+ All Categories
Home > Documents > Simulating a complete experiment of pulse compression...

Simulating a complete experiment of pulse compression...

Date post: 03-Oct-2020
Category:
Upload: others
View: 1 times
Download: 0 times
Share this document with a friend
46
Transcript
  • FilamentationSelf-compression of Femtosecond Pulses

    Conclusion

    Simulating a complete experiment of pulse

    compression mediated by �lamentation

    Luc BergéCEA-DIF - Bruyères-le-Châtel - 91297 Arpajon cedex - France

    Stefan Skupin, Günter Steinmeyer

    5th Conference on Solitons, Collapses and TurbulenceAugust 2-7, 2009

    Luc Bergé Femtosecond Filaments

  • FilamentationSelf-compression of Femtosecond Pulses

    Conclusion

    FilamentationMathematical modeling: Basic ingredientsDynamic spatial replenishmentModeling revisited: Towards quantitative comparison

    Self-compression of Femtosecond PulsesSetup and compression mechanismSimulating the whole experimentTemporal self-healing mechanism

    Conclusion

    Luc Bergé Femtosecond Filaments

  • FilamentationSelf-compression of Femtosecond Pulses

    Conclusion

    Mathematical modeling: Basic ingredientsDynamic spatial replenishmentModeling revisited: Towards quantitative comparison

    FilamentationMathematical modeling: Basic ingredientsDynamic spatial replenishmentModeling revisited: Towards quantitative comparison

    Self-compression of Femtosecond PulsesSetup and compression mechanismSimulating the whole experimentTemporal self-healing mechanism

    Conclusion

    Luc Bergé Femtosecond Filaments

  • FilamentationSelf-compression of Femtosecond Pulses

    Conclusion

    Mathematical modeling: Basic ingredientsDynamic spatial replenishmentModeling revisited: Towards quantitative comparison

    Self-guided laser pulse propagating in air

    S. Niedermeier, H. Wille, M. Rodriguez, J. Kasparian und R. SauerbreyFriedrich-Schiller-Universität Jena

    Luc Bergé Femtosecond Filaments

  • FilamentationSelf-compression of Femtosecond Pulses

    Conclusion

    Mathematical modeling: Basic ingredientsDynamic spatial replenishmentModeling revisited: Towards quantitative comparison

    Self-guided laser pulse propagating in air

    peak power: 380 GW peak power: 2300 GW

    G. Méjean, J. Yu, J. Kasparian, E. Salmon und J. P.WolfUniversité Cl. Bernard Lyon, LASIM

    Luc Bergé Femtosecond Filaments

  • FilamentationSelf-compression of Femtosecond Pulses

    Conclusion

    Mathematical modeling: Basic ingredientsDynamic spatial replenishmentModeling revisited: Towards quantitative comparison

    Simple propagation equations

    ∂zU =

    i

    2k0∇2⊥U − i

    k ′′

    2

    ∂2

    ∂t2U + i

    ω0cn2|U|2U

    − i k02n2

    0ρcρU − β

    (K)

    2|U|2(K−1)U

    ∂tρ =

    β(K)

    K~ω0|U|2K

    I slowly-varying envelope of the optical �eld U in scalarapproximation (SVEA)

    I propagation in z-direction

    Luc Bergé Femtosecond Filaments

  • FilamentationSelf-compression of Femtosecond Pulses

    Conclusion

    Mathematical modeling: Basic ingredientsDynamic spatial replenishmentModeling revisited: Towards quantitative comparison

    Simple propagation equations

    ∂zU =

    i

    2k0∇2⊥U − i

    k ′′

    2

    ∂2

    ∂t2U + i

    ω0cn2|U|2U

    − i k02n2

    0ρcρU − β

    (K)

    2|U|2(K−1)U

    ∂tρ =

    β(K)

    K~ω0|U|2K

    I di�raction

    Luc Bergé Femtosecond Filaments

  • FilamentationSelf-compression of Femtosecond Pulses

    Conclusion

    Mathematical modeling: Basic ingredientsDynamic spatial replenishmentModeling revisited: Towards quantitative comparison

