+ All Categories
Home > Documents > SIZE-BY-SIZE ANALYSIS OF BREAKAGE PARAMETERS OF …

SIZE-BY-SIZE ANALYSIS OF BREAKAGE PARAMETERS OF …

Date post: 06-Apr-2022
Category:
Upload: others
View: 1 times
Download: 0 times
Share this document with a friend
219
SIZE-BY-SIZE ANALYSIS OF BREAKAGE PARAMETERS OF CEMENT CLINKER FEED AND PRODUCT SAMPLES OF AN INDUSTRIAL ROLLER PRESS A THESIS SUBMITTED TO THE GRADUATE SCHOOL OF NATURAL AND APPLIED SCIENCES OF MIDDLE EAST TECHNICAL UNIVERSITY BY MAHMUT CAMALAN IN PARTIAL FULFILLMENT OF THE REQUIREMENTS FOR THE DEGREE OF MASTER OF SCIENCE IN MINING ENGINEERING AUGUST 2012
Transcript

i

SIZE-BY-SIZE ANALYSIS OF BREAKAGE PARAMETERS OF CEMENT

CLINKER FEED AND PRODUCT SAMPLES OF AN INDUSTRIAL ROLLER

PRESS

A THESIS SUBMITTED TO

THE GRADUATE SCHOOL OF NATURAL AND APPLIED SCIENCES

OF

MIDDLE EAST TECHNICAL UNIVERSITY

BY

MAHMUT CAMALAN

IN PARTIAL FULFILLMENT OF THE REQUIREMENTS

FOR

THE DEGREE OF MASTER OF SCIENCE

IN

MINING ENGINEERING

AUGUST 2012

ii

Approval of the thesis:

SIZE-BY-SIZE ANALYSIS OF BREAKAGE PARAMETERS OF CEMENT

CLINKER FEED AND PRODUCT SAMPLES OF AN INDUSTRIAL

ROLLER PRESS

submitted by MAHMUT CAMALAN in partial fulfillment of the requirements for

the degree of Master of Science in Mining Engineering Department, Middle

East Technical University by,

Prof. Dr. Canan ÖZGEN _____________________

Dean, Graduate School of Natural and Applied Sciences

Prof. Dr. Ali İhsan Arol _____________________

Head of Department, Mining Engineering

Prof. Dr. Çetin Hoşten

Supervisor, Mining Engineering Dept., METU _____________________

Examining Committee Members:

Prof. Dr. Ali İhsan Arol _____________________

Mining Engineering Dept., METU

Prof. Dr. Çetin Hoşten _____________________

Mining Engineering Dept., METU

Prof. Dr. Yavuz Topkaya _____________________

Metallurgical and Materials Engineering Dept., METU

Asst. Prof. Dr. Sinan Turhan Erdoğan _____________________

Civil Engineering Dept., METU

Dr. Tuğcan Tuzcu _____________________

Dama Engineering

Date: 15.08.2012

Date: 15.08.2012

iii

I hereby declare that all information in this document has been obtained and

presented in accordance with academic rules and ethical conduct. I also

declare that, as required by these rules and conduct, I have fully cited and

referenced all material and results that are not original to this work.

Name, Last Name:

Signature:

iv

ABSTRACT

SIZE-BY-SIZE ANALYSIS OF BREAKAGE PARAMETERS OF CEMENT

CLINKER FEED AND PRODUCT SAMPLES OF AN INDUSTRIAL ROLLER

PRESS

Camalan, Mahmut

M.Sc., Department of Mining Engineering

Supervisor: Prof. Dr. Çetin Hoşten

August 2012, 189 pages

The main objective in this study is to compare breakage parameters of narrow size

fractions of cement clinker taken from the product end and feed end of

industrial-scale high pressure grinding rolls (HPGR) in order to assess whether the

breakage parameters of clinker broken in HPGR are improved or not. For this

purpose, drop weight tests were applied to six narrow size fractions above 3.35 mm,

and batch grinding tests were applied to three narrow size fractions below 3.35 mm.

It was found that the breakage probabilities of coarse sizes and breakage rates in

fine sizes were higher in the HPGR product. This indicated that clinker broken by

HPGR contained weaker particles due to cracks and damage imparted. However, no

significant weakening was observed for the -19.0+12.7 mm HPGR product.

Although HPGR product was found to be weaker than HPGR feed, fragment size

distribution of HPGR product did not seem to be finer than that of the HPGR feed at

a given loading condition in either the drop weight test or batch grinding test. Also,

drop weight tests on HPGR product and HPGR feed showed that the breakage

distribution functions of coarse sizes depended on particle size and impact energy

(J).

v

Batch grinding tests showed that the specific breakage rates of HPGR product and

HPGR feed were non-linear which could be represented with a fast initial breakage

rate and a subsequent slow breakage rate. The fast breakage rates of each size

fraction of HPGR product were higher than HPGR feed due to cracks induced in

clinker by HPGR. However, subsequent slow breakage rates of HPGR product were

close to those of HPGR feed due to elimination of cracks and disappearance of

weaker particles. Besides, the variation in breakage rates of HPGR product and

HPGR feed with ball size and particle size also showed an abnormal breakage zone

where ball sizes were insufficient to effectively fracture the coarse particles.

Breakage distribution functions of fine sizes of HPGR product and HPGR feed were

non-normalizable and depended on particle size to be ground. However, batch

grinding of -2.36+1.7 mm and -1.7+1.18 mm HPGR feed yielded the same breakage

pattern.

Keywords: Clinker, HPGR, Ball Mill, Drop Weight Test, Breakage Parameters

vi

ÖZ

YÜKSEK BASINÇLI MERDANELİ PRESTEN ALINAN GİRİŞ VE ÜRÜN

NUMUNELERİNİN KIRMA PARAMETRELERİNİN KARŞILAŞTIRILMASI

Camalan, Mahmut

Y. Lisans, Maden Mühendisliği Bölümü

Tez Yöneticisi: Prof. Dr. Çetin Hoşten

Ağustos 2012, 189 sayfa

Bu çalışmada yüksek basınçlı merdaneli preste (HPGR) kırılan klinkerin kırılma

parameterlerinin değişip değişmediğini belirlemek amacıyla; endüstriyel ölçekli,

yüksek basınçlı merdaneli presin girişinden (HPGR besleme) ve çıkışından (HPGR

ürün) alınan klinkerin dar tane aralıklarındaki kırılma parametreleri

karşılaştırılmıştır. Bu amaçla, 3.35 mm’nin üzerinde 6 adet dar tane aralığına,

ağırlık düşürme yöntemi uygulanmış; 3.35 mm’nin altındaki 3 adet dar tane aralığı

ise laboratuvar ölçekli bilyalı değirmen ile test edilmiştir. Bu testler sonucunda, iri

tanelerdeki kırılma olasılığı ile ince tanelerdeki özgül kırılma hızlarının HPGR

ürününde daha fazla olduğu bulunmuştur. Bu durum, HPGR’de kırılan klinkerin

içindeki çatlaklar ve hasarlar nedeniyle zayıfladığını göstermektedir. Ancak,

-19.0+12.7 mm HPGR ürüründe belirgin bir zayıflama görülememiştir. HPGR

ürünü, HPGR beslemesine nazaran daha zayıf olduğu halde; aynı yükleme

koşullarında yapılmış ağırlık düşürme yöntemi ya da değirmen testlerinde, kırılan

parça boyutunun HPGR ürününde daha ince çıktığını gösteren bir yönelim

bulunamamıştır. Ayrıca, ağırlık düşürme yöntemi, iri boyutların kırılım dağılım

fonksiyonlarının tane boyu ve kırılım enerjisine (J) bağlı olduğunu göstermektedir.

vii

Bilyalı değirmen testleri, HPGR ürünü ve HPGR beslemesinin kırılma hızlarının

doğrusal olmadığını göstermektedir. Bu aşamada özgül kırılma hızı, öncül hızlı

kırılma sonra da yavaş kırılma olarak ifade edilebilmektedir. Belli bir tane

boyundaki HPGR ürününün öncül özgül kırılma hızı, HPGR tarafından klinkerde

oluşturulan çatlaklar yüzünden, HPGR beslemesine göre daha yüksektir. Ancak,

sonrasındaki yavaş kırılmalarda HPGR ürünü, HPGR beslemesine yakın kırılma

hızları vermekte, bu ise çatlakların ve zayıf parçaların ortadan kaybolduğunu

göstermektedir. Bunun yanı sıra, HPGR ürünü ve HPGR beslemesindeki özgül

kırılım hızlarının bilya ve parçacık tane boyuna göre değişimi, bilya boyutunun iri

taneleri kırmakta yetersiz kaldığı anormal kırılım davranışını işaret etmektedir.

HPGR ürünü ve HPGR beslemesindeki ince tanelerin kırılım dağılım fonksiyonları

normalize olmamakta ve tane boyuna bağlı değişim göstermektedir. Ancak,

-2.36+1.7 mm ve -1.7+1.18 mm HPGR beslemesi aynı kırılım şekli vermektedir.

Anahtar Kelimeler: Klinker, HPGR, Bilyalı Değirmen, Ağırlık Düşürme Testi,

Kırılma Parametreleri

viii

To My Family and My Late Father

ix

ACKNOWLEDGEMENTS

I would like to express my gratitude to my supervisor, Prof. Dr. Çetin Hoşten, for

guiding me throughout the experimental procedure and thesis preparation with his

deep knowledge and inspirational criticism.

I would also like to thank the members of the examining committee for their kind

suggestions and contributions to the content and format of my thesis.

I would like to thank METU Central Laboratory for the experimental support given

to this study.

I would like to thank my colleague Cemil Acar for kindly supporting and guiding

me throughout the experimental work. Also, I would like to thank my colleagues

Mahmut Çavur, Mustafa Çırak, Mustafa Erkayaoğlu, Selin Yoncacı, Ömer Erdem

and Mustafa Kemal Emil for their moral support and guidance throughout the thesis

writing.

I would like to thank Tahsin Işıksal, Aytekin Aslan, Hakan Uysal and İsmail Kaya

for their help in the experimental work.

I would like to thank my friends Fatih Açıkgöz, Sarper Çubuk, Habip Demir,

Metehan Demir, Erbil Postallı and Mehmet Ali Recai Önal for their friendship and

moral support throughout the thesis preparation.

Finally, I would like to give my deepest love to my family who has supported and

loved me at every moment of my life.

x

TABLE OF CONTENTS

ABSTRACT............................................................................................................ iv

ÖZ..... ...................................................................................................................... vi

ACKNOWLEDGEMENTS .................................................................................... ix

TABLE OF CONTENTS......................................................................................... x

LIST OF TABLES ................................................................................................. xii

LIST OF FIGURES .............................................................................................. xxi

LIST OF SYMBOLS .......................................................................................... xxix

CHAPTERS

1. INTRODUCTION ............................................................................................. 1

1.1 General ..................................................................................................... 1

1.2 Objective and Scope of the Thesis ........................................................... 2

2. BACKGROUND ............................................................................................... 4

2.1 Comminution Methods ............................................................................. 4

2.1.1 High Pressure Grinding Rolls .................................................... 5

2.1.2 Ball Mill ..................................................................................... 6

2.2 Comminution Models ............................................................................... 8

2.2.1 Breakage Parameters of the Kinetic Model ............................... 9

2.2.2 Single Particle Breakage Tests ................................................ 14

2.2.2.1 Drop Weight Testing ................................................ 15

2.3 Portland Cement Clinker ........................................................................ 18

2.3.1 Cement Clinker Grinding ........................................................ 19

2.4 Utilization of HPGR Prior To Ball Mill ................................................. 21

3. EXPERIMENTAL MATERIAL AND METHODS ....................................... 23

3.1 Material .................................................................................................. 23

3.2 Methods .................................................................................................. 24

xi

4. RESULTS AND DISCUSSION...................................................................... 36

4.1 Evaluation of Single Particle Breakage Tests ........................................ 36

4.2 Evaluation of Batch Grinding Tests ....................................................... 54

4.2.1 Product Size Distributions ....................................................... 54

4.2.2 Specific Rates of Breakage ...................................................... 59

4.2.3 Primary Breakage Distribution Functions ............................... 67

5. CONCLUSIONS ............................................................................................. 76

REFERENCES ...................................................................................................... 79

APPENDICES

A. SIZE DISTRIBUTIONS OF HPGR PRODUCT AND HPGR FEED ......... 82

B. DROP WEIGHT TEST DATA .................................................................... 84

C. BLANK SIEVE ANALYSIS OF MONOSIZE MATERIAL USED IN

BATCH GRINDING OF HPGR PRODUCT AND HPGR FEED ............ 151

D. BATCH GRINDING TEST DATA ........................................................... 161

xii

LIST OF TABLES

TABLES

Table 2.1. Breakage distribution functions in a matrix form ................................... 12

Table 3.1. Experimental conditions for drop weight testing of -4.7+3.35 mm of

HPGR product .......................................................................................................... 25

Table 3.2. Experimental conditions for drop weight testing of -4.7+3.35 mm of

HPGR feed ............................................................................................................... 25

Table 3.3. Experimental conditions for drop weight testing of -6.35+4.7 mm of

HPGR product .......................................................................................................... 26

Table 3.4. Experimental conditions for drop weight testing of -6.35+4.7 mm of

HPGR feed ............................................................................................................... 26

Table 3.5. Experimental conditions for drop weight testing of -9.53+6.35 mm of

HPGR product .......................................................................................................... 27

Table 3.6. Experimental conditions for drop weight testing of -9.53+6.35 mm of

HPGR feed ............................................................................................................... 27

Table 3.7. Experimental conditions for drop weight testing of -12.7+9.53 mm of

HPGR product .......................................................................................................... 28

Table 3.8. Experimental conditions for drop weight testing of -12.7+9.53 mm of

HPGR feed ............................................................................................................... 29

Table 3.9. Experimental conditions for drop weight testing of -19.0+12.7 mm of

HPGR product .......................................................................................................... 30

Table 3.10. Experimental conditions for drop weight testing of -19.0+12.7 mm of

HPGR feed ............................................................................................................... 30

Table 3.11. Experimental conditions for drop weight testing of -25.4+19.0 mm of

HPGR product .......................................................................................................... 31

Table 3.12. Experimental conditions for drop weight testing of -25.4+19.0 mm of

HPGR feed ............................................................................................................... 31

xiii

Table 3.13. Experimental conditions for batch ball mill grinding of HPGR product

and HPGR feed (dB = 19.05 mm)............................................................................. 33

Table 3.14. Experimental conditions for batch ball mill grinding of HPGR product

and HPGR feed (dB = 25.4 mm)............................................................................... 34

Table 3.15. Experimental conditions for batch ball mill grinding of HPGR product

and HPGR feed (dB = 31.75 mm)............................................................................. 35

Table 4.1. Fast (S1) and slow (S2) breakage rates of the size fractions of HPGR

product and HPGR feed (Raw data at Appendix C and Appendix D) ..................... 60

Table A.1. Size distribution of HPGR product ........................................................ 82

Table A.2. Size distribution of HPGR feed .............................................................. 83

Table B.1. Product size distribution after impact breakage of -4.7+3.35 mm of

HPGR product (specific impact energy=0.54 kWh/t) .............................................. 84

Table B.2. Product size distribution after impact breakage of -4.7+3.35 mm of

HPGR product (specific impact energy=1.09 kWh/t) .............................................. 85

Table B.3. Product size distribution after impact breakage of -4.7+3.35 mm of

HPGR product (specific impact energy=2.18 kWh/t) .............................................. 86

Table B.4. Product size distribution after impact breakage of -4.7+3.35 mm of

HPGR product (specific impact energy=3.32 kWh/t) .............................................. 87

Table B.5. Product size distribution after impact breakage of -4.7+3.35 mm of

HPGR feed (specific impact energy=0.54 kWh/t) ................................................... 88

Table B.6. Product size distribution after impact breakage of -4.7+3.35 mm of

HPGR feed (specific impact energy=1.09 kWh/t) ................................................... 89

Table B.7. Product size distribution after impact breakage of -4.7+3.35 mm of

HPGR feed (specific impact energy=2.18 kWh/t) ................................................... 90

Table B.8. Product size distribution after impact breakage of -4.7+3.35 mm of

HPGR feed (specific impact energy=3.32 kWh/t) ................................................... 91

Table B.9. Product size distribution after impact breakage of -6.35+4.7 mm of

HPGR product (specific impact energy=0.23 kWh/t) .............................................. 92

Table B.10. Product size distribution after impact breakage of -6.35+4.7 mm of

HPGR product (specific impact energy=0.45 kWh/t) .............................................. 93

xiv

Table B.11. Product size distribution after impact breakage of -6.35+4.7 mm of

HPGR product (specific impact energy=0.88 kWh/t) .............................................. 94

Table B.12. Product size distribution after impact breakage of -6.35+4.7 mm of

HPGR product (specific impact energy=1.74 kWh/t) .............................................. 95

Table B.13. Product size distribution after impact breakage of -6.35+4.7 mm of

HPGR feed (specific impact energy=0.23 kwh/t) .................................................... 96

Table B.14. Product size distribution after impact breakage of -6.35+4.7 mm of

HPGR feed (specific impact energy=0.45 kWh/t) ................................................... 97

Table B.15. Product size distribution after impact breakage of -6.35+4.7 mm of

HPGR feed (specific impact energy=0.88 kWh/t) ................................................... 98

Table B.16. Product size distribution after impact breakage of -6.35+4.7 mm of

HPGR feed (specific impact energy=1.74 kWh/t) ................................................... 99

Table B.17. Product size distribution after impact breakage of -9.53+6.35 mm of

HPGR product (specific impact energy=0.10 kWh/t) ............................................ 100

Table B.18. Product size distribution after impact breakage of -9.53+6.35 mm of

HPGR product (specific impact energy=0.22 kWh/t) ............................................ 101

Table B.19. Product size distribution after impact breakage of -9.53+6.35 mm of

HPGR product (specific impact energy=0.55 kWh/t) ............................................ 102

Table B.20. Product size distribution after impact breakage of -9.53+6.35 mm of

HPGR product (specific impact energy=0.92 kWh/t) ............................................ 103

Table B.21. Product size distribution after impact breakage of -9.53+6.35 mm of

HPGR product (specific impact energy=2.21 kWh/t) ............................................ 104

Table B.22. Product size distribution after impact breakage of -9.53+6.35 mm of

HPGR product (specific impact energy=4.35 kWh/t) ............................................ 105

Table B.23. Product size distribution after impact breakage of -9.53+6.35 mm of

HPGR feed (specific impact energy=0.10 kWh/t) ................................................. 106

Table B.24. Product size distribution after impact breakage of -9.53+6.35 mm of

HPGR feed (specific impact energy=0.22 kWh/t) ................................................. 107

Table B.25. Product size distribution after impact breakage of -9.53+6.35 mm of

HPGR feed (specific impact energy=0.55 kWh/t) ................................................. 108

xv

Table B.26. Product size distribution after impact breakage of -9.53+6.35 mm of

HPGR feed (specific impact energy=0.92 kWh/t) ................................................. 109

Table B.27. Product size distribution after impact breakage of -9.53+6.35 mm of

HPGR feed (specific impact energy=2.21 kWh/t) ................................................. 110

Table B.28. Product size distribution after impact breakage of -9.53+6.35 mm of

HPGR feed (specific impact energy=4.35 kWh/t) ................................................. 111

Table B.29. Product size distribution after impact breakage of -12.7+9.53 mm of

HPGR product (specific impact energy=0.03 kWh/t) ............................................ 112

Table B.30. Product size distribution after impact breakage of -12.7+9.53 mm of

HPGR product (specific impact energy=0.11 kWh/t) ............................................ 113

Table B.31. Product size distribution after impact breakage of -12.7+9.53 mm of

HPGR product (specific impact energy=0.22 kWh/t) ............................................ 114

Table B.32. Product size distribution after impact breakage of -12.7+9.53 mm of

HPGR product (specific impact energy=0.44 kWh/t) ............................................ 115

Table B.33. Product size distribution after impact breakage of -12.7+9.53 mm of

HPGR product (specific impact energy=0.88 kWh/t) ............................................ 116

Table B.34. Product size distribution after impact breakage of -12.7+9.53 mm of

HPGR product (specific impact energy=1.32 kWh/t) ............................................ 117

Table B.35. Product size distribution after impact breakage of -12.7+9.53 mm of

HPGR product (specific impact energy=1.7 kWh/t) .............................................. 118

Table B.36. Product size distribution after impact breakage of -12.7+9.53 mm of

HPGR feed (specific impact energy=0.03 kWh/t) ................................................. 119

Table B.37. Product size distribution after impact breakage of -12.7+9.53 mm of

HPGR feed (specific impact energy=0.11 kWh/t) ................................................. 120

Table B.38. Product size distribution after impact breakage of -12.7+9.53 mm of

HPGR feed (specific impact energy=0.22 kWh/t) ................................................. 121

Table B.39. Product size distribution after impact breakage of -12.7+9.53 mm of

HPGR feed (specific impact energy=0.44 kWh/t) ................................................. 122

Table B.40. Product size distribution after impact breakage of -12.7+9.53 mm of

HPGR feed (specific impact energy=0.88 kWh/t) ................................................. 123

xvi

Table B.41. Product size distribution after impact breakage of -12.7+9.53 mm of

HPGR feed (specific impact energy=1.32 kWh/t) ................................................. 124

Table B.42. Product size distribution after impact breakage of -12.7+9.53 mm of

HPGR feed (specific impact energy=1.70 kWh/t) ................................................. 125

Table B.43. Product size distribution after impact breakage of -19.0+12.7 mm of

HPGR product (specific impact energy=0.03 kWh/t) ............................................ 126

Table B.44. Product size distribution after impact breakage of -19.0+12.7 mm of

HPGR product (specific impact energy=0.11 kWh/t) ............................................ 127

Table B.45. Product size distribution after impact breakage of -19.0+12.7 mm of

HPGR product (specific impact energy=0.22 kWh/t) ............................................ 128

Table B.46. Product size distribution after impact breakage of -19.0+12.7 mm of

HPGR product (specific impact energy=0.44 kWh/t) ............................................ 129

Table B.47. Product size distribution after impact breakage of -19.0+12.7 mm of

HPGR product (specific impact energy=0.88 kWh/t) ............................................ 130

Table B.48. Product size distribution after impact breakage of -19.0+12.7 mm of

HPGR feed (specific impact energy=0.03 kWh/t) ................................................. 131

Table B.49. Product size distribution after impact breakage of -19.0+12.7 mm of

HPGR feed (specific impact energy=0.11 kWh/t) ................................................. 132

Table B.50. Product size distribution after impact breakage of -19.0+12.7 mm of

HPGR feed (specific impact energy=0.22 kWh/t) ................................................. 133

Table B.51. Product size distribution after impact breakage of -19.0+12.7 mm of

HPGR feed (specific impact energy=0.44 kWh/t) ................................................. 134

Table B.52. Product size distribution after impact breakage of -19.0+12.7 mm of

HPGR feed (specific impact energy=0.88 kWh/t) ................................................. 135

Table B.53. Product size distribution after impact breakage of -25.4+19.0 mm of

HPGR product (specific impact energy=0.01 kWh/t) ............................................ 136

Table B.54. Product size distribution after impact breakage of -25.4+19.0 mm of

HPGR product (specific impact energy=0.05 kWh/t) ............................................ 137

Table B.55. Product size distribution after impact breakage of -25.4+19.0 mm of

HPGR product (specific impact energy=0.11 kWh/t) ............................................ 138

xvii

Table B.56. Product size distribution after impact breakage of -25.4+19.0 mm of

HPGR product (specific impact energy=0.22 kWh/t) ............................................ 139

Table B.57. Product size distribution after impact breakage of -25.4+19.0 mm of

HPGR product (specific impact energy=0.59 kWh/t) ............................................ 140

Table B.58. Product size distribution after impact breakage of -25.4+19.0 mm of

HPGR product (specific impact energy=0.88 kWh/t) ............................................ 141

Table B.59. Product size distribution after impact breakage of -25.4+19.0 mm of

HPGR feed (specific impact energy=0.01 kWh/t) ................................................. 142

Table B.60. Product size distribution after impact breakage of -25.4+19.0 mm of

HPGR feed (specific impact energy=0.05 kWh/t) ................................................. 143

Table B.61. Product size distribution after impact breakage of -25.4+19.0 mm of

HPGR feed (specific impact energy=0.11 kWh/t) ................................................. 144

Table B.62. Product size distribution after impact breakage of -25.4+19.0 mm of

HPGR feed (specific impact energy=0.22 kWh/t) ................................................. 145

Table B.63. Product size distribution after impact breakage of -25.4+19.0 mm of

HPGR feed (specific impact energy=0.59 kWh/t) ................................................. 146

Table B.64. Product size distribution after impact breakage of -25.4+19.0 mm of

HPGR feed (specific impact energy=0.88 kWh/t) ................................................. 147

Table B.65. t10 and d50 of HPGR product ............................................................. 148

Table B.66. t10 and d50 of HPGR feed ................................................................... 149

Table C.1. Size distribution of -3.35+2.36 mm HPGR product used for ball milling

(dB =19.05 mm, ɸBALL=0.35) ................................................................................ 151

Table C.2. Size distribution of -3.35+2.36 mm HPGR product used for ball milling

(dB =25.4 mm, ɸBALL=0.35) .................................................................................. 152

Table C.3. Size distribution of -3.35+2.36 mm HPGR product used for ball milling

(dB =31.75 mm, ɸBALL=0.35) ................................................................................ 152

Table C.4. Size distribution of -3.35+2.36 mm HPGR feed used for ball milling

(dB=19.05 mm, ɸBALL=0.35) ................................................................................. 153

Table C.5. Size distribution of -3.35+2.36 mm HPGR feed used for ball milling

(dB=25.4 mm, ɸBALL=0.35) .................................................................................... 153

xviii

Table C.6. Size distribution of -3.35+2.36 mm HPGR feed used for ball milling

(dB=31.75 mm, ɸBALL=0.35) ................................................................................. 154

Table C.7. Size distribution of -2.36+1.7 mm HPGR product used for ball milling

(dB =19.05 mm, ɸBALL=0.35) ................................................................................ 154

Table C.8. Size distribution of -2.36+1.7 mm HPGR product used for ball milling

(dB =25.4 mm, ɸBALL=0.35) .................................................................................. 155

Table C.9. Size distribution of -2.36+1.7 mm HPGR product used for ball milling

(dB=31.75 mm, ɸBALL=0.35) ................................................................................. 155

Table C.10. Size distribution of -2.36+1.7 mm HPGR feed used for ball milling

(dB=19.05 mm, ɸBALL=0.35) ................................................................................. 156

Table C.11. Size distribution of -2.36+1.7 mm HPGR feed used for ball milling

(dB=25.4 mm, ɸBALL=0.35) ................................................................................... 156

Table C.12. Size distribution of -2.36+1.7 mm HPGR feed used for ball milling

(dB=31.75 mm, ɸBALL=0.35) ................................................................................. 157

Table C.13. Size distribution of –1.7+1.18 mm HPGR product used for ball milling

(dB=19.05 mm, ɸBALL=0.35) ................................................................................. 157

Table C.14. Size distribution of –1.7+1.18 mm HPGR product used for ball milling

(dB=25.4 mm, ɸBALL=0.35) ................................................................................... 158

Table C.15. Size distribution of –1.7+1.18 mm HPGR product used for ball milling

(dB=31.75 mm, ɸBALL=0.35) ................................................................................. 158

Table C.16. Size distribution of –1.7+1.18 mm HPGR feed used for ball milling

(dB=19.05 mm, ɸBALL=0.35) ................................................................................. 159

Table C.17. Size distribution of –1.7+1.18 mm HPGR feed used for ball milling

(dB=25.4 mm, ɸBALL=0.35) ................................................................................... 159

Table C.18. Size distribution of –1.7+1.18 mm HPGR feed used for ball milling

(dB=31.75 mm, ɸBALL=0.35) ................................................................................. 160

Table D.1. Product size distribution after batch grinding of -3.35+2.36 mm of

HPGR product (dB =19.05 mm, ɸBALL=0.35)......................................................... 161

Table D.2. Product size distribution after batch grinding of -3.35+2.36 mm of

HPGR product (dB =25.4 mm, ɸBALL=0.35)........................................................... 163

xix

Table D.3. Product size distribution after batch grinding of -3.35+2.36 mm of

HPGR product (dB =31.75 mm, ɸBALL=0.35)......................................................... 165

Table D.4. Product size distribution after batch grinding of -3.35+2.36 mm of

HPGR feed (dB =19.05 mm, ɸBALL=0.35) .............................................................. 167

Table D.5. Product size distribution after batch grinding of -3.35+2.36 mm of

HPGR feed (dB =25.4 mm, ɸBALL=0.35) ................................................................ 168

Table D.6. Product size distribution after batch grinding of -3.35+2.36 mm of

HPGR feed (dB =31.75 mm, ɸBALL=0.35) .............................................................. 170

Table D.7. Product size distribution after batch grinding of -2.36+1.7 mm of HPGR

product (dB =19.05 mm, ɸBALL=0.35) .................................................................... 171

Table D.8. Product size distribution after batch grinding of -2.36+1.7 mm of HPGR

product (dB =25.4 mm, ɸBALL=0.35) ...................................................................... 173

Table D.9. Product size distribution after batch grinding of -2.36+1.7 mm of HPGR

product (dB =31.75 mm, ɸBALL=0.35) .................................................................... 174

Table D.10. Product size distribution after batch grinding of -2.36+1.7 mm of

HPGR feed (dB =19.05 mm, ɸBALL=0.35) .............................................................. 176

Table D.11. Product size distribution after batch grinding of -2.36+1.7 mm of

HPGR feed (dB =25.4 mm, ɸBALL=0.35) ................................................................ 177

Table D.12. Product size distribution after batch grinding of -2.36+1.7 mm of

HPGR feed (dB =31.75 mm, ɸBALL=0.35) .............................................................. 179

Table D.13. Product size distribution after batch grinding of -1.7+1.18 mm of

HPGR product (dB =19.05 mm, ɸBALL=0.35)......................................................... 181

Table D.14. Product size distribution after batch grinding of -1.7+1.18 mm of

HPGR product (dB =25.4 mm, ɸBALL=0.35)........................................................... 182

Table D.15. Product size distribution after batch grinding of -1.7+1.18 mm of

HPGR product (dB =31.75 mm, ɸBALL=0.35)......................................................... 184

Table D.16. Product size distribution after batch grinding of -1.7+1.18 mm of

HPGR feed (dB =19.05 mm, ɸBALL=0.35) .............................................................. 185

Table D.17. Product size distribution after batch grinding of -1.7+1.18 mm of

HPGR feed (dB =25.4 mm, ɸBALL=0.35) ................................................................ 187

xx

Table D.18. Product size distribution after batch grinding of -1.7+1.18 mm of

HPGR feed (dB =31.75 mm, ɸBALL=0.35) .............................................................. 188

xxi

LIST OF FIGURES

FIGURES

Figure 2.1. Operating principle of HPGR (De, 1995) ................................................ 6

