+ All Categories
Home > Documents > Shaft FEM-2.pdf

Shaft FEM-2.pdf

Date post: 18-Jan-2016
Category:
Upload: nils4586
View: 223 times
Download: 0 times
Share this document with a friend
Popular Tags:
26
1 11/6/2006 Finite Shaft Element YK-1 FEM Formulation of Shaft element Y.A Khulief, PhD, PE Professor of Mechanical Engineering KFUPM 11/6/2006 Finite Shaft Element YK-2 Assumptions: This is a Lagrangean formulation with the following ASSUMPTIONS: Material is elastic, homogeneous, isotropic Plane x-secions initially perpendicular to neutral axis remain plane, but no longer perpendicular to neutral axis after bending deformation Deflections of the rotor are produced by displacements of points on the centerline Disks are treated as rigid Material damping and fluidelastic forces are neglected
Transcript
Page 1: Shaft FEM-2.pdf

1

11/6/2006 Finite Shaft Element YK-1

FEM Formulation of Shaft element

Y.A Khulief, PhD, PEProfessor of Mechanical EngineeringKFUPM

11/6/2006 Finite Shaft Element YK-2

Assumptions:This is a Lagrangean formulation with the following ASSUMPTIONS:

Material is elastic, homogeneous, isotropic Plane x-secions initially perpendicular to neutral axis

remain plane, but no longer perpendicular to neutral axis after bending deformation

Deflections of the rotor are produced by displacements of points on the centerline

Disks are treated as rigidMaterial damping and fluidelastic forces are neglected

Page 2: Shaft FEM-2.pdf

2

11/6/2006 Finite Shaft Element YK-3

Shaft Coordinates:Consider the following shaft element

p

11/6/2006 Finite Shaft Element YK-4

Shaft Coordinates:

( )i i ix y z Element Coordinate deformed state≡

The following Coordinates are assigned:

X Y Z Fixed inertial frame≡

( )i i iX Y Z Element coordinate undeformed state≡

Consider an arbitrary point pi on the undeformed element, which is then transformed into point p in the deformed state of the element

Page 3: Shaft FEM-2.pdf

3

11/6/2006 Finite Shaft Element YK-5

Shaft Coordinates:The global position of point p is defined by vector

p = +r R r (1)

Or, simply as

urRrp ++= 0(2)

where is the deformation vectoru

11/6/2006 Finite Shaft Element YK-6

Shaft Coordinates:The element undergoes axial deformation u in the X direction and two bending deformations v and w in the Y and Z direction, respectively.

Now, let us describe the element x-section orientation after deformation; i.e. to establish the coordinate transformationfrom

i i i i i itoX Y Z x y z

See next figure for rotational angles

Page 4: Shaft FEM-2.pdf

4

11/6/2006 Finite Shaft Element YK-7

Dropping the index i

1- rotate by an angle about the X axis

( )φΩ+

2- Then by an angle about the new y-axis

1y

3- Then by an angle about the new z-axis

zθ Reference Shaft rotation

11/6/2006 Finite Shaft Element YK-8

Now, let us express the instantaneous angular velocity vector

Rotational Vector:

Ω

( ) ( ) ( )1 2ˆˆ ˆ

y zI j kω φ θ θ= Ω+ + + (3)

The unit vectors directions are shown on previous figure.

Note that is the rotor angular velocity.

Transforming the velocity vector of Eq.3 into the global coordinate system , one obtains X Y Z

Page 5: Shaft FEM-2.pdf

5

11/6/2006 Finite Shaft Element YK-9

Now, let us express the instantaneous angular velocity vector

Rotational Vector:

(4)( ) ( ) ( )[ ]

( ) ( ) ( ) ( ) ( )[ ]KJI

KJI

yyyz

y

ˆcoscosˆcossinˆsin

ˆsinˆcosˆ

φθθφθθ

φφθφω

+Ω++Ω−−+

+Ω++Ω++Ω=

In the linear theory of elasticity, small deformations are assumed, and hence small angles approximations are invoked in rewriting Eq.4 as

11/6/2006 Finite Shaft Element YK-10

Now, let us express the instantaneous angular velocity vector

Rotational Vector:

(5)

( ) ( )( ) ( )

ˆ ˆ ˆ( ) [cos sin ]ˆ ˆ ˆ[ sin cos ]

