+ All Categories
Home > Documents > SF2940: Probability theory Lecture 8: Multivariate Normal ...

SF2940: Probability theory Lecture 8: Multivariate Normal ...

Date post: 13-Nov-2021
Category:
Upload: others
View: 3 times
Download: 0 times
Share this document with a friend
78
SF2940: Probability theory Lecture 8: Multivariate Normal Distribution Timo Koski 24.09.2015 Timo Koski Matematisk statistik 24.09.2015 1/1
Transcript

SF2940: Probability theoryLecture 8: Multivariate Normal Distribution

Timo Koski

24.09.2015

Timo Koski Matematisk statistik 24.09.2015 1 / 1

Learning outcomes

Random vectors, mean vector, covariance matrix, rules oftransformation

Multivariate normal R.V., moment generating functions, characteristicfunction, rules of transformation

Density of a multivariate normal RV

Joint PDF of bivariate normal RVs

Conditional distributions in a multivariate normal distribution

Timo Koski Matematisk statistik 24.09.2015 2 / 1

PART 1: Mean vector, Covariance matrix, MGF,Characteristic function

Timo Koski Matematisk statistik 24.09.2015 3 / 1

Vector Notation: Random Vector

A random vector X is a column vector

X =

X1

X2...Xn

= (X1,X2, . . . ,Xn)T

Each Xi is a random variable.

Timo Koski Matematisk statistik 24.09.2015 4 / 1

Sample Value Random Vector

A column vector

x =

x1x2...xn

= (x1, x2, . . . , xn)T

We can think of xi is an outcome of Xi .

Timo Koski Matematisk statistik 24.09.2015 5 / 1

Joint CDF, Joint PDF

The joint CDF (=cumulative distribution function) of a continuousrandom vector X is

FX (x) = FX1,...,Xn(x1, . . . , xn) = P (X ≤ x) =

= P (X1 ≤ x1, . . . ,Xn ≤ xn)

Joint probability density function (PDF)

fX (x) =∂n

∂x1 . . . ∂xnFX1,...,Xn

(x1, . . . , xn)

Timo Koski Matematisk statistik 24.09.2015 6 / 1

Mean Vector

µX = E [X] =

E [X1]E [X2]

...E [Xn]

,

a column vector of means (=expectations) of X.

Timo Koski Matematisk statistik 24.09.2015 7 / 1

Matrix, Scalar Product

If XT is the transposed column vector (=a row vector), then

XXT

is a n× n matrix, and

XTX =n

∑i=1

X 2i

is a scalar product, a real valued R.V..

Timo Koski Matematisk statistik 24.09.2015 8 / 1

Covariance Matrix of A Random Vector

Covariance matrix

CX := E[

(X− µX) (X− µX)T]

where the element (i , j)

CX(i , j) = E [(Xi − µi ) (Xj − µj )]

is the covariance of Xi and Xj .

Timo Koski Matematisk statistik 24.09.2015 9 / 1

Remarks on Covariance

X and Y are independent ⇒ Cov(X ,Y ) = 0.

The converse implication is not true in general, as shown in the nextexample.Let X ∈ N(0, 1) and set Y = X 2. Then Y is clearly functionallydependent on X . But we have

Cov(X ,Y ) = E [(X · Y )]− E [X ] · E [Y ] = E[X 3]− 0 · E [Y ]

= E[X 3]= 0.

The last equality holds, since one has g(x) = x3φ(x), so that

g(−x) = −g(x). Hence E[X 3]=∫ +∞

−∞g(x)dx = 0, c.f., in the sequel,

too.

Timo Koski Matematisk statistik 24.09.2015 10 / 1

A Quadratic Form

xTCXx =n

∑i=1

n

∑j=1

xixjCX(i , j).

We see that

=n

∑i=1

n

∑j=1

xixjE [(Xi − µi ) (Xj − µj )]

= E

[n

∑i=1

n

∑j=1

xixj (Xi − µi ) (Xj − µj )

]

(∗)

Timo Koski Matematisk statistik 24.09.2015 11 / 1

Properties of a Covariance Matrix

Covariance matrix is nonnegative definite, i.e., for all x we have

xTCXx ≥ 0

HencedetCX ≥ 0.