Figure 2.2. Non-linear deviations observed in breakage rates (Bilgili et al., 2006) 11

Figure 2.3. Graphical procedure for estimating parameters of and Ф1 in functional

form of Bi1 ................................................................................................................ 14

Figure 2.4. Schematics of a drop weight tester ........................................................ 16

Figure 2.5. One-parameter family curves ................................................................ 17

Figure 2.6. Conceptual flowsheet of cement production ......................................... 19

Figure 2.7. The modes of operation for cement grinding circuits (Patzelt, 1992) ... 20

Figure 3.1. Particle size distributions of HPGR product and HPGR feed (Raw data

at Table A.1 and Table A.2 in Appendix A) ............................................................ 23

Figure 4.1. Mass-Basis Breakage Probabilities of -4.7+3.35 mm HPGR product and

HPGR feed (Raw data at Table B.1 through Table B.8 in Appendix B) ................. 37

Figure 4.2. Mass-Basis Breakage Probabilities of -6.35+4.7 mm HPGR product and

HPGR feed (Raw data at Table B.9 through Table B.16 in Appendix B) ............... 38

Figure 4.3. Mass-Basis Breakage Probabilities of -9.53+6.35 mm HPGR product

and HPGR feed (Raw data at Table B.17 through Table B.28 in Appendix B) ...... 38

Figure 4.4. Mass-Basis Breakage Probabilities of -12.7+9.53 mm HPGR product

and HPGR feed (Raw data at Table B.29 through Table B.42 in Appendix B) ...... 39

Figure 4.5. Mass-Basis Breakage Probabilities of -19+12.7 mm HPGR product and

HPGR feed (Raw data at Table B.43 through Table B.52 in Appendix B) ............. 39

Figure 4.6. Mass-Basis Breakage Probabilities of -25.4+19 mm HPGR product and

HPGR feed (Raw data at Table B.53 through Table B.64 in Appendix B) ............. 40

Figure 4.7. Cumulative breakage distribution functions after impact breakage of

-4.7+3.35 mm of HPGR product and HPGR feed at various energy levels (Raw data

at Table B.1 through Table B.8 in Appendix B) ...................................................... 41

xxii

Figure 4.8. Cumulative breakage distribution functions after impact breakage of

-6.35+4.7 mm of HPGR product and HPGR feed at various energy levels (Raw data

at Table B.9 through Table B.16 in Appendix B) .................................................... 42

Figure 4.9. Cumulative breakage distribution functions after impact breakage of

-9.53+6.35 mm of HPGR product and HPGR feed at various energy levels (Raw

data at Table B.17 through Table B.28 in Appendix B) .......................................... 42

Figure 4.10. Cumulative breakage distribution functions after impact breakage of

-12.7+9.53 mm of HPGR product and HPGR feed at various energy levels (Raw

data at Table B.29 through Table B.42 in Appendix B) .......................................... 43

Figure 4.11. Cumulative breakage distribution functions after impact breakage of

-19.0+12.7 mm of HPGR product and HPGR feed at various energy levels (Raw

data at Table B.43 through Table B.52 in Appendix B) .......................................... 43

Figure 4.12. Cumulative breakage distribution functions after impact breakage of

-25.4+19.0 mm of HPGR product and HPGR feed at various energy levels (Raw

data at Table B.53 through Table B.64 in Appendix B) .......................................... 44

Figure 4.13. Non-self similar product size distributions after drop weight tests of

-4.7+3.35 mm HPGR product with varying specific impact energy levels (Raw data

at Table B.1 through Table B.4, and at Table B.65 in Appendix B) ........................ 45

Figure 4.14. Non-self similar product size distributions after drop weight tests of

-4.7+3.35 mm HPGR feed with varying specific impact energy levels (Raw data at

Table B.5 through Table B.8, and at Table B.66 in Appendix B)............................ 46

Figure 4.15. Non-self similar product size distributions after drop weight tests of

-6.35+4.7 mm HPGR product with varying specific impact energy levels (Raw data

at Table B.9 through Table B.12, and at Table B.65 in Appendix B) ...................... 46

Figure 4.16. Non-self similar product size distributions after drop weight tests of

-6.35+4.7 mm HPGR feed with varying specific impact energy levels (Raw data at

Table B.13 through Table B.16, and at Table B.66 in Appendix B) ....................... 47

Figure 4.17. Non-self similar product size distributions after drop weight tests of

-9.53+6.35 mm HPGR product with varying specific impact energy levels (Raw

data at Table B.17 through Table B.22, and at Table B.65 in Appendix B) ............ 47

xxiii

Figure 4.18. Non-self similar product size distributions after drop weight tests of

-9.53+6.35 mm HPGR feed with varying specific impact energy levels (Raw data at

Table B.23 through Table B.28, and at Table B.66 in Appendix B) ....................... 48

Figure 4.19. Non-self similar product size distributions after drop weight tests of

-12.7+9.53 mm HPGR product with varying specific impact energy levels (Raw

data at Table B.29 through Table B.35, and at Table B.65 in Appendix B) ............ 48

Figure 4.20. Non-self similar product size distributions after drop weight tests of

-12.7+9.53 mm HPGR feed with varying specific impact energy levels (Raw data at

Table B.36 through Table B.42, and at Table B.66 in Appendix B) ....................... 49

Figure 4.21. Non-self similar product size distributions after drop weight tests of

-19.0+12.7 mm HPGR product with varying specific impact energy levels (Raw

data at Table B.43 through Table B.47, and at Table B.65 in Appendix B) ............ 49

Figure 4.22. Non-self similar product size distributions after drop weight tests of

-19.0+12.7 mm HPGR feed with varying specific impact energy levels (Raw data at

Table B.48 through Table B.52, and at Table B.66 in Appendix B) ....................... 50

Figure 4.23. Non-self similar product size distributions after drop weight tests of

-25.4+19.0 mm HPGR product with varying specific impact energy levels (Raw

data at Table B.53 through Table B.58, and at Table B.65 in Appendix B) ............ 50

Figure 4.24. Non-self similar product size distributions after drop weight tests of

-25.4+19.0 mm HPGR feed with varying specific impact energy levels (Raw data at

Table B.59 through Table B.64, and at Table B.66 in Appendix B) ....................... 51

Figure 4.25. Non-normalizable breakage distribution functions of -4.7+3.35 mm,

-6.35+4.7 mm, -9.53+6.35 mm, and -12.7+9.53 mm HPGR product (Raw data at

Table B.1, Table B.9, Table B.17 and Table B.29 in Appendix B) ........................ 52

Figure 4.26. Non-normalizable breakage distribution functions of -4.7+3.35 mm,

-6.35+4.7 mm, -9.53+6.35 mm, and -12.7+9.53 mm HPGR feed (Raw data at

Table B.5, Table B.13, Table B.23 and Table B.36 in Appendix B) ...................... 52

Figure 4.27. Non-normalizable breakage distribution functions of -12.7+9.53 mm,

-19+12.7 mm, -25.4+19.0 mm HPGR product (Raw data at Table B.30, Table B.43

and Table B.53 in Appendix B) ............................................................................... 53

xxiv

Figure 4.28. Non-normalizable breakage distribution functions of -12.7+9.53 mm,

-19+12.7 mm, -25.4+19.0 mm HPGR feed (Raw data at Table B.37, Table B.48 and

Table B.59 in Appendix B) ...................................................................................... 53

Figure 4.29. Product size distributions after batch grinding of -1.7+1.18 mm of

HPGR product and HPGR feed; dB = 19.05 mm, ɸBall = 0.35, 633 g of material

(Raw data at Table D.13 and Table D.16 in Appendix D) ....................................... 55

Figure 4.30. Product size distributions after batch grinding of -1.7+1.18 mm of

HPGR product and HPGR feed; dB = 25.4 mm, ɸBall = 0.35, 633 g of material (Raw

data at Table D.14 and Table D.17 in Appendix D) ................................................ 55

Figure 4.31. Product size distributions after batch grinding of -1.7+1.18 mm of

HPGR product and HPGR feed; dB = 31.75 mm, ɸBall = 0.35, 633 g of material

(Raw data at Table D.15 and Table D.18 in Appendix D) ....................................... 56

Figure 4.32. Product size distributions after batch grinding of -2.36+1.7 mm of

HPGR product and HPGR feed; dB = 19.05 mm, ɸBall = 0.35, 633 g of material

(Raw data at from Table D.7 and Table D.10 in Appendix D) ................................ 56

Figure 4.33. Product size distributions after batch grinding of -2.36+1.7 mm of

HPGR product and HPGR feed; dB = 25.4 mm, ɸBall = 0.35, 633 g of material (Raw

data at Table D.8 and Table D.11 in Appendix D) .................................................. 57

Figure 4.34. Product size distributions after batch grinding of -2.36+1.7 mm of

HPGR product and HPGR feed; dB = 31.75 mm, ɸBall = 0.35, 633 g of material

(Raw data at Table D.9 and Table D.12 in Appendix D) ......................................... 57

Figure 4.35. Product size distributions after batch grinding of -3.35+2.36 mm of

HPGR product and HPGR feed; dB = 19.05 mm, ɸBall = 0.35, 720 g of material

(Raw data at Table D.1 and Table D.4 in Appendix D) ........................................... 58

Figure 4.36. Product size distributions after batch grinding of -3.35+2.36 mm of

HPGR product and HPGR feed; dB = 25.4 mm, ɸBall = 0.35, 720 g of material (Raw

data at Table D.2 and Table D.5 in Appendix D) .................................................... 58

Figure 4.37. Product size distributions after batch grinding of -3.35+2.36 mm of

HPGR product and HPGR feed; dB = 31.75 mm, ɸBall = 0.35, 720 g of material

(Raw data at Table D.3 and Table D.6 in Appendix D) ........................................... 59

xxv

Figure 4.38. Breakage rate plots after batch grinding of -1.7+1.18 mm of HPGR

product and HPGR feed; dB = 19.05 mm, ɸBall =0.35, 633 g of material

(Raw data at Table C.13, Table C.16 in Appendix C, and Table D.13, Table D.16 in

Appendix D) ............................................................................................................. 61

Figure 4.39. Breakage rate plots after batch grinding of -1.7+1.18 mm of HPGR

product and HPGR feed; dB = 25.4 mm, ɸBall =0.35, 633 g of material

(Raw data at Table C.14, Table C.17 in Appendix C, and Table D.14, Table D.17 in

Appendix D) ............................................................................................................. 61

Figure 4.40. Breakage rate plots after batch grinding of -1.7+1.18 mm of HPGR

product and HPGR feed; dB = 31.75 mm, ɸBall =0.35, 633 g of material

(Raw data at Table C.15, Table C.18 in Appendix C, and Table D.15, Table D.18 in

Appendix D) ............................................................................................................. 62

Figure 4.41. Breakage rate plots after batch grinding of -2.36+1.7 mm of HPGR

product and HPGR feed; dB = 19.05 mm, ɸBall =0.35, 633 g of material

(Raw data at Table C.7, Table C.10 in Appendix C, and Table D.7, Table D.10 in

Appendix D) ............................................................................................................. 62

Figure 4.42. Breakage rate plots after batch grinding of -2.36+1.7 mm of HPGR

product and HPGR feed; dB = 25.4 mm, ɸBall =0.35, 633 g of material

(Raw data at Table C.8, Table C.11 in Appendix C, and Table D.8, Table D.11 in

Appendix D) ............................................................................................................. 63

Figure 4.43. Breakage rate plots after batch grinding of -2.36+1.7 mm of HPGR

product and HPGR feed; dB = 31.75 mm, ɸBall =0.35, 633 g of material

(Raw data at Table C.9, Table C.12 in Appendix C, and Table D.9, Table D.12 in

Appendix D) ............................................................................................................. 63

Figure 4.44. Breakage rate plots after batch grinding of -3.35+2.36 mm of HPGR

product and HPGR feed; dB = 19.05 mm, ɸBall =0.35, 720 g of material

(Raw data at Table C.1, Table C.4 in Appendix C, and Table D.1, Table D.4 in

Appendix D) ............................................................................................................. 64

xxvi

Figure 4.45. Breakage rate plots after batch grinding of -3.35+2.36 mm of HPGR

product and HPGR feed; dB = 25.4 mm, ɸBall =0.35, 720 g of material

(Raw data at Table C.2, Table C.5 in Appendix C, and Table D.2, Table D.5 in

Appendix D) ............................................................................................................. 64

Figure 4.46. Breakage rate plots after batch grinding of -3.35+2.36 mm of HPGR

product and HPGR feed; dB = 31.75 mm, ɸBall =0.35, 720 g of material

(Raw data at Table C.3, Table C.6 in Appendix C, and Table D.3, Table D.6 in

Appendix D) ............................................................................................................. 65

Figure 4.47. Variation of S1 and S2 with particle size in batch grinding of HPGR

product and HPGR feed (dB = 19.05 mm) ............................................................... 66

Figure 4.48. Variation of S1 and S2 with particle size in batch grinding of HPGR

product and HPGR feed (dB = 25.4 mm) ................................................................. 66

Figure 4.49. Variation of S1 and S2 with particle size in batch grinding of HPGR

product and HPGR feed (dB = 31.75 mm) ............................................................... 67

Figure 4.50. Primary breakage distribution functions after batch grinding of

-1.7+1.18 mm of HPGR product and HPGR feed; dB = 19.05 mm, ɸBall = 0.35, 633

g of material (Raw data at Table C.13, Table C.16 in Appendix C, and Table D.13,

Table D.16 in Appendix D) ...................................................................................... 68

Figure 4.51. Primary breakage distribution functions after batch grinding of

-1.7+1.18 mm of HPGR product and HPGR feed; dB = 25.4 mm, ɸBall = 0.35, 633 g

of material (Raw data at Table C.14, Table C.17 in Appendix C, and Table D.14,

Table D.17 in Appendix D) ...................................................................................... 68

Figure 4.52. Primary breakage distribution functions after batch grinding of

-1.7+1.18 mm of HPGR product and HPGR feed; dB =31.75 mm, ɸBall =0.35, 633 g

of material (Raw data at Table C.15, Table C.18 in Appendix C, and Table D.15,

Table D.18 in Appendix D) ...................................................................................... 69

Figure 4.53. Primary breakage distribution functions after batch grinding of

-2.36+1.7 mm of HPGR product and HPGR feed; dB =19.05 mm, ɸBall =0.35, 633 g

of material (Raw data at Table C.7, Table C.10 in Appendix C, and Table D.7,

Table D.10 in Appendix D) ...................................................................................... 69

xxvii

Figure 4.54. Primary breakage distribution functions after batch grinding of

-2.36+1.7 mm of HPGR product and HPGR feed; dB =25.4 mm, ɸBall =0.35, 633 g

of material (Raw data at Table C.8, Table C.11 in Appendix C, and Table D.8,

Table D.11 in Appendix D) ...................................................................................... 70

Figure 4.55. Primary breakage distribution functions after batch grinding of

-2.36+1.7 mm of HPGR product and HPGR feed; dB =31.75 mm, ɸBall =0.35, 633 g

of material (Raw data at Table C.9, Table C.12 in Appendix C, and Table D.9,

Table D.12 in Appendix D) ...................................................................................... 70

Figure 4.56. Primary breakage distribution functions after batch grinding of

-3.35+2.36 mm of HPGR product and HPGR feed; dB=19.05 mm, ɸBall=0.35, 720 g

of material (Raw data at Table C.1, Table C.4 in Appendix C, and Table D.1, Table

D.4 in Appendix D) .................................................................................................. 71

Figure 4.57. Primary breakage distribution functions after batch grinding of

-3.35+2.36 mm of HPGR product and HPGR feed; dB =25.4 mm, ɸBall =0.35, 720 g

of material (Raw data at Table C.2, Table C.5 in Appendix C, and Table D.2, Table

D.5 in Appendix D) .................................................................................................. 71

Figure 4.58. Primary breakage distribution functions after batch grinding of

-3.35+2.36 mm of HPGR product and HPGR feed; dB =31.75 mm, ɸBall =0.35, 720

g of material (Raw data at Table C.3, Table C.6 in Appendix C, and Table D.3,

Table D.6 in Appendix D) ........................................................................................ 72

Figure 4.59. Primary breakage distribution functions after batch grinding of three

monosize fractions of HPGR product; dB = 19.05 mm, ɸBall = 0.35 (Raw data at

Table C.1, Table C.7, Table C.13 in Appendix C, and Table D.1, Table D.7, Table

D.13 in Appendix D) ................................................................................................ 73

Figure 4.60. Primary breakage distribution functions after batch grinding of three

monosize fractions of HPGR product; dB = 25.4 mm, ɸBall = 0.35 (Raw data at Table

C.2, Table C.8, Table C.14 in Appendix C, and Table D.2, Table D.8 and Table

D.14 in Appendix D) ................................................................................................ 73

xxviii

Figure 4.61. Primary breakage distribution functions after batch grinding of three

monosize fractions of HPGR product; dB = 31.75 mm, ɸBall = 0.35 (Raw data at

Table C.3, Table C.9, Table C.15 in Appendix C, and Table D.3, Table D.9, Table

D.15 in Appendix D) ................................................................................................ 74

Figure 4.62. Primary breakage distribution functions after batch grinding of three

monosize fractions of HPGR feed; dB = 19.05 mm, ɸBall = 0.35 (Raw data at Table

C.4, Table C.10, Table C.16 in Appendix C, and Table D.4, Table D.10, Table D.16

in Appendix D) ......................................................................................................... 74

Figure 4.63. Primary breakage distribution functions after batch grinding of three

monosize fractions of HPGR feed; dB = 25.4 mm, ɸBall = 0.35 (Raw data at Table

C.5, Table C.11, Table C.17 in Appendix C, and Table D.5, Table D.11, Table D.17

in Appendix D) ......................................................................................................... 75

Figure 4.64. Primary breakage distribution functions after batch grinding of three

monosize fractions of HPGR feed; dB = 31.75 mm, ɸBall = 0.35 (Raw data at Table

C.6, Table C.12, Table C.18 in Appendix C, and Table D.6, Table D.12, Table D.18

in Appendix D) ......................................................................................................... 75

xxix

LIST OF SYMBOLS

Vmill Empty volume inside the mill (dm3)

ɸB Fraction of ball bed in the empty mill volume

εball Porosity of the ball bed expressed as fraction

Mball Mass of ball bed inside mill (kg)

ρball Density of ball (kg/dm3)

dB Ball size (mm)

fc Fraction of particle bed in the empty mill volume

εpowder Porosity of the particle bed expressed as fraction

ɸM Fraction of particle bed in the empty volume of ball bed

ρpowder Density of particle (kg/dm3)

Mpowder Mass of particle bed ground in ball mill (kg)

D Internal diameter of the mill (m)

d Largest ball diameter used in the mill (m)

Nc Critical speed of the mill (rpm)

ɸc Ratio of operating speed to critical speed of the mill

Si Breakage rate of size interval “i” in ball milling (min-1

)

bij Individual breakage distribution function

Bij Cumulative breakage distribution function

S1 Fast Breakage Rate of top size class “1” in ball milling (min-1

)

S2 Slow Breakage Rate of top size class “1” in ball milling (min-1

)

wi(t) Fraction or percentage of material of size “i” inside mill at time “t”

Pi(t) Cumulative fraction of the ground material passing below the upper

sieve size of the size interval “i” at time “t”

xi Upper sieve size of the size interval “i”

Eis Specific impact energy in drop weight testing (kWh/t)

M Mass of drop head (kg)

h0 Drop height (cm)

xxx

hf Height between bottom of the drop weight and surface of the anvil

after impact (cm)

Average mass of a particle in a given set of particles (g)

tn Percentage of material passing 1/nth

of the original feed size after

drop weight testing

d50 Median product size (µm)

1

CHAPTER 1

INTRODUCTION

1.1 General

Comminution is an essential, but an energy-inefficient part of mineral processing,

providing fine material for downstream beneficiation process. As an example,

energy consumption in comminution is estimated to be 29.3 % of the total mining

energy in USA. This is approximately equal to 1.14 % of the energy used in

industrial sector of USA, being more or less the same at other countries (Tromans,

2008). Moreover, the energy consumption in the comminution process will increase

as finer grinding is adopted due to subsequent downstream processes of low-grade

ores.

Size reduction processes also play a crucial role in cement production. These

processes mainly involve grinding raw feed that yields cement clinker at high-

temperature and grinding cement clinker which is the major constituent of cement.

Considering that about 40 % of the total energy expended in the cement-making

process goes into clinker grinding, there exists a need for lower energy usage in

cement clinker grinding in order to reduce high production costs and environmental

problems (Jankovic et al., 2004).

Increasing energy expenditure in size reduction processes pushes toward the

development of new energy-efficient comminution equipment. A recently-

developed machine to serve this purpose is the high pressure grinding rolls (HPGR)

2

which is commonly adopted to cement grinding circuits; gold, diamond and iron ore

crushing circuits. HPGR consists of a pair of rotating rolls through which a bed of

particles are nipped and ground with high external pressure exerted on the particle

bed. It is found that high interparticle stresses induced around the particles are

responsible for breakage, and this breakage mode makes HPGR more energy-

efficient than a ball mill at low reduction ratios (Fuerstenau et al., 1990; Fuerstenau

and Vazquez-Favela, 1997). It is also believed that HPGR is not only energy-

efficient at low reduction ratios, but it also induces cracks throughout the particle

due to high interparticle stresses acted on the particle bed, which facilitates

breakage in downstream size reduction processes (De, 1995; Fuerstenau et al.,

1999; Patzelt et al., 1995; Tavares, 2005).

1.2 Objective and Scope of the Thesis

In this study, breakage parameters of narrow size clinker samples taken from the

product end of an industrial-scale HPGR (HPGR product) were compared with the

feed end of HPGR (HPGR feed) in order to assess the extent to which breakage

parameters of the product end of HPGR is improved with respect to fresh feed

clinker. For this purpose, single particle breakage tests were performed to compare

breakage parameters of narrowly sized HPGR product and HPGR feed above 3.35

mm, while batch grinding tests were performed to compare fine sizes of HPGR

product and HPGR feed below 3.35 mm. Single particle breakage tests were

performed over six size fractions of clinker by means of drop-weight test. Each size

fraction was tested at four to six specific impact energies. The product size

distributions, experimental breakage probabilities and energy-dependent impact

breakage distribution functions of each narrow size fraction of HPGR product and

HPGR feed were compared at the same specific impact energy.

The batch ball mill experiments were performed with three size fractions of HPGR

product and HPGR feed using three different ball sizes. For each size fraction and

ball size combination tested, an equal mass of balls and material were put in the ball

3

mill, assuming that specific grinding energy applied to HPGR product and HPGR

feed would be the same. The resultant product size distributions, specific breakage

rate and primary breakage distribution functions of HPGR product and HPGR feed

were compared at each size fraction and ball size combination.

4

CHAPTER 2

BACKGROUND

2.1 Comminution Methods

Comminution methods can be broadly classified as single-particle comminution,

loose-bed comminution and particle-bed comminution (Fuerstenau and Vazquez-

Favela, 1997). Single-particle breakage can be achieved either by breaking particles

individually in a testing machine or by breaking it in a rigidly mounted roll mill

individually so that particles don’t interact with each other. The mode of loading in

single particle breakage could be impact, shear or slow compression. Loose-bed

comminution is achieved in grinding vessels where the energy is transferred to a

loose bed of particles by grinding media. The common example for loose-bed

comminution is the ball mill where the energy is transferred to particles by tumbling

steel balls. This transfer mode makes loose-bed comminution the most inefficient

size reduction method, since there exist non-productive collision events between

ball and ball, ball and liner, particle and particle. Moreover, frictional losses could

occur during tumbling motion of grinding media and particle bed. Particle-bed

comminution is achieved by externally stressing a bed of particles. This external

stress induces high interparticle stresses within the bed, which is responsible for the

breakage of the particles. The inefficiency in particle-bed comminution arises from

frictional losses due to the interaction between particles, and compaction or

briquetting of fines produced (Fuerstenau et al., 2004).

5

2.1.1 High Pressure Grinding Rolls

A recently developed equipment for particle-bed comminution is the High Pressure

Grinding Rolls (HPGR) which was invented in 1979. It was first developed by

KHD®

and Polysius® in Germany (Fuerstenau et al., 1993; Gutsche et al., 1993;

Schönert, 1988). At the beginning, it was utilized on industrial scale for the grinding

of clinker and raw material in cement production. Since then, HPGR has been

adopted into various size reduction processes including gold ore crushing prior to

heap leaching; diamond ore crushing; iron ore pre-pelletizing, etc.

Breakage in HPGR is accomplished by passing the material through two counter-

rotating rolls. One of the rolls rotates on a fixed axis while the other moves linearly

with external pressure applied to the movable roll. The material is fed into the gap

between the rolls through a feed hopper. As the material is nipped into the gap, it is

compacted by external pressure. This external pressure on the particle bed induces

high interparticle stresses on each particle, which causes breakage. It is estimated

that these stresses are 40 to 60 times the external pressure applied (Schönert, 1988).

The operating principle of the HPGR is illustrated in Figure 2.1. As shown in Figure

2.1, three zones form during breakage in HPGR. The first zone is the acceleration

zone where particles are nipped through the gap into the breakage zone. In this

zone, densification of the particle bed occurs. Then, the bed is compacted and

comminuted in the compression zone due to interparticle stresses acted on each

particle. Lastly, the material bed expands and leaves the gap at the dilation zone

(De, 1995).

The breakage behavior inside HPGR and the resultant product size distribution

depend upon operating and material variables such as:

- External grinding pressure applied to the rolls

- Roll diameter, roll speed, surface pattern of rolls

6

- Operating gap distance between rolls

- Particle size distribution, chemical composition and moisture content of the feed

Figure 2.1. Operating principle of HPGR (De, 1995)

2.1.2 Ball Mill

The most commonly used size reduction equipment in mineral processing and

cement production is the ball mill. It is a cylindrical vessel containing steel balls

and the material to be ground. It can be operated in either dry or wet condition.

Grinding is performed by rotating the mill such that the material is comminuted by

the motion of loose grinding medium. When the mill is rotated at low rotational

speeds, the balls move frequently in an inclined path where the balls are emerging,

rolling down, and getting back to the surface, referred to as cascading state. At high

rotational speeds, more balls are ejected from the ball bed, known as cataracting

state. In the former case, the material bed is expanded between ball bed, and

breakage is achieved by a series of collisions between balls. In the latter case,

ejected balls fall onto ball bed, nipping and stressing the particles in between.

7

The complete explanation of grinding behavior in a ball mill is complex. It depends

on material properties, mill environment, and operating variables such as:

- Physical and chemical characteristics of the feed such as particle size distribution,

chemical composition of feed, etc.

- Ball diameter and ball density

- Mill diameter, mill length and lifter design

- The fraction of feed material filling the mill volume (powder loading)

- The fraction of balls filling the mill volume (ball loading)

- Rotational speed of the mill

- Dry or wet grinding condition

- Mass transport and hold-up

- Pulp density for wet grinding

It is necessary to define some test variables in order to describe the ball mill

grinding conditions. In a ball mill, ball loading, ɸB, is defined as the fraction of the

volume of ball bed in the mill volume, including porosity inside the ball bed. It is

formulated as

ɸB = (Mb ρ

b ) Vm 1 (1-εb ) (1)

where Mball is the mass of balls (kg), ρball is the density of balls (kg/dm3), Vmill is the

empty volume inside the mill and εball is the porosity of the ball bed, expressed as

fraction. εball values for mono-size ball bed is generally taken as 0.4. Similarly,

powder loading, fc, is defined as the fraction of the volume of feed material in the

mill volume, including porosity inside powder bed. It is defined as

fc= (Mp ρ

p ) Vmill (1 (1-εp ) (2)

8

where Mpowder is the mass of powder to be ground (kg), ρpowder is the density of

powder (kg/dm3), Vmill is the empty volume inside the mill (dm

3) and εpowder is the

porosity of the powder bed, expressed as fraction. Knowing the true density of the

powder, εpowder can be estimated easily. ɸB and fc can be related with each other by

defining the fraction of powder volume in the empty volume between balls, ɸM, by;

ɸM=fc (εball ) (3)

The number of balls and the weight of the feed material added to the batch mill can

be computed easily after selecting ɸM and ɸB.

Critical speed, Nc, is also another variable affecting the mill performance. It is

defined as the rotational speed of the mill above which balls start to centrifuge

around the mill case (Austin et al., 1984). Thus, the tumbling motion of the balls

does not occur above critical speed, i.e., no breakage occurs. The critical speed

depends on mill diameter and ball diameter. It is expressed as;

N (rpm) =42.2 √D-d (4)

where D is the internal mill diameter and d is the maximum ball diameter in meters.

Rotational mill speed is determined as a fraction of critical speed, ɸc.

2.2 Comminution Models

It is necessary to adopt accurate mathematical models into comminution systems so

as to describe the milling operations fully. The models constructed should

determine optimal conditions and circuit designs to use as little energy as possible

while providing better product specifications suitable for downstream processes. In

developing comminution models, the main purpose is to develop a relationship

between feed and product size distribution. A popular method used for this purpose

9

is population balance modeling (PBM). It basically explains the breakage of any

monosize interval based on the average of individual breakage events in a mill.

Then, for a number of repetitive steps of breakage or a time of breakage,

accumulation or depletion of each size interval can be estimated which eventually

leads to estimation of overall product size distribution. There are mainly two

approaches for PBM of size reduction. The first one is the matrix model where each

breakage event is assigned to a stage, and shown in a matrix form. Details of the

matrix model can be found in the literature (Lynch, 1977). The kinetic model, on

the other hand, accepts breakage as a continuous process, and implements time-

dependent process characteristics into the model. The difference between kinetic

model and matrix model is that time is explicitly defined in the former while it is

implicitly defined in the latter. For both models, two parameters should be

determined. First, the fraction for each size interval that is to be broken should be

found. This fraction is called the selection function in the matrix model or specific

breakage rate in the kinetic model. The broken fraction then yields a progeny size

distribution, which is called the breakage function in the matrix model and breakage

distribution function in the kinetic model.

2.2.1 Breakage Parameters of the Kinetic Model

The specific rate of breakage, Si, is defined as the mass fraction of material in size

“i” broken per unit time. For a monosize interval of size “i”, it was found that rate

of disappearance of size “i” follows first-order law for most of the materials tested

(Austin et al., 1984):

dwi(t) d(t) =-Si wi(t) (5)

where wi(t) is the mass fraction retained inside the mill at time t. Solving Equation 5

for time t will yield:

10

wi(t)=wi(0) e p (-Si t) (6)

where wi(0) is the mass fraction retained inside the mill before grinding. Si value

can be estimated by fitting experimental wi(t)-t pairs to Equation 6. Also, Si could

be determined graphically by transforming Equation 6 to:

log wi(t) wi(0) = – Si t 2.3 (7)

Then, plotting log[wi(t)/wi(0)] versus time gives the slope of (-Si/2.3).