ˆ ˆ( ) [ cos( ) sin( )]ˆ[ sin( ) cos( )]

y

z y

z y y z

y z

I J K

I J K

I J

K

ω φ θ φ φ

θ θ φ φ

φ θ θ θ φ θ φ

θ λ φ θ φ

= Ω+ + Ω+ + Ω+

+ − − Ω+ + Ω+

= Ω+ − + Ω+ − Ω+

+ + + Ω+

( ) ( )( ) ( )

cos sinsin cos

x z y

y y z

z y z

ω φ θ θω ω θ φ θ φ

ω θ φ θ φ

⎧ ⎫Ω+ −⎧ ⎫⎪ ⎪⎪ ⎪= = Ω+ − Ω+⎨ ⎬ ⎨ ⎬

⎪ ⎪ ⎪ ⎪Ω+ + Ω+⎩ ⎭ ⎩ ⎭

Or, in matrix for as

(6)

Page 6: Shaft FEM-2.pdf

6

11/6/2006 Finite Shaft Element YK-11

Now, let us differentiate Eq.1 with respects to time

Velocity Vector:

(7)

where

(8)

[ ] pp p p p

drr r r r

dtω ω= + × = +

[ ]0

00

z y

z x

y x

ω ωω ω ω

ω ω

⎡ ⎤−⎢ ⎥= −⎢ ⎥⎢ ⎥−⎣ ⎦

11/6/2006 Finite Shaft Element YK-12

Using the FEM notations, one can express the deformation vector in the form:

Velocity Vector:

(9)

where is the shape function matrix. Now Eq.7 can be expressed as

(10)

[ ] eNuu v==

[ ]vN

[ ] [ ] [ ]pv p v

p

edrN e r N

rdtω ω

⎧ ⎫= + = ⎨ ⎬

⎩ ⎭and e is the vector of nodal coordinates

Page 7: Shaft FEM-2.pdf

7

11/6/2006 Finite Shaft Element YK-13

Kinetic Energy:

(11)

The kinetic energy of the element is obtained by integrating thekinetic energy of the infinitesimal volume at point p over the volume V

[ ]

12

12

Tp p

V

TTT v

p vTpV

dr drKE

dt dt

eNe r N dVr

ρ

ρ ωω

⎧ ⎫ ⎧ ⎫= ⎨ ⎬ ⎨ ⎬

⎩ ⎭ ⎩ ⎭⎧ ⎫ ⎧ ⎫⎪ ⎪⎡ ⎤= ⎨ ⎬ ⎨ ⎬⎣ ⎦ ⎪ ⎪ ⎩ ⎭⎩ ⎭

11/6/2006 Finite Shaft Element YK-14

Kinetic Energy:

(12)

Which can be written in the form

[ ] [ ]

[ ] [ ] [ ] [ ]

[ ] [ ]

12

TTv v

V

TTv p

T Tp v

T Tp p

e N N e

e N r

r N e

r r dV

KE ρ

ω

ω

ω ω

⎡= ⎣

+

+

⎤+ ⎦

Page 8: Shaft FEM-2.pdf

8

11/6/2006 Finite Shaft Element YK-15

Kinetic Energy:The first term in Equation ( 12) gives the kinetic energy due to translation; the second and third terms are identically zero if moments of inertia are calculated with respect to center of massof the element. The last term gives kinetic energy due to rotation that includes gyroscopic moments.

Now, let us evaluate the last term of Eq.12

11/6/2006 Finite Shaft Element YK-16

Kinetic Energy:To this end, one may utilize the following expression:

[ ] [ ]⎥⎥⎥

⎢⎢⎢

+−−−+−−−+

=22

22

22

~~

xyzyzx

zyxzyx

xzyxyzT

ωωωωωωωωωωωωωωωωωω

ωω (13)

[ ] [ ] ( )2 2 2

0

1 12 2

lT T

p p x x y y z zV

r r dV I I I dxρ ω ω ρ ω ω ω= = + +∫ ∫

The last term =

(14)

Page 9: Shaft FEM-2.pdf

9

11/6/2006 Finite Shaft Element YK-17

Kinetic Energy:Substituting from Eq.6 into Eq.14, one gets

(15) [ ] [ ] ( )

( ) ( )( )( ) ( )( )