The covariance matrix is symmetric

CX = CTX

Timo Koski Matematisk statistik 24.09.2015 12 / 1

Properties of a Covariance Matrix

The covariance matrix is symmetric

CX = CTX

sinceCX(i , j) = E [(Xi − µi ) (Xj − µj )]

= E [(Xj − µj ) (Xi − µi )] = CX(j , i)

Timo Koski Matematisk statistik 24.09.2015 13 / 1

Properties of a Covariance Matrix

A covariance matrix is positive definite,

xTCXx > 0

for all x 6= 0 iffdetCX > 0

(i.e. CX is invertible).

Timo Koski Matematisk statistik 24.09.2015 14 / 1

Properties of a Covariance Matrix

Proposition

xTCXx ≥ 0

Pf: By (∗) above

xTCXx = xTE[

(X− µX) (X− µX)T]

x

= E[

xT (X− µX) (X− µX)T x]

= E[

xTw ·wT x]

where we have set w = (X− µX). Then by linear algebra xTw = wTx= ∑

ni=1 wixi . Hence

E[

xTwwTx]

= E

(n

∑i=1

wixi

)2

≥ 0.

Timo Koski Matematisk statistik 24.09.2015 15 / 1

Properties of a Covariance Matrix

In terms of the entries ci ,j of a covariance matrix C = (ci ,j )n,n,i=1,j=1 there

are the following necessary properties.

1 ci ,j = cj ,i (symmetry).

2 ci ,i = Var (Xi ) = σ2i ≥ 0 (the elements in the main diagonal are the

variances, and thus all elements in the main diagonal arenonnegative).

3 c2i ,j ≤ ci ,i · cj ,j (Cauchy-Schwartz’ inequality).

Timo Koski Matematisk statistik 24.09.2015 16 / 1

Coefficient of Correlation

The Coefficient of Correlation ρ of X and Y is defined as

ρ := ρX ,Y :=Cov(X ,Y )

Var(X ) · Var(Y ),

where Cov(X ,Y ) = E [(X − µX ) (Y − µY )]. This is normalized

−1 ≤ ρX ,Y ≤ 1

For random variables X and Y ,

Cov(X ,Y ) = ρX ,Y = 0 does not always mean that X ,Y areindependent.

Timo Koski Matematisk statistik 24.09.2015 17 / 1

Special case: Covariance Matrix of A Bivariate Vector

X = (X1,X2)T .

CX =

(σ21 ρσ1σ2

ρσ1σ2 σ22

)

,

where ρ is the coefficient of correlation of X1 and X2, and σ21 = Var (X1),

σ22 = Var (X2). CX is invertible iff ρ2 6= 1, for proof we note that

detCX = σ21σ2

2

(1− ρ2

)

Timo Koski Matematisk statistik 24.09.2015 18 / 1

Special case: Covariance Matrix of A Bivariate Vector

Λ =

(σ21 ρσ1σ2

ρσ1σ2 σ22

)

,

if ρ2 6= 1, the inverse exists and

Λ−1 =1

σ21σ2

2 (1− ρ2)

(σ22 −ρσ1σ2

−ρσ1σ2 σ21

)

,

Timo Koski Matematisk statistik 24.09.2015 19 / 1

Y = BX+ b

Proposition

X is a random vector with mean vector µX and covariance matrix CX. B is

a m× n matrix. If Y = BX+ b, then

EY = BµX + b

CY = BCXBT

Pf: For simplicity of writing, take b = µ = 0. Then

CY = EYYT = EBX (BX)T =

= EBXXTBT = BE[

XXT]

BT = BCXBT

Timo Koski Matematisk statistik 24.09.2015 20 / 1

Moment Generating and Characteristic Functions

Definition

Moment generating function of X is defined as

ψX (t)def= Eet

TX = Eet1X1+t2X2+···+tnXn

Definition

Characteristic function of X is defined as

ϕX (t)def= Ee it

TX = Ee i (t1X1+t2X2+···+tnXn)

Special cases: take t1 = 1, t2 = t3 = . . . = tn = 0, thenϕX (t) = ϕX1 (t1).