Although breakage rates are considered to be first-order, non-linearity in breakage

rates might also be observed (Austin and Bagga, 1981; Austin et al., 1982). The

non-linear breakage encountered could be defined as first-order breakage with

subsequent accelerated or decelerated first-order breakage as shown in Figure 2.2.

The non-linearity in breakage rates could arise from environmental effects inside

ball mill or material effects or complex interaction of both. A number of possible

reasons for non-linearity are given by Austin et al. (1984) as the following:

-Stronger fractions might increase in unbroken material as grinding continues.

-The unbroken material might not get broken with successive impacts, yet, get

weakened with time.

-Harder component might be liberated which facilitates the grinding of softer

component.

-Fines accumulated in the mill pack around coarse particles, preventing breakage of

coarse sizes.

-Fines accumulated in the mill adversely affect the tumbling action inside mill,

which results in a decrease in energy input and number of impacts.

-Fines might agglomerate inside the mill forming large particles as grinding

continues.

11

Figure 2.2. Non-linear deviations observed in breakage rates (Bilgili et al., 2006)

The other breakage parameter in kinetic modeling is the primary breakage

distribution function. For a given size interval, it is defined as the progeny size

distribution of broken fragments at primary breakage. Considering that particles

might re-break as grinding proceeds, primary distribution function should be

estimated at the point where no re-breakage of particles occurs. Elements of the

breakage distribution function are shown as bij which is the mass fraction of the

broken fragments in size interval “j” which appears in size interval “i”, where size

“i” is smaller than size “j”. The breakage distribution matrix is illustrated in Table

2.1 for a set of N size intervals where 1 is the top size interval and N is the residue.

12

Table 2.1. Breakage distribution functions in a matrix form

j=1 j=2 j=3 . j=N-1 j=N

i=1 0 0 0 . 0 0

i=2 b21 0 0 . 0 0

i=3 b31 b32 0 . 0 0

. . . . . . .

. . . . . . .

i=N bN1 bN2 bN3 . bN(N-1) 0

By definition, the sum of each column is equal to 1.

∑ bij=1Ni=j+1 (8)

Another form of representation for the primary breakage distribution is the

cumulative breakage distribution function, Bij, which is the cumulative mass

fraction of material broken from size “j” which appears in size intervals less than

the upper limit of the size interval “i”:

Bij=∑ bkjNk=ii j

(9)

The transformation between B and b values can be shown as:

bij=Bij-B(i+1)j (10)

and, by definition:

bN =B j , B(j+1)j =1 (11)

13

In principle, B values for monosize feeds should be estimated from short time

grinding data in order to prevent re-breakage of fragments. However, it is difficult

to get accurate size distribution at small degrees of breakage. As a result, a method

named the BII method was developed based on the solution of the batch grinding

equation which was based on compensation condition and claimed to correct for

secondary breakage (Austin et al., 1984). Then, for a monosize feed having a size

index of 1, Bi1 can be estimated as:

( -Pi(0)) ( -Pi(t)) ( -P2(0) ) ( -P2(t)) (12)

where Pi(t) and Pi(0) are the cum. mass fraction passing upper size of the size

interval “i” at time t and 0, respectively. This equation is known as the BII method.

Moreover, Bi1 values can be fitted to the following functional form:

Bi1=Ф1( i-1 1)+(1-Ф1)( i-1 1)

(13)

where xi is the upper size limit of size interval “i”, Ф1, and are functional

parameters. Plotting left-hand side of Equation 13 against (xi-1/x1) gives sum of two

straight lines. As given in Figure 2.3, the parameters of and Ф1 is the slope and

intercept of the small end of the plot, respectively. After estimating and Ф1, can

be estimated by rearranging Equation 13 such that:

Bi1

-Ф1( i-1 1) (1-Ф1)=( i-1 1)

(14)

plotting left-hand side of Equation 14 against (xi-1/x1) in log-log scale will give the

slope of .

14

Figure 2.3. Graphical procedure for estimating parameters of and Ф1 in functional

form of Bi1

2.2.2 Single Particle Breakage Tests

Grinding in a ball mill involves a complex interaction between material effects,

stressing conditions and environmental effects inside the mill which, in overall,

determines the product size distribution and product quality. In this aspect, single

particle breakage tests provide insight to understand breakage process in microscale

event basis. Single particle breakage tests are classified with respect to the mode of

loading: Single particle will be broken either by impact or compression or shearing.

The following can be estimated from single particle breakage data:

-Functional relationship between specific impact energy and product size

distribution (Napier-Munn et al., 1996)

-Specific fracture energy of a single particle (J/g) and specific fracture energy or

fracture strength distribution of a given material (Bourgeois et al., 1992; Tavares

and King, 1998; Tavares, 2007)

15

-Breakage probability of particles as a function of stressing energy or specific

stressing energy applied (Aman et al., 2010; Krogh, 1980; Tuzcu et al., 2011)

-Effect of particle size, shape, material physical properties and modes of loading on

particle breakage characteristics (Tavares, 2007)

2.2.2.1 Drop Weight Testing

One of the most commonly used single-particle impact testing method is the drop

weight testing. It provides extended input energy range, shorter test duration,

extended particle size range and possibility to conduct particle-bed breakage studies

(Napier-Munn et al., 1996). However, the experimental procedure becomes tedious

as the feed size decreases such that a large number of particles should be broken to

get a sufficient weight of sample to be analyzed for size distribution.

As illustrated in Figure 2.4, the test consists of stressing each particle placed on an

anvil by dropping a steel weight from a certain height. The weight of the drop head

and drop height can be adjusted with respect to the energy input, where the weight

of drop head can be up to 50 kg, and the standard range of drop height is between

0.05 and 1 m. The specific impact energy applied to an average weight of the

particle in a given set of particles is the potential energy of drop head with respect

to surface of the anvil, assuming that frictional losses occurred during the falling

motion of drop head are negligible. Then, the specific impact energy applied to a

given set of particles (Eis) can be calculated as:

Eis= 0.0272 M (h0-hf) m (15)

where Eis is the specific impact energy applied (kWh/t), M is the mass of the drop

weight (kg), h0 is the initial drop height (cm) measured from the surface of anvil to

the bottom of the drop head and m is the average weight of a particle in the set of

particles tested (g). Also, it may be required to subtract an average offset height (hf)

16

from “h0” term in Equation 15 for a more precise estimation of specific impact

energy although this term is relatively small with respect to initial drop height. In

this case, offset height is defined as the height (cm) between bottom of the drop

weight and surface of the anvil after impacting the particle. It should be noted that

average offset height can only be calculated after breaking all particles in a given

test. Thus, precise estimation of Eis is possible at the end of the experiment.

It has been observed that drop weight might rebound at high impact energies. This

rebound energy is not directly measured, yet it is known to be small relative to the

input energy. This might be eliminated by using different combination of drop

weight and drop height that gives the same input energy.

Figure 2.4. Schematics of a drop weight tester

The key concept in the drop weight test is to estimate product size distribution as a

function of specific impact energy. In order to model this breakage function, a set of

cubic spline curves is employed to describe the product size distribution obtained by

breakage of a set of particles in narrow size intervals at various specific impact

energies. These curves are referred to as one-parameter family curves (Napier-

17

Munn et al., 1996). The one-parameter is defined as t10, which is the cumulative

percentage of material passing 1/10th

of the original size. Then, tn which is the

percentage passing 1/nth

of the original size are plotted against the corresponding

t10 values, as shown in Figure 2.5. As each tn and t10 is unique for a given input

specific energy, each vertical line in Figure 2.5 represents the product size

distribution at a given t10 value. Therefore, the product size distribution and impact

breakage distribution function can be estimated by calculating t10 from a given

specific impact energy. Moreover, the relationship between specific impact energy

and t10 for each narrow size fraction might be fitted to the following functional

form (Napier-Munn et al., 1996):

t10 = A 1-e p(-b Eis) (16)

where A and b are the impact breakage parameters to be fitted.

Figure 2.5. One-parameter family curves

In addition to functional relationship between product size distributions (or impact

breakage distribution functions) and various specific energy levels, breakage

0

10

20

30

40

50

60

70

80

90

100

10 30 50 70 90

tn (

%)

t10 (%)

t2

t4

t10

t25

t50

t75

t100

18

probability and specific fracture energy distribution might be estimated in drop-

weight testing. These two concepts are analogous to specific breakage rate in ball

milling. Considering a sample of a given size, the specific fracture energy

distribution is obtained by measuring the primary specific fracture energy (the

energy per unit mass required up to the first instant of failure) of each particle in the

sample, then calculating the cumulative probability distribution of specific fracture

energy. The breakage probability is calculated by measuring the cumulative

percentage of particles broken either in mass basis or number basis for a given

specific impact energy. Breakage probability could be easily estimated in

conventional drop weight testers, while primary fracture energy is measured

through a specialized drop weight device called UFLC (Ultra Fast Load Cell).

Determination of specific fracture energy of a particle is beyond the scope of this

work, and the details to estimate specific fracture energy and specific fracture

energy distribution in UFLC are given in the literature (Bourgeois et al., 1992;

Bourgeois, 1993; Tavares and King, 1998; Tavares, 2007).

2.3 Portland Cement Clinker

Portland cement clinker is the chemically-transformed product of raw materials

including calcium oxide, aluminium oxide, silica, and iron oxides in varying

proportions. It is a heterogeneous product consisting mostly of C3S [(CaO)3·SiO2],

C2S [(CaO)2·SiO2], C3A [(CaO)3·Al2O3], and C4AF [(CaO)4·Al2O3·Fe2O3] while

the minor compounds are calcium oxide, magnesium oxide, alkali sulfates and other

compounds incorporating them. Portland cement clinker is a basic constituent for

Portland cement which is commonly used to produce concrete and mortar.

The first step in the production of cement clinker is to prepare a mixture of

limestone-clay minerals to ensure a certain proportion of calcium oxide, aluminium

oxide, silica and iron oxides in a raw feed. Then, the raw feed is crushed and ground

down to a certain size and burned at high temperatures (up to 1450°C). This

process, called sintering makes the raw feed transform into clinker. After sintering,

19

the clinker is ground again with gypsum. The ground product at the end of this

process is Portland cement. The conceptual flowsheet for cement production is

shown in Figure 2.6.

Figure 2.6. Conceptual flowsheet of cement production

2.3.1 Cement Clinker Grinding

The main objective for cement clinker grinding is to increase the specific surface

area of clinker to ensure fast hydration of cement when mixed with water.

Regarding this, the cement clinker is ground from 80 % passing between 10-20 mm

to 100 % passing 90 µm (Jankovic et al., 2004). Normal conventional grinding

equipment is a two-compartment ball mill. The compartments in the ball mill are

separated by a diaphragm that allows only particles finer than a certain size to pass

through to the second compartment. Then, coarse clinker is ground in the first

compartment while the fine grinding is done in second compartment. However, in

some plants, these circuits have been replaced with various HPGR-integrated ball

20

mill arrangements as these circuits are found to be more energy-efficient than the

conventional cement grinding circuits. Patzelt (1992) described four different

HPGR-ball mill arrangements in cement grinding:

-Pre-grinding: HPGR and ball mill is operated in open circuit.

-Hybrid-Grinding: Raw feed of clinker, a split of the HPGR product and the

oversize of the ball mill product is fed into HPGR. The ball mill is in closed circuit.

-Combi-Grinding: The oversize of HPGR product and raw feed of clinker is fed into

HPGR. The undersize of HPGR product is sent to ball mill which might be either in

open or closed circuit.

-Finish-Grinding: The HPGR product undersize is the final product. Yet, it is not

commonly used for cement grinding. Instead, it is adapted to grinding of raw feed,

and blast furnace slag.

The mode of operation of each HPGR-ball mill circuit is illustrated in Figure 2.7

below:

Figure 2.7. The modes of operation for cement grinding circuits (Patzelt, 1992)

21

2.4 Utilization of HPGR Prior To Ball Mill

In the literature, utilizing HPGR prior to ball mill was generally found to consume

less energy than conventional ball mill grinding for the same degree of product

fineness. Patzelt (1992) stated that various HPGR-ball mill arrangements use up to

30 % less energy than ball mills. Also, case studies obtained from cement grinding

plants showed that use of HPGR with ball mill where both were in closed circuit

use 55-70 % less energy than a conventional ball mill circuit (Von Seebach et al.,

1996). The energy-efficiency of HPGR-ball mill arrangements were linked to the

efficient breakage of particles in HPGR due to high interparticle stresses acted, and

weakening of particles due to cracks imparted by HPGR which resulted less energy

usage at downstream ball mills.

Fuerstenau et al. (1990) compared the reduction ratios and product size distributions

of quartz, dolomite, limestone and hematite in ball milling and single particle high

pressure roll mill comminution on an equal energy consumption basis. The results

showed that high pressure roll mill is more energy-efficient than ball milling at low

reduction ratios for the selected minerals and the range of energy levels tested.

These results supported the use of HPGR prior to ball mill for an initial low degree

of size reduction.

Fuerstenau and Vazquez-Favela (1997) compared the relative energy efficiency for

grinding narrowly-sized dolomite in hybrid grinding with respect to ball mill

grinding for the same reduction ratio basis. The hybrid grinding experiments

involved grinding material in laboratory-scale HPGR and then in ball mill where

both HPGR and ball mill were in open circuit. It was found that hybrid grinding

became more energy-efficient than ball mill at the same reduction ratio. This result

was linked to weakening of particles in HPGR such that less energy was used in

subsequent ball milling step.

22

A detailed investigation for optimal use of various HPGR-ball mill arrangements on

coal grinding was investigated by De (1995). In this research, it was shown that the

utilization of HPGR prior to ball mill was more energy-efficient than ball mill for a

given percentage of fines where HPGR and ball mill were in open circuit. However,

any energy savings could reverse upon a threshold energy value in HPGR due to

compaction and briquetting of coal bed which caused significant energy losses in

terms of size reduction. Moreover, it was shown that high-pressure roll mill product

exhibited faster rates of disappearance of a given size than fresh feed of coal when

both are ground in a ball mill. This was linked to fracturing of coal by HPGR which

in turn yielded faster grinding kinetics in subsequent ball milling.

Tavares (2005) studied particle weakening of copper and gold ores in high pressure

grinding rolls. This study consisted of comparing primary fracture energy

distribution and mean mass-specific fracture energies of narrowly-sized HPGR,

hammer mill, and roll crusher products estimated by means of single particle

breakage tests. Results show that there is a statistically significant weakening of

HPGR product at coarse particles with respect to hammer mill and roll crusher

products.

Fuerstenau et al. (1999) investigated the effect of ball size on the energy efficiency

of pre-grinding of -3.4+2.4 mm dolomite. The pre-grinding experiments involved

grinding material firstly in laboratory-scale HPGR, then in ball mill where both

HPGR and ball mill are in open circuit. It was found that the reduction ratio of

HPGR product in ball mill is higher at smaller ball sizes while the reduction ratio of

fresh feed of dolomite in ball mill is higher at larger ball sizes. This result indicated

that HPGR product contains internal damage to allow for the use of smaller balls.

Moreover, HPGR product was claimed to have higher breakage rates than fresh

feed in ball milling due to weakening imparted to particles by HPGR.

23

CHAPTER 3

EXPERIMENTAL MATERIAL AND METHODS

3.1 Material

Portland cement clinker produced by Baştaş Cement Plant was used in this study.

Samples of clinker were taken from the feed and product ends of an open-circuit

industrial-scale HPGR operated at a pressure of 100 bar. Samples of HPGR product

and HPGR feed weighed approximately 90 kg. Narrow size fractions following

nearly √2-order were obtained by screening the whole samples down to 106 µm.

The size distributions of HPGR feed and HPGR product are shown in Figure 3.1.

True density of samples was measured with a helium pycnometer in the Central

Laboratory of METU and was found to be 3.19 g/cm3.

Figure 3.1. Particle size distributions of HPGR product and HPGR feed (Raw data

at Table A.1 and Table A.2 in Appendix A)

24

3.2 Methods

The experimental methods involved single particle breakage tests and batch ball

mill grinding tests with narrowly-sized samples of HPGR product and HPGR feed.

Single particle breakage tests were performed with size fractions above 3.35 mm

while batch ball mill grinding tests were conducted with size fractions below 3.35

mm. Screen analyses of products after single particle breakage tests and batch

grinding tests were carried out using dry sieving with a set of sieves progressing in

√2-order.

Drop weight test was utilized for single particle breakage tests. For each test,

particles were stressed one by one with the drop head. Samples of HPGR product

and HPGR feed taken from each size fraction were tested at the same specific

impact energy. For each size fraction, 4-6 specific impact energy values were used.

Two laboratory drop weight testers were used, a larger one having a drop head of 20

kg, and the smaller one having a drop weight of 2 kg. Moreover, drop heads of 1.24

kg and 0.40 kg were used with small drop weight tester to achieve low specific

energy levels where necessary. The specific energy levels and experimental

conditions for each size fraction of HPGR product and HPGR feed tested are given

in Table 3.1 through Table 3.12. Size fractions of HPGR product and HPGR feed

coarser than 25.4 mm were not compared since the number of such particles was

insufficient in HPGR product to perform drop weight tests at various energy levels.

Also, it should be noted that dust or material losses could occur during drop weight

test and the subsequent screen analysis. In this case, care was taken during the

experiment for minimizing the mass losses, in order to obtain correct test results.

25

Table 3.1. Experimental conditions for drop weight testing of -4.7+3.35 mm of

HPGR product

-4.7+3.35 mm (HPGR product)

Specific Impact Energy

(kWh/t)

0.54 1.09 2.18 3.32

Number of Particles 487 392 381 382

Initial Sample Weight (g) 48.77 38.95 38.28 38.23

Final Sample Weight after

Screening (g) 48.55 38.83 38.13 38.20

Weight of the Drop Head (kg) 0.40 1.24 1.24 2.00

Drop Height (cm) 5.0 3.2 6.5 6.1

Drop Energy (J) 0.20 0.39 0.79 1.20

Table 3.2. Experimental conditions for drop weight testing of -4.7+3.35 mm of

HPGR feed

-4.7+3.35 mm (HPGR feed)

Specific Impact Energy

(kWh/t)

0.54 1.09 2.18 3.32

Number of Particles 309 324 320 344

Initial Sample Weight (g) 31.34 33.02 32.19 35.49

Final Sample Weight after

Screening (g) 31.04 32.65 31.81 35.13

Weight of the Drop Head (kg) 0.40 1.24 1.24 2.00

Drop Height (cm) 5.0 3.3 6.5 6.3

Drop Energy (J) 0.20 0.40 0.79 1.24

26

Table 3.3. Experimental conditions for drop weight testing of -6.35+4.7 mm of

HPGR product

-6.35+4.7 mm

(HPGR product)

Specific Impact Energy (kWh/t)

0.23 0.45 0.88 1.74

Number of particles tested 228 278 268 277

Initial Sample Weight (g) 54.83 64.08 61.57 64.05

Final Sample Weight after

Screening (g) 54.25 63.43 61.23 63.97

Weight of the

Drop Head (kg) 0.40 1.24 1.24 2.00

Drop Height (cm) 5.0 3.1 6.0 7.4

Drop Energy (J) 0.20 0.38 0.73 1.45

Table 3.4. Experimental conditions for drop weight testing of -6.35+4.7 mm of

HPGR feed

-6.35+4.7 mm

(HPGR feed)

Specific Impact Energy (kWh/t)

0.23 0.45 0.88 1.74

Number of particles tested 266 314 320 330

Initial Sample Weight (g) 63.92 75.93 77.10 77.53

Final Sample Weight after

Screening (g) 63.63 75.10 76.37 77.06

Weight of the Drop Head

(kg) 0.40 1.24 1.24 2.00

Drop Height (cm) 5.1 3.2 6.3 7.5

Drop Energy (J) 0.20 0.39 0.77 1.47

27

Table 3.5. Experimental conditions for drop weight testing of -9.53+6.35 mm of

HPGR product

-9.53+6.35 mm

(HPGR product)

Specific Impact Energy (kWh/t)

0.10 0.22 0.55 0.92 2.21 4.35

Number of

particles tested 181 89 85 82 82 82

Initial Sample

Weight (g) 101.49 54.83 50.25 54.79 49.39 47.83

Final Sample

Weight after Screening

(g)

101.48 54.74 50.12 54.55 49.02 47.12

Weight of the Drop

Head (kg) 0.40 1.24 1.24 2.00 2.00 1.24

Drop Height (cm) 5.0 4.0 9.7 11.3 24.5 75.2

Drop Energy (J) 0.20 0.49 1.18 2.22 4.81 9.15

Table 3.6. Experimental conditions for drop weight testing of -9.53+6.35 mm of

HPGR feed

-9.53+6.35 mm

(HPGR feed)

Specific Impact Energy (kWh/t)

0.10 0.22 0.55 0.92 2.21 4.35

Number of

particles tested 215 230 213 213 219 210

Initial Sample

Weight (g) 132.55 147.66 135.61 139.00 137.25 127.89

Final Sample

Weight after

Screening (g)

131.85 147.28 134.50 138.39 135.10 125.65

Weight of the Drop

Head (kg) 0.40 1.24 1.24 2.00 2.00 1.24

Drop Height (cm) 5.7 4.2 10.4 11.0 25.4 78.6

Drop Energy (J) 0.22 0.51 1.27 2.16 4.98 9.56

28

Table 3.7. Experimental conditions for drop weight testing of -12.7+9.53 mm of

HPGR product

-12.7+9.53

mm

(HPGR

product)

Specific Impact Energy (kWh/t)

0.03 0.11 0.22 0.44 0.88 1.32 1.70

Number of

particles

tested

108 55 64 78 71 71 68

Initial

Sample

Weight (g)

188.11 93.63 106.42 135.10 121.32 127.23 125.79

Final

Sample

Weight

after

Screening

(g)

187.48 93.58 106.27 134.99 120.68 126.23 124.87

Weight of

the Drop

Head (kg)

0.40 1.24 2.00 2.00 2.00 2.00 2.00

Drop

Height

(cm)

5.0 5.5 6.7 14.0 27.6 43.5 57.8

Drop

Energy (J) 0.20 0.67 1.31 2.75 5.42 8.53 11.34

29

Table 3.8. Experimental conditions for drop weight testing of -12.7+9.53 mm of

HPGR feed

-12.7+9.53

mm

(HPGR

feed)

Specific Impact Energy (kWh/t)

0.03 0.11 0.22 0.44 0.88 1.32 1.70

Number of

particles

tested

103 132 191 197 193 154 183

Initial

Sample

Weight (g)

195.10 249.49 334.95 370.55 342.92 277.97 343.47

Final

Sample

Weight

after

Screening

(g)

194.96 249.16 333.68 368.67 340.41 276.35 339.04

Weight of

the Drop

Head (kg)

0.40 1.24 2.00 2.00 2.00 2.00 2.00

Drop

Height

(cm)

5.0 6.1 7.1 15.2 28.7 43.8 58.7

Drop

Energy (J) 0.20 0.74 1.39 2.98 5.63 8.59 11.52

30

Table 3.9. Experimental conditions for drop weight testing of -19.0+12.7 mm of

HPGR product

-19.0+12.7 mm

(HPGR product)

Specific Impact Energy (kWh/t)

0.03 0.11 0.22 0.44 0.88

Number of

particles tested 68 23 26 31 32

Initial Sample

Weight (g) 335.35 124.14 115.12 141.39 173.23

Final Sample

Weight after Screening

(g)

335.07 123.78 114.82 140.95 171.00

Weight of the

Drop Head (kg) 1.24 2.00 2.00 2.00 2.00

Drop Height (cm) 5.0 10.9 17.9 36.9 88.0

Drop Energy (J) 0.61 2.14 3.51 7.24 17.27

Table 3.10. Experimental conditions for drop weight testing of -19.0+12.7 mm of

HPGR feed

-19.0+12.7 mm

(HPGR feed)

Specific Impact Energy (kWh/t)

0.03 0.11 0.22 0.44 0.88

Number of

particles tested 171 158 149 150 151

Initial Sample

Weight (g) 838.08 814.82 726.20 750.11 767.10

Final Sample

Weight after

Screening (g)

837.76 813.25 723.38 746.22 761.28

Weight of the

Drop Head (kg) 1.24 2.00 2.00 2.00 2.00

Drop Height (cm) 5.0 10.4 19.7 40.4 82.2

Drop Energy (J) 0.61 2.04 3.87 7.93 16.13

31

Table 3.11. Experimental conditions for drop weight testing of -25.4+19.0 mm of

HPGR product

-25.4+19 mm

(HPGR product)

Specific Impact Energy (kWh/t)

0.01 0.05 0.11 0.22 0.59 0.88

Number of

particles tested 26 26 24 11 15 13

Initial Sample

Weight (g) 327.34 368.96 325.63 151.65 194.68 170.65

Final Sample

Weight after

Screening (g)

327.06 368.36 324.13 151.24 192.72 168.78

Weight of the

Drop Head (kg) 1.24 2.00 2.00 2.00 20.00 20.00

Drop

Height (cm) 5.2 13.0 27.4 55.8 14.1 21.2

Drop Energy (J) 0.63 2.55 5.38 10.95 27.66 41.59

Table 3.12. Experimental conditions for drop weight testing of -25.4+19.0 mm of

HPGR feed

-25.4+19 mm

(HPGR feed)

Specific Impact Energy (kWh/t)

0.01 0.05 0.11 0.22 0.59 0.88

Number of

particles tested 45 30 26 25 26 28

Initial Sample

Weight (g) 655.94 402.59 385.10 304.01 335.81 338.46

Final Sample

Weight after

Screening (g)

655.20 402.09 382.71 302.22 335.03 334.94

Weight of the

Drop Head (kg) 1.24 2.00 2.00 2.00 20.00 20.00

Drop Height (cm) 5.0 12.3 30.0 50.0 14.0 19.5

Drop Energy (J) 0.61 2.41 5.89 9.81 27.47 38.26

Batch ball mill grinding tests were performed with a laboratory-scale ball mill

having an inner diameter of 18.8 cm and a length of 17.7 cm. Three monosize

fractions (-3.35+2.36 mm, -2.36+1.7 mm and -1.7+1.18 mm) of HPGR feed and

HPGR product were chosen for batch ball mill tests. For each size fraction, three

32

different monosize balls (19.05 mm, 25.4 mm and 31.75 mm) were used. Sizes

below 1.18 mm were not used in this study since there was insufficient amount

below 1.18 mm in HPGR feed to perform batch grinding at the defined ball load

and powder loading conditions.

For comparison purposes, the mass of balls and the mass of material were kept

constant in grinding of each size fraction so that the power draw of the mill and the

specific grinding energy would not differ significantly for any ball size and material

size combination. Experimental grinding conditions for the batch ball mill tests are

given in Table 3.13 through Table 3.15.

Samples were ground for cumulative times of 0.5, 1, 2, 4 and 8 minutes for

-3.35+2.36 mm while cumulative grinding times of 0.25, 0.5, 1, 2, 4 and 8 min.

were chosen for -2.36+1.7 and -1.7+1.18 mm. Breakage distribution functions were

estimated by the BII method using product size distributions at 0.5 min. grind time

for -3.35+2.36 mm and 0.25 min for -2.36+1.7 mm and -1.7+1.18 mm size

fractions. Breakage rates were estimated using the top size fraction remaining at all

cumulative times.

33

Table 3.13. Experimental conditions for batch ball mill grinding of HPGR product

and HPGR feed (dB = 19.05 mm)

dB (mm)

19.05 mm

Size Fraction

-3.35 mm+2.36 mm -2.36 mm+1.7 mm -1.7 mm+1.18 mm

HPGR

product

HPGR

feed

HPGR

product

HPGR

feed

HPGR

product

HPGR

feed

ɸB 0.35 0.35 0.35 0.35 0.35 0.35

ɸM 0.8 0.91 0.8 0.8 0.8 0.8

fc 0.11 0.13 0.11 0.11 0.11 0.11

Number

of balls 285 285 285 285 285 285

Mball (kg) 8.1 8.1 8.1 8.1 8.1 8.1

Mpowder

(kg) 0.720 0.720 0.633 0.633 0.633 0.633

Operating

Speed

(rpm)

60 60 60 60 60 60

Nc (rpm) 103 103 103 103 103 103

ɸc (%) 58 58 58 58 58 58

εball 0.4 0.4 0.4 0.4 0.4 0.4

εpowder 0.59 0.64 0.64 0.64 0.64 0.64

34

Table 3.14. Experimental conditions for batch ball mill grinding of HPGR product

and HPGR feed (dB = 25.4 mm)

dB (mm)

25.4 mm

Size Fraction

-3.35 mm+2.36 mm -2.36 mm+1.7 mm -1.7 mm+1.18 mm

HPGR

product

HPGR

feed

HPGR

product

HPGR

feed

HPGR

product

HPGR

feed

ɸB 0.35 0.35 0.35 0.35 0.35 0.35

ɸM 0.8 0.91 0.8 0.8 0.8 0.8

fc 0.11 0.13 0.11 0.11 0.11 0.11

Number of

balls 120 120 120 120 120 120

Mball (kg) 8.1 8.1 8.1 8.1 8.1 8.1

Mpowder (kg) 0.720 0.720 0.633 0.633 0.633 0.633

Operating

Speed (rpm) 60 60 60 60 60 60

Nc (rpm) 105 105 105 105 105 105

ɸc (%) 57 57 57 57 57 57

εball 0.4 0.4 0.4 0.4 0.4 0.4

εpowder 0.59 0.64 0.64 0.64 0.64 0.64

35

Table 3.15. Experimental conditions for batch ball mill grinding of HPGR product

and HPGR feed (dB = 31.75 mm)

dB (mm)

31.75 mm

Size Fraction

-3.35 mm+2.36 mm -2.36 mm+1.7 mm -1.7 mm+1.18 mm

HPGR

product

HPGR

feed

HPGR

product

HPGR

feed

HPGR

product

HPGR

feed

ɸB 0.35 0.35 0.35 0.35 0.35 0.35

ɸM 0.8 0.91 0.8 0.8 0.8 0.8

fc 0.11 0.13 0.11 0.11 0.11 0.11

Number of

balls 62 62 62 62 62 62

Mball (kg) 8.1 8.1 8.1 8.1 8.1 8.1

Mpowder (kg) 0.720 0.720 0.633 0.633 0.633 0.633

Operating

Speed

(rpm)

60 60 60 60 60 60

Nc (rpm) 107 107 107 107 107 107

ɸc (%) 56 56 56 56 56 56

εball 0.4 0.4 0.4 0.4 0.4 0.4

εpowder 0.59 0.64 0.64 0.64 0.64 0.64

36

CHAPTER 4

RESULTS AND DISCUSSION

4.1 Evaluation of Single Particle Breakage Tests

The primary interest in this work was to compare breakage parameters of HPGR

product and HPGR feed. In drop weight testing, these parameters may be defined as

breakage probability and impact breakage distribution function.

The breakage probability can be defined as the probability that particles of a given

material and size get broken for a given specific impact energy, which is analogous

to breakage rate in the kinetic model and selection function in the matrix model. In

this study, mass-basis breakage probability is used, which is the cumulative mass

fraction of the feed size interval passing down to lower size intervals after impact.