2

02

2

cos sin

sin cos

lT T

p p x z yV

y y z

z y z

r r dV I

I

I dx

ρ ω ω ρ φ θ θ

θ φ θ φ

θ φ θ φ

= Ω+ −

+ Ω+ − Ω+

+ Ω+ + Ω+

∫ ∫

which can be further simplified as

11/6/2006 Finite Shaft Element YK-18

Kinetic Energy:

(16)

Or, simply as

[ ] [ ] ( ) ( )

( ) ( )

2 2

0 0

2 2

0 0

1 12 2

l lT T

p p p pV

l l

p z y D y z

r r dV I dx I dx

I dx I dx

ρ ω ω φ φ

φ θ θ θ θ

= Ω + + Ω

− Ω+ + +

∫ ∫ ∫

∫ ∫

( )

2

0 0 0

0 0

12

l l lT

p p p

Tl lT y y

p z y Dz z

I dx I dx I dx

I dx I dx

φ φ φ

θ θφ θ θ

θ θ

= Ω + + Ω

⎧ ⎫ ⎧ ⎫− Ω+ + ⎨ ⎬ ⎨ ⎬

⎩ ⎭ ⎩ ⎭

∫ ∫ ∫

∫ ∫(17)

Page 10: Shaft FEM-2.pdf

10

11/6/2006 Finite Shaft Element YK-19

Kinetic Energy:Note that

(18)

y y DI I Iρ ρ= = x pI Iρ =and

[ ] [ ]

2

0 0 0

0 0

0

1 12 2

[ ] [ ]

[ ] [ ]

z y z y

y y

z z

l l lT TT T

p p p p pV

l lT TT T

p p

Tl

TD

r r dV I dx e N I N e dx I dx

e N I N e dx e N I N e N e dx

N Ne I e dx

N N

φ φ

θ θ θ θ φ

θ θ

θ θ

ρ ω ω φ⎡ ⎤ ⎡ ⎤= Ω + + Ω⎣ ⎦ ⎣ ⎦

⎡ ⎤ ⎡ ⎤⎡ ⎤ ⎡ ⎤ ⎡ ⎤− Ω − ⎣ ⎦⎣ ⎦ ⎣ ⎦⎣ ⎦ ⎣ ⎦

⎧ ⎫ ⎧ ⎫⎪ ⎪ ⎪ ⎪+ ⎨ ⎬ ⎨ ⎬⎪ ⎪ ⎪ ⎪⎩ ⎭ ⎩ ⎭

∫ ∫ ∫ ∫

∫ ∫

Using FEM notations, Eq.17 becomes

11/6/2006 Finite Shaft Element YK-20

Kinetic Energy:The term gives the inertial coupling between rigid body coordinates and elastic coordinates. For constant this term has no contribution to the equation of motion of the drillstring, and can be neglected.

Now, let us introduce some matrix expressions to simplify the final form of the KE expression :

0

l

pI dxφΩ∫Ω

Page 11: Shaft FEM-2.pdf

11

11/6/2006 Finite Shaft Element YK-21

Kinetic Energy:

(19)[ ]

[ ]

[ ]

0

10

0

10

0

12

[ ] [ ]

[ ] [ ]

z

z y

y y

z z

y

lT

l

p

lT

p

lT

p

Tl

D

p

r

e

I dx C

N I N dx M

N I N d

I

x G

N NI dx

N N e N d

MN

x M

N

θ

φ φ φ

θ

θ

θ θ

φ

θ

θ θ

⎡ ⎤⎡ ⎤ ⎡

=

⎡ ⎤ ⎡ ⎤ ⎡ ⎤=⎣ ⎦ ⎣ ⎦ ⎣ ⎦

⎡ ⎤⎡ ⎤ =⎣ ⎦ ⎣ ⎦

⎧ ⎫ ⎧ ⎫⎪ ⎪ ⎪ ⎪ =⎨ ⎬ ⎨ ⎬⎪

⎤ =⎣ ⎦

⎪ ⎪ ⎪⎩ ⎭ ⎩ ⎭

⎣ ⎦ ⎣ ⎦∫

11/6/2006 Finite Shaft Element YK-22

Kinetic Energy:

(20)

Now, Eq.18 reduces to

[ ] [ ] [ ] [ ]

[ ] [ ] eMeeMe

eGeeMeCdVrr

rT

eT

TT

Vp

TTp

21

21

21~~

21

12

1

+−

Ω−+Ω=∫ φωωµ

Note that is the inertia coupling between torsional and transverse vibrations which is time dependent