Timo Koski Matematisk statistik 24.09.2015 21 / 1

PART 2: Def I of a multivariate normal distribution

We recall first some of the properties of univariate normal distribution

Timo Koski Matematisk statistik 24.09.2015 22 / 1

Normal (Gaussian) One-dimensional RVs

X is a normal random variable if

fX (x) =1

σ√2π

e− 1

2σ2(x−µ)2

where µ is real and σ > 0.

Notation: X ∈ N(µ, σ2)

Properties: E (X ) = µ, Var(X ) = σ2

Timo Koski Matematisk statistik 24.09.2015 23 / 1

Normal (Gaussian) One-dimensional RVs

−2 0 2 4 60

0.2

0.4

0.6

0.8

x

f X(x

)

−2 0 2 4 60

0.2

0.4

0.6

0.8

x

f X(x

) (a)

µ = 2, σ = 1/2 , (b) µ = 2, σ = 2

Timo Koski Matematisk statistik 24.09.2015 24 / 1

Central Moments Normal (Gaussian) One-dimensional RVs

X ∈ N(0, σ2). Then

E [X n] =

{

0 n is odd(2k)!2kk!

σ2k n = 2k , k = 0, 1, 2, . . ..

Timo Koski Matematisk statistik 24.09.2015 25 / 1

Linear Transformation

X ∈ N(µX , σ2) ⇒ Y = aX + b is N(aµX + b, a2σ2)

Thus Z = X−µX

σX∈ N(0, 1) and

P(X ≤ x) = P

(X − µX

σX≤ x − µX

σX

)

or

FX (x) = P

(

Z ≤ x − µX

σX

)

= Φ

(x − µX

σX

)

Timo Koski Matematisk statistik 24.09.2015 26 / 1

Normal (Gaussian) One-dimensional RVs

X ∈ N(µ, σ2) then the moment generating function is

ψX (t) = E[

etX]

= etµ+ 12 t

2σ2,

and the characteristic function is

ϕX (t) = E[

e itX]

= e itµ− 12 t

2σ2

as found in previous Lectures.

Timo Koski Matematisk statistik 24.09.2015 27 / 1

Multivariate Normal Def. I

Definition

An n× 1 random vector X has a normal distribution iff for every

n× 1-vector a the one-dimensional random vector aTX has a normal

distribution.

We write X ∈ N (µ,Λ), when µ is the mean vector and Λ is thecovariance matrix.

Timo Koski Matematisk statistik 24.09.2015 28 / 1

Consequences of Def. I (1)

An n× 1 vector X ∈ N (µ,Λ) iff the one-dimensional random vector aTXhas a normal distribution for every n-vector a .

Now we know that (take B = aT in the preceding)

EaTX = aTµ,Var[

aTX]

= aTΛa

Timo Koski Matematisk statistik 24.09.2015 29 / 1

Consequences of Def. I (2)

Hence, if Y = aTX, then Y ∈ N(aTµ, aTΛa

)and the moment

generating function of Y is

ψY (t) = E[

etY]

= etaT µ+ 1

2 t2aTΛa.

ThereforeψX (a) = Eea

TX = ψY (1) = eaT µ+ 1

2aTΛa.

Timo Koski Matematisk statistik 24.09.2015 30 / 1

Consequences of Def. I (3)

Hence we have shown that if X ∈ N (µ,Λ), then

ψX (t) = EetTX = et

T µ+ 12 t

TΛt.

is the moment generating function of X.

Timo Koski Matematisk statistik 24.09.2015 31 / 1

Consequences of Def. I (4)

In the same way we can find that

ϕX (t) = Ee itTX = e it

T µ− 12 t

TΛt.

is the characteristic function of X ∈ N (µ,Λ).