    Simple propagation equations

    ∂zU =

    i

    2k0∇2⊥U − i

    k ′′

    2

    ∂2

    ∂t2U + i

    ω0cn2|U|2U

    − i k02n2

    0ρcρU − β

    (K)

    2|U|2(K−1)U

    ∂tρ =

    β(K)

    K~ω0|U|2K

    I optical Kerr-e�ect → self-focusing by nonlinear inducedrefractive index change

    I two-dimensional Nonlinear Schrödinger Equation

    I Pin > Pcr 'λ20

    2πn0n2→ collapse for Gaussian input beam

    Luc Bergé Femtosecond Filaments

  • FilamentationSelf-compression of Femtosecond Pulses

    Conclusion

    Mathematical modeling: Basic ingredientsDynamic spatial replenishmentModeling revisited: Towards quantitative comparison

    Simple propagation equations

    ∂zU =

    i

    2k0∇2⊥U − i

    k ′′

    2

    ∂2

    ∂t2U + i

    ω0cn2|U|2U

    − i k02n2

    0ρcρU − β

    (K)

    2|U|2(K−1)U

    ∂tρ =

    β(K)

    K~ω0|U|2K

    I group-velocity dispersion (GVD):k(ω0 + ω̄) = k0 + k

    ′ω̄ + k′′

    2ω̄2 + . . .

    I reference frame traveling with group-velocity

    I sign of k ′′ in�uences collapse dynamics

    Luc Bergé Femtosecond Filaments

  • FilamentationSelf-compression of Femtosecond Pulses

    Conclusion

    Mathematical modeling: Basic ingredientsDynamic spatial replenishmentModeling revisited: Towards quantitative comparison

    Simple propagation equations

    ∂zU =

    i

    2k0∇2⊥U − i

    k ′′

    2

    ∂2

    ∂t2U + i

    ω0cn2|U|2U

    − i k02n2

    0ρcρU − β

    (K)

    2|U|2(K−1)U

    ∂tρ =

    β(K)

    K~ω0|U|2K

    I increasing intensity leads to ionization of the medium→ free electron density ρ

    I multi-photon ionization (MPI) involvingK = mod(Ui/~ω0) + 1 photons

    Luc Bergé Femtosecond Filaments

  • FilamentationSelf-compression of Femtosecond Pulses

    Conclusion

    Mathematical modeling: Basic ingredientsDynamic spatial replenishmentModeling revisited: Towards quantitative comparison

    Simple propagation equations

    ∂zU =

    i

    2k0∇2⊥U − i

    k ′′

    2

    ∂2

    ∂t2U + i

    ω0cn2|U|2U

    − i k02n2

    0ρcρU − β

    (K)

    2|U|2(K−1)U

    ∂tρ =

    β(K)

    K~ω0|U|2K

    I interaction of the optical �eld with the generated plasma

    I nonlinear induced refractive index ∆nnl = n2|U|2 − 12n0ρc ρ→ plasma balances Kerr self-focusing by defocusing

    I critical plasma density ρc =ω20me�0

    q2e

    Luc Bergé Femtosecond Filaments

  • FilamentationSelf-compression of Femtosecond Pulses

    Conclusion

    Mathematical modeling: Basic ingredientsDynamic spatial replenishmentModeling revisited: Towards quantitative comparison

    Simple propagation equations

    ∂zU =

    i

    2k0∇2⊥U − i

    k ′′

    2

    ∂2

    ∂t2U + i

    ω0cn2|U|2U

    − i k02n2

    0ρcρU − β

    (K)

    2|U|2(K−1)U

    ∂tρ =

    β(K)

    K~ω0|U|2K

    I nonlinear losses induced bymulti-photon-absorption (MPA)

    Luc Bergé Femtosecond Filaments

  • FilamentationSelf-compression of Femtosecond Pulses

    Conclusion

    Mathematical modeling: Basic ingredientsDynamic spatial replenishmentModeling revisited: Towards quantitative comparison

