/L)

    InfluentNH3

    N(mg/L)

    0.0

    0.5

    1.0

    1.5

    2.0

    2.5

    NH3

    NLoading(g/m

    2/d)

    1g/m2/d 2g/m2/d 3g/m2/d 4g/m2/d

    NH3NRateLimiting

    DORateLimiting

    rm

    =

    Figure18.MaximumSubstrateUtilizationRateSensitivity,BypassFlow=30%.

    29

  • 7/30/2019 Seth Lynne Wei Tech Report

    35/39

    Atabypassflowof0%(maximumhydraulicefficiency),DOratelimitationcontrolledall

    effluentNH3Nconcentrationsgreaterthanapproximately1.6mg/L.FortheeffluentNH3N

    concentrationof1.6mg/L,therangeofrmvaluesmeasuredinthelaboratorystudiespredicted

    allowableinfluentNH3Nconcentrationsof20to40mg/L(loadingof1.0g/m2/dto2.0g/m2/d).

    Therefore,withaproperlydesignedsystem,processperformancewasverysensitivetorm.

    Conversely,withabypassflowof30%andaneffluentNH3Ngoalof6mg/L,theallowableinfluent

    NH3Nconcentrationwouldhavebeenapproximately20mg/L(loadingof1.0g/m2/d)forthe

    rangeof rmvaluesmeasuredinthelaboratorystudies. The20mg/Linfluentconcentration(1.0

    g/m2/dloading)conditionwouldplacetheoperationjustinsideoftheDOratelimitingregime.

    Withsignificantbypassflows,processperformanceisnotsensitivetonitrificationkinetics,but

    rather,isgovernedbythehydraulicoperationofthebasin.

    Forrmvalueslessthanthosemeasuredinthelaboratorystudies( 2g/m2/d),predicted

    nitrificationperformancedropsoffsignificantlyforeitherbypassscenario(Figures17and18).

    Tofurtherexaminethesensitivityofthemodel,withrespecttonitrificationkinetics,thehalf

    saturationconstantwasalsoevaluated. TheKNvaluewasvariedbasedonreportedrangesfor

    aerobicattachedgrowthnitrifyingsystems(USEPA,1993). Thefullscalemodelwasevaluatedin

    termsofKNforbothidealandlessthanidealhydraulicconditions. NH3Nconcentrationswere

    modeledasafunctionofinfluentNH3Nconcentration(andloading)forvariousKNvaluesassuminganinfluentflowof4.8mgd(HDTof3.9hours),effluenttemperatureof15C,effluentpH

    of7.0,rmvalueof3.37g/m2/d,andbypassflowpercentagesof0%and30%. Theresultsofthe

    modelsimulationsforbothhydraulicsituationswerepresentedinFigures19and20,respectively.

    0

    5

    10

    15

    20

    25

    30

    35

    40

    45

    50

    0 5 10 15 20 25 30 35 40EffluentNH3N(mg/L)

    InfluentNH3N(mg/L)

    0.0

    0.5

    1.0

    1.5

    2.0

    2.5

    NH3NLoading(g/m2/d)

    0.5mg/L 1.0mg/L 1.5mg/L 2.0mg/L

    DORateLimiting

    KN = Figure19.HalfSaturationConstantSensitivity,BypassFlow=0%.

    30

  • 7/30/2019 Seth Lynne Wei Tech Report

    36/39

    0

    5

    10

    15

    20

    25

    30

    35

    40

    45

    50

    0 2 4 6 8 10 12 14 16 18 20

    EffluentNH3N(mg/L)

    InfluentNH3N(mg/L)

    0.0

    0.5

    1.0

    1.5

    2.0

    2.5

    NH3NLoading(g/m2/d)

    0.5mg/L 1.0mg/L 1.5mg/L 2.0mg/L

    NH3NRateLimiting

    DORateLimiting

    KN = Figure20.HalfSaturationConstantSensitivity,BypassFlow=30%.

    AsevidentbythemodelingresultsdisplayedinFigures19and20,thesimulationwaslargely

    independentofthehalfsaturationconstantfortheEPAreportedvalues. Utilizingthermvalueof

    3.37g/m2/dobtainedfromthebench scaleanalyses,thenitrificationintheMoorheadMBBRwas

    generallyunaffectedbythevalueofKNasthepredictedeffluentNH3Nconcentrationsvariedby

    lessthan3.0mg/LforbothhydraulicscenariosatallsimulatedinfluentNH3Nconcentrations.

    Therefore,theassumedKNvalueof1.0mg/LfortheMBBRsystemisacceptableformodeling

    purposes.

    ThemodelanalysesindicatedtheMBBRprocesswashighlydependentonbothhydraulic

    considerationsandthemaximumsubstrateutilizationrate,rm,describingthenitrificationprocess. Thelaboratorybenchscaleanalysesconductedaspartofthisstudyindicatedaccurate

    measurementofthermparametermayhavebeconfoundedbyseveralfactorsincluding

    conditionsinthefullscaleMBBRatthetimeofanalysisand/ortheassumptionthequantityof

    activenitrifyingbiomasswasdirectlyrelatedtothemediasurfaceareaprovided.