Timo Koski Matematisk statistik 24.09.2015 32 / 1

Consequences of Def. I (5)

Let Λ be a diagonal covariance matrix with λ2i s on the main diagonal, i.e.,

Λ =

λ21 0 0 . . . 00 λ2

2 0 . . . 00 0 λ2

3 . . . 0

0. . .

... . . . 00 0 0 . . . λ2

n

,

Proposition

If X ∈ N (µ,Λ), then X1,X2, . . . ,Xn are independent normal variables.

Timo Koski Matematisk statistik 24.09.2015 33 / 1

Consequences of Def. I (6)

Pf: Λ is diagonal, the quadratic form becomes a single sum of squares.

ϕX (t) = e itT µ− 1

2 tTΛt =

= e i ∑ni=1 µi ti− 1

2 ∑ni=1 λ2

i t2i

= e iµ1t1− 12 λ2

1t21 e iµ2t2− 1

2 λ22t

22 · · · e iµntn− 1

2 λ2nt

2n

is the product of the characteristic functions of Xi ∈ N(µi ,λ2

i

), which are

thus seen to be independent N(µi ,λ2

i

).

Timo Koski Matematisk statistik 24.09.2015 34 / 1

Kac’s theorem: Thm 8.1.3. in LN

Theorem

X = (X1,X2, · · · ,Xn)T . The components X1,X2, · · · ,Xn areindependent if and only if

φX (s) = E[

e is′X]

=n

∏i=1

φXi(si ),

where φXi(si ) is the characteristic function for Xi .

Timo Koski Matematisk statistik 24.09.2015 35 / 1

Further properties of the multivariate normal

X ∈ N (µ,Λ)

Every component Xk is one-dimensional normal. To prove this we take

a = (0, 0, . . . , 1︸︷︷︸

position k

, 0, . . . , 0)T

and the conclusion follows by Def. I.

X1 + X2 + · · ·Xn is one-dimensional normal. Note: The terms in thesum need not be independent.

Timo Koski Matematisk statistik 24.09.2015 36 / 1

Properties of multivariate normal

X ∈ N (µ,Λ)

Every marginal distribution of k variables ( 1 ≤ k < n is normal. Toprove this we consider any k variables Xi1 ,Xi2 . . . Xik and then take asuch that aj = 0 for j 6= i1, . . . ik and then apply Def. I.

Timo Koski Matematisk statistik 24.09.2015 37 / 1

Properties of multivariate normal

Proposition

X ∈ N (µ,Λ) and Y = BX+ b. Then

Y ∈ N(

Bµ + b,BΛBT)

.

Pf:ψY (s) = E

[

esTY]

= E[

esT (b+BX)

]

=

= esT bE

[

esTBX

]

= esT bE

[

e(BT s)

TX

]

E

[

e(BT s)

TX

]

= ψX

(

BT s)

.

Timo Koski Matematisk statistik 24.09.2015 38 / 1

Properties of multivariate normal

X ∈ N (µ,Λ)

ψX

(

BT s)

= e(BT s)

Tµ+ 1

2 (BT s)TΛ(BT s).

(

BT s)T

µ = sTBµ,

(

BT s)T

Λ(

BT s)

= sTBΛBTs,

e(BT s)

Tµ+ 1

2(BT s)TΛ(BT s) = es

TBµ+ 12 s

TBΛBT s

Timo Koski Matematisk statistik 24.09.2015 39 / 1

Properties of multivariate normal

ψX

(

BT s)

= esTBµ+ 1

2 sTBΛBT s.

ψY (s) = esTbψX

(

BT s)

= esTbes

TBµ+ 12 s

TBΛBT s

ψY (s) = esT (b+Bµ)+ 1

2 sTBΛBT s,

which proves the claim as asserted.

Timo Koski Matematisk statistik 24.09.2015 40 / 1

PART 3: Multivariate normal, Def. II: characteristic

function, DEF III: density

Timo Koski Matematisk statistik 24.09.2015 41 / 1

Multivariate normal, Def. II: char. fnctn

Definition

A random vector X with mean vector µ and a covariance matrix Λ is

N (µ,Λ) if its characteristic function is

ϕX (t) = Ee itTX = e it

T µ− 12 t

TΛt.