    Atmospheric propagation: single �lament 30 GW, 0.5 mm, 100 fs

    I plasma-generation over ∼ 1 mI diameter of �lament ∼ 150 µmI robust against azimuthal perturbation (here 1% noise)

    Luc Bergé Femtosecond Filaments

  • FilamentationSelf-compression of Femtosecond Pulses

    Conclusion

    Mathematical modeling: Basic ingredientsDynamic spatial replenishmentModeling revisited: Towards quantitative comparison

    Atmospheric propagation: single �lament 30 GW, 0.5 mm, 100 fs

    I focused time slices generate plasma channel

    I �Dynamic spatial replenishment model�(Mlejnek, Wright, and Moloney - 1998)

    Luc Bergé Femtosecond Filaments

  • FilamentationSelf-compression of Femtosecond Pulses

    Conclusion

    Mathematical modeling: Basic ingredientsDynamic spatial replenishmentModeling revisited: Towards quantitative comparison

    Extended propagation equations

    ∂zU =

    i

    2k0∇2⊥U

    T−1

    + ik ′′

    2

    ∂2

    ∂t2U

    ∑n≥2

    k(n)

    n!

    (i∂

    ∂t

    )n

    + iω0cn2 |U|2 U

    − i k02n2

    0ρcρU

    T−1

    − β(K)

    2|U|2(K−1)U

    ∂tρ =

    β(K)

    K~ω0|U|2K

    Uiρ|U|2 − f (ρ)

    β(K)

    K~ω0

    I the simple propagation model can be re�ned→ quantitative comparison with experiments

    Luc Bergé Femtosecond Filaments

  • FilamentationSelf-compression of Femtosecond Pulses

    Conclusion

    Mathematical modeling: Basic ingredientsDynamic spatial replenishmentModeling revisited: Towards quantitative comparison

    Extended propagation equations

    ∂zU =

    i

    2k0∇2⊥U

    T−1

    + i∑n≥2

    k(n)

    n!

    (i∂

    ∂t

    )nU

    + iω0cn2 |U|2 U

    − i k02n2

    0ρcρU

    T−1

    − β(K)

    2|U|2(K−1)U

    ∂tρ =

    β(K)

    K~ω0|U|2K

    Uiρ|U|2 − f (ρ)

    β(K)

    K~ω0

    I higher-order linear dispersion: Important in solids and liquids

    Luc Bergé Femtosecond Filaments

  • FilamentationSelf-compression of Femtosecond Pulses

    Conclusion

    Mathematical modeling: Basic ingredientsDynamic spatial replenishmentModeling revisited: Towards quantitative comparison

    Extended propagation equations

    ∂zU =

    i

    2k0∇2⊥U

    T−1

    + i∑n≥2

    k(n)

    n!

    (i∂

    ∂t

    )nU

    + iω0cn2

    ∫h(t − t ′)

    ∣∣U(t ′)∣∣2 dt ′U

    T − i ω0cn4|U|4UT

    − i k02n2

    0ρcρU

    T−1

    − β(K)

    2|U|2(K−1)U

    ∂tρ =

    β(K)

    K~ω0|U|2K

    Uiρ|U|2 − f (ρ)

    β(K)

    K~ω0

    I Raman delayed part of the Kerr response:

    h(t) = (1− xR)δ(t) + xRΘ(t)τ21+τ

    22

    τ1τ22e−t/τ2 sin(t/τ1)

    Luc Bergé Femtosecond Filaments

  • FilamentationSelf-compression of Femtosecond Pulses

    Conclusion

    Mathematical modeling: Basic ingredientsDynamic spatial replenishmentModeling revisited: Towards quantitative comparison

    Extended propagation equations

    ∂zU =

    i

    2k0∇2⊥U

    T−1

    + i∑n≥2

    k(n)

    n!