[ ]eM

Page 12: Shaft FEM-2.pdf

12

11/6/2006 Finite Shaft Element YK-23

Kinetic Energy:

(21)

The KE is finally expressed as

[ ] [ ] [ ]

[ ] [ ]

[ ] [ ] eGeCeMe

eMeeMe

eGeeMeCeMeKE

TT

rT

eT

TTt

T

12

1

12

1

21

21

21

21

21

21

Ω−Ω+=

+−

Ω−+Ω+= φ

[ ] [ ] [ ] [ ]2t r eM M M M Mφ⎡ ⎤= + + −⎣ ⎦where

[ ] 12

Te M e=

11/6/2006 Finite Shaft Element YK-24

Kinetic Energy:The KE is finally expressed as

∫=l

vT

vt dxNANM0

][][][ µ

∫=l

DT

r dxNINM0

][][][ θθ

∫=l

pT dxNINM

0

][][][ ϕϕϕ

[ ] [ ] [ ]( )0

lT T

e p z y y zM I N N e N N N e N dxϕ θ θ ϕ θ θ⎡ ⎤ ⎡ ⎤⎡ ⎤ ⎡ ⎤= −⎣ ⎦ ⎣ ⎦⎣ ⎦ ⎣ ⎦∫

translational

rotational

torsional

Page 13: Shaft FEM-2.pdf

13

11/6/2006 Finite Shaft Element YK-25

Kinetic Energy:The gyroscopic matrix [G] and can be represented by the following expression , where for constant angular speed

[ ]10

z y

lT

pG I N N dxθ θ⎡ ⎤⎡ ⎤= ⎣ ⎦ ⎣ ⎦∫

[ ] [ ]1 1[ ] TG G G= −

Next, is to carry out the integrations to arrive at explicit expressions of the non-zero entries of the aforementioned element coefficient matrices; see Appendix

(22)

11/6/2006 Finite Shaft Element YK-26

The deformation of a typical cross-section of the drillstring may be expressed by three translations and three rotations. Two of the translations (v, w) are due to bending in the Y and Zdirections and the third one (u) is due to axial translation. The three rotations are due to bending and due to torsion .

Strain Energy:

( ),s sv w( ),b bv w

( )zy θθ , ( )φ

The two translations (v, w) consist of contributions due to bending, and due to shear; that is

( , ) ( , ) ( , )( , ) ( , ) ( , )

b s

b s

v x t v x t v x tw x t w x t w x t

= += +

(23)

Page 14: Shaft FEM-2.pdf

14

11/6/2006 Finite Shaft Element YK-27

The elastic rotations are related to bending deformations by

Strain Energy: (Bending & Shear)

( , )( , )

( , )( , )

by

bz

w x tx tx

v x tx tx

θ

θ

∂= −

∂∂

=∂

(24)

The strain due to bending is given by

2 2

2

*

2

*b bv wy z

x xε ∂ ∂= − −

∂ ∂(25)

11/6/2006 Finite Shaft Element YK-28

(26)

The shear strains are given by

(27)

Strain Energy: (Bending & Shear)

**

**

bxz

bxy

wwx x

vvx x

γ

γ

∂∂= −∂ ∂

∂∂= −∂ ∂

112

T

VU E dVε ε= ∫

Strain Energy due to bending

Page 15: Shaft FEM-2.pdf

15

11/6/2006 Finite Shaft Element YK-29

(28)

Strain Energy: (Bending & Shear)

∫=A

z dAyI 2y zI I I= =

22 * 2 *

1 2 20

2 22 * 2 * 2 * 2 *2 2

2 2 2 20

2

22

lb b

A

lb b b b

A

v wEU y z dAdxx x

v v w wE y yz z dAdxx x x x

⎛ ⎞∂ ∂= − −⎜ ⎟∂ ∂⎝ ⎠

⎡ ⎤⎛ ⎞ ⎛ ⎞∂ ∂ ∂ ∂= + +⎢ ⎥⎜ ⎟ ⎜ ⎟∂ ∂ ∂ ∂⎢ ⎥⎝ ⎠ ⎝ ⎠⎣ ⎦

∫ ∫

∫ ∫

∫=A

y dAzI 2

Now defining

(29)

11/6/2006 Finite Shaft Element YK-30

(30)