Timo Koski Matematisk statistik 24.09.2015 42 / 1

Multivariate normal, Def. II implies Def. I

We need to show that the one-dimensional random vector Y = aTX has anormal distribution.

ϕY (t) = E[

e itY]

= E[

e it ∑ni=1 ai ·Xi

]

=

= E[

e itaTX]

= ϕX (ta) =

= e itaT µ− 1

2 t2aTΛa

and this is the characteristic function of N(aTµ, aTΛa

).

Timo Koski Matematisk statistik 24.09.2015 43 / 1

Multivariate normal, Def. III: joint PDF

Definition

A random vector X with mean vector µ and an invertible covariance

matrix Λ is N (µ,Λ), if the density is

fX (x) =1

(2π)n/2√

det(Λ)e−

12 (x−µ)TΛ−1(x−µ)

Timo Koski Matematisk statistik 24.09.2015 44 / 1

Multivariate normal

It can be checked by a computation that

e itT µ− 1

2 tTΛt =

Rne it

T x 1

(2π)n/2√

det(Λ)e−

12 (x−µ)TΛ−1(x−µ)dx

(complete the square) Hence Def. III implies the property in Def. II. Thethree definitions are equivalent, in the case inverse of the covariancematrix exists.

Timo Koski Matematisk statistik 24.09.2015 45 / 1

PART 4: Bivariate normal with density

Timo Koski Matematisk statistik 24.09.2015 46 / 1

Multivariate Normal: the bivariate case

As soon as ρ2 6= 1, the matrix

Λ =

(σ21 ρσ1σ2

ρσ1σ2 σ22

)

,

is invertible, and the inverse is

Λ−1 =1

σ21σ2

2 (1− ρ2)

(σ22 −ρσ1σ2

−ρσ1σ2 σ21

)

,

Timo Koski Matematisk statistik 24.09.2015 47 / 1

Multivariate Normal: the bivariate case

ρ2 6= 1, and X = (X1,X2)T , then

fX (x) =1

2π√detΛ

e−12 (x−µX)

TΛ−1(x−µX)

=1

2πσ1σ2√

1− ρ2e−

12Q(x1,x2)

Timo Koski Matematisk statistik 24.09.2015 48 / 1

Multivariate Normal: the bivariate case

whereQ(x1, x2) =

1

(1− ρ2)·[(

x1 − µ1

σ1

)2

− 2ρ(x1 − µ1)(x2 − µ2)

σ1σ2+

(x2 − µ2

σ2

)2]

For this, invert the matrix Λ and expand the quadratic form !

Timo Koski Matematisk statistik 24.09.2015 49 / 1

ρ = 0

0

0.35

0.3

0.25

0.2

0.15

0.1

0.05

0

0

32

10

-1-2

-3

0

3

2

1

0

-1

-2

-3

Timo Koski Matematisk statistik 24.09.2015 50 / 1

ρ = 0.9

0

0.35

0.3

0.25

0.2

0.15

0.1

0.05

0

0

32

10

-1-2

-3

0

3

2

1

0

-1

-2

-3

Timo Koski Matematisk statistik 24.09.2015 51 / 1

ρ = −0.9

0

0.35

0.3

0.25

0.2

0.15

0.1

0.05

0

0

32

10

-1-2

-3

0

3

2

1

0

-1

-2

-3

Timo Koski Matematisk statistik 24.09.2015 52 / 1

Conditional densities for the bivariate normal

Complete the square of the exponent to write

fX ,Y (x , y ) = fX (x)fY |X (y )

where

fX (x) =1

σ1√2π

e− 1

2σ21(x−µ1)2

fY |X (y ) =1

σ̃2√2π

e− 1

2σ̃22(y−µ̃2(x))2

µ̃2(x) = µ2 + ρσ2σ1

(x − µ1), σ̃2 = σ2

1− ρ2

Timo Koski Matematisk statistik 24.09.2015 53 / 1

Bivariate normal properties

E (X ) = µ1

Given X = x , Y is Gaussian

Conditional mean of Y given X = x :