    (i∂

    ∂t

    )nU

    + iω0cn2

    ∫h(t − t ′)

    ∣∣U(t ′)∣∣2 dt ′U

    T

    − i ω0cn4|U|4U

    T

    − i k02n2

    0ρcρU

    T−1

    − β(K)

    2|U|2(K−1)U

    ∂tρ =

    β(K)

    K~ω0|U|2K

    Uiρ|U|2 − f (ρ)

    β(K)

    K~ω0

    I χ(5) nonlinearity

    Luc Bergé Femtosecond Filaments

  • FilamentationSelf-compression of Femtosecond Pulses

    Conclusion

    Mathematical modeling: Basic ingredientsDynamic spatial replenishmentModeling revisited: Towards quantitative comparison

    Extended propagation equations

    ∂zU =

    i

    2k0∇2⊥U

    T−1

    + i∑n≥2

    k(n)

    n!

    (i∂

    ∂t

    )nU

    + iω0cn2

    ∫h(t − t ′)

    ∣∣U(t ′)∣∣2 dt ′U

    T

    − i ω0cn4|U|4U

    T

    − i k02n2

    0ρcρU

    T−1

    − UiW (|U|2)(ρnt − ρ)

    2|U|2U

    − σ2ρU

    β(K)

    2

    ∂tρ = W (|U|2)(ρnt − ρ)

    Uiρ|U|2 − f (ρ)

    β(K)

    K~ω0

    I improved modeling of ionization rate W : Keldysh (crystals);Perelomov, Popov and Terent'ev (atoms); Ammosov, Deloneand Krainov (tunnel regime)

    Luc Bergé Femtosecond Filaments

  • FilamentationSelf-compression of Femtosecond Pulses

    Conclusion

    Mathematical modeling: Basic ingredientsDynamic spatial replenishmentModeling revisited: Towards quantitative comparison

    Extended propagation equations

    ∂zU =

    i

    2k0∇2⊥U

    T−1

    + i∑n≥2

    k(n)

    n!

    (i∂

    ∂t

    )nU

    + iω0cn2

    ∫h(t − t ′)

    ∣∣U(t ′)∣∣2 dt ′U

    T

    − i ω0cn4|U|4U

    T

    − i k02n2

    0ρcρU

    T−1

    − UiW (|U|2)(ρnt − ρ)

    2|U|2U − σ

    2ρU

    β(K)

    2

    ∂tρ = W (|U|2)(ρnt − ρ) +

    σ

    Uiρ|U|2

    − f (ρ)

    β(K)

    K~ω0

    I avalanche ionization and related nonlinear losses

    Luc Bergé Femtosecond Filaments

  • FilamentationSelf-compression of Femtosecond Pulses

    Conclusion

    Mathematical modeling: Basic ingredientsDynamic spatial replenishmentModeling revisited: Towards quantitative comparison

    Extended propagation equations

    ∂zU =

    i

    2k0∇2⊥U

    T−1

    + i∑n≥2

    k(n)

    n!

    (i∂

    ∂t

    )nU

    + iω0cn2

    ∫h(t − t ′)

    ∣∣U(t ′)∣∣2 dt ′U

    T

    − i ω0cn4|U|4U

    T

    − i k02n2

    0ρcρU

    T−1

    − UiW (|U|2)(ρnt − ρ)

    2|U|2U − σ

    2ρU

    β(K)

    2

    ∂tρ = W (|U|2)(ρnt − ρ) +

    σ

    Uiρ|U|2 − f (ρ)

    β(K)

    K~ω0

    I electron-ion recombination:f (ρ) ∼ ρ2 for gases; f (ρ) ∼ ρ for dielectrics

    Luc Bergé Femtosecond Filaments

  • FilamentationSelf-compression of Femtosecond Pulses

    Conclusion

    Mathematical modeling: Basic ingredientsDynamic spatial replenishmentModeling revisited: Towards quantitative comparison

    Extended propagation equations

    ∂zU =

    i

    2k0T−1∇2⊥U + i

    ∑n≥2

    k(n)

    n!