For comparison purposes, breakage probabilities of HPGR product and HPGR feed

were plotted together for each size fraction tested and compared at the same impact

energy level. As shown in Figure 4.1 through Figure 4.6, there exists a specific

impact energy range for each coarse size fraction where breakage probabilities of

HPGR product are higher than HPGR feed at the same impact energy. This is

possibly due to fracturing and weakening induced in HPGR product as cracks

imparted to clinker decrease the strength of the particle, easing the failure of the

particle upon a given impact energy. However, no significant weakening is

observed at -19+12.7 mm HPGR product as given in Figure 4.5. Also, the breakage

probabilities of HPGR product and HPGR feed tend to be close at high specific

impact energy levels corresponding to a breakage probability of near unity. It is

obvious that particles in HPGR product and HPGR feed have certain strength

37

distributions, and they are composed of a mixture of weak and strong particles. If

the impact energy is too high, then it will exceed the strength of almost every

particle in HPGR product and HPGR feed. Therefore, nearly all particles of HPGR

product and HPGR feed will get broken even if it gets weakened or not, resulting in

close breakage probabilities in HPGR product and HPGR feed. Similarly, mass-

basis breakage probabilities of HPGR product tend to be close to the probabilities of

HPGR feed at low specific impact energy levels. It is probable that low impact

energy levels are not sufficient for failure of weakened particles in HPGR product,

yielding the same degree of failure in HPGR product and HPGR feed. However,

this situation is not observed in size fractions of -12.7+9.53 mm, -6.35+4.7 mm and

-4.7+3.35 mm. It should be noted that low impact energies and low breakage

probabilities could not be generated on size fractions of -4.7+3.35 mm and -

6.35+4.7 mm even with the smallest drop head of 0.40 kg. In this case, using drop

weight smaller than 0.40 kg would not be suitable since the drop head got quite

thinner, and falling geometry of the drop head would become erratic.

Figure 4.1. Mass-Basis Breakage Probabilities of -4.7+3.35 mm HPGR product and

HPGR feed (Raw data at Table B.1 through Table B.8 in Appendix B)

38

Figure 4.2. Mass-Basis Breakage Probabilities of -6.35+4.7 mm HPGR product and

HPGR feed (Raw data at Table B.9 through Table B.16 in Appendix B)

Figure 4.3. Mass-Basis Breakage Probabilities of -9.53+6.35 mm HPGR product

and HPGR feed (Raw data at Table B.17 through Table B.28 in Appendix B)

39

Figure 4.4. Mass-Basis Breakage Probabilities of -12.7+9.53 mm HPGR product

and HPGR feed (Raw data at Table B.29 through Table B.42 in Appendix B)

Figure 4.5. Mass-Basis Breakage Probabilities of -19+12.7 mm HPGR product and

HPGR feed (Raw data at Table B.43 through Table B.52 in Appendix B)

40

Figure 4.6. Mass-Basis Breakage Probabilities of -25.4+19 mm HPGR product and

HPGR feed (Raw data at Table B.53 through Table B.64 in Appendix B)

The other breakage parameter in drop weight testing is the impact breakage

distribution function. Impact breakage distribution function is the size distribution

of broken fragments after drop weight testing. For comparison purposes, impact

breakage distribution functions of HPGR product and HPGR feed were plotted

together for each size fraction tested and compared at the same impact energy level.

The plots were constructed with a dimensionless size (xi-1/x1) where xi is the upper

sieve size of the size interval “i”. As shown in Figure 4.7 through Figure 4.12,

weakening in HPGR product does not extensively lead to finer fragment

distribution with respect to HPGR feed. At size fractions below 9.53 mm, breakage

distribution functions of HPGR product are finer than those of the HPGR feed only

at one specific impact energy tested. Above and below this energy level, the

breakage distribution functions of HPGR product and HPGR feed are close to each

other. On the other hand, weakening in HPGR product adversely affects the

fragment size of HPGR product at sizes above 9.53 mm such that the breakage

distribution functions of HPGR product get coarser than those of the HPGR feed.

41

As shown in Figure 4.7 through Figure 4.12, impact breakage distribution functions

of coarse sizes of HPGR product and HPGR feed tend to be identical at high

specific impact energy levels. Regarding this, it should be noted that if an excessive

impact energy is given to a set of particles which can already be broken at low

impact energy levels, then the rest of the energy goes into rebreakage of broken

fragments (Krogh, 1980; Tavares, 2007). In this case, excess energy causes high

degree of rebreakage; thus, HPGR product and HPGR feed will be broken to the

same extent.

Figure 4.7. Cumulative breakage distribution functions after impact breakage of

-4.7+3.35 mm of HPGR product and HPGR feed at various energy levels (Raw data

at Table B.1 through Table B.8 in Appendix B)

42

Figure 4.8. Cumulative breakage distribution functions after impact breakage of

-6.35+4.7 mm of HPGR product and HPGR feed at various energy levels (Raw data

at Table B.9 through Table B.16 in Appendix B)

Figure 4.9. Cumulative breakage distribution functions after impact breakage of

-9.53+6.35 mm of HPGR product and HPGR feed at various energy levels (Raw

data at Table B.17 through Table B.28 in Appendix B)

43

Figure 4.10. Cumulative breakage distribution functions after impact breakage of

-12.7+9.53 mm of HPGR product and HPGR feed at various energy levels (Raw

data at Table B.29 through Table B.42 in Appendix B)

Figure 4.11. Cumulative breakage distribution functions after impact breakage of

-19.0+12.7 mm of HPGR product and HPGR feed at various energy levels (Raw

data at Table B.43 through Table B.52 in Appendix B)

44

Figure 4.12. Cumulative breakage distribution functions after impact breakage of

-25.4+19.0 mm of HPGR product and HPGR feed at various energy levels (Raw

data at Table B.53 through Table B.64 in Appendix B)

One of the important aspects drawn from breakage distribution functions is that

breakage distribution functions of a given size of HPGR product and HPGR feed

increase with increasing specific impact energy. This may be due to:

- Failure of particles upon impact which could not possibly be broken at low impact

energy levels.

- Rebreakage of particles that could already be broken at low impact energy levels

Normally, it has been found out that size reduction processes including single

particle breakage are self-similar in nature (Avşar, 2003; De, 1995; Fuerstenau et

al., 1999; Kapur, 1972) such that the product size distributions rescaled by median

product size (d50) falls on to a single line. However, Kapur et al. (1997) checked

self-similarity of product size distributions after impact breakage and concluded that

non-self-similar size distributions occur mostly due to limited re-breakage,

45

especially at low impact energies. Regarding this, product size distributions after

impact breakage of each size fraction of HPGR product and HPGR feed are rescaled

and checked if self-similarity exists. As shown in Figure 4.13 through Figure 4.24,

impact breakage of HPGR product and HPGR feed are non-self-similar for all size

fractions tested except -4.7+3.35 mm. In fact, impact breakage of -4.7+3.35 mm

HPGR product and HPGR feed exhibit nearly self-similar breakage behaviour.

Also, at size fractions below 12.7 mm, the size distributions tend to be on a single

line at high specific impact energy levels, indicating a zone of rebreakage. All in all,

it can be concluded that the extent of rebreakage is limited for all size fractions

except -4.7+3.35 mm.

Figure 4.13. Non-self similar product size distributions after drop weight tests of

-4.7+3.35 mm HPGR product with varying specific impact energy levels (Raw data

at Table B.1 through Table B.4, and at Table B.65 in Appendix B)

46

Figure 4.14. Non-self similar product size distributions after drop weight tests of

-4.7+3.35 mm HPGR feed with varying specific impact energy levels (Raw data at

Table B.5 through Table B.8, and at Table B.66 in Appendix B)

Figure 4.15. Non-self similar product size distributions after drop weight tests of

-6.35+4.7 mm HPGR product with varying specific impact energy levels (Raw data

at Table B.9 through Table B.12, and at Table B.65 in Appendix B)

47

Figure 4.16. Non-self similar product size distributions after drop weight tests of

-6.35+4.7 mm HPGR feed with varying specific impact energy levels (Raw data at

Table B.13 through Table B.16, and at Table B.66 in Appendix B)

Figure 4.17. Non-self similar product size distributions after drop weight tests of

-9.53+6.35 mm HPGR product with varying specific impact energy levels (Raw

data at Table B.17 through Table B.22, and at Table B.65 in Appendix B)

48

Figure 4.18. Non-self similar product size distributions after drop weight tests of

-9.53+6.35 mm HPGR feed with varying specific impact energy levels (Raw data at

Table B.23 through Table B.28, and at Table B.66 in Appendix B)

Figure 4.19. Non-self similar product size distributions after drop weight tests of

-12.7+9.53 mm HPGR product with varying specific impact energy levels (Raw

data at Table B.29 through Table B.35, and at Table B.65 in Appendix B)

49

Figure 4.20. Non-self similar product size distributions after drop weight tests of

-12.7+9.53 mm HPGR feed with varying specific impact energy levels (Raw data at

Table B.36 through Table B.42, and at Table B.66 in Appendix B)

Figure 4.21. Non-self similar product size distributions after drop weight tests of

-19.0+12.7 mm HPGR product with varying specific impact energy levels (Raw

data at Table B.43 through Table B.47, and at Table B.65 in Appendix B)

50

Figure 4.22. Non-self similar product size distributions after drop weight tests of

-19.0+12.7 mm HPGR feed with varying specific impact energy levels (Raw data at

Table B.48 through Table B.52, and at Table B.66 in Appendix B)

Figure 4.23. Non-self similar product size distributions after drop weight tests of

-25.4+19.0 mm HPGR product with varying specific impact energy levels (Raw

data at Table B.53 through Table B.58, and at Table B.65 in Appendix B)

51

Figure 4.24. Non-self similar product size distributions after drop weight tests of

-25.4+19.0 mm HPGR feed with varying specific impact energy levels (Raw data at

Table B.59 through Table B.64, and at Table B.66 in Appendix B)

It is of interest to check if the breakage distribution functions of HPGR product and

HPGR feed are normalizable at nearly the same impact energy (J) tested. As given

in Figure 4.25 and Figure 4.26, impact breakage distribution functions of -

12.7+9.53 mm, -9.53+6.35 mm, -6.35+4.7 mm, -4.7+3.35 mm HPGR product and

HPGR feed are non-normalizable. Also, similar results were obtained for breakage

distributions of -12.7+9.53 mm, -19.0+12.7 mm and -25.4+19.0 mm HPGR product

and HPGR feed which is shown in Figure 4.27 and Figure 4.28. It is obvious that

breakage distribution functions of HPGR product and HPGR feed are a function of

particle size and contain higher proportion of fines as parent size is decreasing. In

this case, impact energy will probably become insufficient for fracturing with

increasing particle size, giving less amount of fines. In fact, this non-normalizable

breakage pattern was also observed in particle-bed breakage of coarse material

where the grinding energy became insufficient to fracture the particles (Datta and

Rajamani, 2002). In batch grinding, on the other hand, coarser feed was found to

contain the higher proportion of fine fragments. However, this was believed to

52

occur due to abrasion and chipping action inside mill rather than impact (Austin et

al., 1984).

Figure 4.25. Non-normalizable breakage distribution functions of -4.7+3.35 mm,

-6.35+4.7 mm, -9.53+6.35 mm, and -12.7+9.53 mm HPGR product (Raw data at

Table B.1, Table B.9, Table B.17 and Table B.29 in Appendix B)

Figure 4.26. Non-normalizable breakage distribution functions of -4.7+3.35 mm,

-6.35+4.7 mm, -9.53+6.35 mm, and -12.7+9.53 mm HPGR feed (Raw data at

Table B.5, Table B.13, Table B.23 and Table B.36 in Appendix B)

53

Figure 4.27. Non-normalizable breakage distribution functions of -12.7+9.53 mm,

-19+12.7 mm, -25.4+19.0 mm HPGR product (Raw data at Table B.30, Table B.43

and Table B.53 in Appendix B)

Figure 4.28. Non-normalizable breakage distribution functions of -12.7+9.53 mm,

-19+12.7 mm, -25.4+19.0 mm HPGR feed (Raw data at Table B.37, Table B.48 and

Table B.59 in Appendix B)

54

4.2 Evaluation of Batch Grinding Tests

4.2.1 Product Size Distributions

Product size distributions obtained from batch grinding tests on HPGR feed and

HPGR product are compared for each combination of size fraction and ball size in

Figure 4.29 through Figure 4.37. The plots show that batch grinding of HPGR

product yields slightly finer product size distribution than HPGR feed at each size

fraction tested, irrespective of the ball size used. This supports the fact that cracks in

the particles induced by HPGR facilitated breakage and led to finer product size

distribution than that of the HPGR feed. However, the difference between product

size distributions of HPGR product and HPGR feed tend to disappear at longer

grinding times. It is most probable that cracks induced in HPGR product were

eliminated at longer grinding times. Beyond this point, the weakened particles in

HPGR product disappeared and batch grinding of hold-up material gave nearly

same product size distribution with batch grinding of HPGR feed. Also, for a given

size fraction, it is observed that the time required to eliminate the difference

between the product size distributions of HPGR product and HPGR feed tends to

decrease with increasing ball size. In this case, higher impact energies generated by

larger balls could eliminate cracks in HPGR product at shorter grinding times.

55

Figure 4.29. Product size distributions after batch grinding of -1.7+1.18 mm of

HPGR product and HPGR feed; dB = 19.05 mm, ɸBall = 0.35, 633 g of material

(Raw data at Table D.13 and Table D.16 in Appendix D)

Figure 4.30. Product size distributions after batch grinding of -1.7+1.18 mm of

HPGR product and HPGR feed; dB = 25.4 mm, ɸBall = 0.35, 633 g of material (Raw

data at Table D.14 and Table D.17 in Appendix D)

56

Figure 4.31. Product size distributions after batch grinding of -1.7+1.18 mm of

HPGR product and HPGR feed; dB = 31.75 mm, ɸBall = 0.35, 633 g of material

(Raw data at Table D.15 and Table D.18 in Appendix D)

Figure 4.32. Product size distributions after batch grinding of -2.36+1.7 mm of

HPGR product and HPGR feed; dB = 19.05 mm, ɸBall = 0.35, 633 g of material

(Raw data at from Table D.7 and Table D.10 in Appendix D)

57

Figure 4.33. Product size distributions after batch grinding of -2.36+1.7 mm of

HPGR product and HPGR feed; dB = 25.4 mm, ɸBall = 0.35, 633 g of material (Raw

data at Table D.8 and Table D.11 in Appendix D)

Figure 4.34. Product size distributions after batch grinding of -2.36+1.7 mm of

HPGR product and HPGR feed; dB = 31.75 mm, ɸBall = 0.35, 633 g of material

(Raw data at Table D.9 and Table D.12 in Appendix D)

58

Figure 4.35. Product size distributions after batch grinding of -3.35+2.36 mm of

HPGR product and HPGR feed; dB = 19.05 mm, ɸBall = 0.35, 720 g of material

(Raw data at Table D.1 and Table D.4 in Appendix D)

Figure 4.36. Product size distributions after batch grinding of -3.35+2.36 mm of

HPGR product and HPGR feed; dB = 25.4 mm, ɸBall = 0.35, 720 g of material (Raw

data at Table D.2 and Table D.5 in Appendix D)

59

Figure 4.37. Product size distributions after batch grinding of -3.35+2.36 mm of

HPGR product and HPGR feed; dB = 31.75 mm, ɸBall = 0.35, 720 g of material

(Raw data at Table D.3 and Table D.6 in Appendix D)

4.2.2 Specific Rates of Breakage

Breakage rate plots of each size fraction of HPGR product and HPGR feed for each

ball size are compared in Figure 4.38 through Figure 4.46. Breakage rate plots of

HPGR product and HPGR feed show non-linear breakage which can be represented

as a fast initial breakage zone (S1) and a subsequent slow breakage zone (S2). The

estimated values of S1 and S2 are given in Table 4.1. In the fast breakage zone,

breakage rates of HPGR product are significantly higher than those of HPGR feed

for a given feed size. On the other hand, in the slow breakage zone, this difference

tends to diminish or breakage rates of HPGR feed become slightly higher than those

of the HPGR product. Significantly higher breakage rates in HPGR product may be

resulted from flaws and cracks induced in clinker as these may weaken the particle,

increasing the fracture probability with respect to HPGR feed upon the same degree

of impact. However, as grinding time increases, the cracks induced by HPGR will

60

be eliminated and breakage rates of HPGR product change into breakage rates of

HPGR feed.

Table 4.1. Fast (S1) and slow (S2) breakage rates of the size fractions of HPGR

product and HPGR feed (Raw data at Appendix C and Appendix D)

Size Fraction Ball Size

(mm)

S1 S2

HPGR

product

HPGR

feed

HPGR

product

HPGR

feed

-1.7+1.18 mm

19.05 0.324 0.253 0.110 0.101

25.40 0.345 0.266 0.164 0.144

31.75 0.338 0.285 0.232 0.236

Size Fraction Ball Size

(mm)

S1 S2

HPGR

product

HPGR

feed

HPGR

product

HPGR

feed

-2.36+1.7 mm

19.05 0.316 0.236 0.066 0.073

25.40 0.319 0.276 0.114 0.102

31.75 0.400 0.277 0.200 0.168

Size Fraction Ball Size

(mm)

S1 S2

HPGR

product

HPGR

feed

HPGR

product

HPGR

feed

-3.35+2.36 mm

19.05 0.234 0.175 0.047 0.051

25.40 0.274 0.206 0.077 0.065

31.75 0.316 0.254 0.124 0.110

61

Figure 4.38. Breakage rate plots after batch grinding of -1.7+1.18 mm of HPGR

product and HPGR feed; dB = 19.05 mm, ɸBall =0.35, 633 g of material (Raw data at

Table C.13, Table C.16 in Appendix C, and Table D.13, Table D.16 in Appendix D)

Figure 4.39. Breakage rate plots after batch grinding of -1.7+1.18 mm of HPGR

product and HPGR feed; dB = 25.4 mm, ɸBall =0.35, 633 g of material (Raw data at

Table C.14, Table C.17 in Appendix C, and Table D.14, Table D.17 in Appendix D)

62

Figure 4.40. Breakage rate plots after batch grinding of -1.7+1.18 mm of HPGR

product and HPGR feed; dB = 31.75 mm, ɸBall =0.35, 633 g of material (Raw data at

Table C.15, Table C.18 in Appendix C, and Table D.15, Table D.18 in Appendix D)

Figure 4.41. Breakage rate plots after batch grinding of -2.36+1.7 mm of HPGR

product and HPGR feed; dB = 19.05 mm, ɸBall =0.35, 633 g of material (Raw data at

Table C.7, Table C.10 in Appendix C, and Table D.7, Table D.10 in Appendix D)

63

Figure 4.42. Breakage rate plots after batch grinding of -2.36+1.7 mm of HPGR

product and HPGR feed; dB = 25.4 mm, ɸBall =0.35, 633 g of material (Raw data at

Table C.8, Table C.11 in Appendix C, and Table D.8, Table D.11 in Appendix D)

Figure 4.43. Breakage rate plots after batch grinding of -2.36+1.7 mm of HPGR

product and HPGR feed; dB = 31.75 mm, ɸBall =0.35, 633 g of material (Raw data at

Table C.9, Table C.12 in Appendix C, and Table D.9, Table D.12 in Appendix D)

64

Figure 4.44. Breakage rate plots after batch grinding of -3.35+2.36 mm of HPGR

product and HPGR feed; dB = 19.05 mm, ɸBall =0.35, 720 g of material (Raw data at

Table C.1, Table C.4 in Appendix C, and Table D.1, Table D.4 in Appendix D)

Figure 4.45. Breakage rate plots after batch grinding of -3.35+2.36 mm of HPGR

product and HPGR feed; dB = 25.4 mm, ɸBall =0.35, 720 g of material (Raw data at

Table C.2, Table C.5 in Appendix C, and Table D.2, Table D.5 in Appendix D)

65

Figure 4.46. Breakage rate plots after batch grinding of -3.35+2.36 mm of HPGR

product and HPGR feed; dB = 31.75 mm, ɸBall =0.35, 720 g of material (Raw data at

Table C.3, Table C.6 in Appendix C, and Table D.3, Table D.6 in Appendix D)

Beside the significant weakening observed in particles broken by HPGR, non-linear

breakage rates of HPGR product and HPGR feed may also be the result of

inefficient breakage of coarse sizes. In previous studies, it has been found that

breakage of a coarse feed above a maximum particle size become abnormal which

yields non-linear breakage rate including a faster initial breakage rate and a slower

following breakage rate (Austin et al., 1984). In this case, particles that are too big

in a given coarse size fraction cannot be efficiently fractured by balls, leading to

non-first order breakage. Also, it has been experimentally shown that breakage rates

in batch grinding of fine size fractions increase with increasing feed size; whereas,

the breakage rates in abnormal breakage of coarse sizes decrease with increasing

feed size (Austin et al., 1981; Austin et al., 1976; Austin et al., 1982). Regarding

this, for a given ball size, faster and slower breakage rates of each size interval of

HPGR product and HPGR feed were plotted against the top size of the

corresponding size interval (µm) in log-log plot, so as to compare the variation of

breakage rates with particle size. As shown in Figure 4.47 through Figure 4.49,

breakage rates of HPGR product and HPGR feed decrease with increasing particle

66

size, showing abnormal breakage behavior. Moreover, the plots indicate the

presence of a maximum particle size between 2.36 and 1.7 mm above which the S1

of HPGR product and HPGR feed decrease.

Figure 4.47. Variation of S1 and S2 with particle size in batch grinding of HPGR

product and HPGR feed (dB = 19.05 mm)

Figure 4.48. Variation of S1 and S2 with particle size in batch grinding of HPGR

product and HPGR feed (dB = 25.4 mm)

67

Figure 4.49. Variation of S1 and S2 with particle size in batch grinding of HPGR

product and HPGR feed (dB = 31.75 mm)

One noteworthy observation is that the S1 and S2 of HPGR product and HPGR feed

mostly increase with increasing ball size, as shown in Table 4.1. Actually, for a

given ball loading, it has been shown that decrease in ball size would increase the

number of ball-on-ball contacts which would result in higher breakage rates in batch

grinding of fine material. On the contrary, in abnormal breakage region of coarse

feeds, larger ball sizes gave higher breakage rates since smaller balls became

insufficient to fracture coarse particles (Austin et al., 1984). Regarding this, it is

probable that the breakage rates of HPGR product and HPGR feed decrease with

smaller ball size due to insufficient breakage of coarse particles.

4.2.3 Primary Breakage Distribution Functions

Although higher breakage rates in HPGR product show significant weakening with

respect to HPGR feed, the primary breakage distribution functions of batch grinding

HPGR product are coarser than those of the HPGR feed for each combination of

size fraction and ball size, which are shown in Figure 4.50 through Figure 4.58.

However, breakage distribution function of HPGR product is slightly coarser than

that of HPGR feed at batch grinding of -3.35+2.36 mm with 19.05 mm ball.

68

Figure 4.50. Primary breakage distribution functions after batch grinding of -

1.7+1.18 mm of HPGR product and HPGR feed; dB = 19.05 mm, ɸBall = 0.35, 633 g

of material (Raw data at Table C.13, Table C.16 in Appendix C, and Table D.13,

Table D.16 in Appendix D)

Figure 4.51. Primary breakage distribution functions after batch grinding of -

1.7+1.18 mm of HPGR product and HPGR feed; dB = 25.4 mm, ɸBall = 0.35, 633 g

of material (Raw data at Table C.14, Table C.17 in Appendix C, and Table D.14,

Table D.17 in Appendix D)

69

Figure 4.52. Primary breakage distribution functions after batch grinding of -

1.7+1.18 mm of HPGR product and HPGR feed; dB =31.75 mm, ɸBall =0.35, 633 g

of material (Raw data at Table C.15, Table C.18 in Appendix C, and Table D.15,

Table D.18 in Appendix D)

Figure 4.53. Primary breakage distribution functions after batch grinding of

-2.36+1.7 mm of HPGR product and HPGR feed; dB =19.05 mm, ɸBall =0.35, 633 g

of material (Raw data at Table C.7, Table C.10 in Appendix C, and Table D.7,

Table D.10 in Appendix D)

70

Figure 4.54. Primary breakage distribution functions after batch grinding of

-2.36+1.7 mm of HPGR product and HPGR feed; dB =25.4 mm, ɸBall =0.35, 633 g

of material (Raw data at Table C.8, Table C.11 in Appendix C, and Table D.8,

Table D.11 in Appendix D)

Figure 4.55. Primary breakage distribution functions after batch grinding of

-2.36+1.7 mm of HPGR product and HPGR feed; dB =31.75 mm, ɸBall =0.35, 633 g

of material (Raw data at Table C.9, Table C.12 in Appendix C, and Table D.9,

Table D.12 in Appendix D)

71

Figure 4.56. Primary breakage distribution functions after batch grinding of

-3.35+2.36 mm of HPGR product and HPGR feed; dB=19.05 mm, ɸBall=0.35, 720 g

of material (Raw data at Table C.1, Table C.4 in Appendix C, and Table D.1, Table

D.4 in Appendix D)

Figure 4.57. Primary breakage distribution functions after batch grinding of

-3.35+2.36 mm of HPGR product and HPGR feed; dB =25.4 mm, ɸBall =0.35, 720 g

of material (Raw data at Table C.2, Table C.5 in Appendix C, and Table D.2, Table

D.5 in Appendix D)

72

Figure 4.58. Primary breakage distribution functions after batch grinding of

-3.35+2.36 mm of HPGR product and HPGR feed; dB =31.75 mm, ɸBall =0.35, 720

g of material (Raw data at Table C.3, Table C.6 in Appendix C, and Table D.3,

Table D.6 in Appendix D)

It is of the interest to check whether breakage distribution functions of HPGR

product and HPGR feed are normalizable with respect to parent size interval at the

same ball loading condition. As shown in Figure 4.59 through Figure 4.64, the

breakage distribution functions of HPGR product and HPGR feed are non-

normalizable. In fact, it was previously found that the batch grinding of coarse feeds

gave non-normalizable breakage distribution functions (Austin et al., 1981; Austin

et al., 1982). For HPGR product, it is clear that the proportion of fines increase in

breakage distribution function as the size interval gets coarser. Actually, this was

previously observed and linked to chipping and abrasion action inside the mill that

provide a larger proportion of fines with increasing feed size (Austin et al., 1984).

On the other hand, this pattern is not observed in HPGR feed. In this case, batch

grinding of -3.35+2.36 mm HPGR feed gives the highest proportion of fines in

breakage distribution function. Meanwhile, batch grinding of -2.36+1.7 mm and

-1.7+1.18 mm HPGR feed exhibit nearly normalizable breakage distribution

function although they seem to be in abnormal breakage region.

73

Figure 4.59. Primary breakage distribution functions after batch grinding of three

monosize fractions of HPGR product; dB = 19.05 mm, ɸBall = 0.35 (Raw data at

Table C.1, Table C.7, Table C.13 in Appendix C, and Table D.1, Table D.7, Table

D.13 in Appendix D)

Figure 4.60. Primary breakage distribution functions after batch grinding of three

monosize fractions of HPGR product; dB = 25.4 mm, ɸBall = 0.35 (Raw data at Table

C.2, Table C.8, Table C.14 in Appendix C, and Table D.2, Table D.8 and Table

D.14 in Appendix D)

74

Figure 4.61. Primary breakage distribution functions after batch grinding of three

monosize fractions of HPGR product; dB = 31.75 mm, ɸBall = 0.35 (Raw data at

Table C.3, Table C.9, Table C.15 in Appendix C, and Table D.3, Table D.9, Table

D.15 in Appendix D)

Figure 4.62. Primary breakage distribution functions after batch grinding of three

monosize fractions of HPGR feed; dB = 19.05 mm, ɸBall = 0.35 (Raw data at Table

C.4, Table C.10, Table C.16 in Appendix C, and Table D.4, Table D.10, Table D.16

in Appendix D)

75

Figure 4.63. Primary breakage distribution functions after batch grinding of three

monosize fractions of HPGR feed; dB = 25.4 mm, ɸBall = 0.35 (Raw data at Table

C.5, Table C.11, Table C.17 in Appendix C, and Table D.5, Table D.11, Table D.17

in Appendix D)

Figure 4.64. Primary breakage distribution functions after batch grinding of three

monosize fractions of HPGR feed; dB = 31.75 mm, ɸBall = 0.35 (Raw data at Table

C.6, Table C.12, Table C.18 in Appendix C, and Table D.6, Table D.12, Table D.18

in Appendix D)

76

CHAPTER 5

CONCLUSIONS

Clinker broken in HPGR was found to be weaker than unbroken clinker considering

higher breakage probabilities and higher breakage rates encountered. This could be

attributed to the existence of cracks in clinker induced by HPGR. However, no

significant weakening was observed in drop weight testing of -19.0+12.7 mm

HPGR product.

Although clinker broken by HPGR was weaker, fragment size distribution did not

tend to be finer in HPGR product. Regarding this, breakage distribution of HPGR

product were same as that of HPGR feed only when breaking mid-size range. On

the other hand, breakage distribution functions of HPGR product tended to be

coarser than those of HPGR feed at coarse and fine size ranges. Moreover, coarse

clinker in HPGR product and in HPGR feed gave nearly the same fragment size

distribution at excessive impact energies due to rebreakage.

Single particle breakage tests on HPGR product and HPGR feed gave non-self-

similar product size distributions. However, impact breakage of -4.7+3.35 mm

HPGR product and HPGR feed exhibited nearly self-similar breakage behaviour.

Also, at size fractions below 12.7 mm, impact breakage of HPGR product and

HPGR feed tended to yield self-similar size distributions at excessive energy levels.

In this case, it was believed that rebreakage of particles might probably yield self-

similar size distributions; especially at excessive specific impact energy levels.

Meanwhile, non-self-similar size distributions arise from limited rebreakage of

particles.

77

The impact breakage distribution functions of coarse particles were a function of

particle size and impact energy (J) both in HPGR product and HPGR feed. For a

given particle size, broken fragments became finer with increasing impact energy.

Meanwhile, at a given impact energy, proportion of fines in broken fragments

increased with decreasing particle size. In this case, given impact energy would

probably be insufficient to generate breakage within coarser particles.

The batch grinding tests showed that at a given size fraction, the product size

distribution of HPGR product was slightly finer than HPGR feed for the same ball

loading and material loading conditions. This was due to the fact that cracks

induced in clinker by HPGR facilitate breakage, leading to finer product size

distributions in HPGR product. However, the product size distributions of HPGR

product and HPGR feed tended to become similar at long grinding times, indicating

disappearance of cracks with increasing grinding time. Also, time of disappearance

of cracks tended to decrease with larger balls, probably due to higher grinding

energies generated with larger balls.