µ̃2(x) = µ2 + ρσ2σ1

(x − µ1) = E (Y |X = x)

Conditional variance of Y given X = x :

Var(Y |X = x) = σ22

(1− ρ2

)

Timo Koski Matematisk statistik 24.09.2015 54 / 1

Bivariate normal properties

Conditional mean of Y given X = x :

µ̃2(x) = µ2 + ρσ2σ1

(x − µ1) = E (Y |X = x)

Conditional variance of Y given X = x :

Var(Y |X = x) = σ22

(1− ρ2

)

Check Section 3.7.3. and Exercise 3.8.4.6. By this is seen that theconditional mean of Y given X variable in a bivariate normaldistribution is also the best LINEAR predictor of Y based on X , andthe conditional variance is the variance of the estimation error.

Timo Koski Matematisk statistik 24.09.2015 55 / 1

Marginal PDFs

Timo Koski Matematisk statistik 24.09.2015 56 / 1

Proof of conditional pdf

Consider

fX ,Y (x , y )

fX (x)=

σ1√2π

2πσ1σ2√

1− ρ2e− 1

2Q(x ,y )+ 1

2σ21(x−µ1)2

Timo Koski Matematisk statistik 24.09.2015 57 / 1

Proof of conditional pdf

−1

2Q(x , y ) +

1

2σ21

(x − µ1)2

= −1

2H(x , y ),

Timo Koski Matematisk statistik 24.09.2015 58 / 1

Proof of conditional pdfs

H(x , y ) =

1

(1− ρ2)·[(

x − µ1

σ1

)2

− 2ρ(x − µ1)(y − µ2)

σ1σ2+

(y − µ2

σ2

)2]

−(x − µ1

σ1

)2

Timo Koski Matematisk statistik 24.09.2015 59 / 1

Proof of conditional pdf

H(x , y ) =

ρ2

(1− ρ2)

(x − µ1)2

σ21

− 2ρ(x − µ1)(y − µ2)

σ1σ2(1− ρ2)+

(y − µ2)2

σ22 (1− ρ2)

Timo Koski Matematisk statistik 24.09.2015 60 / 1

Proof of conditional pdf

H(x , y ) =

(

y − µ2 − ρ σ2σ1(x − µ1)

)2

σ22 (1− ρ2)

Timo Koski Matematisk statistik 24.09.2015 61 / 1

Conditional pdf

fX ,Y (x , y )

fX (x)=

1√

1− ρ2σ2√2π

e

− 12

(y−µ2−ρσ2σ1

(x−µ1))2

σ22 (1−ρ2)

This establishes the bivariate normal properties claimed above.

Timo Koski Matematisk statistik 24.09.2015 62 / 1

Bivariate normal properties : ρ

Proposition

(X ,Y ) bivariate normal ⇒ ρ = ρX ,Y

Proof:

E [(X − µ1)(Y − µ2)]

= E (E ([(X − µ1)(Y − µ2)] |X ))

= E ((X − µ1)E [Y − µ2] |X ))

Timo Koski Matematisk statistik 24.09.2015 63 / 1

Bivariate normal properties : ρ

= E ((X − µ1)E [(Y − µ2)] |X ))

= E (X − µ1) [E (Y |X )− µ2]

= E ((X − µ1)

[

µ2 + ρσ2σ1

(X − µ1)− µ2

]

= ρσ2σ1

E (X − µ1)((X − µ1))

Timo Koski Matematisk statistik 24.09.2015 64 / 1

Bivariate normal properties : ρ

= ρσ2σ1

E (X − µ1)(X − µ1)

= ρσ2σ1

E (X − µ1)2

= ρσ2σ1

σ21

= ρσ2σ1

Timo Koski Matematisk statistik 24.09.2015 65 / 1

Bivariate normal properties : ρ

In other words we have checked that

ρ =E [(X − µ1)(Y − µ2)]

σ2σ1

ρ = 0 ⇔ bivariate normal X ,Y are independent.