Strain Energy: (Bending & Shear)

2 22 * 2 *

1 2 202

lb b

z yv wEU I I dxx x

⎛ ⎞⎛ ⎞ ⎛ ⎞∂ ∂⎜ ⎟= +⎜ ⎟ ⎜ ⎟⎜ ⎟∂ ∂⎝ ⎠ ⎝ ⎠⎝ ⎠∫

(31)

Strain energy due to bending

Strain Energy due to shear

2 ( )xy xy xz xzVU dVτ γ τ γ= +∫

Page 16: Shaft FEM-2.pdf

16

11/6/2006 Finite Shaft Element YK-31

(32)

Recalling the constitutive relationships

(33)

Strain Energy: (Bending & Shear)

, '2(1 )

EG Poission s ratioνν

= ≡+

xy xy xz xzG and Gτ κ γ τ κ γ= =

2 2

2 2 2

6(1 )7 6

6(1 )(1 )(7 6 )(1 ) (20 12 )

for solid circular cross section

for hollow circular cross section

νκν

ν µκν µ ν µ

+=

++ +

=+ + + +

(34)

Shear modulus

Shear factor

/i oR Rµ =and

11/6/2006 Finite Shaft Element YK-32

(35)

Strain Energy: (Bending & Shear)

(36)

2

2 2* ** *

0

1 ( )2

1 ( )2

xy xzV

lb b

U G dV

v wv wGA x dxx x x x

κ γ γ

κ

= +

⎧ ⎫⎡ ⎤⎛ ⎞ ⎛ ⎞∂ ∂∂ ∂⎪ ⎪= − + −⎢ ⎥⎨ ⎬⎜ ⎟ ⎜ ⎟∂ ∂ ∂ ∂⎢ ⎥⎝ ⎠ ⎝ ⎠⎪ ⎪⎣ ⎦⎩ ⎭

∫Expression strain energy in terms of v and w components of displacements, using

*

*

cos sinsin cos

v v ww v w

θ θθ θ

= −

= +

We can express Equations (30) and (35) as

Page 17: Shaft FEM-2.pdf

17

11/6/2006 Finite Shaft Element YK-33

(35)

Strain Energy: (Bending & Shear)

Similarly, strain energy due to shear

2 22 2 2 2

1 2 2 2 20

2 22 2

2 20

2 2

0

cos sin cos sin2

( )2

( )2

lb b b b

z y

lb b

ly z

v v w wEU I I dxx x x x

v wE I x dxx x

E I x dxx x

θ θ θ θ

θ θ

⎛ ⎞⎛ ⎞ ⎛ ⎞∂ ∂ ∂ ∂⎜ ⎟= − + +⎜ ⎟ ⎜ ⎟⎜ ⎟∂ ∂ ∂ ∂⎝ ⎠ ⎝ ⎠⎝ ⎠⎛ ⎞⎛ ⎞ ⎛ ⎞∂ ∂⎜ ⎟= +⎜ ⎟ ⎜ ⎟⎜ ⎟∂ ∂⎝ ⎠ ⎝ ⎠⎝ ⎠⎛ ⎞∂⎛ ⎞ ∂⎛ ⎞⎜ ⎟= +⎜ ⎟ ⎜ ⎟⎜ ⎟∂ ∂⎝ ⎠⎝ ⎠⎝ ⎠

11/6/2006 Finite Shaft Element YK-34

(36)

Strain Energy: (Bending & Shear)2 2

20

1 ( )2

ls sv wU GA x dx

x xκ⎧ ⎫⎡ ⎤∂ ∂⎪ ⎪⎛ ⎞ ⎛ ⎞= +⎢ ⎥⎨ ⎬⎜ ⎟ ⎜ ⎟∂ ∂⎝ ⎠ ⎝ ⎠⎢ ⎥⎪ ⎪⎣ ⎦⎩ ⎭∫

Strain Energy due to torsion

2

30

12

l

pU GI dxxφ∂⎛ ⎞= ⎜ ⎟∂⎝ ⎠∫ (37)

Page 18: Shaft FEM-2.pdf

18

11/6/2006 Finite Shaft Element YK-35

Strain Energy: (axial & bending)

(38)

The axial displacement can be defined to account for the effect of bending large deflection on the axial movement.