Specific breakage rates of HPGR product and HPGR feed followed a non-linear

pattern which could be represented as a fast initial breakage rate and a slow

following breakage rate. The fast initial breakage rates of HPGR product were

found to be higher than HPGR feed for each size fraction, which was due to

weakening imparted to HPGR product by cracks. Meanwhile, the slow breakage

rates of HPGR product and HPGR feed tended to be nearly the same, indicating

elimination of cracks, hence, disappearance of weaker particles. All size fractions of

HPGR product and HPGR feed ground were in the abnormal breakage zone, that is,

the three ball sizes used were smaller related to particle size such that coarse

particles could not be broken efficiently inside the mill.

Breakage distribution functions of HPGR product and HPGR feed were non-

normalizable with respect to particle size. In HPGR product, batch grinding of

particles yielded high proportion of fines with increasing particle size. However, in

78

HPGR feed, breakage distribution function of -3.35+2.36 mm contained the largest

proportion of fines while -2.36+1.7 mm and -1.7+1.18 mm exhibited the same

breakage pattern. It is believed that the chipping and abrasion inside the mill was

responsible for generating more fines in the coarsest feed size.

79

REFERENCES

Aman, S., Tomas, J., & Kalman, H. (2010). Breakage probability of irregularly

shaped particles. Chemical Engineering Science, 65(5), 1503–1512.

Austin, L. G., Shoji, K., & Luckie, P. T. (1976). The effect of ball size on mill

performance. Powder Technology, 14(1), 71–79.

Austin, L. G. , & Bagga, P. (1981). An analysis of fine dry grinding in ball mills.

Powder Technology, 28(1), 83–90.

Austin, L. G., Bagga, P., & Celik, M. (1981). Breakage properties of some materials

in a laboratory ball mill. Powder Technology, 28(2), 235–243.

Austin, L. G., Shoji, K., & Bell, D. (1982). Rate equations for non-linear breakage

in mills due to material effects. Powder Technology, 31(1), 127–133.

Austin, L. G., Klimpel, R. R., & Luckie, P. T. (1984). Process engineering of size

reduction: ball milling (pp. 61–204). New York: SME/AIME.

Avşar, Ç. (2003). Breakage Characteristics of Cement Components (Ph.D. Thesis,

Middle East Technical University, Ankara, Turkey). Retrieved from

http://etd.lib.metu.edu.tr/upload/2/587147/index.pdf.

Bilgili, E., Yepes, J., & Scarlett, B. (2006). Formulation of a non-linear framework

for population balance modeling of batch grinding: Beyond first-order kinetics.

Chemical Engineering Science, 61(1), 33–44.

Bourgeois, F. S., King, R. P., & Herbst, J. A. (1992). Low-impact-energy single-

particle fracture. In S. K. Kawatra (Ed.), Comminution-Theory and Practice (pp.

99–108). Littleton: Society for Mining, Metallurgy, and Exploration, Inc.

Bourgeois, Florent Stephane. (1993). Single-particle fracture as a basis for

microscale modeling of comminution processes (Ph.D. Thesis, The University of

Utah, Salt Lake City, United States). Retrieved from ProQuest Dissertations and

Theses database (Order No. 9406111).

Datta, A., & Rajamani, R. K. (2002). A direct approach of modeling batch grinding

in ball mills using population balance principles and impact energy distribution.

International Journal of Mineral Processing, 64, 181–200.

80

De, A. K. (1995). Modeling and optimization of fine grinding of minerals in high-

pressure roll mill - ball mill hybrid comminution circuits (Ph.D. Thesis, University

of California, Berkeley, United States). Retrieved from ProQuest Dissertations and

Theses (Order No. 9602527).

Fuerstenau, D. W., Kapur, P. C., Schoenert, K., & Marktscheffel, M. (1990).

Comparison of energy consumption in the breakage of single particles in a rigidly

mounted roll mill with ball mill grinding. International Journal of Mineral

Processing, 28(1-2), 109–125.

Fuerstenau, D. W., Kapur, P. C., & Gutsche, O. (1993). Comminution of single

particles in a rigidly-mounted roll mill part 1: mill torque model and energy

investment. Powder Technology, 76(3), 253–262.

Fuerstenau, D. W., & Vazquez-Favela, J. (1997). On assessing and enhancing the

energy efficiency of comminution processes. Minerals and Metallurgical

Processing, 14(1), 41–48.

Fuerstenau, D. W., Lutch, J. J., & De, A. (1999). The effect of ball size on the

energy efficiency of hybrid high-pressure roll mill/ball mill grinding. Powder

Technology, 105, 199–204.

Fuerstenau, D. W., De, A., & Kapur, P. C. (2004). Linear and nonlinear particle

breakage processes in comminution systems. International Journal of Mineral

Processing, 74, S317–S327.

Gutsche, O., Kapur, P. C., & Fuerstenau, D. W. (1993). Comminution of single

particles in a rigidly-mounted roll mill part 2: product size distribution and energy

utilization. Powder Technology, 76(3), 263–270.

Jankovic, A., Valery, W., & Davis, E. (2004). Cement grinding optimisation.

Minerals Engineering, 17(11-12), 1075–1081.

Kapur, P. C. (1972). Self-preserving size spectra of comminuted particles. Chemical

Engineering Science, 27(2), 425–431.

Kapur, P.C., Pande, D., & Fuerstenau, D. W. (1997). Analysis of single-particle

breakage by impact grinding. Materials Science, 49, 223–236.

Krogh, S. R. (1980). Crushing Characteristics. Powder Technology, 27, 171–181.

Lynch, A. J. (1977). Mineral Crushing and Grinding Circuits. Amsterdam: Elsevier

Scientific Publishing Company.

81

Napier-Munn, T. J., Morrell, S., Morrison, R. D., & Kojovic, T. (1996). Rock

Testing - Determining the Material - Specific Breakage Function. In T. J. Napier-

Munn (Ed.), Mineral Comminution Circuits Their Operation and Optimization (pp.

49–94). Indooroopilly, Qld.: Julius Kruttschnitt Mineral Research Centre.

Patzelt, N. (1992). High-pressure grinding rolls, a survey of experience. Cement

Industry Technical Conference (pp. 149–181). Dallas: IEEE.

Patzelt, N., Knecht, H., & Baum, W. (1995). Case made for high-pressure-roll-

grinding in gold plants. Mining Engineering, 47(6), 524–529.

Schönert, K. (1988). A first survey of grinding with high-compression roller mills.

International Journal of Mineral Processing, 22(1-4), 401–412.

Tavares, L. M., & King, R. P. (1998). Single-particle fracture under impact loading.

International Journal of Mineral Processing, 54, 1–28.

Tavares, L. M. (2005). Particle weakening in high-pressure roll grinding. Minerals

Engineering, 18(7), 651–657.

Tavares, L. M. (2007). Breakage of Single Particles : Quasi-Static. In A. D. Salman,

M. Ghadiri, & M. J. Hounslow (Eds.), Handbook of Powder Technology (pp. 3–68).

Elsevier Science B.V.

Tromans, D. (2008). Mineral comminution: Energy efficiency considerations.

Minerals Engineering, 21(8), 613–620.

Tuzcu, E. T., & Rajamani, R. K. (2011). Modeling breakage rates in mills with

impact energy spectra and ultra fast load cell data. Minerals Engineering, 24(3-4),

252–260.

Von Seebach, H. M., Neumann, E., & Lohnherr, L. (1996). State-of-the-art of

energy-efficient grinding systems. ZKG, 49(2), 61–67.

82

APPENDIX A

SIZE DISTRIBUTIONS OF HPGR PRODUCT AND HPGR FEED

Table A.1. Size distribution of HPGR product

SIZE DISTRIBUTION OF HPGR PRODUCT

Size

(µm)

Weight

(g)

Weight

(%)

Cumulative

Percent

Retained

Cumulative

Percent Passing

34930 0.00 0.00 0.00 100.00

25400 428.00 0.47 0.47 99.53

19000 1332.00 1.45 1.92 98.08

12700 4209.00 4.59 6.50 93.50

9530 3910.00 4.26 10.76 89.24

6350 6178.00 6.73 17.50 82.50

4700 4473.00 4.87 22.37 77.63

3350 3942.00 4.30 26.67 73.33

2360 7260.00 7.91 34.58 65.42

1700 4377.00 4.77 39.35 60.65

1180 4550.00 4.96 44.31 55.69

850 3360.00 3.66 47.97 52.03

600 5173.00 5.64 53.60 46.40

425 4997.00 5.45 59.05 40.95

300 3317.00 3.61 62.66 37.34

212 4396.00 4.79 67.45 32.55

150 3660.00 3.99 71.44 28.56

106 3531.00 3.85 75.29 24.71

-106 22677.00 24.71 100.00 0.00

Total 91770.00 100.00

83

Table A.2. Size distribution of HPGR feed

SIZE DISTRIBUTION OF HPGR FEED

Size

(µm)

Weight

(g)

Weight

(%)

Cumulative

Percent

Retained

Cumulative

Percent Passing

50800 0.00 0.00 0.00 100.00

34930 3361.00 3.85 3.85 96.15

25400 6905.00 7.91 11.76 88.24

19000 11999.00 13.74 25.50 74.50

12700 17937.00 20.54 46.04 53.96

9530 11483.00 13.15 59.19 40.81

6350 11122.00 12.74 71.92 28.08

4699 5478.00 6.27 78.20 21.80

3350 5663.00 6.49 84.68 15.32

2360 4699.00 5.38 90.06 9.94

1700 1948.00 2.23 92.29 7.71

1180 1515.00 1.73 94.03 5.97

850 1023.00 1.17 95.20 4.80

600 1048.30 1.20 96.40 3.60

425 1005.66 1.15 97.55 2.45

300 302.14 0.35 97.90 2.10

212 169.90 0.19 98.09 1.91

150 240.01 0.27 98.37 1.63

106 184.03 0.21 98.58 1.42

-106 1240.88 1.42 100.00 0.00

Total 87323.92 100.00

84

APPENDIX B

DROP WEIGHT TEST DATA

Table B.1. Product size distribution after impact breakage of -4.7+3.35 mm of

HPGR product (specific impact energy=0.54 kWh/t)

-4.7+3.35 mm

(HPGR product)

Specific Impact Energy (kWh/t)

0.54

Size (µm) Weight (g) Weight (%) Cumulative Percent

Passing

4700.00 0.00 0.00 100.00

3350.00 1.84 3.79 96.21

2360.00 6.97 14.36 81.85

1700.00 10.94 22.53 59.32

1180.00 8.98 18.50 40.82

850.00 5.15 10.61 30.22

600.00 2.98 6.14 24.08

425.00 2.46 5.07 19.01

300.00 1.53 3.15 15.86

212.00 1.34 2.76 13.10

150.00 1.13 2.33 10.77

106.00 1.03 2.12 8.65

75.00 0.94 1.94 6.71

53.00 0.94 1.94 4.78

38.00 0.64 1.32 3.46

-38.00 1.68 3.46 0.00

Total 48.55 100.00 0.00

85

Table B.2. Product size distribution after impact breakage of -4.7+3.35 mm of

HPGR product (specific impact energy=1.09 kWh/t)

-4.7+3.35 mm

(HPGR product)

Specific Impact Energy (kWh/t)

1.09

Size (µm) Weight (g) Weight (%) Cumulative

Percent Passing

4700.00 0.00 0.00 100.00

3350.00 0.09 0.23 99.77

2360.00 1.80 4.64 95.13

1700.00 5.24 13.49 81.64

1180.00 6.92 17.82 63.82

850.00 5.73 14.76 49.06

600.00 4.14 10.66 38.40

425.00 3.23 8.32 30.08

300.00 2.07 5.33 24.75

212.00 1.55 3.99 20.76

150.00 1.33 3.43 17.33

106.00 1.28 3.30 14.04

75.00 1.14 2.94 11.10

53.00 1.20 3.09 8.01

38.00 0.58 1.49 6.52

-38.00 2.53 6.52 0.00

Total 38.83 100.00 0.00

86

Table B.3. Product size distribution after impact breakage of -4.7+3.35 mm of

HPGR product (specific impact energy=2.18 kWh/t)

-4.7+3.35 mm

(HPGR product)

Specific Impact Energy (kWh/t)

2.18

Size (µm) Weight (g) Weight (%) Cumulative

Percent Passing

4700.00 0.00 0.00 100.00

3350.00 0.00 0.00 100.00

2360.00 0.09 0.24 99.76

1700.00 0.76 1.99 97.77

1180.00 3.03 7.95 89.82

850.00 4.94 12.96 76.87

600.00 5.21 13.66 63.20

425.00 4.97 13.03 50.17

300.00 3.20 8.39 41.78

212.00 2.61 6.85 34.93

150.00 2.13 5.59 29.35

106.00 1.98 5.19 24.15

75.00 1.85 4.85 19.30

53.00 1.96 5.14 14.16

38.00 1.62 4.25 9.91

-38.00 3.78 9.91 0.00

Total 38.13 100.00 0.00

87

Table B.4. Product size distribution after impact breakage of -4.7+3.35 mm of

HPGR product (specific impact energy=3.32 kWh/t)

-4.7+3.35 mm

(HPGR product)

Specific Impact Energy (kWh/t)

3.32

Size (µm) Weight (g) Weight (%) Cumulative

Percent Passing

4700.00 0.00 0.00 100.00

3350.00 0.00 0.00 100.00

2360.00 0.00 0.00 100.00

1700.00 0.47 1.23 98.77

1180.00 1.30 3.40 95.37

850.00 3.11 8.14 87.23

600.00 4.65 12.17 75.05

425.00 5.24 13.72 61.34

300.00 3.59 9.40 51.94

212.00 3.13 8.19 43.74

150.00 2.55 6.68 37.07

106.00 2.38 6.23 30.84

75.00 2.09 5.47 25.37

53.00 2.41 6.31 19.06

38.00 1.79 4.69 14.37

-38.00 5.49 14.37 0.00

Total 38.20 100.00 0.00

88

Table B.5. Product size distribution after impact breakage of -4.7+3.35 mm of

HPGR feed (specific impact energy=0.54 kWh/t)

-4.7+3.35 mm

(HPGR feed)

Specific Impact Energy (kWh/t)

0.54

Size (µm) Weight (g) Weight (%) Cumulative

Percent Passing

4700.00 0.00 0.00 100.00

3350.00 3.36 10.82 89.18

2360.00 8.24 26.55 62.63

1700.00 6.61 21.30 41.33

1180.00 3.50 11.28 30.06

850.00 2.10 6.77 23.29

600.00 1.56 5.03 18.27

425.00 1.22 3.93 14.34

300.00 0.80 2.58 11.76

212.00 0.64 2.06 9.70

150.00 0.53 1.71 7.99

106.00 0.53 1.71 6.28

75.00 0.49 1.58 4.70

53.00 0.48 1.55 3.16

38.00 0.30 0.97 2.19

-38.00 0.68 2.19 0.00

Total 31.04 100.00

89

Table B.6. Product size distribution after impact breakage of -4.7+3.35 mm of

HPGR feed (specific impact energy=1.09 kWh/t)

-4.7+3.35 mm

(HPGR feed)

Specific Impact Energy (kWh/t)

1.09

Size (µm) Weight (g) Weight (%) Cumulative

Percent Passing

4700.00 0.00 0.00 100.00

3350.00 0.07 0.21 99.79

2360.00 2.12 6.49 93.29

1700.00 4.45 13.63 79.66

1180.00 5.59 17.12 62.54

850.00 4.67 14.30 48.24

600.00 3.38 10.35 37.89

425.00 2.84 8.70 29.19

300.00 1.69 5.18 24.01

212.00 1.42 4.35 19.66

150.00 1.11 3.40 16.26

106.00 1.06 3.25 13.02

75.00 0.98 3.00 10.02

53.00 1.01 3.09 6.92

38.00 0.62 1.90 5.02

-38.00 1.64 5.02 0.00

Total 32.65 100.00

90

Table B.7. Product size distribution after impact breakage of -4.7+3.35 mm of

HPGR feed (specific impact energy=2.18 kWh/t)

-4.7+3.35 mm

(HPGR feed)

Specific Impact Energy (kWh/t)

2.18

Size (µm) Weight (g) Weight (%) Cumulative

Percent Passing

4700.00 0.00 0.00 100.00

3350.00 0.00 0.00 100.00

2360.00 0.19 0.60 99.40

1700.00 0.85 2.67 96.73

1180.00 2.88 9.05 87.68

850.00 4.27 13.42 74.25

600.00 4.36 13.71 60.55

425.00 4.20 13.20 47.34

300.00 2.57 8.08 39.26

212.00 2.15 6.76 32.51

150.00 1.66 5.22 27.29

106.00 1.59 5.00 22.29

75.00 1.50 4.72 17.57

53.00 1.50 4.72 12.86

38.00 1.03 3.24 9.62

-38.00 3.06 9.62 0.00

Total 31.81 100.00

91

Table B.8. Product size distribution after impact breakage of -4.7+3.35 mm of

HPGR feed (specific impact energy=3.32 kWh/t)

-4.7+3.35 mm

(HPGR feed)

Specific Impact Energy (kWh/t)

3.32

Size (µm) Weight (g) Weight (%) Cumulative

Percent Passing

4700.00 0.00 0.00 100.00

3350.00 0.00 0.00 100.00

2360.00 0.10 0.28 99.72

1700.00 1.01 2.88 96.84

1180.00 1.63 4.64 92.20

850.00 3.09 8.80 83.40

600.00 3.99 11.36 72.05

425.00 4.95 14.09 57.96

300.00 3.40 9.68 48.28

212.00 2.78 7.91 40.36

150.00 2.33 6.63 33.73

106.00 2.28 6.49 27.24

75.00 2.07 5.89 21.35

53.00 1.99 5.66 15.68

38.00 1.75 4.98 10.70

-38.00 3.76 10.70 0.00

Total 35.13 100.00

92

Table B.9. Product size distribution after impact breakage of -6.35+4.7 mm of

HPGR product (specific impact energy=0.23 kWh/t)

-6.35+4.7 mm

(HPGR product)

Specific Impact Energy (kWh/t)

0.23

Size (µm) Weight (g) Weight (%) Cumulative Percent

Passing

6350.00 0.00 0.00 100.00

4700.00 3.93 7.28 92.72

3350.00 12.04 22.31 70.41

2360.00 17.40 32.24 38.17

1700.00 7.17 13.29 24.88

1180.00 3.94 7.30 17.58

850.00 1.91 3.54 14.04

600.00 1.33 2.46 11.58

425.00 1.22 2.26 9.32

300.00 0.83 1.54 7.78

212.00 0.73 1.35 6.43

150.00 0.64 1.19 5.24

106.00 0.62 1.15 4.09

75.00 0.53 0.98 3.11

53.00 0.56 1.04 2.08

-53.00 1.12 2.08 0.00

Total 53.97 100.00

93

Table B.10. Product size distribution after impact breakage of -6.35+4.7 mm of

HPGR product (specific impact energy=0.45 kWh/t)

-6.35+4.7 mm

(HPGR product)

Specific Impact Energy (kWh/t)

0.45

Size (µm) Weight (g) Weight (%) Cumulative

Percent Passing

6350.00 0.00 0.00 100.00

4700.00 0.35 0.55 99.45

3350.00 9.54 15.04 84.41

2360.00 16.93 26.69 57.72

1700.00 10.84 17.09 40.63

1180.00 6.95 10.96 29.67

850.00 3.84 6.05 23.62

600.00 2.48 3.91 19.71

425.00 2.16 3.41 16.30

300.00 1.59 2.51 13.79

212.00 1.29 2.03 11.76

150.00 1.10 1.73 10.03

106.00 1.13 1.78 8.25

75.00 1.04 1.64 6.61

53.00 1.08 1.70 4.90

-53.00 3.11 4.90 0.00

Total 63.43 100.00

94

Table B.11. Product size distribution after impact breakage of -6.35+4.7 mm of

HPGR product (specific impact energy=0.88 kWh/t)

-6.35+4.7 mm

(HPGR product)

Specific Impact Energy (kWh/t)

0.88

Size (µm) Weight (g) Weight (%) Cumulative

Percent Passing

6350.00 0.00 0.00 100.00

4700.00 0.00 0.00 100.00

3350.00 1.04 1.70 98.30

2360.00 7.21 11.78 86.53

1700.00 10.02 16.36 70.16

1180.00 10.15 16.58 53.58

850.00 7.26 11.86 41.73

600.00 4.79 7.82 33.90

425.00 3.92 6.40 27.50

300.00 2.59 4.23 23.27

212.00 2.27 3.71 19.57

150.00 1.94 3.17 16.40

106.00 1.84 3.01 13.39

75.00 1.71 2.79 10.60

53.00 1.80 2.94 7.66

-53.00 4.69 7.66 0.00

Total 61.23 100.00

95

Table B.12. Product size distribution after impact breakage of -6.35+4.7 mm of

HPGR product (specific impact energy=1.74 kWh/t)

-6.35+4.7 mm

(HPGR product)

Specific Impact Energy (kWh/t)

1.74

Size (µm) Weight (g) Weight (%) Cumulative

Percent Passing

6350.00 0.00 0.00 100.00

4700.00 0.00 0.00 100.00

3350.00 0.07 0.11 99.89

2360.00 1.05 1.64 98.25

1700.00 4.33 6.77 91.48

1180.00 8.92 13.94 77.54

850.00 8.75 13.68 63.86

600.00 6.96 10.88 52.98

425.00 6.29 9.83 43.15

300.00 4.25 6.64 36.50

212.00 3.65 5.71 30.80

150.00 3.11 4.86 25.93

106.00 2.98 4.66 21.28

75.00 2.57 4.02 17.26

53.00 2.76 4.31 12.94

-53.00 8.28 12.94 0.00

Total 63.97 100.00

96

Table B.13. Product size distribution after impact breakage of -6.35+4.7 mm of

HPGR feed (specific impact energy=0.23 kwh/t)

-6.35+4.7 mm

(HPGR feed)

Specific Impact Energy (kWh/t)

0.23

Size (µm) Weight (g) Weight (%) Cumulative

Percent Passing

6350.00 0.00 0.00 100.00

4700.00 7.81 12.38 87.62

3350.00 19.18 30.41 57.21

2360.00 14.98 23.75 33.47

1700.00 7.13 11.30 22.16

1180.00 4.00 6.34 15.82

850.00 2.18 3.46 12.37

600.00 1.40 2.22 10.15

425.00 1.34 2.12 8.02

300.00 0.87 1.38 6.64

212.00 0.72 1.14 5.50

150.00 0.63 1.00 4.50

106.00 0.63 1.00 3.50

75.00 0.58 0.92 2.58

53.00 0.61 0.97 1.62

-53.00 1.02 1.62 0.00

Total 63.08 100.00

97

Table B.14. Product size distribution after impact breakage of -6.35+4.7 mm of

HPGR feed (specific impact energy=0.45 kWh/t)

-6.35+4.7 mm

(HPGR feed)

Specific Impact Energy (kWh/t)

0.45

Size (µm) Weight (g) Weight (%) Cumulative

Percent Passing

6350.00 0.00 0.00 100.00

4700.00 9.15 12.18 87.82

3350.00 8.65 11.52 76.30

2360.00 20.99 27.95 48.35

1700.00 11.59 15.43 32.92

1180.00 6.82 9.08 23.83

850.00 3.55 4.73 19.11

600.00 2.39 3.18 15.93

425.00 2.32 3.09 12.84

300.00 1.68 2.24 10.60

212.00 1.32 1.76 8.84

150.00 1.17 1.56 7.28

106.00 1.15 1.53 5.75

75.00 1.06 1.41 4.34

53.00 1.07 1.42 2.92

-53.00 2.19 2.92 0.00

Total 75.10 100.00

98

Table B.15. Product size distribution after impact breakage of -6.35+4.7 mm of

HPGR feed (specific impact energy=0.88 kWh/t)

-6.35+4.7 mm

(HPGR feed)

Specific Impact Energy (kWh/t)

0.88

Size (µm) Weight (g) Weight (%) Cumulative

Percent Passing

6350.00 0.00 0.00 100.00

4700.00 0.00 0.00 100.00

3350.00 2.41 3.16 96.84

2360.00 10.24 13.41 83.44

1700.00 12.45 16.30 67.13

1180.00 12.23 16.01 51.12

850.00 7.89 10.33 40.79

600.00 5.88 7.70 33.09

425.00 4.93 6.46 26.63

300.00 3.66 4.79 21.84

212.00 2.86 3.74 18.10

150.00 2.42 3.17 14.93

106.00 2.33 3.05 11.88

75.00 2.10 2.75 9.13

53.00 2.20 2.88 6.25

-53.00 4.77 6.25 0.00

Total 76.37 100.00

99

Table B.16. Product size distribution after impact breakage of -6.35+4.7 mm of

HPGR feed (specific impact energy=1.74 kWh/t)

-6.35+4.7 mm

(HPGR feed)

Specific Impact Energy (kWh/t)

1.74

Size (µm) Weight (g) Weight (%) Cumulative

Percent Passing

6350.00 0.00 0.00 100.00

4700.00 0.00 0.00 100.00

3350.00 0.00 0.00 100.00

2360.00 1.43 1.86 98.14

1700.00 4.14 5.37 92.77

1180.00 8.81 11.43 81.34

850.00 10.69 13.87 67.47

600.00 8.69 11.28 56.19

425.00 8.29 10.76 45.43

300.00 5.98 7.76 37.67

212.00 4.78 6.20 31.47

150.00 3.98 5.16 26.30

106.00 3.87 5.02 21.28

75.00 3.54 4.59 16.69

53.00 3.90 5.06 11.63

-53.00 8.96 11.63 0.00

Total 77.06 100.00

100

Table B.17. Product size distribution after impact breakage of -9.53+6.35 mm of

HPGR product (specific impact energy=0.10 kWh/t)

-9.53+6.35 mm

(HPGR product)

Specific Impact Energy (kWh/t)

0.1

Size (µm) Weight (g) Weight (%)

Cumulative

Percent

Passing

9530.00 0.00 0.00 100.00

6350.00 36.73 36.19 63.81

4700.00 21.84 21.52 42.28

3350.00 22.56 22.23 20.05

2360.00 7.78 7.67 12.39

1700.00 3.46 3.41 8.98

1180.00 2.04 2.01 6.97

850.00 1.32 1.30 5.67

600.00 0.90 0.89 4.78

425.00 0.90 0.89 3.89

300.00 0.65 0.64 3.25

212.00 0.56 0.55 2.70

150.00 0.53 0.52 2.18

106.00 0.50 0.49 1.69

75.00 0.49 0.48 1.20

-75.00 1.22 1.20 0.00

Total 101.48 100.00

101

Table B.18. Product size distribution after impact breakage of -9.53+6.35 mm of

HPGR product (specific impact energy=0.22 kWh/t)

-9.53+6.35 mm

(HPGR product)

Specific Impact Energy (kWh/t)

0.22

Size (µm) Weight (g) Weight (%) Cumulative

Percent Passing

9530.00 0.00 0.00 100.00

6350.00 7.86 14.36 85.64

4700.00 12.59 23.00 62.64

3350.00 15.16 27.69 34.95

2360.00 8.15 14.89 20.06

1700.00 3.22 5.88 14.18

1180.00 1.95 3.56 10.61

850.00 0.95 1.74 8.88

600.00 0.78 1.42 7.45

425.00 0.68 1.24 6.21

300.00 0.48 0.88 5.33

212.00 0.39 0.71 4.62

150.00 0.36 0.66 3.96

106.00 0.36 0.66 3.31

75.00 0.34 0.62 2.69

-75.00 1.47 2.69 0.00

Total 54.74 100.00

102

Table B.19. Product size distribution after impact breakage of -9.53+6.35 mm of

HPGR product (specific impact energy=0.55 kWh/t)

-9.53+6.35 mm

(HPGR product)

Specific Impact Energy (kWh/t)

0.55

Size (µm) Weight (g) Weight (%) Cumulative

Percent Passing

9530.00 0.00 0.00 100.00

6350.00 0.72 1.44 98.56

4700.00 2.28 4.55 94.01

3350.00 6.78 13.53 80.49

2360.00 10.22 20.39 60.10

1700.00 7.23 14.43 45.67

1180.00 6.05 12.07 33.60

850.00 3.12 6.23 27.37

600.00 2.23 4.45 22.92

425.00 2.06 4.11 18.81

300.00 1.43 2.85 15.96

212.00 1.23 2.45 13.51

150.00 1.06 2.11 11.39

106.00 1.02 2.04 9.36

75.00 0.92 1.84 7.52

-75.00 3.77 7.52 0.00

Total 50.12 100.00

103

Table B.20. Product size distribution after impact breakage of -9.53+6.35 mm of

HPGR product (specific impact energy=0.92 kWh/t)

-9.53+6.35 mm

(HPGR product)

Specific Impact Energy (kWh/t)

0.92

Size (µm) Weight (g) Weight (%) Cumulative

Percent Passing

9530.00 0.00 0.00 100.00

6350.00 0.41 0.75 99.25

4700.00 1.20 2.20 97.05

3350.00 5.86 10.74 86.31

2360.00 8.93 16.37 69.94

1700.00 6.91 12.67 57.27

1180.00 7.23 13.25 44.01

850.00 4.18 7.66 36.35

600.00 3.12 5.72 30.63

425.00 2.84 5.21 25.43

300.00 2.07 3.79 21.63

212.00 1.77 3.24 18.39

150.00 1.56 2.86 15.53

106.00 1.37 2.51 13.02

75.00 1.31 2.40 10.61

-75.00 5.79 10.61 0.00

Total 54.55 100.00

104

Table B.21. Product size distribution after impact breakage of -9.53+6.35 mm of

HPGR product (specific impact energy=2.21 kWh/t)

-9.53+6.35 mm

(HPGR product)

Specific Impact Energy (kWh/t)

2.21

Size (µm) Weight (g) Weight (%) Cumulative

Percent Passing

9530.00 0.00 0.00 100.00

6350.00 0.00 0.00 100.00

4700.00 0.15 0.31 99.69

3350.00 0.57 1.16 98.53

2360.00 2.66 5.43 93.10

1700.00 4.20 8.57 84.54

1180.00 6.94 14.16 70.38

850.00 5.96 12.16 58.22

600.00 4.57 9.32 48.90

425.00 3.77 7.69 41.21

300.00 2.88 5.88 35.33

212.00 2.43 4.96 30.38

150.00 2.07 4.22 26.15

106.00 2.07 4.22 21.93

75.00 1.89 3.86 18.07

-75.00 8.86 18.07 0.00

Total 49.02 100.00

105

Table B.22. Product size distribution after impact breakage of -9.53+6.35 mm of

HPGR product (specific impact energy=4.35 kWh/t)

-9.53+6.35 mm

(HPGR product)

Specific Impact Energy (kWh/t)