Timo Koski Matematisk statistik 24.09.2015 66 / 1

PART 5: Generating a multivariate normal variable

Timo Koski Matematisk statistik 24.09.2015 67 / 1

Standard Normal Vector: definition

Z ∈ N (0, I) is a standard normal vector.I is the n× n identity matrix.

fZ (z) =1

(2π)n/2√

det(I)e−

12 (z−0)T I−1(z−0)

=1

(2π)n/2e−

12 z

T z

Timo Koski Matematisk statistik 24.09.2015 68 / 1

Distribution of X = AZ+ b

X = AZ+ b, Z is standard Gaussian, then

X = N(

b,AAT)

(follows by a rule in the preceding)

Timo Koski Matematisk statistik 24.09.2015 69 / 1

Multivariate Normal: the bivariate case

If

Λ =

(σ21 ρσ1σ2

ρσ1σ2 σ22

)

,

then Λ = AAT , where

A =

(σ1 0

ρσ2 σ2√

1− ρ2

)

,

Timo Koski Matematisk statistik 24.09.2015 70 / 1

Standard Normal Vector

X ∈ N (µX,Λ), and A is such that

Λ = AAT

(An invertible matrix A with this property exists always, if Λ is positivedefinite (we need the symmetry of Λ, too.) Then

Z = A−1 (X− µX)

is a standard Gaussian vector.Proof: We give the first idea of his proof, a rule of transformation.

Timo Koski Matematisk statistik 24.09.2015 71 / 1

Rule of transformation

If X has density fX (x), Y = AX+ b,A is invertible, then

fY (y) =1

| detA | fX(A−1 (y− b)

)

Note that if Λ = AAT , then

detΛ = detA · detAT = detA · detA = detA2,

so that | detA| =√detΛ.

Timo Koski Matematisk statistik 24.09.2015 72 / 1

Diagonalizable Matrices

An n× n matrix A is orthogonally diagonalizable, if there is anorthogonal matrix P (i.e., PTP =PPT = I) such that

PTAP = Λ,

where Λ is a diagonal matrix.

Timo Koski Matematisk statistik 24.09.2015 73 / 1

Diagonalizable Matrices

Theorem

If A is an n× n matrix, then the following are equivalent:

(i) A is orthogonally diagonalizable.

(ii) A has an orthonormal set of eigenvectors.

(iii) A is symmetric.

Since covariance matrices are symmetric, we have by the theorem abovethat all covariance matrices are orthogonally diagonalizable.

Timo Koski Matematisk statistik 24.09.2015 74 / 1

Diagonalizable Matrices

Theorem

If A is a symmetric matrix, then

(i) Eigenvalues of A are all real numbers.

(ii) Eigenvectors from different eigenspaces are orthogonal.

That is, all eigenvalues of a covariance matrix are real.

Timo Koski Matematisk statistik 24.09.2015 75 / 1

Diagonalizable Matrices

Hence we have for any covariance matrix the spectral decomposition

C =n

∑i=1

λieieTi , (1)

where Cei = λiei . Since C is nonnegative definite, and its eigenvectors areorthonormal,

0 ≤ eTi Cei = λieTi ei = λi ,

and thus the eigenvalues of a covariance matrix are nonnegative.

Timo Koski Matematisk statistik 24.09.2015 76 / 1

Diagonalizable Matrices

Let now P be an orthogonal matrix such that

P′CXP = Λ,

and X ∈ N (0,CX), i.e., CX is a covariance matrix and Λ is diagonal (withthe eigenvalues of CX on the main diagonal). Then if Y = PTX, we havethat

Y ∈ N (0,Λ) .

In other words, Y is a Gaussian vector and has independent components.This method of producing independent Gaussians has several importantapplications. One of these is the principal component analysis.

Timo Koski Matematisk statistik 24.09.2015 77 / 1

Timo Koski Matematisk statistik 24.09.2015 78 / 1


Recommended