+ All Categories
Home > Documents > Side Reactions in Organic Synthesis II (Aromatic Substitutions) || Electrophilic Arylation of Arenes

Side Reactions in Organic Synthesis II (Aromatic Substitutions) || Electrophilic Arylation of Arenes

Date post: 06-Jan-2017
Category:
Upload: florencio
View: 213 times
Download: 0 times
Share this document with a friend
24
61 3 Electrophilic Arylation of Arenes 3.1 General Aspects Most arene arylations belong to one of the reaction types sketched in Scheme 3.1. In the first step, an arene is metallated by the insertion of a metal into a C–H or C–X bond. The second step can proceed either via the formation of a diarylmetal intermediate which undergoes reductive elimination or by aromatic nucleophilic substitution. In many of the examples presented below, radicals are formed as intermediates. Only few examples of the arylation of unsubstituted arenes with aryl halides had been reported until recently [1]. The oldest examples are copper-catalyzed, Ullmann-type reactions of aryl halides (mostly iodides) with other arenes or het- eroarenes. Usually, though, the Ullmann reaction [2, 3] converts aryl halides into homodimers. Yields of heterodimers are, therefore, often low. Further disadvan- tages of the Ullmann reaction are the required stoichiometric amounts of copper and the high reaction temperature. Typical side reactions of the Ullmann reaction include halogen exchange, reductive dehalogenation, and nucleophilic aromatic substitutions. In recent decades, a number of more convenient alternatives to the classic Ullmann conditions have been developed [4]. The improvements include the use of only catalytic amounts of transition metals, lower reaction temperatures, and a better functional group tolerance. 3.2 Arylations with Aryl Halides 3.2.1 Via Cationic Intermediates Most aryl halides are not electrophilic enough to arylate electron-rich arenes in the absence of catalysts. Even in the presence of strong Lewis acids, aryl halides usually remain unchanged. Only highly electrophilic heteroarenes, such as 2,4,6-trichlorotriazine (cyanuric chloride), or arenes capable of Side Reactions in Organic Synthesis II: Aromatic Substitutions, First Edition. Florencio Zaragoza D¨ orwald. c 2014 Wiley-VCH Verlag GmbH & Co. KGaA. Published 2014 by Wiley-VCH Verlag GmbH & Co. KGaA.
Transcript

61

3Electrophilic Arylation of Arenes

3.1General Aspects

Most arene arylations belong to one of the reaction types sketched in Scheme 3.1.In the first step, an arene is metallated by the insertion of a metal into a C–H orC–X bond. The second step can proceed either via the formation of a diarylmetalintermediate which undergoes reductive elimination or by aromatic nucleophilicsubstitution. In many of the examples presented below, radicals are formed asintermediates.

Only few examples of the arylation of unsubstituted arenes with aryl halideshad been reported until recently [1]. The oldest examples are copper-catalyzed,Ullmann-type reactions of aryl halides (mostly iodides) with other arenes or het-eroarenes. Usually, though, the Ullmann reaction [2, 3] converts aryl halides intohomodimers. Yields of heterodimers are, therefore, often low. Further disadvan-tages of the Ullmann reaction are the required stoichiometric amounts of copperand the high reaction temperature. Typical side reactions of the Ullmann reactioninclude halogen exchange, reductive dehalogenation, and nucleophilic aromaticsubstitutions.

In recent decades, a number of more convenient alternatives to the classicUllmann conditions have been developed [4]. The improvements include the useof only catalytic amounts of transition metals, lower reaction temperatures, and abetter functional group tolerance.

3.2Arylations with Aryl Halides

3.2.1Via Cationic Intermediates

Most aryl halides are not electrophilic enough to arylate electron-rich arenesin the absence of catalysts. Even in the presence of strong Lewis acids, arylhalides usually remain unchanged. Only highly electrophilic heteroarenes,such as 2,4,6-trichlorotriazine (cyanuric chloride), or arenes capable of

Side Reactions in Organic Synthesis II: Aromatic Substitutions, First Edition. Florencio Zaragoza Dorwald.c© 2014 Wiley-VCH Verlag GmbH & Co. KGaA. Published 2014 by Wiley-VCH Verlag GmbH & Co. KGaA.

62 3 Electrophilic Arylation of Arenes

X M MX

DG

H M

DG

MLn

ArX or ArH Ar

ArX or ArH Ar

DG

XPhH

H

−H

Scheme 3.1 Mechanisms of biaryl formation. M, metal; X, hydrogen or leaving group; DG,directing group.

forming stabilized cations by halogen abstraction or protonation (e.g., 9,10-dichloroanthracene and thiophene) arylate other arenes in the presence of AlCl3(Scheme 3.2).

N

N

N

Cl Cl

Cl

2.5 eq AlCl30.9 eq m-xylene

1,2-dichlorobenzene85 °C, 4 h, then

1.4 eq m-xylene

35 °C, 6 h N

N

N

Cl

1 eq resorcine

80 °C, 3 hN

N

N

OH

OH

61%

EP 0779280

Scheme 3.2 Arylation of cyanuric chloride [5]. Further examples: [6].

Because the complete abstraction of halides from arenes to generate aryl cationsis unfavorable (because no effective charge delocalization is possible in arylcations), most transition-metal-free arylations with aryl halides will proceed viaan addition–elimination mechanism. In acid-catalyzed arylations, the aryl halidecan be protonated to yield a more reactive intermediate, which will, however, notnecessarily react at the halogen-bearing carbon atom (Scheme 3.3). Nor will it reactforcibly with the most stable or representative resonance formula because this willalso be the least reactive one. The complexity of such reactions is further increasedby reactions of the protonated with the unprotonated aryl halide (Scheme 3.3,last equation).

3.2 Arylations with Aryl Halides 63

S ClCl

3 eq benzene

1 eq AlCl3, CH2Cl25–40 °C, 2 h

SCl62%

S ClH

S ClH

Ph

− H H

− HCl

+ C6H6

Cl Cl+S ClCl

HH

+ H

88bcsj3779

S ClCl

11 eq benzene

1 eq AlCl3−5 to 20 °C, 1.7 h

SCl

77%

Cl

81cl399

S Cl

Amberlyst 15

120 °C, 4 h+

OMe

SOMe

SOMeS

O

17%

10%

S Cl

S

O

20%

S ClS

6%

54% conversion+

+ +

S ClH

S ClH

79bcsj1126

+

+

+

+

+

+

Scheme 3.3 Acid-mediated arylations of 2-chlorothiophenes [7–9].

3.2.2Via Radicals

Most arylations with aryl halides proceed either via metal–halogen exchange orby the formation of aryl radicals. The latter can be generated in several ways,for instance, by treatment of aryl halides with tertiary alkanolates (Scheme 3.4).The best results are usually obtained with two arenes of unlike electron density,and with a large excess of the ‘‘radical accepting’’ arene (to prevent homodimerformation). Examples of uncatalyzed reactions of this type and alcoholate-mediatedarylations catalyzed by transition metals have been reported (Scheme 3.4). Radical-based mechanisms have also been proposed for copper-catalyzed, Ullmann-typearylations with aryl halides [10].