    (i∂

    ∂t

    )nU

    + iω0cn2T

    ∫h(t − t ′)

    ∣∣U(t ′)∣∣2 dt ′U − i ω0cn4T |U|4U

    − i k02n2

    0ρc

    T−1ρU − UiW (|U|2)(ρnt − ρ)

    2|U|2U − σ

    2ρU

    β(K)

    2

    ∂tρ = W (|U|2)(ρnt − ρ) +

    σ

    Uiρ|U|2 − f (ρ)

    β(K)

    K~ω0

    I higher-order terms correction SVEA (Brabec and Krausz):Self-steepening and space-time focusing operatorT = (1 + iω0∂t)

    Luc Bergé Femtosecond Filaments

  • FilamentationSelf-compression of Femtosecond Pulses

    Conclusion

    Setup and compression mechanismSimulating the whole experimentTemporal self-healing mechanism

    FilamentationMathematical modeling: Basic ingredientsDynamic spatial replenishmentModeling revisited: Towards quantitative comparison

    Self-compression of Femtosecond PulsesSetup and compression mechanismSimulating the whole experimentTemporal self-healing mechanism

    Conclusion

    Luc Bergé Femtosecond Filaments

  • FilamentationSelf-compression of Femtosecond Pulses

    Conclusion

    Setup and compression mechanismSimulating the whole experimentTemporal self-healing mechanism

    General considerations

    I we want a single short pulse !

    I no muliple �lamentation→ few critical powers only

    I no post-compression

    I no pulse trains→ only one peak should survive

    Luc Bergé Femtosecond Filaments

  • FilamentationSelf-compression of Femtosecond Pulses

    Conclusion

    Setup and compression mechanismSimulating the whole experimentTemporal self-healing mechanism

    General considerations

    I we want a single short pulse !

    I no muliple �lamentation→ few critical powers only

    I no post-compression

    I no pulse trains→ only one peak should survive

    Luc Bergé Femtosecond Filaments

  • FilamentationSelf-compression of Femtosecond Pulses

    Conclusion

    Setup and compression mechanismSimulating the whole experimentTemporal self-healing mechanism

    General considerations

    I we want a single short pulse !

    I no muliple �lamentation→ few critical powers only

    I no post-compression

    I no pulse trains→ only one peak should survive

    Luc Bergé Femtosecond Filaments

  • FilamentationSelf-compression of Femtosecond Pulses

    Conclusion

    Setup and compression mechanismSimulating the whole experimentTemporal self-healing mechanism

    General considerations

    I we want a single short pulse !

    I no muliple �lamentation→ few critical powers only

    I no post-compression

    I no pulse trains→ only one peak should survive

    Luc Bergé Femtosecond Filaments

  • FilamentationSelf-compression of Femtosecond Pulses

    Conclusion

    Setup and compression mechanismSimulating the whole experimentTemporal self-healing mechanism

    Self-compression of femtosecond pulses inside laser �laments

    G. Stibenz and G. SteinmeyerMax-Born-Institut Berlin

    Luc Bergé Femtosecond Filaments

  • FilamentationSelf-compression of Femtosecond Pulses

    Conclusion

    Setup and compression mechanismSimulating the whole experimentTemporal self-healing mechanism

    Self-compression of femtosecond pulses inside laser �laments

    experiments

    simulations

    G. Stibenz and G. SteinmeyerMax-Born-Institut Berlin

    Luc Bergé Femtosecond Filaments

  • FilamentationSelf-compression of Femtosecond Pulses

    Conclusion

    Setup and compression mechanismSimulating the whole experimentTemporal self-healing mechanism

    Self-compression of femtosecond pulses inside laser �laments

    experiments simulations

    G. Stibenz and G. SteinmeyerMax-Born-Institut Berlin

    Luc Bergé Femtosecond Filaments

  • FilamentationSelf-compression of Femtosecond Pulses

    Conclusion

    Setup and compression mechanismSimulating the whole experimentTemporal self-healing mechanism

