+ All Categories
Home > Documents > Simulated*Quantum*Annealer* Advisor:*Max*Mintz ...cse400/CSE400_2013_2014/posters/0… ·...

Simulated*Quantum*Annealer* Advisor:*Max*Mintz ...cse400/CSE400_2013_2014/posters/0… ·...

Date post: 13-Oct-2020
Category:
Upload: others
View: 2 times
Download: 0 times
Share this document with a friend
1
Simulated Quantum Annealer Danica Bassman Advisor: Max Mintz Senior Project Poster Day 2014 Department of Computer and InformaDon Science – University of Pennsylvania A simulated quantum annealer takes advantage of the adiaba6c theorem to solve problems by transi6oning from a simple to complex quantum state while maintaining minimal energy. We simulate these quantum states, energies, and transi6ons on classical machines by mathema6cal abstrac6ons for proof of concept and to circumvent to the complica6ons of physical implementa6on. Abstract Goals 1. Simulate quantum state on a classical machine 2. Proof of concept of the adiaba3c theorem and its applicaDons to quantum computaDon Quantum CompuDng AdiabaDc Theorem Given a simple quantum system starDng in a minimal energy state, if the system is changed slowly enough, as it moves to a more complex state, it will maintain its minimal energy. Le@: slowly cooled Right: cooled too quickly n entangled qubits can be abstracted to a 2 n dimensional unit vector in 2 n D complex space Basis vectors are possible states of collapse Coordinates are probabiliDes Classical bits can take on values 1 or 0. Qubits can take on any value of a unit vector in complex space System Design System Implementa3on SimulaDon Under Quantum Gate Model Qubit Unit Vector Quantum Gate Matrix We mulDply vectors by matrix representaDons of linear transformaDons to simulate quantum gates acDng on qubits. Apply Gate Model AbstracDon Technique to Annealing H B H I H P Simple Hamiltonian with easily found ground quantum state and minimal energy Slow transiDon to more complex Hamiltonians, while maintaining minimal energy Complex Hamiltonian, sDll with minimal energy, whose ground state encodes soluDon Hamiltonian energy funcDon Linear transformaDon on quantum state vector 1. Start at simple H B 2. Define complex H P 3. Define slow moving transiDon funcDon, H, from H B to H P 4. TransiDon slowly over Dme s unDl minimal gap is reached Using Simulated Quantum Annealing to Solve 3SAT Given (x 1 x 2 ∨x 3 )∧…∧(x r x s x t ), find assignments for all x i such that the enDre expression evaluates to true. Under classical compuDng, 3SAT is in NPC. Conclusion and Further Work Current quantum computers use annealing, but their ability to provide exponenDal speedup and computaDonal robustness are not yet certain. SimulaDon of quantum annealing allows us to bypass of the hurdles of physical implementaDon and study annealing’s potenDal uses. Quantum Annealing Physical CNOT Gate Mathema6cal Abstrac6on Simulated Quantum Annealing Algorithm Step Implementa3on H B simple Every qubit in equally weighted superposiDon of 0 and 1 H P complex All clauses that evaluate to true have energy 0; all other clauses have energy 1; Will have minimal energy when the enDre expression is saDsfied TransiDon FuncDon TransiDon slowly from H B to H P by making small changes to H I to a neighboring state SoluDon Stop when minimal gap between current state and H p is reached; Eigenvector for minimal eigenvalue encodes the saDsfying assignments Variable Abstrac3ons Hamiltonian must change slowly to maintain minimal energy (adiabaDc theorem) Quantum state vector is eigenvector for H; represents quantum state for given energy Energy is eigenvalue for H for the quantum state of its corresponding eigenvector
Transcript
Page 1: Simulated*Quantum*Annealer* Advisor:*Max*Mintz ...cse400/CSE400_2013_2014/posters/0… · Simulated*Quantum*Annealer* DanicaBassman* Advisor:*Max*Mintz* Senior*ProjectPoster*Day*2014*

Simulated  Quantum  Annealer  Danica  Bassman  

Advisor:  Max  Mintz    Senior  Project  Poster  Day  2014  

Department  of  Computer  and  InformaDon  Science  –  University  of  Pennsylvania  

A  simulated  quantum  annealer  takes  advantage  of  the  adiaba6c  theorem  to  solve  problems  by  transi6oning  from  a  simple  to  complex  quantum  state  while  maintaining  minimal  energy.  We  simulate  these  quantum  states,  energies,  and  transi6ons  on  classical  machines  by  mathema6cal  abstrac6ons  for  proof  of  concept  and  to  circumvent  to  the  complica6ons  of  physical  implementa6on.    