64 3 Electrophilic Arylation of Arenes

+ONa

+ONa

+Hal

Ar-Hal Ar-Hal

Ar Ar

H

ONaAr

H

+

Ar

SET

N

N

40 eq

+

S

I

1 eq

1.5 eq KOtBu

50 °C, 5 min

71% N

N

S08ol4673

NC

Cl

120 eq benzene

2 eq NaOtBu

0.1 eq ligand

155 °C, 6 h

75%

NC

ligand:

N N

Ph Ph

10ja15537

−+

+80%

I

1 eq

1 eq

+S

2 eq

2 eq

2 eq LiOtBu, 0.1 eq CuI

0.1 eq phenanthroline

DMPU, 125 °C, 12 h

2 eq LiOtBu, 0.1 eq CuI

0.1 eq phenanthroline

DMPU, 125 °C, 1 h

91%Cl

I

SCl

F3C

N

O

PhN

O

Ph

F3C08ja15185

08ja15185

+

+

Scheme 3.4 Transition-metal-catalyzed arylations with aryl halides mediated by strongbases [11–15]. Further examples: [16].

3.2 Arylations with Aryl Halides 65

N I

100 eq benzene

2 eq KOtBu10% ligand, 5% Fe(OAc)2

80 °C, 20 hN

85%

ligand:

N N

Ph Ph

10ja1514

Ph2N

Br

90 eq C6H6, 15% FeCl330% (MeNHCH2)2

4 eq LiN(SiMe3)2

80 °C, 48 h

Ph2N72%

10ang2004

Scheme 3.4 (Continued)

Because radicals are less sensitive than charged intermediates to variationsof electron density in the reacting partner, their regioselectivity is usually low.Accordingly, mixtures of regioisomers are often obtained during arylations witharyl radicals (Scheme 3.5).

Reactions performed in the presence of a large excess of a strong base can easilyyield unexpected products. If weakly acidic compounds are deprotonated, they oftenbecome strong reducing reagents, and will be oxidized by even weak oxidants. Airand other potential oxidants (ketones, polyhaloalkanes, or nitro compounds) shouldbe meticulously excluded from the reaction mixture. Moreover, strong bases canlead to aryne formation and thereby to mixtures of regioisomers.

Aryl radicals can also be generated by thermolysis of benzoylperoxides(Scheme 3.6). This reaction is of little scope, because acylperoxides are also acylatingreagents and can oxidize many functional groups (amines, thioethers, sulfoxides,olefins, ketones, arenes, etc.). Moreover, the outcome of these reactions variesstrongly depending on the substitution pattern at the arene [21, 22]. Many peroxides,including diacylperoxides, are explosive, and can detonate spontaneously.

Radicals are short-lived intermediates, and often require high concentrations ofa radical acceptor to give satisfactory yields. Processes that compete with the mainreaction include radical dimerization (homocoupling), reduction (e.g., H-transferfrom the solvent or other hydrogen donors), or reaction with oxygen to form peroxylradicals. Radicals can also induce the oligomerization of alkenes or alkynes.

3.2.3Via Transition-Metal Chelates

Arenes substituted with a coordinating functional group can be metallated undermild conditions and without strong bases by chelate formation. Arylruthenium

66 3 Electrophilic Arylation of Arenes

N

40 eq

1 eq PhI1.5 eq KOtBu

50 °C, 5 min

N63%

36 : 21 : 43

Ph N N

+ +

Ph

Ph

08ol4673

I+

OMe

1 eq 40 eq

5% [Cp*IrHCl]23.3 eq KOtBu

80 °C, 30 hOMe OMe OMe

Ph

Ph

Ph

+ +

55%

72 : 16 : 1204cc1926

OH

O

Br

20% Pd(PPh3)4

3 eq KOtBuDMA, 95 °C, 2 d

OH

O O

+

87% 2-5%

HO97joc2

N Br

+

Cl

2 eq (Me3Si)3SiH

2 eq AIBN

80 °C, 24 h

1 eq solvent

N N+

Cl

Cl93 : 7

84%

00ol3933

N

MeO2C

O

NBoc

I

1.1 eq Bu3SnH

AIBN, PhMe

02tet1453

112 °C, 1 h

MeO2C

N

N

O

Boc

26%

+

N

MeO2C

O

NBoc

N

MeO2C

O

NBoc

13% 5%

+

Scheme 3.5 Formation of regioisomers during arylations with aryl radicals [11, 17–20].

3.2 Arylations with Aryl Halides 67

O

O

O

OCl

Cl

ClCl

cat. 1,3-dinitrobenzene

C6H6, 80 °C, 40 h

OH

O

Cl

Cl

95% 78–81%

Cl

Cl

+

oscv(5)51

O

O

O

O

+ N

5% Pd(OAc)2

MeCN/AcOH 1:1

100 °C, 2 h N

81%(70% conversion)

09ol3174

O

O

O

OMeO

OMe

+

2 eq

N

10% Pd(OAc)2

MeCN

160 °C, 10 min

1 eq

2 eq 1 eq

N

O90%

09ol3174 O

OMe

Scheme 3.6 Generation and reactions of aryl radicals from diacylperoxides [23, 24].

and -palladium chelates generated this way can react with aryl halides to yieldbiaryls after reductive elimination and regeneration of the catalyst (Scheme 3.7).

3.2.4By Transition-Metal Catalysis

A number of arylation reactions with aryl halides have been reported that areassumed to proceed by metallation of an unsubstituted arene without chelate forma-tion. Though not strictly necessary, oxidants are sometimes added to these reactions.The regioselectivity can be low and difficult to predict (Scheme 3.8), but the prin-ciples governing the regioselectivity (or lack of it) are slowly being understood [33].Moreover, products of homocoupling are occasionally obtained as byproducts.

One typical side reaction of transition-metal-catalyzed arylations with aryl halidesis the homocoupling of the aryl halide. This reaction can occur under amazingly

68 3 Electrophilic Arylation of Arenes

DG

H

+ X [Ru]−HX

DG

[Ru] ArX

DG

[Ru]

Ar

X DG

Ar

+ X [Ru]

N

NN

NPh

+

Br

OAc

0.63% [RuCl2(p-cymene)]22 eq K2CO3, NMP

140 °C, 9 h

1.0 eq1.1 eq

N

NN

NPh

OAc

80%

12syn3231

NO

5% Ru(MesCO2)2(p-cymene)

K2CO3, PhMe

120 °C, 18 h+

Cl

OMeNO OMe

50%

10ol5032

N +

1.0 eq 2.5 eq

1.0 eq 2.5 eq

Br

2.5% [RuCl2(p-cymene)]23 eq K2CO3, NMP

120 °C, 20 hN

94%

N +N

Cl

2.5% [RuCl2(p-cymene)]23 eq K2CO3, NMP

120 °C, 24 h N

N

47%

09asc1737

09asc1737

N

N N

N

O

AcO

OAc

OAc

5% Pd(OAc)2

2 eq AgOAc

AcOH, 120 °C, 48 h+

I

1 eq

30 eq

89%

N

N N

N

O

AcO

OAc

OAc10ol2008

Scheme 3.7 Arylations via intermediate transition-metal chelate formation [25–31]. Furtherexamples: [32].