Therefore, the strain in the axial direction can be defined fromEulerian strain tensor as [ See Continuum Mech. Ref]:

2 2212

b bdv dwdu dudx dx dx dx

ε⎡ ⎤⎛ ⎞ ⎛ ⎞⎛ ⎞= − + +⎢ ⎥⎜ ⎟ ⎜ ⎟ ⎜ ⎟⎝ ⎠ ⎝ ⎠ ⎝ ⎠⎢ ⎥⎣ ⎦

The first term in Eq.36 is the linear term of axial strain and it will generate the linear terms in the stiffness matrix. The remainingterms are second order terms which are usually neglected in linear structural analysis.

11/6/2006 Finite Shaft Element YK-36

Strain Energy: (axial)

(39)

The strain energy is obtained by the following relationship:

24

0

1 12 2

l

V

U dV EA dxεσ ε= =∫ ∫

Substituting the strain expression from Eq.38 into Eq.39, results, upon some algebraic manipulations, in the following:

Page 19: Shaft FEM-2.pdf

19

11/6/2006 Finite Shaft Element YK-37

Strain Energy: (axial)

(40)

The strain energy is obtained by the following relationship: 22 22

40

2 22 3

0

24 2 2

1 12 2

12

1 1 14 2 2

Lb b

Lb b

b

dv dwdu duU EA dxdx dx dx dx

dv dwdu du du duEAdx dx dx dx dx dx

dv ddu du dudx dx dx dx

⎧ ⎫⎡ ⎤⎪ ⎪⎛ ⎞ ⎛ ⎞⎛ ⎞= − + +⎢ ⎥⎨ ⎬⎜ ⎟ ⎜ ⎟ ⎜ ⎟⎝ ⎠ ⎝ ⎠ ⎝ ⎠⎢ ⎥⎪ ⎪⎣ ⎦⎩ ⎭

⎧⎪ ⎛ ⎞ ⎛ ⎞⎛ ⎞ ⎛ ⎞= − − −⎨⎜ ⎟ ⎜ ⎟ ⎜ ⎟ ⎜ ⎟⎝ ⎠ ⎝ ⎠ ⎝ ⎠ ⎝ ⎠⎪⎩

⎛ ⎞⎛ ⎞ ⎛ ⎞ ⎛ ⎞+ + +⎜ ⎟ ⎜ ⎟ ⎜ ⎟⎜ ⎟⎝ ⎠ ⎝ ⎠ ⎝ ⎠⎝ ⎠

∫2

4 4 2 21 1 14 4 2

b

b b b b

wdx

dv dw dv dw dxdx dx dx dx

⎛ ⎞⎜ ⎟⎝ ⎠

⎫⎪⎛ ⎞ ⎛ ⎞ ⎛ ⎞ ⎛ ⎞+ + + ⎬⎜ ⎟ ⎜ ⎟ ⎜ ⎟ ⎜ ⎟⎝ ⎠ ⎝ ⎠ ⎝ ⎠ ⎝ ⎠ ⎪⎭

11/6/2006 Finite Shaft Element YK-38

Strain Energy: (axial)

(41)

Neglecting higher order terms leads to : 2 22 3

40

12

Lb bdv dwdu du du duU EA dx

dx dx dx dx dx dx⎧ ⎫⎪ ⎪⎛ ⎞ ⎛ ⎞⎛ ⎞ ⎛ ⎞= − − −⎨ ⎬⎜ ⎟ ⎜ ⎟ ⎜ ⎟ ⎜ ⎟⎝ ⎠ ⎝ ⎠ ⎝ ⎠ ⎝ ⎠⎪ ⎪⎩ ⎭

Now, total strain energy becomes

Page 20: Shaft FEM-2.pdf

20

11/6/2006 Finite Shaft Element YK-39

Strain Energy: (total)

(42)

Now the total strain energy is 1 2 3 4U U U U U= + + +

2 2

0

2 2 2

0 0

2 22 3

( )2

1 1( )2 2

12

ly z

l ls s

p

b b

EU I x dxx x

v wGA x dx GI dxx x x

dv dwdu du du duEAdx dx dx dx dx dx

θ θ

φκ

⎧ ⎫⎡ ⎤∂⎛ ⎞ ∂⎪ ⎪⎛ ⎞= +⎢ ⎥⎨ ⎬⎜ ⎟ ⎜ ⎟∂ ∂⎝ ⎠⎢ ⎥⎝ ⎠⎪ ⎪⎣ ⎦⎩ ⎭⎧ ⎫⎡ ⎤∂ ∂ ∂⎪ ⎪⎛ ⎞ ⎛ ⎞ ⎛ ⎞+ + +⎢ ⎥⎨ ⎬ ⎜ ⎟⎜ ⎟ ⎜ ⎟∂ ∂ ∂⎝ ⎠⎝ ⎠ ⎝ ⎠⎢ ⎥⎪ ⎪⎣ ⎦⎩ ⎭