Abstract  

Goals  1.  Simulate  quantum  state  on  a  classical  machine  2.  Proof  of  concept  of  the  adiaba3c  theorem  and  its  

applicaDons  to  quantum  computaDon  

Quantum  CompuDng  

AdiabaDc  Theorem  Given  a  simple  quantum  system  starDng  in  a  minimal  energy  state,  if  the  system  is  changed  slowly  enough,  as  it  moves  to  a  more  complex  state,  it  will  maintain  its  minimal  energy.  

Le@:  slowly  cooled  Right:  cooled  too  quickly  

•  n  entangled  qubits  can  be  abstracted  to  a  2n  dimensional  unit  vector  in  2n-­‐D  complex  space  

•  Basis  vectors  are  possible  states  of  collapse  

•  Coordinates  are  probabiliDes  

•  Classical  bits  can  take  on  values  1  or  0.  

•  Qubits  can  take  on  any  value  of  a  unit  vector  in  complex  space  

System  Design   System  Implementa3on  SimulaDon  Under  Quantum  Gate  Model  

Qubit   Unit  Vector   Quantum  Gate   Matrix  

We  mulDply  vectors  by  matrix  representaDons  of  linear  transformaDons  to  simulate  quantum  gates  acDng  on  qubits.  

Apply  Gate  Model  AbstracDon  Technique  to  Annealing  

HB  

HI  

HP  

Simple  Hamiltonian  with  easily  found  ground  quantum  state  and  minimal  energy  

Slow  transiDon  to  more  complex  Hamiltonians,  while  maintaining  minimal  energy  

Complex  Hamiltonian,  sDll  with  minimal  energy,  whose  ground  state  encodes  soluDon  

Hamiltonian  energy  funcDon  

Linear  transformaDon  on  quantum  state  vector  

1.  Start  at  simple  HB  2.  Define  complex  HP  3.  Define  slow  moving  

transiDon  funcDon,  H,  from  HB  to  HP  

4.  TransiDon  slowly  over  Dme  s  unDl  minimal  gap  is  reached  

Using  Simulated  Quantum  Annealing  to  Solve  3SAT  Given  (x1∨x2∨x3)∧…∧(xr∨xs∨xt),  find  assignments  for  all  xi  such  that  the  enDre  expression  evaluates  to  true.  Under  classical  compuDng,  3SAT  is  in  NPC.  

Conclusion  and  Further  Work  Current  quantum  computers  use  annealing,  but  their  ability  to  provide  exponenDal  speedup  and  computaDonal  robustness  are  not  yet  certain.  SimulaDon  of  quantum  annealing  allows  us  to  bypass  of  the  hurdles  of  physical  implementaDon  and  study  annealing’s  potenDal  uses.    

Quantum  Annealing  Physical  CNOT  Gate                                                Mathema6cal  Abstrac6on  

Simulated  Quantum  Annealing  Algorithm    

Step   Implementa3on  

HB  simple   Every  qubit  in  equally  weighted  superposiDon  of  0  and  1  

HP  complex  

All  clauses  that  evaluate  to  true  have  energy  0;  all  other  clauses  have  energy  1;  Will  have  minimal  energy  when  the  enDre  expression  is  saDsfied  

TransiDon  FuncDon  

TransiDon  slowly  from  HB  to  HP  by  making  small  changes  to  HI  to  a  neighboring  state  

SoluDon   Stop  when  minimal  gap  between  current  state  and  Hp  is  reached;  Eigenvector  for  minimal  eigenvalue  encodes  the  saDsfying  assignments  

Variable  Abstrac3ons  

Hamiltonian  must  change  slowly  to  maintain  minimal  energy  (adiabaDc  theorem)  

Quantum  state  vector  is  eigenvector  for  H;  represents  quantum  state  for  given  energy  

Energy  is  eigenvalue  for  H  for  the  quantum  state  of  its  corresponding  eigenvector    

Recommended