3.3 Arylations with Diazonium Salts 69

NO2

+

Br

F

5% Pd(OAc)2

15% Me(tBu)2PHBF4

0.3 eq tBuCO2H, 1.3 eq K2CO3

mesitylene, 125 °C, 16 h

10 eq 1 eq

1 eq 2 eq

68%

NO2

F

08ol4533

+

OMe

HN

O

N

I

10% Pd(OAc)2

2 eq AgOAc, 5 eq aq HBF4

2 wt% Brij35 in water

20 °C, 20 h

OMe

HN

O

N

76%

OMe

Brij35: C12H25O(CH2CH2O)23H

OMe

10ang781

NH2

O

+

I

5% Pd(OAc)2

2 eq Ag2O, AcOH

120 °C, 5 hNH2

O

74%

12joc3341

Scheme 3.7 (Continued)

mild conditions [46–48] (Scheme 3.9). To prevent homocoupling, in most of theexamples given above one of the reactants must be used in a large excess.

3.3Arylations with Diazonium Salts

A further simple way to generate aryl radicals is the treatment of arenediazoniumsalts with aqueous base (Gomberg–Bachmann reaction). Thereby, diazo anhydrides(Ar–N=N–O–N=N–Ar) are formed that undergo thermal homolysis to yield arylradicals. In the presence of a large excess of another arene, arylation occurs, andunsymmetric biaryls result (Scheme 3.10). Alternatively, aryl radicals may also begenerated by the photolysis of arenediazonium salts [51].

Not all aryl- or heteroarylamines can be converted to diazonium salts.Electron-deficient heteroarenediazonium salts (e.g., those prepared from 2- or4-aminopyridines or 2-aminopyrimidines) undergo fast aromatic nucleophilicsubstitution of nitrogen, and are often hydrolyzed to hydroxyarenes. Diazoniumsalts prepared from 2-(primary alkyl)anilines are base-labile, and readily cyclize toindazoles [60]. The diazotization of electron-rich anilines can occasionally lead to

70 3 Electrophilic Arylation of Arenes

NO2

Cl10% ligand, 5% [Rh(cod)Cl]2

benzene, 70 °C, 24 hNO2

73%

ligand:

NN N

PPh2

07ang3135

CHO

Br

5% Pd(OAc)2

0.51 eq Ag2CO3

100 eq benzene, 125 °C, 20 h

CHO

74%

10ja14412

N

HN

SPh

O O

0.5% Pd(OAc)2

1.2 eq PhI, 2% PPh3

2 eq CsOAc

DMA, 125 °C, 48 h

N

HN

SPh

O OPh +

34% 22%

04ol2897

N

S+ Br Cl

1.0 eq 1.5 eq

5% catalyst

1.5 eq K2CO3, DMA

140 °C, 24 h

N

S

Cl65%

catalyst:

Pd

N

HO

OH

Cl 2

12ejoc669

N OTs

OTs

+

F

F

F

F

5% Pd(TFA)2

10% P(2-biphenylyl)Cy2

1.2 eq K3PO4

1.2 eq 1-AdaCO2H

tBuOH, 90 °C, 12 h

N

OTs

F

F

F

F55%

11ol4374

Scheme 3.8 Transition-metal-catalyzed arylation of unsubstituted arenes with aryl halidesor tosylates [34–41]. Further examples: [33, 42–45].

3.3 Arylations with Diazonium Salts 71

N

CN

N

F

5% Pd(OAc)2

10% PBuAda2HBF4

1 eq Ag2CO3, 3 eq Cs2CO3

0.5 eq 2,2-dimethylhexanoic acid

toluene, 120 °C, 24 h+

BrN

F

74%

5% Pd(OAc)2

10% PCy3HBF4, 3 eq K2CO3

0.3 eq 2,2-dimethylhexanoic acid

toluene, 120 °C, 24 h+

Br 27%

1.0 eq 1.5 eq

1.5 eq1.0 eq N

CN

11ja16338

11ja16338

N

+

Br OMe

5% Pd(OAc)2

15% phenanthroline

3 eq Cs2CO3

140 °C, 68 h

solvent 1 eq

1 eq1 eq

70%

N

OMe

11ja19090

NO2

NO2O2N

+

I

N

0.5 eq Cu2O

quinoline

180 °C, 1 hNO2

NO2O2N

N

24%83joc4649

Scheme 3.8 (Continued)

BrNC

5% Pd(OAc)2

3 eq NEt3DMF, iPrOH, 115 °C, 23 h

57%

NCCN

98thl2559

Cl

NC

3% Pd(OAc)2

0.5 eq glucose

3 eq Bu4NOH

H2O, 60 °C, 6 h

NC

CN

+NC

15%80%10joc3908

Scheme 3.9 Homocoupling of aryl halides [49, 50].

72 3 Electrophilic Arylation of Arenes

ArN2X

H2O

ArN

N

ON

NAr

Ar + N2N

ArNO+

Ar

H

Ar

+ NArN

HO

HO

Cl

N2Cl

+

NH2

F

1 eq 13 eq

NaOH, H2O

75−95 °C, 25 min

NH2

F

Cl

68%12cej11555

H2N

F

CN

92 eq C6H6

1.5 eq isoamylnitrite

10 °C, 1 h, then 90 °C, 22 h

64%

F

CN

US 4539397

CO2MeH2N

OH

+

Cl

N2Cl

5 eq1 eq

2 eq TiCl3H2O, HCl

20 °C, 0.5 h

CO2MeH2N

OHCl

57%10cej2547

O2N

N2BF4

2 eq KOAc

5% 18-crown-6

C6H6, 20 °C, 1.5 h

O2N

85%

84joc1594

Scheme 3.10 Arylations with aryl radicals generated from diazonium salts [52–58]. Furtherexamples: [59].

3.4 Arylations with Other Functionalized Arenes 73

NN O

O

NC

+

OMe

MeO

1 eq 30 eq

1 eq MnO2

160 °C

44%

NC

MeO

OMe

12joc1520

NHO 4 eq PhN2BF4, 10% Pd(OAc)2

2.5% Ru(bpy)3-hexahydrate

MeOH, light, 20 °C, 4 h

NHO

50%

11ja18566

HN

H2N

F

F

F

+

NH2

1 eq 20 eq

5 eq MnO2

MeCN, 20 °C, 3 h

NH2

F

F

F

F

F

F

H2N

+

59% 16%

HN

ClH3N+

OMe

1 eq 20 eq

5 eq MnO2

5 eq NaHCO3

MeCN, 20 °C, 3 h

OMe

Cl Cl

MeO

+

25% 5%

Cl

Cl

+

OMe

4%

12joc10699

12joc10699

Scheme 3.10 (Continued)

aromatic nitrosation or nitration [61]. Some heteroaryl radicals rearrange to morestable radicals faster than adding to arenes (Scheme 3.11).