4.35

Size (µm) Weight (g) Weight (%) Cumulative

Percent Passing

9530.00 0.00 0.00 100.00

6350.00 0.00 0.00 100.00

4700.00 0.00 0.00 100.00

3350.00 1.60 3.40 96.60

2360.00 1.56 3.31 93.29

1700.00 3.01 6.39 86.91

1180.00 5.40 11.46 75.45

850.00 5.07 10.76 64.69

600.00 4.68 9.93 54.75

425.00 4.05 8.60 46.16

300.00 2.80 5.94 40.22

212.00 2.66 5.65 34.57

150.00 2.26 4.80 29.78

106.00 2.40 5.09 24.68

75.00 2.05 4.35 20.33

-75.00 9.58 20.33 0.00

Total 47.12 100.00

106

Table B.23. Product size distribution after impact breakage of -9.53+6.35 mm of

HPGR feed (specific impact energy=0.10 kWh/t)

-9.53+6.35 mm

(HPGR feed)

Specific Impact Energy (kWh/t)

0.1

Size (µm) Weight (g) Weight (%) Cumulative

Percent Passing

9530.00 0.00 0.00 100.00

6350.00 48.16 36.53 63.47

4700.00 31.64 24.00 39.48

3350.00 27.13 20.58 18.90

2360.00 9.94 7.54 11.36

1700.00 3.75 2.84 8.52

1180.00 2.41 1.83 6.69

850.00 1.56 1.18 5.51

600.00 1.14 0.86 4.64

425.00 1.21 0.92 3.72

300.00 0.83 0.63 3.09

212.00 0.67 0.51 2.59

150.00 0.62 0.47 2.12

106.00 0.62 0.47 1.65

75.00 0.56 0.42 1.22

-75.00 1.61 1.22 0.00

Total 131.85 100.00

107

Table B.24. Product size distribution after impact breakage of -9.53+6.35 mm of

HPGR feed (specific impact energy=0.22 kWh/t)

-9.53+6.35 mm

(HPGR feed)

Specific Impact Energy (kWh/t)

0.22

Size (µm) Weight (g) Weight (%) Cumulative

Percent Passing

9530.00 0.00 0.00 100.00

6350.00 40.87 27.75 72.25

4700.00 31.81 21.60 50.65

3350.00 36.22 24.59 26.06

2360.00 14.40 9.78 16.28

1700.00 6.39 4.34 11.94

1180.00 3.83 2.60 9.34

850.00 2.17 1.47 7.87

600.00 1.67 1.13 6.74

425.00 1.80 1.22 5.51

300.00 1.25 0.85 4.66

212.00 1.06 0.72 3.94

150.00 0.96 0.65 3.29

106.00 0.94 0.64 2.65

75.00 0.90 0.61 2.04

-75.00 3.01 2.04 0.00

Total 147.28 100.00

108

Table B.25. Product size distribution after impact breakage of -9.53+6.35 mm of

HPGR feed (specific impact energy=0.55 kWh/t)

-9.53+6.35 mm

(HPGR feed)

Specific Impact Energy (kWh/t)

0.55

Size (µm) Weight (g) Weight (%) Cumulative

Percent Passing

9530.00 0.00 0.00 100.00

6350.00 5.00 3.72 96.28

4700.00 13.81 10.27 86.01

3350.00 25.35 18.85 67.17

2360.00 23.33 17.35 49.82

1700.00 16.55 12.30 37.52

1180.00 11.22 8.34 29.17

850.00 7.27 5.41 23.77

600.00 4.99 3.71 20.06

425.00 5.03 3.74 16.32

300.00 3.78 2.81 13.51

212.00 2.90 2.16 11.35

150.00 2.51 1.87 9.49

106.00 2.50 1.86 7.63

75.00 2.20 1.64 5.99

-75.00 8.06 5.99 0.00

Total 134.50 100.00

109

Table B.26. Product size distribution after impact breakage of -9.53+6.35 mm of

HPGR feed (specific impact energy=0.92 kWh/t)

-9.53+6.35 mm

(HPGR feed)

Specific Impact Energy (kWh/t)

0.92

Size (µm) Weight (g) Weight (%) Cumulative

Percent Passing

9530.00 0.00 0.00 100.00

6350.00 0.29 0.21 99.79

4700.00 3.62 2.62 97.17

3350.00 13.55 9.79 87.38

2360.00 20.36 14.71 72.67

1700.00 20.73 14.98 57.69

1180.00 17.69 12.78 44.91

850.00 11.09 8.01 36.90

600.00 7.64 5.52 31.38

425.00 7.58 5.48 25.90

300.00 5.88 4.25 21.65

212.00 4.80 3.47 18.18

150.00 4.06 2.93 15.25

106.00 3.94 2.85 12.40

75.00 3.57 2.58 9.82

-75.00 13.59 9.82 0.00

Total 138.39 100.00

110

Table B.27. Product size distribution after impact breakage of -9.53+6.35 mm of

HPGR feed (specific impact energy=2.21 kWh/t)

-9.53+6.35 mm

(HPGR feed)

Specific Impact Energy (kWh/t)

2.21

Size (µm) Weight (g) Weight (%) Cumulative

Percent Passing

9530.00 0.00 0.00 100.00

6350.00 0.00 0.00 100.00

4700.00 0.00 0.00 100.00

3350.00 0.68 0.50 99.50

2360.00 6.73 4.98 94.52

1700.00 13.50 9.99 84.52

1180.00 17.97 13.30 71.22

850.00 15.02 11.12 60.10

600.00 11.35 8.40 51.70

425.00 11.30 8.36 43.34

300.00 8.48 6.28 37.06

212.00 7.58 5.61 31.45

150.00 6.60 4.89 26.57

106.00 6.27 4.64 21.92

75.00 5.83 4.32 17.61

-75.00 23.79 17.61 0.00

Total 135.10 100.00

111

Table B.28. Product size distribution after impact breakage of -9.53+6.35 mm of

HPGR feed (specific impact energy=4.35 kWh/t)

-9.53+6.35 mm

(HPGR feed)

Specific Impact Energy (kWh/t)

4.35

Size (µm) Weight (g) Weight (%) Cumulative

Percent Passing

9530.00 0.00 0.00 100.00

6350.00 0.00 0.00 100.00

4700.00 0.28 0.22 99.78

3350.00 4.79 3.81 95.96

2360.00 3.39 2.70 93.27

1700.00 7.79 6.20 87.07

1180.00 13.39 10.66 76.41

850.00 14.89 11.85 64.56

600.00 11.33 9.02 55.54

425.00 11.61 9.24 46.30

300.00 8.58 6.83 39.47

212.00 7.41 5.90 33.58

150.00 6.36 5.06 28.52

106.00 6.05 4.81 23.70

75.00 5.35 4.26 19.44

-75.00 24.43 19.44 0.00

Total 125.65 100.00

112

Table B.29. Product size distribution after impact breakage of -12.7+9.53 mm of

HPGR product (specific impact energy=0.03 kWh/t)

-12.7+9.53 mm

(HPGR product)

Specific Impact Energy (kWh/t)

0.03

Size (µm) Weight (g) Weight (%) Cumulative

Percent Passing

12700.00 0.00 0.00 100.00

9530.00 105.34 56.19 43.81

6350.00 62.82 33.51 10.31

4700.00 9.75 5.20 5.10

3350.00 4.08 2.18 2.93

2360.00 1.28 0.68 2.25

1700.00 0.75 0.40 1.85

1180.00 0.62 0.33 1.51

850.00 0.35 0.19 1.33

600.00 0.27 0.14 1.18

425.00 0.32 0.17 1.01

300.00 0.25 0.13 0.88

212.00 0.22 0.12 0.76

150.00 0.21 0.11 0.65

106.00 0.23 0.12 0.53

-106.00 0.99 0.53 0.00

Total 187.48 100.00

113

Table B.30. Product size distribution after impact breakage of -12.7+9.53 mm of

HPGR product (specific impact energy=0.11 kWh/t)

-12.7+9.53 mm

(HPGR product)

Specific Impact Energy (kWh/t)

0.11

Size (µm) Weight (g) Weight (%) Cumulative

Percent Passing

12700.00 0.00 0.00 100.00

9530.00 21.29 22.75 77.25

6350.00 34.01 36.34 40.91

4700.00 17.15 18.33 22.58

3350.00 8.22 8.78 13.80

2360.00 4.24 4.53 9.26

1700.00 2.21 2.36 6.90

1180.00 1.29 1.38 5.52

850.00 0.84 0.90 4.63

600.00 0.57 0.61 4.02

425.00 0.56 0.60 3.42

300.00 0.42 0.45 2.97

212.00 0.35 0.37 2.60

150.00 0.32 0.34 2.25

106.00 0.33 0.35 1.90

-106.00 1.78 1.90 0.00

Total 93.58 100.00

114

Table B.31. Product size distribution after impact breakage of -12.7+9.53 mm of

HPGR product (specific impact energy=0.22 kWh/t)

-12.7+9.53 mm

(HPGR product)

Specific Impact Energy (kWh/t)

0.22

Size (µm) Weight (g) Weight (%) Cumulative

Percent Passing

12700.00 0.00 0.00 100.00

9530.00 3.82 3.59 96.41

6350.00 36.12 33.99 62.42

4700.00 24.76 23.30 39.12

3350.00 16.25 15.29 23.83

2360.00 7.54 7.10 16.73

1700.00 3.86 3.63 13.10

1180.00 2.42 2.28 10.82

850.00 1.74 1.64 9.18

600.00 1.32 1.24 7.94

425.00 1.35 1.27 6.67

300.00 1.05 0.99 5.68

212.00 0.86 0.81 4.87

150.00 0.78 0.73 4.14

106.00 0.77 0.72 3.42

-106.00 3.63 3.42 0.00

Total 106.27 100.00

115

Table B.32. Product size distribution after impact breakage of -12.7+9.53 mm of

HPGR product (specific impact energy=0.44 kWh/t)

-12.7+9.53 mm

(HPGR product)

Specific Impact Energy (kWh/t)

0.44

Size (µm) Weight (g) Weight (%) Cumulative

Percent Passing

12700.00 0.00 0.00 100.00

9530.00 1.54 1.14 98.86

6350.00 14.99 11.10 87.75

4700.00 22.76 16.86 70.89

3350.00 24.74 18.33 52.57

2360.00 20.65 15.30 37.27

1700.00 11.54 8.55 28.72

1180.00 8.25 6.11 22.61

850.00 4.88 3.62 18.99

600.00 3.53 2.62 16.38

425.00 3.71 2.75 13.63

300.00 2.91 2.16 11.47

212.00 2.33 1.73 9.75

150.00 2.12 1.57 8.18

106.00 1.89 1.40 6.78

-106.00 9.15 6.78 0.00

Total 134.99 100.00

116

Table B.33. Product size distribution after impact breakage of -12.7+9.53 mm of

HPGR product (specific impact energy=0.88 kWh/t)

-12.7+9.53 mm

(HPGR product)

Specific Impact Energy (kWh/t)

0.88

Size (µm) Weight (g) Weight (%) Cumulative

Percent Passing

12700.00 0.00 0.00 100.00

9530.00 0.00 0.00 100.00

6350.00 2.26 1.87 98.13

4700.00 6.34 5.25 92.87

3350.00 14.91 12.35 80.52

2360.00 23.84 19.75 60.76

1700.00 16.91 14.01 46.75

1180.00 11.36 9.41 37.34

850.00 7.08 5.87 31.47

600.00 5.14 4.26 27.21

425.00 5.08 4.21 23.00

300.00 4.26 3.53 19.47

212.00 3.52 2.92 16.56

150.00 3.02 2.50 14.05

106.00 2.86 2.37 11.68

-106.00 14.10 11.68 0.00

Total 120.68 100.00

117

Table B.34. Product size distribution after impact breakage of -12.7+9.53 mm of

HPGR product (specific impact energy=1.32 kWh/t)

-12.7+9.53 mm

(HPGR product)

Specific Impact Energy (kWh/t)

1.32

Size (µm) Weight (g) Weight (%) Cumulative

Percent Passing

12700.00 0.00 0.00 100.00

9530.00 0.00 0.00 100.00

6350.00 0.00 0.00 100.00

4700.00 1.56 1.24 98.76

3350.00 9.42 7.46 91.30

2360.00 20.29 16.07 75.23

1700.00 19.57 15.50 59.72

1180.00 14.06 11.14 48.59

850.00 8.77 6.95 41.64

600.00 6.53 5.17 36.47

425.00 6.57 5.20 31.26

300.00 5.63 4.46 26.80

212.00 4.71 3.73 23.07

150.00 4.19 3.32 19.75

106.00 4.10 3.25 16.50

-106.00 20.83 16.50 0.00

Total 126.23 100.00

118

Table B.35. Product size distribution after impact breakage of -12.7+9.53 mm of

HPGR product (specific impact energy=1.7 kWh/t)

-12.7+9.53 mm

(HPGR product)

Specific Impact Energy (kWh/t)

1.7

Size (µm) Weight (g) Weight (%) Cumulative

Percent Passing

12700.00 0.00 0.00 100.00

9530.00 0.00 0.00 100.00

6350.00 0.00 0.00 100.00

4700.00 0.67 0.54 99.46

3350.00 5.59 4.48 94.99

2360.00 16.64 13.33 81.66

1700.00 18.75 15.02 66.65

1180.00 15.42 12.35 54.30

850.00 10.10 8.09 46.21

600.00 7.20 5.77 40.44

425.00 6.94 5.56 34.88

300.00 5.76 4.61 30.27

212.00 5.18 4.15 26.12

150.00 4.52 3.62 22.50

106.00 4.43 3.55 18.96

-106.00 23.67 18.96 0.00

Total 124.87 100.00

119

Table B.36. Product size distribution after impact breakage of -12.7+9.53 mm of

HPGR feed (specific impact energy=0.03 kWh/t)

-12.7+9.53 mm

(HPGR feed)

Specific Impact Energy (kWh/t)

0.03

Size (µm) Weight (g) Weight (%) Cumulative

Percent Passing

12700.00 0.00 0.00 100.00

9530.00 131.69 67.55 32.45

6350.00 47.01 24.11 8.34

4700.00 8.39 4.30 4.03

3350.00 2.75 1.41 2.63

2360.00 1.19 0.61 2.01

1700.00 0.70 0.36 1.65

1180.00 0.49 0.25 1.40

850.00 0.39 0.20 1.20

600.00 0.29 0.15 1.05

425.00 0.24 0.12 0.93

300.00 0.27 0.14 0.79

212.00 0.20 0.10 0.69

150.00 0.21 0.11 0.58

106.00 0.18 0.09 0.49

-106.00 0.96 0.49 0.00

Total 194.96 100.00

120

Table B.37. Product size distribution after impact breakage of -12.7+9.53 mm of

HPGR feed (specific impact energy=0.11 kWh/t)

-12.7+9.53 mm

(HPGR feed)

Specific Impact Energy (kWh/t)

0.11

Size (µm) Weight (g) Weight (%) Cumulative

Percent Passing

12700.00 0.00 0.00 100.00

9530.00 91.64 36.78 63.22

6350.00 77.30 31.02 32.20

4700.00 32.45 13.02 19.17

3350.00 20.91 8.39 10.78

2360.00 7.49 3.01 7.77

1700.00 4.01 1.61 6.16

1180.00 2.81 1.13 5.04

850.00 1.87 0.75 4.29

600.00 1.46 0.59 3.70

425.00 1.58 0.63 3.07

300.00 1.12 0.45 2.62

212.00 0.95 0.38 2.24

150.00 0.90 0.36 1.87

106.00 0.90 0.36 1.51

-106.00 3.77 1.51 0.00

Total 249.16 100.00

121

Table B.38. Product size distribution after impact breakage of -12.7+9.53 mm of

HPGR feed (specific impact energy=0.22 kWh/t)

-12.7+9.53 mm

(HPGR feed)

Specific Impact Energy (kWh/t)

0.22

Size (µm) Weight (g) Weight (%) Cumulative

Percent Passing

12700.00 0.00 0.00 100.00

9530.00 17.60 5.27 94.73

6350.00 76.86 23.03 71.69

4700.00 87.34 26.17 45.52

3350.00 56.42 16.91 28.61

2360.00 27.01 8.09 20.51

1700.00 13.29 3.98 16.53

1180.00 9.57 2.87 13.66

850.00 6.41 1.92 11.74

600.00 5.03 1.51 10.23

425.00 5.76 1.73 8.51

300.00 4.75 1.42 7.08

212.00 3.82 1.14 5.94

150.00 3.27 0.98 4.96

106.00 3.32 0.99 3.96

-106.00 13.23 3.96 0.00

Total 333.68 100.00

122

Table B.39. Product size distribution after impact breakage of -12.7+9.53 mm of

HPGR feed (specific impact energy=0.44 kWh/t)

-12.7+9.53 mm

(HPGR feed)

Specific Impact Energy (kWh/t)

0.44

Size (µm) Weight (g) Weight (%) Cumulative

Percent Passing

12700.00 0.00 0.00 100.00

9530.00 1.32 0.36 99.64

6350.00 29.60 8.03 91.61

4700.00 69.57 18.87 72.74

3350.00 70.33 19.08 53.67

2360.00 56.23 15.25 38.41

1700.00 30.33 8.23 30.19

1180.00 21.24 5.76 24.43

850.00 12.77 3.46 20.96

600.00 10.13 2.75 18.21

425.00 11.23 3.05 15.17

300.00 9.32 2.53 12.64

212.00 7.43 2.02 10.62

150.00 6.33 1.72 8.91

106.00 6.09 1.65 7.26

-106.00 26.75 7.26 0.00

Total 368.67 100.00

123

Table B.40. Product size distribution after impact breakage of -12.7+9.53 mm of

HPGR feed (specific impact energy=0.88 kWh/t)

-12.7+9.53 mm

(HPGR feed)

Specific Impact Energy (kWh/t)

0.88

Size (µm) Weight (g) Weight (%) Cumulative

Percent Passing

12700.00 0.00 0.00 100.00

9530.00 0.00 0.00 100.00

6350.00 3.04 0.89 99.11

4700.00 16.07 4.72 94.39

3350.00 44.91 13.19 81.19

2360.00 62.37 18.32 62.87

1700.00 43.41 12.75 50.12

1180.00 32.03 9.41 40.71

850.00 19.21 5.64 35.07

600.00 14.86 4.37 30.70

425.00 16.30 4.79 25.91

300.00 14.08 4.14 21.78

212.00 11.60 3.41 18.37

150.00 9.96 2.93 15.44

106.00 9.50 2.79 12.65

-106.00 43.07 12.65 0.00

Total 340.41 100.00

124

Table B.41. Product size distribution after impact breakage of -12.7+9.53 mm of

HPGR feed (specific impact energy=1.32 kWh/t)

-12.7+9.53 mm

(HPGR feed)

Specific Impact Energy (kWh/t)

1.32

Size (µm) Weight (g) Weight (%) Cumulative

Percent Passing

12700.00 0.00 0.00 100.00

9530.00 0.00 0.00 100.00

6350.00 0.87 0.31 99.69

4700.00 3.27 1.18 98.50

3350.00 16.86 6.10 92.40

2360.00 39.86 14.42 77.98

1700.00 39.99 14.47 63.51

1180.00 31.83 11.52 51.99

850.00 19.74 7.14 44.85

600.00 14.52 5.25 39.59

425.00 16.41 5.94 33.65

300.00 13.70 4.96 28.70

212.00 11.62 4.20 24.49

150.00 9.96 3.60 20.89

106.00 9.65 3.49 17.39

-106.00 48.07 17.39 0.00

Total 276.35 100.00

125

Table B.42. Product size distribution after impact breakage of -12.7+9.53 mm of

HPGR feed (specific impact energy=1.70 kWh/t)

-12.7+9.53 mm

(HPGR feed)

Specific Impact Energy (kWh/t)

1.7

Size (µm) Weight (g) Weight (%) Cumulative

Percent Passing

12700.00 0.00 0.00 100.00

9530.00 0.00 0.00 100.00

6350.00 0.40 0.12 99.88

4700.00 2.89 0.85 99.03

3350.00 19.43 5.73 93.30

2360.00 43.82 12.92 80.37

1700.00 47.09 13.89 66.48

1180.00 38.97 11.49 54.99

850.00 25.40 7.49 47.50

600.00 19.03 5.61 41.89

425.00 20.21 5.96 35.92

300.00 16.57 4.89 31.04

212.00 15.03 4.43 26.60

150.00 12.93 3.81 22.79

106.00 12.62 3.72 19.07

-106.00 64.65 19.07 0.00

Total 339.04 100.00

126

Table B.43. Product size distribution after impact breakage of -19.0+12.7 mm of

HPGR product (specific impact energy=0.03 kWh/t)

-19+12.7 mm

(HPGR product)

Specific Impact Energy (kWh/t)

0.03

Size (µm) Weight (g) Weight (%) Cumulative

Percent Passing

19000.00 0.00 0.00 100.00

12700.00 203.12 60.70 39.30

9530.00 68.25 20.40 18.90

6350.00 40.92 12.23 6.67

4700.00 7.70 2.30 4.37

3350.00 5.36 1.60 2.77

2360.00 1.69 0.51 2.27

1700.00 1.43 0.43 1.84

1180.00 0.96 0.29 1.55

850.00 0.65 0.19 1.36

600.00 0.58 0.17 1.18

425.00 0.64 0.19 0.99

300.00 0.50 0.15 0.84

212.00 0.43 0.13 0.71

150.00 0.40 0.12 0.59

-150.00 1.99 0.59 0.00

Total 334.62 100.00

127

Table B.44. Product size distribution after impact breakage of -19.0+12.7 mm of

HPGR product (specific impact energy=0.11 kWh/t)

-19+12.7 mm

(HPGR product)

Specific Impact Energy (kWh/t)

0.11

Size (µm) Weight (g) Weight (%) Cumulative

Percent Passing

19000.00 0.00 0.00 100.00

12700.00 30.20 24.40 75.60

9530.00 34.96 28.24 47.36

6350.00 28.39 22.94 24.42

4700.00 10.17 8.22 16.21

3350.00 6.41 5.18 11.03

2360.00 3.35 2.71 8.32

1700.00 1.80 1.45 6.87

1180.00 1.37 1.11 5.76

850.00 0.96 0.78 4.98

600.00 0.79 0.64 4.35

425.00 0.84 0.68 3.67

300.00 0.68 0.55 3.12

212.00 0.57 0.46 2.66

150.00 0.50 0.40 2.25

-150.00 2.79 2.25 0.00

Total 123.78 100.00

128

Table B.45. Product size distribution after impact breakage of -19.0+12.7 mm of

HPGR product (specific impact energy=0.22 kWh/t)

-19+12.7 mm

(HPGR product)

Specific Impact Energy (kWh/t)

0.22

Size (µm) Weight (g) Weight (%) Cumulative

Percent Passing

19000.00 0.00 0.00 100.00

12700.00 0.00 0.00 100.00

9530.00 21.75 18.94 81.06

6350.00 34.54 30.08 50.98

4700.00 19.55 17.03 33.95

3350.00 12.13 10.56 23.38

2360.00 7.13 6.21 17.17

1700.00 4.12 3.59 13.59

1180.00 2.73 2.38 11.21

850.00 1.87 1.63 9.58

600.00 1.47 1.28 8.30

425.00 1.48 1.29 7.01

300.00 1.16 1.01 6.00

212.00 0.98 0.85 5.15

150.00 0.88 0.77 4.38

-150.00 5.03 4.38 0.00

Total 114.82 100.00

129

Table B.46. Product size distribution after impact breakage of -19.0+12.7 mm of

HPGR product (specific impact energy=0.44 kWh/t)

-19+12.7 mm

(HPGR product)

Specific Impact Energy (kWh/t)

0.44

Size (µm) Weight (g) Weight (%) Cumulative

Percent Passing

19000.00 0.00 0.00 100.00

12700.00 0.00 0.00 100.00

9530.00 5.11 3.63 96.37

6350.00 28.20 20.01 76.37

4700.00 26.42 18.74 57.62

3350.00 25.68 18.22 39.40

2360.00 12.86 9.12 30.28

1700.00 7.79 5.53 24.75

1180.00 5.72 4.06 20.70

850.00 3.89 2.76 17.94

600.00 3.20 2.27 15.67

425.00 3.29 2.33 13.33

300.00 2.76 1.96 11.37

212.00 2.42 1.72 9.66

150.00 2.08 1.48 8.18

-150.00 11.53 8.18 0.00

Total 140.95 100.00

130

Table B.47. Product size distribution after impact breakage of -19.0+12.7 mm of

HPGR product (specific impact energy=0.88 kWh/t)

-19+12.7 mm

(HPGR product)

Specific Impact Energy (kWh/t)

0.88

Size (µm) Weight (g) Weight (%) Cumulative

Percent Passing

19000.00 0.00 0.00 100.00

12700.00 0.00 0.00 100.00

9530.00 1.87 1.09 98.91

6350.00 12.47 7.29 91.61

4700.00 19.48 11.39 80.22

3350.00 24.83 14.52 65.70

2360.00 28.32 16.56 49.14

1700.00 16.95 9.91 39.23

1180.00 11.89 6.95 32.27

850.00 7.65 4.47 27.80

600.00 5.87 3.43 24.37

425.00 6.21 3.63 20.74

300.00 5.43 3.18 17.56

212.00 4.47 2.61 14.95

150.00 3.78 2.21 12.74

-150.00 21.78 12.74 0.00

Total 171.00 100.00

131

Table B.48. Product size distribution after impact breakage of -19.0+12.7 mm of

HPGR feed (specific impact energy=0.03 kWh/t)

-19+12.7 mm

(HPGR feed)

Specific Impact Energy (kWh/t)

0.03

Size (µm) Weight (g) Weight (%) Cumulative

Percent Passing

19000.00 0.00 0.00 100.00

12700.00 507.27 60.62 39.38

9530.00 142.17 16.99 22.39

6350.00 113.53 13.57 8.82

4700.00 24.53 2.93 5.89

3350.00 16.92 2.02 3.87

2360.00 8.56 1.02 2.84

1700.00 4.27 0.51 2.33

1180.00 3.04 0.36 1.97

850.00 2.12 0.25 1.72

600.00 1.75 0.21 1.51

425.00 2.08 0.25 1.26

300.00 1.62 0.19 1.06

212.00 1.40 0.17 0.90

150.00 1.34 0.16 0.74

-150.00 6.17 0.74 0.00

Total 836.77 100.00

132

Table B.49. Product size distribution after impact breakage of -19.0+12.7 mm of

HPGR feed (specific impact energy=0.11 kWh/t)

-19+12.7 mm

(HPGR feed)

Specific Impact Energy (kWh/t)

0.11

Size (µm) Weight (g) Weight (%) Cumulative

Percent Passing

19000.00 0.00 0.00 100.00

12700.00 170.17 20.92 79.08

9530.00 187.97 23.11 55.96

6350.00 215.89 26.55 29.42

4700.00 78.90 9.70 19.71

3350.00 49.02 6.03 13.69

2360.00 26.73 3.29 10.40

1700.00 14.05 1.73 8.67

1180.00 11.35 1.40 7.28

850.00 7.37 0.91 6.37

600.00 6.40 0.79 5.58

425.00 7.63 0.94 4.64

300.00 6.02 0.74 3.90

212.00 4.91 0.60 3.30

150.00 4.35 0.53 2.77

-150.00 22.49 2.77 0.00

Total 813.25 100.00

133

Table B.50. Product size distribution after impact breakage of -19.0+12.7 mm of

HPGR feed (specific impact energy=0.22 kWh/t)

-19+12.7 mm

(HPGR feed)

Specific Impact Energy (kWh/t)

0.22

Size (µm) Weight (g) Weight (%) Cumulative

Percent Passing

19000.00 0.00 0.00 100.00

12700.00 34.34 4.75 95.25

9530.00 92.01 12.72 82.53

6350.00 235.33 32.53 50.00

4700.00 107.73 14.89 35.11

3350.00 78.94 10.91 24.20

2360.00 43.82 6.06 18.14

1700.00 22.60 3.12 15.01

1180.00 18.08 2.50 12.51

850.00 12.20 1.69 10.83

600.00 10.30 1.42 9.40

425.00 11.37 1.57 7.83

300.00 9.45 1.31 6.53

212.00 7.53 1.04 5.49

150.00 6.44 0.89 4.60

-150.00 33.24 4.60 0.00

Total 723.38 100.00

134

Table B.51. Product size distribution after impact breakage of -19.0+12.7 mm of

HPGR feed (specific impact energy=0.44 kWh/t)

-19+12.7 mm

(HPGR feed)

Specific Impact Energy (kWh/t)

0.44

Size (µm) Weight (g) Weight (%) Cumulative

Percent Passing

19000.00 0.00 0.00 100.00

12700.00 26.43 3.54 96.46

9530.00 33.59 4.50 91.96

6350.00 145.97 19.56 72.40

4700.00 122.14 16.37 56.03

3350.00 108.27 14.51 41.52

2360.00 77.23 10.35 31.17

1700.00 43.71 5.86 25.31

1180.00 32.12 4.30 21.01

850.00 21.21 2.84 18.16

600.00 16.93 2.27 15.90

425.00 19.45 2.61 13.29

300.00 15.99 2.14 11.15

212.00 12.97 1.74 9.41

150.00 11.10 1.49 7.92

-150.00 59.11 7.92 0.00

Total 746.22 100.00

135

Table B.52. Product size distribution after impact breakage of -19.0+12.7 mm of

HPGR feed (specific impact energy=0.88 kWh/t)

-19+12.7 mm

(HPGR feed)

Specific Impact Energy (kWh/t)

0.88

Size (µm) Weight (g) Weight (%) Cumulative

Percent Passing

19000.00 0.00 0.00 100.00

12700.00 0.00 0.00 100.00

9530.00 3.17 0.42 99.58

6350.00 68.07 8.94 90.64

4700.00 89.93 11.81 78.83

3350.00 122.57 16.10 62.73

2360.00 106.71 14.02 48.71

1700.00 64.99 8.54 40.17

1180.00 49.49 6.50 33.67

850.00 33.20 4.36 29.31

600.00 26.77 3.52 25.80

425.00 30.66 4.03 21.77

300.00 25.50 3.35 18.42

212.00 21.03 2.76 15.66

150.00 18.06 2.37 13.28

-150.00 101.13 13.28 0.00

Total 761.28 100.00

136

Table B.53. Product size distribution after impact breakage of -25.4+19.0 mm of

HPGR product (specific impact energy=0.01 kWh/t)

-25.4+19.0 mm

(HPGR product)

Specific Impact Energy (kWh/t)

0.01

Size (µm) Weight (g) Weight (%) Cumulative

Percent Passing

25400.00 0.00 0.00 100.00

19000.00 239.56 73.25 26.75

12700.00 74.34 22.73 4.02

9530.00 6.49 1.98 2.04

6350.00 2.31 0.71 1.34

4700.00 1.06 0.32 1.01

3350.00 0.51 0.16 0.86

2360.00 0.40 0.12 0.73

1700.00 0.27 0.08 0.65

1180.00 0.23 0.07 0.58

850.00 0.20 0.06 0.52

600.00 0.19 0.06 0.46

425.00 0.24 0.07 0.39

300.00 0.18 0.06 0.33

212.00 0.15 0.05 0.29

-212.00 0.94 0.29 0.00

Total 327.06 100.00

137

Table B.54. Product size distribution after impact breakage of -25.4+19.0 mm of

HPGR product (specific impact energy=0.05 kWh/t)