    31

  • 7/30/2019 Seth Lynne Wei Tech Report

    37/39

    SUMMARYANDCONCLUSIONS

    Theprimarygoalofthisresearchwastoidentifyandevaluatethecriticaldesignand

    operationalparametersaffectingnitrificationinafullscaleMBBRprocessutilizedbythe

    Moorhead,MinnesotaWWTF. AnimprovedunderstandingofthetertiarynitrifyingMBBRsystem

    wasnecessarytoenhancetheoperationalstabilityofthefullscalesystemandthus,optimizetheeffluentammoniaconcentrationdischargedtotheRedRiveroftheNorth. Toaccomplishthis

    goal,thesystemwasevaluatedundervariousflowandammonialoadingconditions. Hydraulic

    andnitrificationkineticparametersoftheMBBRwerealsoexaminedtodevelopanappropriate

    fullscalemodelthatwasusedinconjunctionwiththemonitoringdatatoexaminethedesignand

    operationalparametersaffectingtheprocessperformance. Fromtheresultsobtainedduringthis

    study,thefollowingconclusioncanbedrawn:

    1. ThefullscaleMBBRsystemhasachievedthedesignobjectivesestablishedfortheprocessand

    hasproventobeanappropriateandeffectiveseparatestagenitrifyingapplicationatthe

    MoorheadWWTF. Althoughtherateofnitrificationappearedtobereducedduringcold

    weathermonths,overall,thesystemdemonstratedtheabilitytooxidizeammoniainboth

    coldandwarmweatherperiods. WhiletheinfluentNH3Nconcentrationsandloadingshave

    typicallyexceededthedesignvaluesof17mg/Land0.84g/m2/drespectively,theMBBRbasin

    achievedanaverageeffluentNH3Nconcentrationof6.84mg/L. Duringwarmweather

    months,whentheeffluentNH3Npermitlimitswereineffect(JunethroughSeptember=8.0

    mg/L)theeffluentconcentrationwasreducedevenfurtherbytheMBBRsystem,onaverage

    2.75mg/L.

    2. Theoperationalreturnofsupernatantfromthebiosolidsstoragefacilitytotheheadworksof

    theWWTFhasbeenshowntoimpacttheoverallperformanceoftheMBBRbasin. The

    supernatantloadrepresentedasignificantportionofthetotalMBBRNH3Nloading. Because

    ofthevariabilityininfluentNH3Nconcentrationsandloadingsduetothereturnof

    supernatant,equalizedandregularlyscheduledsupernatantflowshouldbeimplementedat

    theMoorheadWWTF. TheMBBRsystemhasdemonstratedtheabilitytoadapttothehigherNH3Ninfluentloadingconditionsandappearedtooxidizeammoniaeffectivelyaslongas

    consistent,steadysupernatantflowwasmaintained. Sidestreamtreatmentforthe

    supernatantortheadditionofmediatotheMBBRshouldalsobeexploredtoeliminatethe

    impactsassociatedwiththeadditionalNH3Nloading.

    3. TheresultsofthehydraulicanalysesindicatedtheMBBRprocesscouldbesimulated

    hydraulicallyasanumberofCFSTRsinserieswithaneffectivevolumelessthanthatofthefull

    basin. Theresultsofthehydraulicanalysesalsodemonstratedshortcircuitingoccurredalong

    theinletsideofthebasinbetweentheinfluentpipeandthebasineffluentstructure. The

    performanceofthesystemcouldbeimprovedbyincreasedflowrates(withgreater

    momentums)whichdrivetheinfluentflowsfurtheracrosstheinletendofthebasinresulting

    in

    improved

    flow

    distribution,

    thereby

    reducing

    the

    propensity

    for

    bypass

    within

    the

    basin.

    SeveraldesignoptionsareavailableforimprovedbasinflowdistributionforsimilarMBBR

    systemsincluding:baffleinstallation,multipleinletpoints,orincreasedlengthtowidthratios.

    Increasedmixingalone,throughtheuseofhigheraerationrates,withintheMBBRdidnot

    improvetheinfluentflowdistribution. However,anincreaseinmixingfocusedsolelyatthe

    inletwasnotexaminedduringthisproject.

    4. Laboratorybenchscalekineticanalyseswereconductedtoevaluatethemaximumsubstrate

    utilizationrate,rm,forthenitrifyingbiomassinthefullscaleMBBRprocess. Assumingahalf

    32

  • 7/30/2019 Seth Lynne Wei Tech Report

    38/39

    saturationconstant,KN,of1.0mg/L,rmwasestimatedbystatisticallyfittingtheobserveddata

    toanattachedgrowthMonodrateexpression. Thedataprovidedanexcellentfittothe

    Monodrateexpression. However,thermvaluesexhibitedvariation,rangingfrom2.024to

    4.418g/m2/dwithanaverageof3.370g/m2/d. Althoughaspecificinvestigationintothe

    potentialcausesforthevariationwasnotconducted,anaccuratedeterminationofrmmaybe

    confoundedbytheconditionsinthefullscaleMBBRatthetimetheanalysiswasconducted.