3.4Arylations with Other Functionalized Arenes

Benzoic and heteroaromatic acids are further precursors for aryl radicals ormetallated arenes, and can be used for the arylation of aromatic C–H bonds(Scheme 3.12). Benzoyl radicals, formed by the oxidation of benzoic acid salts,decarboxylate so quickly to aryl radicals that no byproducts resulting from thebenzoyl radicals are usually observed.

Arylpalladium complexes generated by metallation of aromatic C–H groupsthrough chelate formation readily undergo homocoupling reactions. To achieve

74 3 Electrophilic Arylation of Arenes

N

O

NH2

N

O

Br

NH

O

O

10 eq KBr

HBr (48% in H2O)

7 eq NaNO2

H2O, 5 °C, 1 h+

66% 7%

10cpb685

N

N NN

NH2

+O

NO

1 eq 8 eq

10% TsOH, PhMe

120 °C, 18 h

NN

ON

NPh

Me

NN

ON

NPh

+

N

N NN

NN

NC− HCN

NN

NC

Me

+

NN

NCPhMe

PhMeRONO

Ph N O

12% 7%

82ja4013

+ −

Scheme 3.11 Decomposition pathways of 2-pyridine and 4-pyrimidinediazonium salts[62, 63].

CO2H

OMeMeO

+

F

F

F

F

F1 eq 15 eq

15% Pd(TFA)2

45% PCy3, 3.5 eq Ag2CO3

1.5 eq K3PO4, MS 3 Å

DMSO, dioxane, 140 °C, 22 h

OMeMeO

F

F

F

F

F75%

11joc882

O CO2H

0.2 eq AgOAc

3 eq K2S2O8

d3-MeCN

130 °C (MW), 1 h

O O D

76% 8%

+12ol2650

S

N

CO2H

Ph +

O

N

Ph

CO2Et

1.5 eq 1.0 eq

10% Pd(OAc)2

5% (Cy2PCH2)2

3 eq CuCO3, MS 4 Å

dioxane/DMSO 9 : 1, 140 °C, 16 h

S

NPh

O

N

Ph

CO2Et +

O

N

Ph

CO2Et

O

N

Ph

EtO2C

11%53%

10ang2768

Scheme 3.12 Arylations with arenecarboxylic acids [64–66]. Further examples: [67].

3.4 Arylations with Other Functionalized Arenes 75

+

HN

O

N

B(OH)2

10% [Pd(MeCN)4](BF4)2

3 eq benzoquinone

AcOEt, 20 °C, 20 h

1.0 eq 1.5 eq

HN

O

N94%

10ja4978

N+

(HO)2B

20% Fe(C2O4)-2H2O

20% ligand, air

130 °C, 10 h

75 eq 1 eq

N83%

10ol2694

ligand:

N

NH HNHN

N

N

+

(HO)2B

1.1 eq1.0 eq

20% Fe(acac)2

3 eq K2S2O8, 1 eq TFA, air

CH2Cl2/H2O 1 : 1, 20 °C, 12 h

N

N

+

72% 10%

13joc2639

Scheme 3.13 Palladium- and iron-catalyzed arylation of aromatic C–H groups with boronicacids [68–70].

N

+Ph

+

IPh

+ −

+ −

OTf

1.5 eq tBuONa

110 °C, 8 h

58%N N NPh

Ph

Ph

+ +

52 : 38 : 10

12joc766

NPh

Ph

+Ph

IPh

OTf

1.0 eq

1 eq 2 eq

1.3 eq

1.0 eq 1.3 eq

dtbpy, DCE

90 °C, 3 d

NPh

Ph

+

NPh

Ph

Ph Ph Ph

59%

82 : 18

11ang458

O

+Ph

IPh

OTf

20% Cu(OTf)2

DCE, 70 °C, 3 d

75%

O

Ph11ang458

N

N N

N

O

O

+ BrS

O

NaO

5% Pd(PhCN)2Cl22 eq Cu(OAc)2

dioxane/DMSO 9 : 1

110 °C, 24 h N

N N

N

O

O

Br91%

11cej12415

Scheme 3.14 Arylation of arenes with arene iodonium salts and sulfinates [71–73].

76 3 Electrophilic Arylation of Arenes

N

Raney-Ni

air, 116 °C, 48 h

N

Napprox 10%conversion

main product

+

N

N

N

minor products

+NH

N

N

131 °C, 22 h

2 Br

Diquat

BrBr

oscv(5)102

06syn146 > 90%

N Cl

2.5 eq NaCN

1.2 eq NaOH

EtOH, 79 °C, 0.5 h

NCl

N

Cl

Paraquat

93%

US 6087504

N

CO2Etcat Pd/C

130 °C, 16 torr, 6 d

35% N N

CO2EtEtO2C

97joc3013

N

N1% CuCl, 2% ligand

p-xylene, 140 °C, 20 h

N

N

N

N

95%

ligand:

NNaO11cc12876

SBr

HO3% PdCl2(PhCN)2

2 eq AgNO3, 2 eq KFDMSO, 60 °C

SBr

HO

S Br

OH

70%06ja10930

Scheme 3.15 Oxidative homodimerization of arenes [75–81].

heterocouplings, the challenge is to find oxidants that will not react with thenucleophilic coupling partner or with the metallated arene but just convert Pd(0)to Pd(II). One such oxidant is benzoquinone, a suitable reagent for oxidativeSuzuki couplings. Although benzoquinone can undergo Heck reaction with aryl-palladium complexes, coupling with the boronic acid is faster. Similar arylationswith arylboronic acids have been achieved with iron catalysis and air as oxidant(Scheme 3.13).

3.4 Arylations with Other Functionalized Arenes 77

OH

Me2NOH

Me2N

+

1 eq 1 eq

1 eq 1 eq

1 eq 1 eq

20% FeCl3-6H2O

2 eq tBuOOH

PhH, air, 0 °C, 1.5 h

60%

11joc10229

MeO

+

MeO

S

CN

S

CN

10% CuI/phen

1.3 eq I2, 1 eq pyridine

3.5 eq K3PO4

1,2-dichlorobenzene

130 °C, 5 d

72%

11ja13577

S

N N

OEtO2C CO2Et

+

20% Cu(OAc)2

1 eq pyridine

1.5 eq Ag2CO3, O2

xylene, 140 °C, 24 h

S

N N

OEtO2C CO2Et S

N N

SEtO2C CO2Et O

N N

OEtO2C CO2Et

+ +

63% 21% <5%

12joc7677

F

F

F

F

MeO

+

NO2

1 eq solvent

10% Pd(OAc)2, 2 eq Cu(OAc)2

0.75 eq Na2CO3,1.5 eq PivOH

DMA, 110 °C, 24 h

33%

F

F

F

F

MeO

NO2

F

F

F

F

MeO

NO2

+

71 : 29

10ja16377

O

HO

5% Pd(OAc)2

1.5 eq Ag2O, 2.5 eq K2CO3

TFA, 140 °C, 24 h

O

HO

84%

12ol4850

Scheme 3.16 Oxidative heterodimerization of arenes [82, 84–90]. Further examples:[91–96].