-25.4+19.0 mm

(HPGR product)

Specific Impact Energy (kWh/t)

0.05

Size (µm) Weight (g) Weight (%) Cumulative

Percent Passing

25400.00 0.00 0.00 100.00

19000.00 76.90 20.88 79.12

12700.00 206.18 55.97 23.15

9530.00 40.58 11.02 12.13

6350.00 20.29 5.51 6.63

4700.00 5.19 1.41 5.22

3350.00 4.63 1.26 3.96

2360.00 2.66 0.72 3.24

1700.00 1.93 0.52 2.71

1180.00 1.64 0.45 2.27

850.00 1.09 0.30 1.97

600.00 0.91 0.25 1.73

425.00 1.03 0.28 1.45

300.00 0.81 0.22 1.23

212.00 0.66 0.18 1.05

-212.00 3.86 1.05 0.00

Total 368.36 100.00

138

Table B.55. Product size distribution after impact breakage of -25.4+19.0 mm of

HPGR product (specific impact energy=0.11 kWh/t)

-25.4+19.0 mm

(HPGR product)

Specific Impact Energy (kWh/t)

0.11

Size (µm) Weight (g) Weight (%) Cumulative

Percent Passing

25400.00 0.00 0.00 100.00

19000.00 12.75 3.93 96.07

12700.00 122.51 37.80 58.27

9530.00 94.68 29.21 29.06

6350.00 50.44 15.56 13.50

4700.00 11.23 3.46 10.03

3350.00 8.53 2.63 7.40

2360.00 4.68 1.44 5.96

1700.00 3.56 1.10 4.86

1180.00 3.02 0.93 3.93

850.00 1.86 0.57 3.35

600.00 1.43 0.44 2.91

425.00 1.60 0.49 2.42

300.00 1.14 0.35 2.07

212.00 0.94 0.29 1.78

-212.00 5.76 1.78 0.00

Total 324.13 100.00

139

Table B.56. Product size distribution after impact breakage of -25.4+19.0 mm of

HPGR product (specific impact energy=0.22 kWh/t)

-25.4+19.0 mm

(HPGR product)

Specific Impact Energy (kWh/t)

0.22

Size (µm) Weight (g) Weight (%) Cumulative

Percent Passing

25400.00 0.00 0.00 100.00

19000.00 0.00 0.00 100.00

12700.00 39.03 25.81 74.19

9530.00 33.01 21.83 52.37

6350.00 34.79 23.00 29.36

4700.00 10.89 7.20 22.16

3350.00 10.00 6.61 15.55

2360.00 5.89 3.89 11.66

1700.00 3.40 2.25 9.41

1180.00 2.89 1.91 7.50

850.00 1.69 1.12 6.38

600.00 1.31 0.87 5.51

425.00 1.23 0.81 4.70

300.00 0.98 0.65 4.05

212.00 0.85 0.56 3.49

-212.00 5.28 3.49 0.00

Total 151.24 100.00

140

Table B.57. Product size distribution after impact breakage of -25.4+19.0 mm of

HPGR product (specific impact energy=0.59 kWh/t)

-25.4+19.0 mm

(HPGR product)

Specific Impact Energy (kWh/t)

0.59

Size (µm) Weight (g) Weight (%) Cumulative

Percent Passing

25400.00 0.00 0.00 100.00

19000.00 0.00 0.00 100.00

12700.00 8.85 4.59 95.41

9530.00 16.75 8.69 86.72

6350.00 34.52 17.91 68.80

4700.00 32.46 16.84 51.96

3350.00 25.22 13.09 38.88

2360.00 19.27 10.00 28.88

1700.00 8.91 4.62 24.25

1180.00 7.49 3.89 20.37

850.00 5.21 2.70 17.66

600.00 4.25 2.21 15.46

425.00 4.36 2.26 13.20

300.00 3.68 1.91 11.29

212.00 3.04 1.58 9.71

-212.00 18.71 9.71 0.00

Total 192.72 100.00

141

Table B.58. Product size distribution after impact breakage of -25.4+19.0 mm of

HPGR product (specific impact energy=0.88 kWh/t)

-25.4+19.0 mm

(HPGR product)

Specific Impact Energy (kWh/t)

0.88

Size (µm) Weight (g) Weight (%) Cumulative

Percent Passing

25400.00 0.00 0.00 100.00

19000.00 0.00 0.00 100.00

12700.00 0.00 0.00 100.00

9530.00 3.93 2.33 97.67

6350.00 18.79 11.13 86.54

4700.00 20.96 12.42 74.12

3350.00 29.65 17.57 56.55

2360.00 19.59 11.61 44.95

1700.00 12.69 7.52 37.43

1180.00 9.51 5.63 31.79

850.00 6.72 3.98 27.81

600.00 5.53 3.28 24.53

425.00 6.06 3.59 20.94

300.00 5.21 3.09 17.86

212.00 4.24 2.51 15.35

-212.00 25.90 15.35 0.00

Total 168.78 100.00

142

Table B.59. Product size distribution after impact breakage of -25.4+19.0 mm of

HPGR feed (specific impact energy=0.01 kWh/t)

-25.4+19.0 mm

(HPGR feed)

Specific Impact Energy (kWh/t)

0.01

Size (µm) Weight (g) Weight (%) Cumulative

Percent Passing

25400.00 0.00 0.00 100.00

19000.00 492.00 75.09 24.91

12700.00 133.25 20.34 4.57

9530.00 16.77 2.56 2.01

6350.00 4.25 0.65 1.36

4700.00 1.36 0.21 1.16

3350.00 1.41 0.22 0.94

2360.00 0.94 0.14 0.80

1700.00 0.64 0.10 0.70

1180.00 0.44 0.07 0.63

850.00 0.35 0.05 0.58

600.00 0.37 0.06 0.52

425.00 0.52 0.08 0.44

300.00 0.43 0.07 0.38

212.00 0.36 0.05 0.32

-212.00 2.11 0.32 0.00

Total 655.20 100.00

143

Table B.60. Product size distribution after impact breakage of -25.4+19.0 mm of

HPGR feed (specific impact energy=0.05 kWh/t)

-25.4+19.0 mm

(HPGR feed)

Specific Impact Energy (kWh/t)

0.05

Size (µm) Weight (g) Weight (%) Cumulative

Percent Passing

25400.00 0.00 0.00 100.00

19000.00 96.09 23.90 76.10

12700.00 157.07 39.06 37.04

9530.00 92.57 23.02 14.02

6350.00 24.08 5.99 8.03

4700.00 7.71 1.92 6.11

3350.00 7.29 1.81 4.30

2360.00 3.45 0.86 3.44

1700.00 2.27 0.56 2.87

1180.00 1.97 0.49 2.39

850.00 1.30 0.32 2.06

600.00 1.07 0.27 1.80

425.00 1.18 0.29 1.50

300.00 0.92 0.23 1.27

212.00 0.79 0.20 1.08

-212.00 4.33 1.08 0.00

Total 402.09 100.00

144

Table B.61. Product size distribution after impact breakage of -25.4+19.0 mm of

HPGR feed (specific impact energy=0.11 kWh/t)

-25.4+19.0 mm

(HPGR feed)

Specific Impact Energy (kWh/t)

0.11

Size (µm) Weight (g) Weight (%) Cumulative

Percent Passing

25400.00 0.00 0.00 100.00

19000.00 80.14 20.94 79.06

12700.00 84.21 22.00 57.06

9530.00 90.91 23.75 33.30

6350.00 52.88 13.82 19.48

4700.00 22.58 5.90 13.58

3350.00 13.16 3.44 10.15

2360.00 7.99 2.09 8.06

1700.00 4.93 1.29 6.77

1180.00 4.10 1.07 5.70

850.00 2.72 0.71 4.99

600.00 2.31 0.60 4.38

425.00 2.64 0.69 3.69

300.00 2.20 0.57 3.12

212.00 1.95 0.51 2.61

-212.00 9.99 2.61 0.00

Total 382.71 100.00

145

Table B.62. Product size distribution after impact breakage of -25.4+19.0 mm of

HPGR feed (specific impact energy=0.22 kWh/t)

-25.4+19.0 mm

(HPGR feed)

Specific Impact Energy (kWh/t)

0.22

Size (µm) Weight (g) Weight (%) Cumulative

Percent Passing

25400.00 0.00 0.00 100.00

19000.00 17.01 5.63 94.37

12700.00 22.05 7.30 87.08

9530.00 84.53 27.97 59.11

6350.00 71.55 23.67 35.43

4700.00 27.16 8.99 26.44

3350.00 20.49 6.78 19.66

2360.00 13.16 4.35 15.31

1700.00 7.45 2.47 12.84

1180.00 5.92 1.96 10.89

850.00 4.54 1.50 9.38

600.00 3.43 1.13 8.25

425.00 4.16 1.38 6.87

300.00 3.32 1.10 5.77

212.00 2.71 0.90 4.88

-212.00 14.74 4.88 0.00

Total 302.22 100.00

146

Table B.63. Product size distribution after impact breakage of -25.4+19.0 mm of

HPGR feed (specific impact energy=0.59 kWh/t)

-25.4+19.0 mm

(HPGR feed)

Specific Impact Energy (kWh/t)

0.59

Size (µm) Weight (g) Weight (%) Cumulative

Percent Passing

25400.00 0.00 0.00 100.00

19000.00 0.00 0.00 100.00

12700.00 9.92 2.96 97.04

9530.00 22.53 6.72 90.31

6350.00 52.19 15.58 74.74

4700.00 55.88 16.68 58.06

3350.00 48.73 14.54 43.51

2360.00 33.70 10.06 33.45

1700.00 19.43 5.80 27.65

1180.00 14.63 4.37 23.29

850.00 10.22 3.05 20.24

600.00 8.53 2.55 17.69

425.00 8.98 2.68 15.01

300.00 7.45 2.22 12.79

212.00 6.51 1.94 10.84

-212.00 36.33 10.84 0.00

Total 335.03 100.00

147

Table B.64. Product size distribution after impact breakage of -25.4+19.0 mm of

HPGR feed (specific impact energy=0.88 kWh/t)

-25.4+19.0 mm

(HPGR feed)

Specific Impact Energy (kWh/t)

0.88

Size (µm) Weight (g) Weight (%) Cumulative

Percent Passing

25400.00 0.00 0.00 100.00

19000.00 0.00 0.00 100.00

12700.00 4.48 1.34 98.66

9530.00 10.34 3.09 95.58

6350.00 41.32 12.34 83.24

4700.00 47.26 14.11 69.13

3350.00 48.62 14.52 54.61

2360.00 40.07 11.96 42.65

1700.00 21.56 6.44 36.21

1180.00 17.20 5.14 31.08

850.00 12.41 3.71 27.37

600.00 10.38 3.10 24.27

425.00 12.76 3.81 20.46

300.00 10.52 3.14 17.32

212.00 8.91 2.66 14.66

-212.00 49.11 14.66 0.00

Total 334.94 100.00

148

Table B.65. t10 and d50 of HPGR product

HPGR product

Size Fraction Specific Impact Energy

(kWh/t)

Median Product Size, d50

(micron)

t10

(%)

-25.4+19 mm

0.88 2791 43.19

0.59 4843 27.80

0.22 9203 11.12

0.11 11923 5.70

0.05 16346 3.12

0.01 21805 0.71

-19+12.7 mm

0.88 2411 37.38

0.44 4135 23.68

0.22 6255 12.95

0.11 9827 6.57

0.03 14081 1.89

-12.7+9.53

mm

1.70 1005 52.45

1.32 1246 47.01

0.88 1853 36.00

0.44 3184 21.78

0.22 5470 10.45

0.11 7218 5.32

0.03 9978 1.47

-9.53+6.35

mm

4.35 499 62.00

2.21 627 55.70

0.92 1408 34.80

0.55 1894 26.17

0.22 4124 8.49

0.10 5313 5.43

149

Table B.65 (continued)

HPGR product

Size Fraction Specific Impact

Energy (kWh/t)

Median Product Size, d50

(micron)

t10

(%)

-6.35+4.7 mm

1.74 547 50.09

0.88 1080 32.02

0.45 2062 18.71

0.23 2745 11.37

-4.7+3.35 mm

3.32 279 59.37

2.18 422 48.40

1.09 871 28.97

0.54 1439 18.35

Table B.66. t10 and d50 of HPGR feed

HPGR feed

Size Fraction Specific Impact

Energy (kWh/t)

Median Product Size, d50

(micron)

t10

(%)

-25.4+19 mm

0.88 2968 7.40

0.59 3952 5.56

0.22 8307 2.64

0.11 11837 1.86

0.05 15021 1.46

0.01 21977 1.00

-19+12.7 mm

0.88 2451 6.34

0.44 4319 3.60

0.22 6350 2.45

0.11 8816 1.76

0.03 14073 1.10

150

Table B.66 (continued)

HPGR feed

Size Fraction Specific Impact Energy

(kWh/t)

Median Product Size, d50

(micron)

t10

(%)

-12.7+9.53 mm

1.70 960 11.46

1.32 1088 10.11

0.88 1693 6.50

0.44 3112 3.54

0.22 4982 2.21

0.11 8275 1.33

0.03 10641 1.03

-9.53+6.35 mm

4.35 492 15.82

2.21 562 13.84

0.92 1380 5.64

0.55 2370 3.28

0.22 4669 1.67

0.10 5459 1.42

-6.35+4.7 mm

1.74 499 10.95

0.88 1144 4.78

0.45 2418 2.26

0.23 3049 1.79

-4.7+3.35 mm

3.32 322 12.32

2.18 460 8.63

1.09 891 4.45

0.54 1969 2.02

151

APPENDIX C

BLANK SIEVE ANALYSIS OF MONOSIZE MATERIAL USED IN BATCH

GRINDING OF HPGR PRODUCT AND HPGR FEED

Table C.1. Size distribution of -3.35+2.36 mm HPGR product used for ball milling

(dB =19.05 mm, ɸBALL=0.35)

Size (µm) Weight (g) Weight (%) Cum. Percent Passing

3350 0.00 0.00 100.00

2360 695.40 96.58 3.42

1700 18.05 2.51 0.91

1180 1.53 0.21 0.70

850 0.54 0.08 0.51

600 0.51 0.07 0.42

425 0.45 0.06 0.40

300 0.40 0.06 0.36

212 0.36 0.05 0.32

150 0.31 0.04 0.31

106 0.28 0.04 0.31

-106 2.16 0.30 0.00

720.00

152

Table C.2. Size distribution of -3.35+2.36 mm HPGR product used for ball milling

(dB =25.4 mm, ɸBALL=0.35)

Size (µm) Weight (g) Weight (%) Cum. Percent Passing

3350 0.00 0.00 100.00

2360.00 701.81 97.47 2.53

1700.00 10.61 1.47 1.05

1180.00 1.50 0.21 0.84

850.00 0.84 0.12 0.73

600.00 0.62 0.09 0.64

425.00 0.60 0.08 0.56

300.00 0.45 0.06 0.50

212.00 0.36 0.05 0.45

150.00 0.33 0.05 0.40

106.00 0.34 0.05 0.35

-106.00 2.54 0.35 0.00

720.00

Table C.3. Size distribution of -3.35+2.36 mm HPGR product used for ball milling

(dB =31.75 mm, ɸBALL=0.35)

Size (µm) Weight (g) Weight (%) Cum. Percent Passing

3350.00 0.00 0.00 100.00

2360.00 703.51 97.71 2.29

1700.00 9.56 1.33 0.96

1180.00 1.63 0.23 0.74

850.00 0.69 0.10 0.64

600.00 0.49 0.07 0.57

425.00 0.52 0.07 0.50

300.00 0.38 0.05 0.45

212.00 0.34 0.05 0.40

150.00 0.31 0.04 0.36

106.00 0.33 0.05 0.31

-106.00 2.24 0.31 0.00

720.00

153

Table C.4. Size distribution of -3.35+2.36 mm HPGR feed used for ball milling

(dB=19.05 mm, ɸBALL=0.35)

Size (µm) Weight (g) Weight (%) Cum. Percent Passing

3350 0.00 0.00 100.00

2360.00 701.90 97.49 2.51

1700.00 11.71 1.63 0.89

1180.00 0.62 0.09 0.80

850.00 0.28 0.04 0.76

600.00 0.26 0.04 0.73

425.00 0.34 0.05 0.68

300.00 0.28 0.04 0.64

212.00 0.28 0.04 0.60

150.00 0.28 0.04 0.56

106.00 0.46 0.06 0.50

-106.00 3.57 0.50 0.00

Total 720 100.00

Table C.5. Size distribution of -3.35+2.36 mm HPGR feed used for ball milling

(dB=25.4 mm, ɸBALL=0.35)

Size (µm) Weight (g) Weight (%) Cum. Percent Passing

3350 0.00 0.00 100.00

2360.00 705.69 98.01 1.99

1700.00 10.58 1.47 0.52

1180.00 0.38 0.05 0.47

850.00 0.18 0.02 0.44

600.00 0.20 0.03 0.41

425.00 0.24 0.03 0.38

300.00 0.16 0.02 0.36

212.00 0.16 0.02 0.34

150.00 0.22 0.03 0.31

106.00 0.32 0.04 0.26

-106.00 1.90 0.26 0.00

Total 720.00

154

Table C.6. Size distribution of -3.35+2.36 mm HPGR feed used for ball milling

(dB=31.75 mm, ɸBALL=0.35)

Size (µm) Weight (g) Weight (%) Cum. Percent Passing

3350 0.00 0.00 100.00

2360.00 705.57 98.00 2.00

1700.00 9.33 1.30 0.71

1180.00 0.45 0.06 0.64

850.00 0.18 0.02 0.62

600.00 0.20 0.03 0.59

425.00 0.24 0.03 0.56

300.00 0.22 0.03 0.53

212.00 0.18 0.02 0.50

150.00 0.26 0.04 0.47

106.00 0.41 0.06 0.41

-106.00 2.96 0.41 0.00

Total 720

Table C.7. Size distribution of -2.36+1.7 mm HPGR product used for ball milling

(dB =19.05 mm, ɸBALL=0.35)

Size (µm) Weight (g) Weight (%) Cum. Percent Passing

2360.00 0.00 0.00 100.00

1700.00 604.03 95.42 4.58

1180.00 23.84 3.77 0.81

850.00 1.06 0.17 0.64

600.00 0.66 0.10 0.54

425.00 0.60 0.09 0.44

300.00 0.39 0.06 0.38

212.00 0.25 0.04 0.34

150.00 0.19 0.03 0.31

106.00 0.31 0.05 0.26

-106.00 1.66 0.26 0.00

Total 633.00

155

Table C.8. Size distribution of -2.36+1.7 mm HPGR product used for ball milling

(dB =25.4 mm, ɸBALL=0.35)

Size (µm) Weight (g) Weight (%) Cum. Percent Passing

2360.00 0.00 0.00 100.00

1700.00 603.08 95.27 4.73

1180.00 23.07 3.64 1.08

850.00 1.28 0.20 0.88

600.00 0.77 0.12 0.76

425.00 0.67 0.11 0.65

300.00 0.45 0.07 0.58

212.00 0.41 0.06 0.52

150.00 0.32 0.05 0.47

106.00 0.41 0.06 0.40

-106.00 2.54 0.40 0.00

Total 633.00

Table C.9. Size distribution of -2.36+1.7 mm HPGR product used for ball milling

(dB=31.75 mm, ɸBALL=0.35)

Size (µm) Weight (g) Weight (%) Cum. Percent Passing

2360.00 0.00 0.00 100.00

1700.00 606.43 95.80 4.20

1180.00 21.59 3.41 0.79

850.00 0.90 0.14 0.64

600.00 0.55 0.09 0.56

425.00 0.47 0.07 0.48

300.00 0.30 0.05 0.43

212.00 0.30 0.05 0.39

150.00 0.26 0.04 0.35

106.00 0.30 0.05 0.30

-106.00 1.91 0.30 0.00

Total 633.00

156

Table C.10. Size distribution of -2.36+1.7 mm HPGR feed used for ball milling

(dB=19.05 mm, ɸBALL=0.35)

Size (µm) Weight (g) Weight (%) Cum. Percent Passing

2360.00 0.00 0.00 100.00

1700.00 603.58 95.35 4.65

1180.00 23.90 3.78 0.87

850.00 0.66 0.10 0.77

600.00 0.40 0.06 0.71

425.00 0.34 0.05 0.65

300.00 0.26 0.04 0.61

212.00 0.24 0.04 0.57

150.00 0.28 0.04 0.53

106.00 0.44 0.07 0.46

-106.00 2.90 0.46 0.00

Total 633.00

Table C.11. Size distribution of -2.36+1.7 mm HPGR feed used for ball milling

(dB=25.4 mm, ɸBALL=0.35)

Size (µm) Weight (g) Weight (%) Cum. Percent Passing

2360.00 0.00 0.00 100.00

1700.00 607.50 95.97 4.03

1180.00 21.56 3.41 0.62

850.00 0.49 0.08 0.55

600.00 0.31 0.05 0.50

425.00 0.31 0.05 0.45

300.00 0.21 0.03 0.41

212.00 0.19 0.03 0.38

150.00 0.23 0.04 0.35

106.00 0.33 0.05 0.29

-106.00 1.86 0.29 0.00

Total 633.00

157

Table C.12. Size distribution of -2.36+1.7 mm HPGR feed used for ball milling

(dB=31.75 mm, ɸBALL=0.35)

Size (µm) Weight (g) Retained % Cum. Passing %

2360 0.00 0.00 100.00

1700.00 614.32 97.05 2.95

1180.00 16.77 2.65 0.30

850.00 0.21 0.03 0.27

600.00 0.17 0.03 0.24

425.00 0.17 0.03 0.21

300.00 0.08 0.01 0.20

212.00 0.08 0.01 0.19

150.00 0.08 0.01 0.17

106.00 0.13 0.02 0.15

-106.00 0.98 0.15 0.00

Total 633.00

Table C.13. Size distribution of –1.7+1.18 mm HPGR product used for ball milling

(dB=19.05 mm, ɸBALL=0.35)

Size (µm) Weight (g) Weight (%) Cum. Percent Passing

1700.00 0.00 0.00 100.00

1180.00 616.69 97.42 2.58

850.00 11.90 1.88 0.70

600.00 0.69 0.11 0.59

425.00 0.51 0.08 0.51

300.00 0.29 0.05 0.46

212.00 0.29 0.05 0.41

150.00 0.23 0.04 0.38

106.00 0.25 0.04 0.34

-106.00 2.13 0.34 0.00

Total 633.00

158

Table C.14. Size distribution of –1.7+1.18 mm HPGR product used for ball milling

(dB=25.4 mm, ɸBALL=0.35)

Size (µm) Weight (g) Weight (%) Cum. Percent Passing

1700.00 0.00 0.00 100.00

1180.00 604.89 95.56 4.44

850.00 20.44 3.23 1.21

600.00 1.12 0.18 1.03

425.00 0.96 0.15 0.88

300.00 0.68 0.11 0.77

212.00 0.52 0.08 0.69

150.00 0.48 0.08 0.62

106.00 0.48 0.08 0.54

-106.00 3.41 0.54 0.00

Total 633.00

Table C.15. Size distribution of –1.7+1.18 mm HPGR product used for ball milling

(dB=31.75 mm, ɸBALL=0.35)

Size (µm) Weight (g) Weight (%) Cum. Percent Passing

1700.00 0.00 0.00 100.00

1180.00 615.39 97.22 2.78

850.00 10.73 1.69 1.09

600.00 1.09 0.17 0.92

425.00 0.82 0.13 0.79

300.00 0.53 0.08 0.70

212.00 0.43 0.07 0.63

150.00 0.35 0.06 0.58

106.00 0.43 0.07 0.51

-106.00 3.24 0.51 0.00

Total 633

159

Table C.16. Size distribution of –1.7+1.18 mm HPGR feed used for ball milling

(dB=19.05 mm, ɸBALL=0.35)

Size (µm) Weight (g) Weight (%) Cum. Percent Passing

1700.00 0.00 0.00 100.00

1180.00 622.98 98.42 1.58

850.00 7.34 1.16 0.42

600.00 0.20 0.03 0.39

425.00 0.24 0.04 0.35

300.00 0.16 0.03 0.33

212.00 0.16 0.03 0.30

150.00 0.12 0.02 0.28

106.00 0.20 0.03 0.25

-106.00 1.58 0.25 0.00

Total 633.00

Table C.17. Size distribution of –1.7+1.18 mm HPGR feed used for ball milling

(dB=25.4 mm, ɸBALL=0.35)

Size (µm) Weight (g) Weight (%) Cum. Percent Passing

1700.00 0.00 0.00 100.00

1180.00 622.40 98.33 1.67

850.00 7.80 1.23 0.44

600.00 0.40 0.06 0.38

425.00 0.25 0.04 0.34

300.00 0.18 0.03 0.31

212.00 0.14 0.02 0.29

150.00 0.18 0.03 0.26

106.00 0.18 0.03 0.23

-106.00 1.47 0.23 0.00

Total 633.00

160

Table C.18. Size distribution of –1.7+1.18 mm HPGR feed used for ball milling

(dB=31.75 mm, ɸBALL=0.35)

Size (µm) Weight (g) Weight (%) Cum. Percent Passing

1700.00 0.00 0.00 100.00

1180.00 623.45 98.49 1.51

850.00 6.71 1.06 0.45

600.00 0.39 0.06 0.39

425.00 0.24 0.04 0.35

300.00 0.12 0.02 0.33

212.00 0.12 0.02 0.31

150.00 0.16 0.02 0.29

106.00 0.20 0.03 0.26

-106.00 1.62 0.26 0.00

Total 633.00

161

APPENDIX D

BATCH GRINDING TEST DATA

Table D.1. Product size distribution after batch grinding of -3.35+2.36 mm of

HPGR product (dB =19.05 mm, ɸBALL=0.35)

-3.35+2.36 mm (HPGR product) - 19.05 mm ball

Size (µm)

0.5 min 1 min

Weight

(g)

Weight

(%)

Cum.

Percent

Passing

Weight

(g)

Weight

(%)

Cum.

Percent

Passing

3350 0 0.00 100.00 0.00 0.00 100.00

2360 596.66 82.87 17.13 550.23 76.42 23.58

1700 62.87 8.73 8.40 76.87 10.68 12.90

1180 18.25 2.53 5.86 26.07 3.62 9.28

850 8.69 1.21 4.66 11.97 1.66 7.62

600 5.07 0.70 3.95 7.35 1.02 6.60

425 3.98 0.55 3.40 6.30 0.88 5.72

300 3.12 0.43 2.97 4.62 0.64 5.08

212 2.43 0.34 2.63 3.85 0.54 4.55

150 1.99 0.28 2.35 3.74 0.52 4.03

106 1.99 0.28 2.08 4.17 0.58 3.45

-106 14.95 2.08 0.00 24.82 3.45 0.00

Total 720.00

720.00

162

Table D.1 (continued)

Size

(µm)

2 min 4 min

Weight

(g)

Weight

(%)

Cum. Percent

Passing

Weight

(g)

Weight

(%)

Cum.

Percent

Passing

3350 0.00 0.00 100.00 0.00 0.00 100.00

2360 492.39 68.39 31.61 435.66 60.51 39.49

1700 84.82 11.78 19.83 98.51 13.68 25.81

1180 32.80 4.56 15.28 36.56 5.08 20.73

850 15.26 2.12 13.16 16.76 2.33 18.40

600 9.14 1.27 11.89 9.90 1.37 17.03

425 8.35 1.16 10.73 8.84 1.23 15.80

300 6.21 0.86 9.87 7.01 0.97 14.83

212 5.66 0.79 9.08 6.84 0.95 13.88

150 5.71 0.79 8.29 8.11 1.13 12.75

106 7.13 0.99 7.30 10.57 1.47 11.28

-106 52.53 7.30 0.00 81.23 11.28 0.00

Total 720.00

720.00

Size

(µm)

8 min

Weight

(g)

Weight

(%)

Cum. Percent

Passing

3350 0.00 0.00 100.00

2360 369.26 51.29 48.71

1700 95.93 13.32 35.39

1180 36.02 5.00 30.39

850 15.50 2.15 28.24

600 9.30 1.29 26.94

425 7.84 1.09 25.85

300 6.36 0.88 24.97

212 6.98 0.97 24.00

150 9.16 1.27 22.73

106 15.31 2.13 20.60

-106 148.35 20.60 0.00

Total 720.00

163

Table D.2. Product size distribution after batch grinding of -3.35+2.36 mm of

HPGR product (dB =25.4 mm, ɸBALL=0.35)

-3.35+2.36 mm (HPGR product) - 25.4 mm ball

Size

(µm)

0.5 min 1 min

Weight

(g)

Weight

(%)

Cum. Percent

Passing

Weight

(g)

Weight

(%)

Cum.

Percent

Passing

3350 0.00 0.00 100.00 0.00 0.00 100.00

2360 585.48 81.32 18.68 533.35 74.08 25.92

1700 62.98 8.75 9.94 80.73 11.21 14.71

1180 22.66 3.15 6.79 32.68 4.54 10.17

850 9.73 1.35 5.44 14.41 2.00 8.17

600 6.06 0.84 4.60 8.59 1.19 6.98

425 5.24 0.73 3.87 7.45 1.03 5.94

300 3.61 0.50 3.37 5.33 0.74 5.20

212 2.93 0.41 2.96 4.49 0.62 4.58

150 2.79 0.39 2.57 4.18 0.58 4.00

106 2.77 0.38 2.19 4.65 0.65 3.35

-106 15.76 2.19 0.00 24.15 3.35 0.00

Total 720.00

720.00

Size

(µm)

2 min 4 min

Weight

(g)

Weight

(%)

Cum. Percent

Passing

Weight

(g)

Weight

(%)

Cum.

Percent

Passing

3350 0.00 0.00 100.00 0.00 0.00 100.00

2360 459.11 63.77 36.23 381.63 53.00 47.00

1700 96.19 13.36 22.88 109.57 15.22 31.78

1180 41.12 5.71 17.16 48.56 6.74 25.03

850 19.68 2.73 14.43 23.15 3.22 21.82

600 12.16 1.69 12.74 14.55 2.02 19.80

425 11.45 1.59 11.15 13.87 1.93 17.87

300 8.56 1.19 9.96 11.25 1.56 16.31

212 7.75 1.08 8.89 11.43 1.59 14.72

150 7.91 1.10 7.79 11.94 1.66 13.06

106 8.66 1.20 6.59 13.92 1.93 11.13

-106 47.42 6.59 0.00 80.13 11.13 0.00

Total 720.00

720.00

164

Table D.2 (continued)

8 min

Size (µm) Weight (g) Weight (%) Cum. Percent Passing

3350 0.00 0.00 100.00

2360 287.96 39.99 60.01

1700 105.16 14.61 45.40

1180 51.75 7.19 38.21

850 24.06 3.34 34.87

600 15.65 2.17 32.70

425 15.33 2.13 30.57

300 13.74 1.91 28.66

212 16.18 2.25 26.41

150 18.28 2.54 23.87

106 25.80 3.58 20.29

-106 146.08 20.29 0.00

Total 720.00

165

Table D.3. Product size distribution after batch grinding of -3.35+2.36 mm of

HPGR product (dB =31.75 mm, ɸBALL=0.35)

-3.35+2.36 mm (HPGR product) - 31.75 mm

Size

(µm)

0.50 min 1 min

Weight

(g)

Weight

(%)

Cum. Percent

Passing

Weight

(g)

Weight

(%)

Cum.