⎧⎪ ⎛ ⎞ ⎛ ⎞⎛ ⎞ ⎛ ⎞+ − − −⎨⎜ ⎟ ⎜ ⎟ ⎜ ⎟ ⎜ ⎟⎝ ⎠ ⎝ ⎠ ⎝ ⎠ ⎝ ⎠

∫ ∫

0

L

dx⎫⎪⎬

⎪ ⎪⎩ ⎭∫

11/6/2006 Finite Shaft Element YK-40

(43)

Assumed displacement field

)(00000000000000000000000000

),(),(),(

4321

4321

21

teNNNN

NNNNNN

txwtxvtxu

vvvv

vvvv

uu

⎥⎥⎥

⎢⎢⎢

−=

⎪⎭

⎪⎬

⎪⎩

⎪⎨

)(0000000000000000

4321

4321 teNNNN

NNNN

z

y⎥⎦

⎤⎢⎣

⎡−−

=⎭⎬⎫

⎩⎨⎧

θθθθ

θθθθ

θθ

-

(44)

(45) 1 2

( , ) 0 0 0 0 0 0 0 0 0 0 ( )x t N N e tφ φ φ⎡ ⎤= ⎢ ⎥⎣ ⎦

(FEM expressions)

Page 21: Shaft FEM-2.pdf

21

11/6/2006 Finite Shaft Element YK-41

[ ] ( , )( , ) ( ) ( ) ( )( , )

u

v t

w

u x t Nv x t N e t N x e tw x t N

⎧ ⎫ ⎡ ⎤⎪ ⎪ ⎢ ⎥= =⎨ ⎬ ⎢ ⎥⎪ ⎪ ⎢ ⎥⎩ ⎭ ⎣ ⎦

( ) 1 1 2 21 1 1 1 2 2 2 2

T

y z y ze t u v w u v wθ θ φ θ θ φ= (46)Equations (43), (44) and (45) can be written as

(47)

( ) ( ) ( )yz

yy

zz

Ne t N x e t

θθ

θθ

⎡ ⎤⎧ ⎫ ⎡ ⎤= =⎨ ⎬ ⎢ ⎥ ⎣ ⎦⎩ ⎭ ⎣ ⎦

where the nodal coordinate vector is given by

( , ) ( )x t N e tφφ ⎡ ⎤= ⎣ ⎦

(48)

(49)

(FEM expressions)

11/6/2006 Finite Shaft Element YK-42

[ ] [ ] [ ], , , , ,y zu v wN N N N N Nθ θ ϕ

⎡ ⎤ ⎡ ⎤ ⎡ ⎤⎣ ⎦⎣ ⎦⎣ ⎦

where

are the shape functions associated with axial u, bending v and w, elastic rotations and , and torsional deformations , respectively.

zθ φ

(FEM expressions)

Page 22: Shaft FEM-2.pdf

22

11/6/2006 Finite Shaft Element YK-43

[ ] [ ]

[ ] [ ]

[ ] [ ]

,

,

,

,

,

,

y y

z z

u u

v v

w w

y y

z z

duu N e B edxdvv N e B edxdww N e B edx

N e N e

N e N e

N e N e

φ φ

θ θ

θ θ

φ φ

θ θ

θ θ

= =

= =

= =

⎡ ⎤ ⎡ ⎤= =⎣ ⎦ ⎣ ⎦

⎡ ⎤ ⎡ ⎤= =⎣ ⎦ ⎣ ⎦

⎡ ⎤ ⎡ ⎤= =⎣ ⎦ ⎣ ⎦

(FEM expressions)

11/6/2006 Finite Shaft Element YK-44

1

2 31 [1 3 2 (1 )]1vN ξ ξ ξ= − + +Φ −+Φ

2

2 3 21 [ 2 ( )]1 2vN ξ ξ ξ ξ ξΦ

= − + + −+Φ

3

2 31 [3 2 ]1vN ξ ξ ξ= − +Φ+Φ

4

2 3 21 [ ( )]1 2vN ξ ξ ξ ξΦ

= − + + − ++Φ

(FEM shape functions)