78 3 Electrophilic Arylation of Arenes

O N

O

F

+

O N

O

F

Cl

ClCl

Cl

1 eq 40 eq

10% Pd(OAc)2

3 eq Na2S2O8, 5 eq TFA

70 °C, 68 h

84%10ja5837

S

N

+

S

N

SO

S

N

SO

SO

+

SO

10% [Cp*RhCl2]22.8 eq Cu(OAc)2

DMA, 140 °C, 24 h

38% 28%

1 eq 3 eq

13ol1290

N

O

40 eq benzene

10% Pd(OAc)2, 2.2 eq Ag2CO3

130 °C, 16 h

N

O

Ph+

N

O

PhPh79%

75 : 2508ja9254

Scheme 3.16 (Continued)

A number of other aromatic electrophiles have been used for the preparationof biaryls from unsubstituted arenes. These include aryl iodonium salts, sul-fonyl chlorides, and sulfinates (Scheme 3.14). Few examples of such reactionshave been reported, and little is known about their scope and functional grouptolerance.

3.5Arylations with Unsubstituted Arenes

Oxidative dimerizations of arenes offer an attractive approach to large, symmetricmolecules. Important syntheses of this type include couplings of phenols tosymmetric 2,2′- or 4,4′-dihydroxybiphenyls (e.g., for the synthesis of binaphthol [74])and the oxidative dimerization of pyridine to 2,2′-bipyridine, the key intermediatefor the herbicide diquat (Scheme 3.15).

References 79

F

F

1.4 eq iPrMgCl, LiCl, ZnCl22,2,6,6-tetramethylpiperidine

5% NiCl2, O2, THF, 0–60 °C

F

F

F

F

NO2

NO2

O2N

73%10ol1200

F

F

F

F

MeO

5% CuCl2, O2

2 eq tBuOLi

DMF, 20 °C, 2 h

F

F

F

F

MeO

F

F

OMe

F

F

F

F

F

F

MeO

OH

+

56% 38%

09ja17052

Scheme 3.17 Oxidative dimerization of metallated arenes [97, 98].

The oxidative coupling of two different arenes is a more difficult reaction,prone to yielding regioisomeric mixtures of homo and heterodimers [82]. Carefulselection of the reacting partners and reaction conditions, though, can sometimeslead to high-yielding biaryl syntheses (Scheme 3.16). Common side reactionsinclude oxidative transformations of functional groups, oxidation to quinones, aswell as hydroxylation, amidation, sulfenylation, and halogenation of the arenes. Inthe presence of oxygen and copper salts, N,N-dimethylformamide (DMF) can beoxidized to cyanide [83], which can lead to the cyanation of arenes or the poisoningof transition-metal catalysts.

Acidic arenes can be metallated and dimerized by oxidants to yield symmetricbiaryls (Scheme 3.17). Potential side reactions include reaction of the metallatedarene with the oxidant and aromatic nucleophilic substitutions.

Mixtures of oxidants, and flammable organic solvents, and strong bases candecompose violently, and are usually too dangerous for large-scale preparations.Reactions such as those shown in Scheme 3.17 should better be conducted in lessflammable solvents and with solid or liquid oxidants that allow a more precise andcontrolled dosing.

References

1. Kuhl, N., Hopkinson, M.N.,Wencel-Delord, J., and Glorius, F. (2012)Beyond directing groups: transition-metal-catalyzed C–H activation ofsimple arenes. Angew. Chem. Int. Ed.,51, 10236–10254.

2. Hassan, J., Sevignon, M., Gozzi, C.,Schulz, E., and Lemaire, M. (2002)Aryl–aryl bond formation one century

after the discovery of the Ullmannreaction. Chem. Rev., 102, 1359–1469.

3. Fanta, P.E. (1964) The Ullmann synthe-sis of biaryls, 1945–1963. Chem. Rev.,64, 613–632.

4. Lyons, T.W. and Sanford, M.S. (2010)Palladium-catalyzed ligand-directed C–Hfunctionalization reactions. Chem. Rev.,110, 1147–1169.

80 3 Electrophilic Arylation of Arenes

5. Orban, I., Holer, M., and Kaufmann,A. (1997) Verfahren zur Herstellungvon 2-(2,4-Dihydroxyphenyl)-4,6-bis-(2,4-dimethylphenyl)-s-triazin. EP Patent0779280.

6. Gupta, R.B., Jakiela, D.J.,Venimadhavan, S., and Cappadona,R. (2000) Process for preparing triazinesusing a combination of Lewis acids andreaction promoters. WO Patent 0029392.

7. Sone, T., Inoue, M., and Sato, K.(1988) A new and simple route to 3-arylthiophenes. Bull. Chem. Soc. Jpn., 61,3779–3781.

8. Sone, T., Kawasaki, H., Nagasawa,S., Takahashi, N., Tate, K.,and Sato, K. (1981) UnusualFriedel–Crafts reaction of 2,5-dichloro-3-(chloromethyl)thiophene with benzeneand some alkylbenzenes. Chem. Lett.,399–402.

9. Sone, T., Shiromaru, O., Igarashi,S., Kato, E., and Sawara, M. (1979)Acid-catalyzed oligomerization ofthiophene nuclei. III. Reactions of 2-chlorothiophene with cation exchangeresin and 100% orthophosphoric acid.Formation of the dimer type productscontaining a tetrahydro-2-thiophenonemoiety. Bull. Chem. Soc. Jpn., 52,1126–1130.

10. Jones, G.O., Liu, P., Houk, K.N., andBuchwald, S.L. (2010) Computationalexplorations of mechanisms and ligand-directed selectivities of copper-catalyzedUllmann-type reactions. J. Am. Chem.Soc., 132, 6205–6213.

11. Yanagisawa, S., Ueda, K., Taniguchi,T., and Itami, K. (2008) Potassium t-butoxide alone can promote the biarylcoupling of electron-deficient nitrogenheterocycles and haloarenes. Org. Lett.,10, 4673–4676.

12. Shirakawa, E., Itoh, K., Higashino, T.,and Hayashi, T. (2010) tert-Butoxide-mediated arylation of benzene with arylhalides in the presence of a catalytic1,10-phenanthroline derivative. J. Am.Chem. Soc., 132, 15537–15539.

13. Do, H.-Q., Khan, R.M.K., and Daugulis,O. (2008) A general method for copper-catalyzed arylation of arene C–H bonds.J. Am. Chem. Soc., 130, 15185–15192.

14. Vallee, F., Mousseau, J.J., and Charette,A.B. (2010) Iron-catalyzed direct aryla-tion through an aryl radical transferpathway. J. Am. Chem. Soc., 132,1514–1516.

15. Liu, W., Cao, H., and Lei, A. (2010)Iron-catalyzed direct arylation of unac-tivated arenes with aryl halides. Angew.Chem. Int. Ed., 49, 2004–2008.