    Assumingthequantityofactivenitrifyingbiomasswasdirectlyrelatedtothemediasurface

    areamayhavealsoledtothevariationinrm.

    5. Utilizingthehydraulicsimulationandthekineticparametersobtainedfromthebenchscale

    analyses,acombinedmodelforthefullscaleMBBRsystemwasdeveloped. Thehydraulic

    deficienciesofthesystemwereincorporatedinthemodelasasimulatedbypassflow. The

    modelresultsindicatednitrificationperformanceintheMBBRwashighlydependentuponthe

    physicalconfigurationandhydrauliccharacteristicsofthebasin. Hydraulicimprovementsin

    thefullscaleMBBRcansignificantlyincreasetheinfluentNH3Ncapacityofthesystemfora

    particulareffluentNH3Nconcentrationgoal. TheMBBRprocessperformancewasfoundto

    becontingentonbasinphysicalcharacteristics,asopposedtonitrificationkinetics,when

    considerablehydraulicdeficienciesexist. However,whentheMBBRsystemwasmaximized

    withrespecttohydraulicstheprocessperformancewasgovernedbynitrificationkinetics. Inahydraulicallyoptimizedbasin,thesimulationsillustratedMBBRprocessperformancewas

    greatlydependenton,andsensitiveto,themaximumsubstrateutilizationratefornitrifying

    bacteria,rm. Appropriateconsiderationmustbegiventobothkineticandhydraulic

    characteristicstoensuremaximumperformancepotentialforanyMBBRsystem.

    33

  • 7/30/2019 Seth Lynne Wei Tech Report

    39/39

    REFERENCES

    AmericanPublicHealthAssociation,AmericanWaterWorksAssociation,WaterEnvironment

    Federation.(1998)StandardMethodsfortheExaminationofWaterandWastewater.20th

    ed.,Washington,D.C.

    Grady,Jr.,L.,andLim,H.(1999)BiologicalWastewaterTreatment.NewYork,NewYork.Klecker,J.(1998)FeasibilityStudyofAchievingAmmoniaRemovalbyNitrificationinPolishing

    Ponds. MasterofScienceThesis,CivilEngineering,NorthDakotaStateUniversity,Fargo,

    NorthDakota.

    MetcalfandEddy,Inc.(2003)WastewaterEngineering:TreatmentandReuse.NewYork,NY.

    MinnesotaDepartmentofHealth.(1990)Laboratories,AccreditationRequirements.State

    RegistrationMinnesotaRules,Chapter4740,14,1874,St.Paul,Minnesota.

    degaard,H.,Rusten,B.,andWestrum,T.(1994)ANewMovingBedBiofilmReactor

    ApplicationsandResults.WaterScienceTechnology,29,10/11,157.

    Quinlan,A.(1984)PredictionoftheOptimumpHforAmmoniaNOxidationbyNitrosomonas

    EuropeainWellAeratedNaturalandDomesticWastewaters.WaterResource,18,561.

    Rusten,B.,andNeu,K.(1999)DowntoSize.WaterEnvironmentTechnology,11,27.

    Siegrist,T.,andGujer,W.(1987)DemonstrationofMassTransferandpHEffectsonNitrifying

    Bacteria.WaterResource,21,1481.

    Szwerinski,H.,andArvin,E.,Harremos,P.(1986)pHDecreaseinaNitrifyingBiofilm.Water

    Resource,20,971.

    Tchobanoglous,G.,andSchroeder,E.(1987)WaterQuality.Davis,California.

    U.S.EnvironmentalProtectionAgency.(1993)NitrogenControlManual.EPA625/R93/010,

    OfficeofResearchandDevelopment,Washington,D.C.

    WaterEnvironmentFederation.(2000)AerobicFixedGrowthReactors.Alexandria,Virginia.

    WaterEnvironmentResearchFoundation.(2000)InvestigationofHybridSystemsforEnhanced

    NutrientControl.Alexandria,Virginia.

    Zimmerman,R.,Richard,D.,Bradshaw,A.,andCraddock,P.(2003)PilotScaleEvaluationof

    SeparateStageNitrificationUsinganAttachedGrowth,MovingBedMediaProcess.WaterEnvironmentResearch,75,422.

    Zimmerman,R.,Richard,D.,andCostello,J.(2004)Design,Construction,Startup,andOperation

    ofaFullScaleSeparateStageMovingBedBiofilmReactorNitrificationProcess.

    Proceedingsofthe77thAnnualWaterEnvironmentFederationTechnicalExhibitionand

    Conference[CDROM],NewOrleans,Louisiana,Oct.26,WaterEnvironmentFederation,

    Alexandria,Virginia.

    Zimmerman,R.,Richard,D.,Lynne,S.,andLin,W.(2005)IsYourMBBRRunningOnAllCylinders?

    Proceedingsofthe78thAnnualWaterEnvironmentFederationTechnicalExhibitionand

    Conference[CDROM],Washington,D.C.,Oct.29Nov.2,WaterEnvironmentFederation,

    Alexandria,Virginia.


Recommended