Page 23: Shaft FEM-2.pdf

23

11/6/2006 Finite Shaft Element YK-45

1

26 [ ](1 )

Nlθ ξ ξ= − +

2

2 31 [1 4 3 (1 )]1

Nθ ξ ξ ξ ξ= − + + +Φ −+Φ

3

26 [ ](1 )

Nlθ ξ ξ= −

4

31 [ 2 3 ]1

Nθ ξ ξ ξ= − + +Φ+Φ

(FEM shape functions)

11/6/2006 Finite Shaft Element YK-46

11Nφ ξ= −

2Nφ ξ=

11uN ξ= −

2uN ξ=

where ( / )x lξ =

(FEM shape functions)

Page 24: Shaft FEM-2.pdf

24

11/6/2006 Finite Shaft Element YK-47

where the strain energy expression

[ ] eKeU T

21

=

Strain Energy:

(50)

11/6/2006 Finite Shaft Element YK-48

Stiffness Matrices:

(54)

[ ] [ ] [ ] [ ]a e sK k k k kφ⎡ ⎤= + + + ⎣ ⎦

[ ] [ ] [ ] [ ] [ ] ≡−−−= 4321 kkkkk a

where the matrix is the augmented stiffness matrix given by [ ]K

[ ] [ ] [ ] ≡= ∫l

Te dxBEIBk

0θθ

[ ] [ ] [ ] ≡= ∫l

pT dxBGIBk

0φφφ

[ ] [ ] [ ]0

l

s ssTk GA BB dxκ= ≡∫

Axial stiffness matrix

Elastic stiffness matrix

Shear stiffness matrix

Torsional stiffness matrix

(51)

(52)

(53)

Page 25: Shaft FEM-2.pdf

25

11/6/2006 Finite Shaft Element YK-49

Stiffness Matrices:

(55)

(56)

(57)

(58)

[ ] [ ] [ ]

[ ] [ ] [ ] [ ]

[ ] [ ] [ ] [ ] [ ] [ ] [ ]

[ ] [ ] [ ] [ ] [ ] [ ] [ ]∫

⎟⎠⎞

⎜⎝⎛ +=

⎟⎠⎞

⎜⎝⎛ +=

=

=

L

uTT

u

L

uTT

u

L

uuT

u

L

uT

u

dxNeBNNeNBEAk

dxNeBNNeNBEAk

dxBeBBEAk

dxBEABk

zzzz

yyyy

04

03

02

01

21

21

23

θθθθ

θθθθ

and

See details of FEM in Ref: Mohiuddin & Khulief, “Modal characteristics of rotors using a conical shaft finite element”, CMAME, Vol. 115, 1994, p.125-144.

11/6/2006 Finite Shaft Element YK-50

Equation of Motion:

(59)QqL

qL

dtd

=∂∂

−⎟⎟⎠

⎞⎜⎜⎝

⎛∂∂

Using the Lagrangean approach

L=T-U : Lagrangean function

,TTq e= Ω : Generalized coordinates

Q : vector of generalized forcesT : total kinetic energyU : total strain energy

Page 26: Shaft FEM-2.pdf

26

11/6/2006 Finite Shaft Element YK-51

Equation of Motion:

(60)

Substituting the Lagrangean function into Eq.59, and carry out the required differentiation, one gets for a shaft rotating at aconstant angular speed

[ ] [ ] [ ] QeKeGeM =+Ω+

Ω

P.S. This is the elemental equation of motion, which can be assembled using the standard finite element assembly procedure.

11/6/2006 Finite Shaft Element YK-52

Modal Characteristics:Solving the eigenvalue problem to obtain the rotor’s modal characteristics.

Damped Eigenvalue Mode Shape Plot

-1.5-1

-0.50

0.51

1.5

0 0.5 1 1.5 2 2.5

Axial Location, meters

Re(x)

Im(x)

Re(y)

Im(y)

Boiler Feed Pump (BFP)On 2 Journal & 1 Thrust Bearings

Damped Eigenvalue Mode Shape PlotBoiler Feed Pump (BFP)

On 2 Journal & 1 Thrust Bearings


Recommended