    Light bullet � simulation 800 nm, 1Pcr, 25 fs, 150 µm

    I input intensity close to saturation→ slow di�raction

    I temporal extent reduces to �stable�6-8 fs (λ0

    c= 2.7 fs)

    I characteristic spatio-temporalpro�le (time dependent radius)

    I temporal asymmetry due toself-steepening

    Luc Bergé Femtosecond Filaments

  • FilamentationSelf-compression of Femtosecond Pulses

    Conclusion

    Setup and compression mechanismSimulating the whole experimentTemporal self-healing mechanism

    Light bullet � simulation 800 nm, 1Pcr, 25 fs, 150 µm

    I input intensity close to saturation→ slow di�raction

    I temporal extent reduces to �stable�6-8 fs (λ0

    c= 2.7 fs)

    I characteristic spatio-temporalpro�le (time dependent radius)

    I temporal asymmetry due toself-steepening

    Luc Bergé Femtosecond Filaments

  • FilamentationSelf-compression of Femtosecond Pulses

    Conclusion

    Setup and compression mechanismSimulating the whole experimentTemporal self-healing mechanism

    Light bullet � gas-glass-gas interface

    experimental setup for pulse compression

    I step I: Filamentation in argon

    I step II: The pulse goes across a mm-thick silica window

    I step III: Diagnostics are positioned at ∼ 1 m from the cell

    Luc Bergé Femtosecond Filaments

  • FilamentationSelf-compression of Femtosecond Pulses

    Conclusion

    Setup and compression mechanismSimulating the whole experimentTemporal self-healing mechanism

    Step I: Self-compression in Ar 800 nm, Pin = 1Pcr

    I light bullet formation in Ar → 6-8 fs pulse duration

    Luc Bergé Femtosecond Filaments

  • FilamentationSelf-compression of Femtosecond Pulses

    Conclusion

    Setup and compression mechanismSimulating the whole experimentTemporal self-healing mechanism

    Step I: Self-compression in Ar 800 nm, Pin = 1Pcr

    (loading movie)

    Luc Bergé Femtosecond Filaments

    selfcompression_fast_cinepak.aviMedia File (video/avi)

  • FilamentationSelf-compression of Femtosecond Pulses

    Conclusion

    Setup and compression mechanismSimulating the whole experimentTemporal self-healing mechanism

    Step II: Pulse broadening in silica Pmax > 1000Pcr in glass

    I GVD + Kerr → durations up to ≥ 30 fs in the window

    Luc Bergé Femtosecond Filaments

  • FilamentationSelf-compression of Femtosecond Pulses

    Conclusion

    Setup and compression mechanismSimulating the whole experimentTemporal self-healing mechanism

    Step II: Pulse broadening in silica Pmax > 1000Pcr in glass

    I pulse duration exceeds

    τlin(z) ' τ0√1 + 16(ln 2)2(k(2)∆z/τ2

    0)2

    I 8 fs Gaussian pulse broadens to ∼ 10 fs only over 0.5 mm

    I two-scaled variational approach for beam radius R and pulseduration T :1

    4R3Rzz = 1− p2T ;

    1

    4T 3Tzz = δ(δ +

    Tp2R2

    )

    I p = Pin/Pcr and δ ≡ 2πn0R2ink(2)/λ0T 2in are largeI 8 fs Gaussian pulse (15 TW/cm2, 240 µm) broadens to∼ 25 fs over 0.5 mm

    Luc Bergé Femtosecond Filaments

  • FilamentationSelf-compression of Femtosecond Pulses

    Conclusion

    Setup and compression mechanismSimulating the whole experimentTemporal self-healing mechanism

    Step II: Pulse broadening in silica Pmax > 1000Pcr in glass

    I pulse duration exceeds

    τlin(z) ' τ0√1 + 16(ln 2)2(k(2)∆z/τ2

    0)2

    I 8 fs Gaussian pulse broadens to ∼ 10 fs only over 0.5 mm

    I two-scaled variational approach for beam radius R and pulseduration T :1

    4R3Rzz = 1− p2T ;