16. Fagnou, K., Leclerc, J.-P., Campeau,L.-C., and Stuart, D.R. (2008) Use of N-oxide compounds in coupling reactions.US Patent 2008132698.

17. Fujita, K., Nonogawaa, M., andYamaguchi, R. (2004) Direct arylation ofaromatic C–H bonds catalyzed by Cp*Ircomplexes. Chem. Commun., 1926–1927.

18. Hennings, D.D., Iwasa, S., andRawal, V.H. (1997) Anion-acceleratedpalladium-catalyzed intramolecular cou-pling of phenols with aryl halides. J.Org. Chem., 62, 2–3.

19. Martınez-Barrasa, V., Garcıa de Viedma,A., Burgos, C., and Alvarez-Builla, J.(2000) Synthesis of biaryls via inter-molecular radical addition of heteroaryland aryl bromides onto arenes. Org.Lett., 2, 3933–3935.

20. Escolano, C. and Jones, K. (2002) Arylradical cyclisation onto pyrroles. Tetrahe-dron, 58, 1453–1464.

21. Linhardt, R.J., Murr, B.L., Montgomery,E., Osby, J., and Sherbine, J. (1982)Mechanism for diacyl peroxide decom-position. J. Org. Chem., 47, 2242–2251.

22. Srinivas, S. and Taylor, K.G. (1990)Amine-induced reactions of diacylperoxides. J. Org. Chem., 55, 1779–1786.

23. Hey, D.H. and Perkins, M.J. (1973)Arylbenzenes: 3,4-dichlorobiphenyl. Org.Synth., Coll. Vol. 5, 51–54.

24. Yu, W.-Y., Sit, W.N., Zhou, Z., andChan, A.S.-C. (2009) Palladium-catalyzeddecarboxylative arylation of C–H bondsby aryl acylperoxides. Org. Lett., 11,3174–3177.

25. Seki, M. (2012) An efficient C–Harylation of a 5-phenyl-1H-tetrazolederivative: a practical synthesis of anangiotensin II receptor blocker. Synthe-sis, 44, 3231–3237.

26. Ackermann, L., Vicente, R., Potukuchi,H.K., and Pirovano, V. (2010) Mecha-nistic insight into direct arylations with

References 81

ruthenium(II) carboxylate catalysts. Org.Lett., 12, 5032–5035.

27. Pozgan, F. and Dixneuf, P.H. (2009)Ruthenium(II) acetate catalyst for directfunctionalisation of sp2-C–H bondswith aryl chlorides and access to tris-heterocyclic molecules. Adv. Synth.Catal., 351, 1737–1743.

28. Guo, H.-M., Jiang, L.-L., Niu, H.-Y., Rao,W.-H., Liang, L., Mao, R.-Z., Li, D.-Y.,and Qu, G.-R. (2011) Pd(II)-catalyzedortho arylation of 6-arylpurines with aryliodides via purine-directed C–H activa-tion: a new strategy for modification of6-arylpurine derivatives. Org. Lett., 13,2008–2011.

29. Caron, L., Campeau, L.-C., and Fagnou,K. (2008) Palladium-catalyzed direct ary-lation of nitro-substituted aromatics witharyl halides. Org. Lett., 10, 4533–4536.

30. Nishikata, T., Abela, A.R., and Lipshutz,B.H. (2010) Room temperature C–Hactivation and cross-coupling of arylureas in water. Angew. Chem. Int. Ed.,49, 781–784.

31. Li, D.-D., Yuan, T.-T., and Wang,G.-W. (2012) Palladium-catalyzed ortho-arylation of benzamides via direct sp2

C–H bond activation. J. Org. Chem., 77,3341–3347.

32. Kametani, Y., Satoh, T., Miura, M., andNomura, M. (2000) Regioselective ary-lation of benzanilides with aryl triflatesor bromides under palladium catalysis.Tetrahedron Lett., 41, 2655–2658.

33. Lapointe, D., Markiewicz, T., Whipp,C.J., Toderian, A., and Fagnou, K. (2011)Predictable and site-selective functionali-zation of poly(hetero)arene compoundsby palladium catalysis. J. Org. Chem., 76,749–759.

34. Proch, S. and Kempe, R. (2007) An effi-cient bimetallic rhodium catalyst for thedirect arylation of unactivated arenes.Angew. Chem. Int. Ed., 46, 3135–3138.

35. Mousseau, J.J., Vallee, F., Lorion, M.M.,and Charette, A.B. (2010) Umpolungdirect arylation reactions: facile processrequiring only catalytic palladium andsubstoichiometric amount of silver salts.J. Am. Chem. Soc., 132, 14412–14414.

36. Lane, B.S. and Sames, D. (2004)Direct C–H bond arylation: selectivepalladium-catalyzed C2-arylation of

N-substituted indoles. Org. Lett., 6,2897–2900.

37. Zhang, G., Zhao, X., Yan, Y., and Ding,C. (2012) Direct arylation under catalysisof an oxime-derived palladacycle: searchfor a phosphane-free method. Eur. J.Org. Chem., 2012, 669–672.

38. Fan, S., Yang, J., and Zhang, X. (2011)Pd-catalyzed direct cross-coupling ofelectron-deficient polyfluoroarenes withheteroaromatic tosylates. Org. Lett., 13,4374–4377.

39. Guo, P., Joo, J.M., Rakshit, S., andSames, D. (2011) C–H arylation ofpyridines: high regioselectivity as a con-sequence of the electronic character ofC–H bonds and heteroarene ring. J.Am. Chem. Soc., 133, 16338–16341.

40. Ye, M., Gao, G.-L., Edmunds, A.J.F.,Worthington, P.A., Morris, J.A., andYu, J.-Q. (2011) Ligand-promoted C3-selective arylation of pyridines withPd catalysts: gram-scale synthesis of(±)-preclamol. J. Am. Chem. Soc., 133,19090–19093.

41. Effenberger, F., Agster, W., Fischer, P.,Jogun, K.H., Stezowski, J.J., Daltrozzo,E., and Kollmannsberger-von Nell, G.(1983) Synthesis, structure, and spectralbehavior of donor–acceptor substitutedbiphenyls. J. Org. Chem., 48, 4649–4658.

42. Lafrance, M. and Fagnou, K. (2006)Palladium-catalyzed benzene arylation:incorporation of catalytic pivalic acid asa proton shuttle and a key element incatalyst design. J. Am. Chem. Soc., 128,16496–16497.

43. Lafrance, M., Shore, D., and Fagnou, K.(2006) Mild and general conditions forthe cross-coupling of aryl halides withpentafluorobenzene and other perfluo-roaromatics. Org. Lett., 8, 5097–5100.

44. Fall, Y., Reynaud, C., Doucet, H.,and Santelli, M. (2009) Ligand-free-palladium-catalyzed direct 4-arylation ofisoxazoles using aryl bromides. Eur. J.Org. Chem., 2009, 4041–4050.

45. Liegault, B., Petrov, I., Gorelsky, S.I.,and Fagnou, K. (2010) Modulatingreactivity and diverting selectivity inpalladium-catalyzed heteroaromaticdirect arylation through the use of achloride activating/blocking group. J.Org. Chem., 75, 1047–1060.