    1

    4T 3Tzz = δ(δ +

    Tp2R2

    )

    I p = Pin/Pcr and δ ≡ 2πn0R2ink(2)/λ0T 2in are largeI 8 fs Gaussian pulse (15 TW/cm2, 240 µm) broadens to∼ 25 fs over 0.5 mm

    Luc Bergé Femtosecond Filaments

  • FilamentationSelf-compression of Femtosecond Pulses

    Conclusion

    Setup and compression mechanismSimulating the whole experimentTemporal self-healing mechanism

    Step II: Pulse broadening in silica Pmax > 1000Pcr in glass

    I At larger distances we do see collapse in the glass window

    Luc Bergé Femtosecond Filaments

  • FilamentationSelf-compression of Femtosecond Pulses

    Conclusion

    Setup and compression mechanismSimulating the whole experimentTemporal self-healing mechanism

    Step II: Pulse broadening in silica Pmax > 1000Pcr in glass

    I What about spatial modulational instability (in 3D) ?

    I MI is e�ciently suppressed by GVD!

    Luc Bergé Femtosecond Filaments

  • FilamentationSelf-compression of Femtosecond Pulses

    Conclusion

    Setup and compression mechanismSimulating the whole experimentTemporal self-healing mechanism

    Step III: Recompression in air Pmax ∼ 3.5Pcr in air

    (II) (III)

    I pulse compression is �self-restored� in air ∼ 10 fs durations.

    Luc Bergé Femtosecond Filaments

  • FilamentationSelf-compression of Femtosecond Pulses

    Conclusion

    Setup and compression mechanismSimulating the whole experimentTemporal self-healing mechanism

    Recompression works in vacuum as well

    air (solid line, left �gure), vacuum (dashed line, right �gure)

    I refocusing in second gas is not due to nonlinear self-focusing

    I recompression di�erent from self-compression

    Luc Bergé Femtosecond Filaments

  • FilamentationSelf-compression of Femtosecond Pulses

    Conclusion

    Setup and compression mechanismSimulating the whole experimentTemporal self-healing mechanism

    Accumulated phase is important

    phase after crossing the window (for 1 m argon)

    I nonlinear phase curvature accumulated in glass acts like a lens

    I each time slice has di�erent focal length→ new phase: eiRz r2/4R ∼ e−iω0r2w20 /2cf∗→ on-axis recompression

    Luc Bergé Femtosecond Filaments

  • FilamentationSelf-compression of Femtosecond Pulses

    Conclusion

    Setup and compression mechanismSimulating the whole experimentTemporal self-healing mechanism

    In�uence of glass window on far-�eld

    after window, after window without phase, before window

    I phase is crucial for recompression

    I glass window has limited in�uence on far-�eld

    Luc Bergé Femtosecond Filaments

  • FilamentationSelf-compression of Femtosecond Pulses

    Conclusion

    Conclusion

    I �Light bullets�: speci�c compression regime for reachingrobust, singly-peaked pulses with few-cycle durations

    I Role of the exit glass window in a gas cell ? Important !

    I New process: self-restoration of compressed light pulses

    I S. Skupin et al., PRE 74, 056604 (2006)

    LB et al., PRL 100, 113902 (2008); PRL 101, 213901 (2008); PRA 79, 033838 (2009)

    Luc Bergé Femtosecond Filaments

  • FilamentationSelf-compression of Femtosecond Pulses

    Conclusion

    NEW MEETING : W.L.M.I.

    2nd International Workshop on Laser-Matter Interaction

    I Porquerolles Island - France

    I 13-17 September 2010 - Sponsors: CEA

    Luc Bergé Femtosecond Filaments

    FilamentationMathematical modeling: Basic ingredientsDynamic spatial replenishmentModeling revisited: Towards quantitative comparison

    Self-compression of Femtosecond PulsesSetup and compression mechanismSimulating the whole experimentTemporal self-healing mechanism

    Conclusion


Recommended