82 3 Electrophilic Arylation of Arenes

46. Dhital, R.N., Kamonsatikul, C.,Somsook, E., Bobuatong, K., Ehara,M., Karanjit, S., and Sakurai, H. (2012)Low-temperature carbon–chlorine bondactivation by bimetallic gold/palladiumalloy nanoclusters: an application toUllmann coupling. J. Am. Chem. Soc.,134, 20250–20253.

47. Li, J.-H., Xie, Y.-X., and Yin, D.-L. (2003)New role of CO2 as a selective agent inpalladium-catalyzed reductive Ullmanncoupling with zinc in water. J. Org.Chem., 68, 9867–9869.

48. Kashiwabara, T. and Tanaka, M. (2005)Pd-catalyzed desulfonylative homocou-pling of arenesulfonyl chlorides in thepresence of hexamethyldisilane formingbiaryls. Tetrahedron Lett., 46, 7125–7128.

49. Penalva, V., Hassan, J., Lavenot, L.,Gozzi, C., and Lemaire, M. (1998) Directhomocoupling of aryl halides catalyzedby palladium. Tetrahedron Lett., 39,2559–2560.

50. Monopoli, A., Calo, V., Ciminale, F.,Cotugno, P., Angelici, C., Cioffi, N.,and Nacci, A. (2010) Glucose as aclean and renewable reductant inthe Pd-nanoparticle-catalyzed reduc-tive homocoupling of bromo- andchloroarenes in water. J. Org. Chem.,75, 3908–3911.

51. Hari, D.P., Schroll, P., and Konig, B.(2012) Metal-free, visible-light-mediateddirect C–H arylation of heteroareneswith aryl diazonium salts. J. Am. Chem.Soc., 134, 2958–2961.

52. Pratsch, G., Wallaschkowski, T.,and Heinrich, M.R. (2012) TheGomberg–Bachmann reaction for thearylation of anilines with aryl diazotates.Chem. Eur. J., 18, 11555–11559.

53. Ramachandran, V. (1985) (Alkoxydi-azo)halobenzeneacetonitriles. US Patent4539397.

54. Wetzel, A., Pratsch, G., Kolb, R., andHeinrich, M.R. (2010) Radical arylationof phenols, phenyl ethers, and furans.Chem. Eur. J., 16, 2547–2556.

55. Beadle, J.R., Korzeniowski, S.H.,Rosenberg, D.E., Garcia-Slanga,B.J., and Gokel, G.W. (1984) Phase-transfer-catalyzed Gomberg–Bachmannsynthesis of unsymmetrical biarenes: a

survey of catalysts and substrates. J. Org.Chem., 49, 1594–1603.

56. Jasch, H., Hofling, S.B., and Heinrich,M.R. (2012) Nucleophilic substitutionsand radical reactions of phenylazocar-boxylates. J. Org. Chem., 77, 1520–1532.

57. Kalyani, D., McMurtrey, K.B., Neufeldt,S.R., and Sanford, M.S. (2011) Room-temperature C–H arylation: merger ofPd-catalyzed C–H functionalization andvisible-light photocatalysis. J. Am. Chem.Soc., 133, 18566–18569.

58. Jasch, H., Scheumann, J., and Heinrich,M.R. (2012) Regioselective radical aryla-tion of anilines with arylhydrazines. J.Org. Chem., 77, 10699–10706.

59. Wetzel, A., Ehrhardt, V., and Heinrich,M.R. (2008) Synthesis of amino- andhydroxybiphenyls by radical chain reac-tion of arenediazonium salts. Angew.Chem. Int. Ed., 47, 9130–9133.

60. Crestey, F., Collot, V., Stiebing, S., andRault, S. (2006) A new and efficient syn-thesis of 2-azatryptophans. Tetrahedron,62, 7772–7775.

61. Ferrarini, P.L., Mori, C., Badawneh,M., Manera, C., Martinelli, A., Miceli,M., Romagnoli, F., and Saccomanni,G. (1997) Unusual nitration of sub-stituted 7-amino-1,8-naphthyridinein the synthesis of compounds withantiplatelet activity. J. Heterocycl. Chem.,34, 1501–1510.

62. Okuda, K., Deguchi, H., Kashino,S., Hirota, T., and Sasaki, K. (2010)Polycyclic N-heterocyclic compounds.Part 64: Synthesis of 5-amino-1,2,6,7-tetrahydrobenzo[f ]furo[2,3-c]isoquinolines and related compounds.Evaluation of their bronchodilatoractivity and effects on lipoprotein lipasemRNA expression. Chem. Pharm. Bull.,58, 685–689.

63. Press, J.B., Eudy, N.H., Lovell, F.M.,Morton, G.O., and Siegel, M.M. (1982)A remarkable fragmentation reaction ofa pyrimidyl radical. J. Am. Chem. Soc.,104, 4013–4014.

64. Zhao, H., Wei, Y., Xu, J., Kan, J., Su,W., and Hong, M. (2011) Pd/PR3-catalyzed cross-coupling of aromaticcarboxylic acids with electron-deficientpolyfluoroarenes via combination of

References 83

decarboxylation with sp2 C–H cleavage.J. Org. Chem., 76, 882–893.

65. Seo, S., Slater, M., and Greaney, M.F.(2012) Decarboxylative C–H arylation ofbenzoic acids under radical conditions.Org. Lett., 14, 2650–2653.

66. Zhang, F. and Greaney, M.F. (2010)Decarboxylative C–H cross-couplingof azoles. Angew. Chem. Int. Ed., 49,2768–2771.

67. Xie, K., Yang, Z., Zhou, X., Li, X.,Wang, S., Tan, Z., An, X., and Guo,C.-C. (2010) Pd-catalyzed decarboxyla-tive arylation of thiazole, benzoxazole,and polyfluorobenzene with substitutedbenzoic acids. Org. Lett., 12, 1564–1567.

68. Nishikata, T., Abela, A.R., Huang,S., and Lipshutz, B.H. (2010)Cationic palladium(II) catalysis: C–Hactivation/Suzuki–Miyaura couplings atroom temperature. J. Am. Chem. Soc.,132, 4978–4979.

69. Wen, J., Qin, S., Ma, L.-F., Dong, L.,Zhang, J., Liu, S.-S., Duan, Y.-S., Chen,S.-Y., Hu, C.-W., and Yu, X.-Q. (2010)Iron-mediated direct Suzuki–Miyaurareaction: a new method for the ortho-arylation of pyrrole and pyridine. Org.Lett., 12, 2694–2697.

70. Singh, P.P., Aithagani, S.K., Yadav, M.,Singh, V.P., and Vishwakarma, R.A.(2013) Iron-catalyzed cross-couplingof electron-deficient heterocycles andquinone with organoboron species viainnate C–H functionalization: appli-cation in total synthesis of pyrazinealkaloid botryllazine A. J. Org. Chem.,78, 2639–2648.

71. Wen, J., Zhang, R.-Y., Chen, S.-Y.,Zhang, J., and Yu, X.-Q. (2012) Directarylation of arene and N-heteroareneswith diaryliodonium salts without theuse of transition metal catalyst. J. Org.Chem., 77, 766–771.

72. Ciana, C.-L., Phipps, R.J., Brandt, J.R.,Meyer, F.-M., and Gaunt, M.J. (2011) Ahighly para-selective copper(II)-catalyzeddirect arylation of aniline and phenolderivatives. Angew. Chem. Int. Ed., 50,458–462.

73. Liu, B., Guo, Q., Cheng, Y., Lan, J., andYou, J. (2011) Palladium-catalyzed desul-fitative C–H arylation of heteroarenes

with sodium sulfinates. Chem. Eur. J.,17, 13415–13419.

74. Matsushita, M., Kamata, K., Yamaguchi,K., and Mizuno, N. (2005) Heteroge-neously catalyzed aerobic oxidative biarylcoupling of 2-naphthols and substitutedphenols in water. J. Am. Chem. Soc.,127, 6632–6640.

75. Sasse, W.H.F. (1973) 2,2′-Dipyridine.Org. Synth., Coll. Vol. 5, 102–107.

76. Coe, B.J., Curati, N.R.M., and Fitzgerald,E.C. (2006) Unusually facile synthesesof diquat (6,7-dihydrodipyrido[1,2-a:2′,1′-c]pyrazinediium) and related cations.Synthesis, 146–150.

77. Xiao, Y., Chu, L., Sanakis, Y., and Liu,P. (2009) Revisiting the IspH catalyticsystem in the deoxyxylulose phosphatepathway: achieving high activity. J. Am.Chem. Soc., 131, 9931–9933.

78. Tsou, C.-P., Lin, S.-C., Huang, T.-K., andChen, C.-Y. (2000) Process for the prepa-ration of 1,1′-dialkyl-4,4′-bipyridiniumsalt compounds. US Patent 6087504.

79. Newkome, G.R., Gross, J., and Patri,A.K. (1997) Synthesis of unsymmetrical5,5′-disubstituted 2,2′-bipyridines. J. Org.Chem., 62, 3013–3014.

80. Zhu, M., Fujita, K.-I., and Yamaguchi,R. (2011) Efficient synthesis of biazolesby aerobic oxidative homocouplingof azoles catalyzed by a copper(I)/2-pyridonate catalytic system. Chem.Commun., 47, 12876–12878.

81. Takahashi, M., Masui, K., Sekiguchi, H.,Kobayashi, N., Mori, A., Funahashi, M.,and Tamaoki, N. (2006) Palladium-catalyzed C–H homocoupling ofbromothiophene derivatives and syn-thetic application to well-definedoligothiophenes. J. Am. Chem. Soc.,128, 10930–10933.

82. Do, H.-Q. and Daugulis, O. (2011) Ageneral method for copper-catalyzedarene cross-dimerization. J. Am. Chem.Soc., 133, 13577–13586.

83. Kim, J., Choi, J., Shin, K., and Chang,S. (2012) Copper-mediated sequen-tial cyanation of aryl C–B and areneC–H bonds using ammonium iodideand DMF. J. Am. Chem. Soc., 134,2528–2531.

84. Chandrasekharam, M., Chiranjeevi, B.,Gupta, K.S.V., and Sridhar, B. (2011)

84 3 Electrophilic Arylation of Arenes

Iron-catalyzed regioselective direct oxida-tive aryl–aryl cross-coupling. J. Org.Chem., 76, 10229–10235.

85. Qin, X., Feng, B., Dong, J., Li, X., Xue,Y., Lan, J., and You, J. (2012) Copper(II)-catalyzed dehydrogenative cross-couplingbetween two azoles. J. Org. Chem., 77,7677–7683.

86. Wei, Y. and Su, W. (2010) Pd(OAc)2-catalyzed oxidative C–H/C–Hcross-coupling of electron-deficientpolyfluoroarenes with simple arenes. J.Am. Chem. Soc., 132, 16377–16379.

87. Li, H., Zhu, R.-Y., Shi, W.-J., He, K.-H.,and Shi, Z.-J. (2012) Synthesis of fluo-renone derivatives through Pd-catalyzeddehydrogenative cyclization. Org. Lett.,14, 4850–4853.

88. Zhao, X., Yeung, C.S., and Dong,V.M. (2010) Palladium-catalyzed ortho-arylation of O-phenylcarbamates withsimple arenes and sodium persulfate. J.Am. Chem. Soc., 132, 5837–5844.

89. Reddy, V.P., Qiu, R., Iwasaki, T.,and Kambe, N. (2013) Rhodium-catalyzed intermolecular oxidativecross-coupling of (hetero)arenes withchalcogenophenes. Org. Lett., 15,1290–1293.

90. Cho, S.H., Hwang, S.J., and Chang, S.(2008) Palladium-catalyzed C–H func-tionalization of pyridine N-oxides: highlyselective alkenylation and direct arylationwith unactivated arenes. J. Am. Chem.Soc., 130, 9254–9256.

91. Han, W., Mayer, P., and Ofial, A.R.(2011) Palladium-catalyzed dehydro-genative cross-couplings of benzazoleswith azoles. Angew. Chem. Int. Ed., 50,2178–2182.

92. Wencel-Delord, J., Nimphius, C., Wang,H., and Glorius, F. (2012) Rhodium(III)and hexabromobenzene—a catalystsystem for the cross-dehydrogenativecoupling of simple arenes and hete-rocycles with arenes bearing directinggroups. Angew. Chem. Int. Ed., 51,13001–13005.

93. Fan, S., Chen, Z., and Zhang, X. (2012)Copper-catalyzed dehydrogenativecross-coupling of benzothiazoles withthiazoles and polyfluoroarene. Org. Lett.,14, 4950–4953.

94. Chen, F., Feng, Z., He, C.-Y., Wang,H.-Y., Guo, Y.-L., and Zhang, X. (2012)Pd-catalyzed dehydrogenative cross-coupling of polyfluoroarenes withheteroatom-substituted enones. Org.Lett., 14, 1176–1179.

95. He, C.-Y., Fan, S., and Zhang, X. (2010)Pd-catalyzed oxidative cross-couplingof perfluoroarenes with aromaticheterocycles. J. Am. Chem. Soc., 132,12850–12852.

96. Mukhopadhyay, S., Rothenberg, G.,Gitis, D., and Sasson, Y. (2000) Tandemone-pot palladium-catalyzed reduc-tive and oxidative coupling of benzeneand chlorobenzene. J. Org. Chem., 65,3107–3110.

97. Truong, T., Alvarado, J., Tran, L.D., andDaugulis, O. (2010) Nickel, manganese,cobalt, and iron-catalyzed deprotona-tive arene dimerization. Org. Lett., 12,1200–1203.

98. Do, H.-Q. and Daugulis, O. (2009) Anaromatic Glaser–Hay reaction. J. Am.Chem. Soc., 131, 17052–17053.


Recommended