Percent

Passing

3350 0.00 0.00 100.00 0.00 0.00 100.00

2360 572.18 79.47 20.53 512.85 71.23 28.77

1700 72.61 10.08 10.45 93.86 13.04 15.74

1180 26.03 3.61 6.83 36.90 5.13 10.61

850 11.01 1.53 5.30 16.25 2.26 8.35

600 6.34 0.88 4.42 9.69 1.35 7.01

425 5.16 0.72 3.70 8.26 1.15 5.86

300 3.70 0.51 3.19 5.79 0.80 5.06

212 2.85 0.40 2.79 4.58 0.64 4.42

150 2.58 0.36 2.44 4.20 0.58 3.84

106 2.71 0.38 2.06 4.48 0.62 3.22

-106 14.83 2.06 0.00 23.16 3.22 0.00

Total 720.00 720.00

Size

(µm)

2 min 4 min

Weight

(g)

Weight

(%)

Cum. Percent

Passing

Weight

(g)

Weight

(%)

Cum.

Percent

Passing

3350 0.00 0.00 100.00 0.00 0.00 100.00

2360 421.27 58.51 41.49 306.89 42.62 57.38

1700 114.62 15.92 25.57 127.37 17.69 39.69

1180 51.58 7.16 18.41 65.90 9.15 30.53

850 24.72 3.43 14.97 33.02 4.59 25.95

600 15.12 2.10 12.87 21.99 3.05 22.89

425 13.32 1.85 11.02 21.04 2.92 19.97

300 9.78 1.36 9.67 16.83 2.34 17.63

212 8.48 1.18 8.49 15.09 2.10 15.54

150 7.97 1.11 7.38 14.63 2.03 13.50

106 8.56 1.19 6.19 16.67 2.32 11.19

-106 44.57 6.19 0.00 80.55 11.19 0.00

Total 720.00

720.00

166

Table D.3 (continued)

8 min

Size (µm) Weight (g) Weight (%) Cum. Percent Passing

3350 0.00 0.00 100.00

2360 197.02 27.36 72.64

1700 107.72 14.96 57.67

1180 68.93 9.57 48.10

850 39.41 5.47 42.63

600 28.37 3.94 38.69

425 28.97 4.02 34.66

300 25.66 3.56 31.10

212 24.97 3.47 27.63

150 26.09 3.62 24.01

106 29.81 4.14 19.87

-106 143.05 19.87 0.00

Total 720.00

167

Table D.4. Product size distribution after batch grinding of -3.35+2.36 mm of

HPGR feed (dB =19.05 mm, ɸBALL=0.35)

-3.35+2.36 mm (HPGR feed) - 19.05 mm ball size

Size

(µm)

0.5 min 1 min

Weight

(g)

Weight

(%)

Cum. Percent

Passing

Weight

(g)

Weight

(%)

Cum.

Percent

Passing

3350 0.00 0.00 100.00 0.00 0.00 100.00

2360 632.17 87.80 12.20 589.17 81.83 18.17

1700 45.29 6.29 5.91 60.27 8.37 9.80

1180 10.96 1.52 4.39 17.07 2.37 7.43

850 4.51 0.63 3.76 7.38 1.03 6.40

600 3.25 0.45 3.31 5.06 0.70 5.70

425 3.19 0.44 2.86 5.32 0.74 4.96

300 2.28 0.32 2.55 3.97 0.55 4.41

212 1.78 0.25 2.30 3.09 0.43 3.98

150 1.76 0.24 2.06 3.13 0.43 3.55

106 2.20 0.30 1.75 3.67 0.51 3.04

-106 12.62 1.75 0.00 21.87 3.04 0.00

Total 720.00 720.00

Size

(µm)

2 min 4 min

Weight

(g)

Weight

(%)

Cum. Percent

Passing

Weight

(g)

Weight

(%)

Cum.

Percent

Passing

3350 0.00 0.00 100.00 0.00 0.00 100.00

2360 533.47 74.09 25.91 390.76 54.27 45.73

1700 78.62 10.92 14.99 96.26 13.37 32.36

1180 22.18 3.08 11.91 27.04 3.76 28.60

850 9.72 1.35 10.56 11.60 1.61 26.99

600 7.12 0.99 9.57 7.57 1.05 25.94

425 7.52 1.04 8.52 7.49 1.04 24.90

300 5.89 0.82 7.71 6.83 0.95 23.95

212 5.00 0.69 7.01 8.02 1.11 22.84

150 5.06 0.70 6.31 10.13 1.41 21.43

106 6.07 0.84 5.47 16.14 2.24 19.19

-106 39.36 5.47 0.00 138.17 19.19 0.00

Total 720.00

720.00

168

Table D.4 (continued)

8 min

Size (µm) Weight (g) Weight (%) Cum. Percent Passing

3350 0.00 0.00 100.00

2360 390.76 54.27 45.73

1700 96.26 13.37 32.36

1180 27.04 3.76 28.60

850 11.60 1.61 26.99

600 7.57 1.05 25.94

425 7.49 1.04 24.90

300 6.83 0.95 23.95

212 8.02 1.11 22.84

150 10.13 1.41 21.43

106 16.14 2.24 19.19

-106 138.17 19.19 0.00

Total 720.00

Table D.5. Product size distribution after batch grinding of -3.35+2.36 mm of

HPGR feed (dB =25.4 mm, ɸBALL=0.35)

-3.35+2.36 mm (HPGR Feed) - 25.4 mm ball size

Size

(µm)

0.5 min 1 min

Weight

(g)

Weight

(%)

Cum. Percent

Passing

Weight

(g)

Weight

(%)

Cum.

Percent

Passing

3350 0.00 0.00 100.00 0.00 0.00 100.00

2360 623.38 86.58 13.42 574.09 79.73 20.27

1700 48.42 6.72 6.69 65.73 “9.13 11.14

1180 12.77 1.77 4.92 19.52 2.71 8.43

850 5.58 0.77 4.15 9.15 1.27 7.15

600 3.88 0.54 3.61 6.24 0.87 6.29

425 3.72 0.52 3.09 6.29 0.87 5.41

300 2.59 0.36 2.73 4.65 0.65 4.77

212 2.06 0.29 2.44 3.75 0.52 4.25

150 2.00 0.28 2.17 3.67 0.51 3.74

106 2.42 0.34 1.83 4.29 0.60 3.14

-106 13.18 1.83 0.00 22.62 3.14 0.00

Total 720.00

720.00

169

Table D.5 (continued)

Size

(µm)

2 min 4 min

Weight

(g)

Weight

(%)

Cum. Percent

Passing

Weight

(g)

Weight

(%)

Cum.

Percent

Passing

3350 0.00 0.00 100.00 0.00 0.00 100.00

2360 503.45 69.92 30.08 425.69 59.12 40.88

1700 86.22 11.97 18.10 100.11 13.90 26.97

1180 29.35 4.08 14.03 36.34 5.05 21.92

850 13.67 1.90 12.13 16.86 2.34 19.58

600 9.48 1.32 10.81 12.13 1.69 17.90

425 9.83 1.37 9.44 12.70 1.76 16.13

300 7.49 1.04 8.41 10.84 1.51 14.63

212 6.47 0.90 7.51 10.42 1.45 13.18

150 6.40 0.89 6.62 10.71 1.49 11.69

106 7.91 1.10 5.52 14.06 1.95 9.74

-106 39.73 5.52 0.00 70.13 9.74 0.00

Total 720.00

720.00

Size

(µm)

8 min

Weight

(g)

Weight

(%)

Cum. Percent

Passing

3350 0.00 0.00 100.00

2360 337.44 46.87 53.13

1700 103.09 14.32 38.81

1180 37.27 5.18 33.64

850 17.99 2.50 31.14

600 11.66 1.62 29.52

425 12.96 1.80 27.72

300 12.86 1.79 25.93

212 15.34 2.13 23.80

150 17.61 2.45 21.36

106 23.75 3.30 18.06

-106 130.02 18.06 0.00

Total 720.00

170

Table D.6. Product size distribution after batch grinding of -3.35+2.36 mm of

HPGR feed (dB =31.75 mm, ɸBALL=0.35)

-3.35+.2.36 mm (HPGR feed) - 31.75 mm ball size

Size

(µm)

0.5 min 1 min

Weight

(g)

Weight

(%)

Cum. Percent

Passing

Weight

(g)

Weight

(%)

Cum.

Percent

Passing

3350 0.00 0.00 100.00 0.00 0.00 100.00

2360 610.09 84.74 15.26 547.10 75.99 24.01

1700 52.80 7.33 7.93 73.62 10.22 13.79

1180 16.66 2.31 5.62 26.95 3.74 10.05

850 6.99 0.97 4.65 12.04 1.67 7.81

600 4.57 0.63 4.01 7.64 1.06 6.75

425 4.35 0.60 3.41 7.66 1.06 5.69

300 3.00 0.42 2.99 5.67 0.79 4.90

212 2.40 0.33 2.66 4.62 0.64 4.26

150 2.28 0.32 2.34 4.40 0.61 3.65

106 2.70 0.38 1.97 5.13 0.71 2.94

-106 14.16 1.97 0.00 25.17 3.50 0.00

Total 720.00

720.00

Size

(micron)

2 min 4 min

Weight

(g)

Weight

(%)

Cum. Percent

Passing

Weight

(g)

Weight

(%)

Cum.

Percent

Passing

3350 0.00 0.00 100.00 0.00 0.00 100.00

2360 451.72 62.74 37.26 347.02 48.20 51.80

1700 101.04 14.03 23.23 117.79 16.36 35.44

1180 38.47 5.34 17.89 50.86 7.06 28.38

850 19.43 2.70 15.19 26.39 3.66 24.72

600 13.35 1.85 13.33 18.50 2.57 22.15

425 13.50 1.88 11.46 20.33 2.82 19.32

300 10.30 1.43 10.03 16.48 2.29 17.03

212 8.50 1.18 8.85 14.87 2.07 14.97

150 8.39 1.17 7.68 14.02 1.95 13.02

106 9.32 1.30 6.39 16.26 2.26 10.76

-106 45.97 6.39 0.00 77.48 10.76 0.00

Total 720.00

720.00

171

Table D.6 (continued)

8 min

Size (µm) Weight (g) Weight (%) Cum. Percent Passing

3350 0.00 0.00 100.00

2360 231.39 32.14 67.86

1700 109.51 15.21 52.65

1180 57.95 8.05 44.60

850 31.54 4.38 40.22

600 22.61 3.14 37.08

425 26.31 3.65 33.43

300 24.70 3.43 30.00

212 25.01 3.47 26.53

150 24.60 3.42 23.11

106 29.83 4.14 18.97

-106 136.55 18.97 0.00

Total 720.00

Table D.7. Product size distribution after batch grinding of -2.36+1.7 mm of HPGR

product (dB =19.05 mm, ɸBALL=0.35)

-2.36+1.7 mm (HPGR product) - 19.05 mm ball size

Size

(µm)

0.25 min 0.5 min

Weight

(g)

Weight

(%)

Cum. Percent

Passing

Weight

(g)

Weight

(%)

Cum.

Percent

Passing

2360 0.00 0.00 100.00 0.00 0.00 100.00

1700 526.97 83.25 16.75 485.92 76.76 23.24

1180 66.04 10.43 6.32 83.18 13.14 10.09

850 13.11 2.07 4.25 19.26 3.04 7.05

600 6.40 1.01 3.24 9.60 1.52 5.54

425 4.63 0.73 2.51 7.21 1.14 4.40

300 2.49 0.39 2.11 4.22 0.67 3.73

212 1.92 0.30 1.81 3.35 0.53 3.20

150 1.58 0.25 1.56 2.97 0.47 2.73

106 1.54 0.24 1.31 2.73 0.43 2.30

-106 8.32 1.31 0.00 14.56 2.30 0.00

Total 633.00

633.00

172

Table D.7 (continued)

Size

(µm)

1 min 2 min

Weight

(g)

Weight

(%)

Cum. Percent

Passing

Weight

(g)

Weight

(%)

Cum.

Percent

Passing

2360 0.00 0.00 100.00 0.00 0.00 100.00

1700 434.93 68.71 31.29 373.89 59.07 40.93

1180 107.22 16.94 14.35 116.42 18.39 22.54

850 25.84 4.08 10.27 34.10 5.39 17.16

600 12.69 2.00 8.26 17.81 2.81 14.34

425 9.74 1.54 6.73 13.75 2.17 12.17

300 5.72 0.90 5.82 8.72 1.38 10.79

212 5.07 0.80 5.02 8.04 1.27 9.52

150 4.41 0.70 4.33 7.47 1.18 8.34

106 4.36 0.69 3.64 8.22 1.30 7.04

-106 23.02 3.64 0.00 44.58 7.04 0.00

Total 633.00

633.00

Size

(µm)

4 min 8 min

Weight

(g)

Weight

(%)

Cum. Percent

Passing

Weight

(g)

Weight

(%)

Cum.

Percent

Passing

2360 0.00 0.00 100.00 0.00 0.00 100.00

1700 317.48 50.15 49.85 250.03 39.50 60.50

1180 115.83 18.30 31.55 111.39 17.60 42.90

850 37.60 5.94 25.61 37.49 5.92 36.98

600 20.30 3.21 22.40 19.88 3.14 33.84

425 16.03 2.53 19.87 15.88 2.51 31.33

300 10.86 1.72 18.15 11.02 1.74 29.59

212 10.44 1.65 16.50 11.64 1.84 27.75

150 10.86 1.72 14.79 13.31 2.10 25.65

106 13.32 2.10 12.68 18.74 2.96 22.69

-106 80.28 12.68 0.00 143.63 22.69 0.00

Total 633.00

633.00

173

Table D.8. Product size distribution after batch grinding of -2.36+1.7 mm of HPGR

product (dB =25.4 mm, ɸBALL=0.35)

-2.36+1.7 mm (HPGR product) - 25.4 mm ball size

Size

(µm)

0.25 min 0.5 min

Weight

(g)

Weight

(%)

Cum. Percent

Passing

Weight

(g)

Weight

(%)

Cum.

Percent

Passing

2360 0 0 100 0.00 0.00 100.00

1700.0

0 529.09 83.58 16.42 485.49 76.70 23.30

1180.0

0 63.15 9.98 6.44 81.37 12.85 10.45

850.00 13.48 2.13 4.31 21.46 3.39 7.06

600.00 6.53 1.03 3.28 10.26 1.62 5.44

425.00 4.55 0.72 2.56 7.47 1.18 4.26

300.00 2.50 0.40 2.16 4.25 0.67 3.59

212.00 1.98 0.31 1.85 3.38 0.53 3.05

150.00 1.64 0.26 1.59 2.81 0.44 2.61

106.00 1.60 0.25 1.34 2.83 0.45 2.16

-

106.00 8.47 1.34 0.00 13.68 2.16 0.00

Total 633.00

633.00

Size

(µm)

1 min 2 min

Weight

(g)

Weight

(%)

Cum. Percent

Passing

Weight

(g)

Weight

(%)

Cum.

Percent

Passing

2360 0.00 0.00 100.00 0.00 0.00 100.00

1700 433.89 68.54 31.46 363.97 57.50 42.50

1180 99.78 15.76 15.69 115.96 18.32 24.18

850 29.84 4.71 10.98 40.11 6.34 17.85

600 14.83 2.34 8.64 21.10 3.33 14.51

425 11.30 1.78 6.85 16.35 2.58 11.93

300 6.54 1.03 5.82 10.33 1.63 10.30

212 5.42 0.86 4.96 8.93 1.41 8.89

150 4.66 0.74 4.23 8.11 1.28 7.61

106 4.74 0.75 3.48 8.01 1.27 6.34

-106 22.01 3.48 0.00 40.13 6.34 0.00

Total 633.00

633.00

174

Table D.8 (continued)

Size

(µm)

4 min 8 min

Weight

(g)

Weight

(%)

Cum.

Percent

Passing

Weight (g) Weight

(%)

Cum.

Percent

Passing

2360 0.00 0.00 100.00 0.00 0.00 100.00

1700 277.89 43.90 56.10 181.74 28.71 71.29

1180 127.20 20.09 36.01 118.18 18.67 52.62

850 49.20 7.77 28.23 53.09 8.39 44.23

600 27.99 4.42 23.81 33.28 5.26 38.97

425 22.67 3.58 20.23 28.40 4.49 34.49

300 15.45 2.44 17.79 21.09 3.33 31.16

212 14.36 2.27 15.52 21.85 3.45 27.71

150 13.51 2.13 13.39 22.21 3.51 24.20

106 14.99 2.37 11.02 25.89 4.09 20.11

-106 69.75 11.02 0.00 127.27 20.11 0.00

Total 633.00

633.00

Table D.9. Product size distribution after batch grinding of -2.36+1.7 mm of HPGR

product (dB =31.75 mm, ɸBALL=0.35)

-2.36+1.7 mm (HPGR product) - 31.75 mm ball size

Size

(µm)

0.25 min 0.5 min

Weight

(g)

Weight

(%)

Cum. Percent

Passing

Weight

(g)

Weight

(%)

Cum.

Percent

Passing

2360 0.00 0 100 0.00 0.00 100.00

1700.00 529.89 83.71 16.29 474.17 74.91 25.09

1180.00 60.12 9.50 6.79 87.13 13.76 11.33

850.00 14.78 2.34 4.46 24.03 3.80 7.53

600.00 6.46 1.02 3.44 11.43 1.81 5.73

425.00 4.79 0.76 2.68 7.90 1.25 4.48

300.00 2.55 0.40 2.28 4.43 0.70 3.78

212.00 2.09 0.33 1.94 3.51 0.55 3.22

150.00 1.72 0.27 1.67 2.95 0.47 2.76

106.00 1.64 0.26 1.41 2.93 0.46 2.29

-106.00 8.96 1.41 0.00 14.52 2.29 0.00

Total 633.00 633.00

175

Table D.9 (continued)

Size

(µm)

1 min 2 min

Weight

(g)

Weight

(%)

Cum. Percent

Passing

Weigh

t (g)

Weight

(%)

Cum.

Percent

Passing

2360 0.00 0.00 100.00 0.00 0.00 100.00

1700 403.82 63.80 36.20 321.82 50.84 49.16

1180 117.56 18.57 17.63 140.65 22.22 26.94

850 35.51 5.61 12.02 51.64 8.16 18.78

600 17.39 2.75 9.27 26.72 4.22 14.56

425 12.81 2.02 7.25 19.85 3.14 11.42

300 7.07 1.12 6.13 11.43 1.81 9.62

212 5.58 0.88 5.25 9.09 1.44 8.18

150 5.20 0.82 4.43 8.12 1.28 6.90

106 4.90 0.77 3.66 7.96 1.26 5.64

-106 23.14 3.66 0.00 35.71 5.64 0.00

Total 633.00

633.00

Size

(µm)

4 min 8 min

Weight

(g)

Weight

(%)

Cum. Percent

Passing

Weigh

t (g)

Weight

(%)

Cum.

Percent

Passing

2360 0.00 0.00 100.00 0.00 0.00 100.00

1700 210.54 33.26 66.74 96.38 15.23 84.77

1180 152.05 24.02 42.72 107.24 16.94 67.83

850 71.17 11.24 31.48 77.91 12.31 55.52

600 40.23 6.36 25.12 54.59 8.62 46.90

425 31.77 5.02 20.10 49.94 7.89 39.01

300 19.75 3.12 16.98 35.15 5.55 33.46

212 16.79 2.65 14.33 30.48 4.82 28.64

150 13.89 2.19 12.13 27.57 4.36 24.29

106 13.95 2.20 9.93 29.07 4.59 19.70

-106 62.86 9.93 0.00 124.67 19.70 0.00

Total 633.00

633.00

176

Table D.10. Product size distribution after batch grinding of -2.36+1.7 mm of

HPGR feed (dB =19.05 mm, ɸBALL=0.35)

-2.36+1.7 mm (HPGR feed) - 19.05 mm ball size

Size

(µm)

0.25 min 0.5 min

Weight

(g)

Weight

(%)

Cum. Percent

Passing

Weight

(g)

Weight

(%)

Cum.

Percent

Passing

2360 0.00 0.00 100.00 0.00 0.00 100.00

1700 554.98 87.68 12.32 518.65 81.94 18.06

1180 49.20 7.77 4.55 69.19 10.93 7.13

850 7.88 1.24 3.31 12.50 1.97 5.16

600 3.81 0.60 2.71 6.37 1.01 4.15

425 3.20 0.51 2.20 5.31 0.84 3.32

300 1.87 0.30 1.90 3.02 0.48 2.84

212 1.41 0.22 1.68 2.22 0.35 2.49

150 1.45 0.23 1.45 2.12 0.34 2.15

106 1.49 0.24 1.22 2.38 0.38 1.77

-106 7.70 1.22 0.00 11.23 1.77 0.00

Total 633.00

633.00

Size

(µm)

1 min 2 min

Weight

(g)

Weight

(%)

Cum. Percent

Passing

Weight

(g)

Weight

(%)

Cum.

Percent

Passing

2360 0.00 0.00 100.00 0.00 0.00 100.00

1700 474.51 74.96 25.04 413.92 65.39 34.61

1180 83.41 13.18 11.86 100.50 15.88 18.73

850 19.05 3.01 8.85 25.41 4.01 14.72

600 10.43 1.65 7.20 14.48 2.29 12.43

425 8.72 1.38 5.83 13.11 2.07 10.36

300 5.19 0.82 5.01 8.25 1.30 9.06

212 3.94 0.62 4.38 6.52 1.03 8.03

150 3.68 0.58 3.80 6.35 1.00 7.02

106 4.32 0.68 3.12 7.33 1.16 5.86

-106 19.76 3.12 0.00 37.12 5.86 0.00

Total 633.00

633.00

177

Table D.10 (continued)

Size

(µm)

4 min 8 min

Weight

(g)

Weight

(%)

Cum. Percent

Passing

Weight

(g)

Weight

(%)

Cum. Percent

Passing

2360 0.00 0.00 100.00 0.00 0.00 100.00

1700 350.45 55.36 44.64 266.69 42.13 57.87

1180 105.63 16.69 27.95 107.68 17.01 40.86

850 29.61 4.68 23.27 30.71 4.85 36.01

600 17.18 2.71 20.56 17.78 2.81 33.20

425 16.16 2.55 18.01 16.43 2.60 30.60

300 11.22 1.77 16.23 12.61 1.99 28.61

212 9.90 1.56 14.67 12.88 2.03 26.58

150 10.18 1.61 13.06 14.74 2.33 24.25

106 12.26 1.94 11.12 19.26 3.04 21.20

-106 70.41 11.12 0.00 134.22 21.20 0.00

Total 633.00

633.00

Table D.11. Product size distribution after batch grinding of -2.36+1.7 mm of

HPGR feed (dB =25.4 mm, ɸBALL=0.35)

-2.36+1.7 mm (HPGR feed) - 25.4 mm ball size

Size

(µm)

0.25 min 0.50 min

Weight

(g)

Weight

(%)

Cum. Percent

Passing

Weight

(g)

Weight

(%)

Cum.

Percent

Passing

2360 0.00 0.00 100.00 0.00 0.00 100.00

1700 552.61 87.30 12.70 520.09 82.16 17.84

1180 50.00 7.90 4.80 57.27 9.05 8.79

850 8.71 1.38 3.42 14.12 2.23 6.56

600 4.37 0.69 2.73 10.82 1.71 4.85

425 3.61 0.57 2.16 6.39 1.01 3.84

300 2.06 0.33 1.84 3.51 0.55 3.29

212 1.57 0.25 1.59 2.68 0.42 2.86

150 1.55 0.24 1.35 2.80 0.44 2.42

106 1.35 0.21 1.13 3.17 0.50 1.92

-106 7.17 1.13 0.00 12.16 1.92 0.00

Total 633.00

633.00

178

Table D.11 (continued)

Size

(µm)

1 min 2 min

Weight

(g)

Weight

(%)

Cum. Percent

Passing

Weight

(g)

Weight

(%)

Cum.

Percent

Passing

2360 0.00 0.00 100.00 0.00 0.00 100.00

1700 457.95 72.35 27.65 386.75 61.10 38.90

1180 83.46 13.18 14.47 105.95 16.74 22.16

850 22.35 3.53 9.73 31.09 4.91 17.25

600 12.13 1.92 7.81 17.64 2.79 13.87

425 10.97 1.73 6.08 15.60 2.46 11.40

300 6.09 0.96 5.12 9.86 1.56 9.85

212 4.65 0.73 4.38 7.94 1.25 8.59

150 4.81 0.76 3.62 8.06 1.27 7.32

106 5.21 0.82 2.80 8.70 1.37 5.94

-106 25.39 4.01 0.00 41.42 6.54 0.00

Total 633.00

633.00

Size

(µm)

4 min 8 min

Weight

(g)

Weight

(%)

Cum. Percent

Passing

Weight

(g)

Weight

(%)

Cum.

Percent

Passing

2360 0.00 0.00 100.00 0.00 0.00 100.00

1700 300.32 47.44 52.56 207.88 32.84 67.16

1180 117.40 18.55 34.01 106.02 16.75 50.41

850 39.97 6.31 27.69 43.21 6.83 43.58

600 23.46 3.71 23.99 27.86 4.40 39.18

425 23.01 3.64 20.35 28.58 4.51 34.67

300 15.68 2.48 17.87 22.24 3.51 31.15

212 13.68 2.16 15.71 21.82 3.45 27.71

150 14.13 2.23 13.48 24.07 3.80 23.90

106 15.07 2.38 11.10 24.41 3.86 20.05

-106 70.27 11.10 0.00 126.91 20.05 0.00

Total 633.00

633.00

179

Table D.12. Product size distribution after batch grinding of -2.36+1.7 mm of

HPGR feed (dB =31.75 mm, ɸBALL=0.35)

-2.36+1.7 mm (HPGR feed) - 31.75 mm ball size

Size

(µm)

0.25 min 0.5 min

Weight

(g)

Weight

(%)

Cum. Percent

Passing

Weight

(g)

Weight

(%)

Cum.

Percent

Passing

2360 0.00 0.00 100.00 0.00 0.00 100.00

1700 555.18 87.71 12.29 522.34 82.52 17.48

1180 44.49 7.03 5.26 56.34 8.90 8.58

850 10.83 1.71 3.55 18.04 2.85 5.73

600 5.31 0.84 2.71 8.14 1.29 4.45

425 3.94 0.62 2.09 6.33 1.00 3.45

300 2.28 0.36 1.73 3.74 0.59 2.86

212 1.66 0.26 1.47 2.67 0.42 2.43

150 1.45 0.23 1.24 2.55 0.40 2.03

106 1.45 0.23 1.01 2.51 0.40 1.64

-106 6.39 1.01 0.00 10.36 1.64 0.00

Total 633.00

633.00

Size

(µm)

1 min 2 min

Weight

(g)

Weight

(%)

Cum. Percent

Passing

Weight

(g)

Weight

(%)

Cum.

Percent

Passing

2360 0.00 0.00 100.00 0.00 0.00 100.00

1700 462.18 73.01 26.99 365.26 57.70 42.30

1180 82.77 13.08 13.91 111.22 17.57 24.73

850 27.24 4.30 9.61 41.69 6.59 18.14

600 13.91 2.20 7.41 23.40 3.70 14.44

425 10.65 1.68 5.73 19.37 3.06 11.38

300 6.25 0.99 4.74 12.11 1.91 9.47

212 4.67 0.74 4.00 9.29 1.47 8.00

150 4.10 0.65 3.35 8.30 1.31 6.69

106 4.06 0.64 2.71 8.21 1.30 5.39

-106 17.17 2.71 0.00 34.14 5.39 0.00

Total 633.00

633.00

180

Table D.12 (continued)

Size

(µm)

4 min 8 min

Weight

(g)

Weight

(%)

Cum. Percent

Passing

Weight

(g)

Weight

(%)

Cum.

Percent

Passing

2360 0.00 0.00 100.00 0.00 0.00 100.00

1700 255.74 40.40 59.60 133.11 21.03 78.97

1180 125.04 19.75 39.85 112.75 17.81 61.16

850 58.27 9.20 30.64 68.12 10.76 50.40

600 34.86 5.51 25.13 48.88 7.72 42.68

425 30.85 4.87 20.26 46.12 7.29 35.39

300 20.49 3.24 17.02 33.90 5.35 30.04

212 16.32 2.58 14.44 27.66 4.37 25.67

150 15.02 2.37 12.07 26.26 4.15 21.52

106 15.43 2.44 9.63 25.64 4.05 17.47

-106 60.98 9.63 0.00 110.56 17.47 0.00

Total 633.00

633.00

181

Table D.13. Product size distribution after batch grinding of -1.7+1.18 mm of

HPGR product (dB =19.05 mm, ɸBALL=0.35)

-1.7+1.18 mm (HPGR product) - 19.05 mm ball size

Size

(µm)

0.25 min 0.5 min

Weight

(g)

Weight

(%)

Cum. Percent

Passing

Weight

(g)

Weight

(%)

Cum.

Percent

Passing

1700.0

0 0.00 0.00 100.00 0.00 0.00 100.00

1180.0

0 535.97 84.67 15.33 491.12 77.59 22.41

850.00 55.88 8.83 6.50 79.19 12.51 9.90

600.00 14.03 2.22 4.29 22.18 3.50 6.40

425.00 8.46 1.34 2.95 12.37 1.95 4.44

300.00 3.75 0.59 2.36 5.80 0.92 3.53

212.00 2.59 0.41 1.95 3.97 0.63 2.90

150.00 1.97 0.31 1.64 3.11 0.49 2.41

106.00 1.82 0.29 1.35 2.80 0.44 1.97

-

106.00 8.54 1.35 0.00 12.45 1.97 0.00

Total 633.00

633.00

Size

(µm)

1 min 2 min

Weight

(g)

Weight

(%)

Cum. Percent

Passing

Weight

(g)

Weight

(%)

Cum.

Percent

Passing

1700.0

0 0.00 0.00 100.00 0.00 0.00 100.00

1180.0

0 440.53 69.59 30.41 369.73 58.41 41.59

850.00 95.05 15.02 15.39 109.88 17.36 24.23

600.00 30.93 4.89 10.50 41.70 6.59 17.64

425.00 18.31 2.89 7.61 26.89 4.25 13.40

300.00 9.05 1.43 6.18 14.41 2.28 11.12

212.00 6.76 1.07 5.11 11.03 1.74 9.38

150.00 5.45 0.86 4.25 9.46 1.49 7.88

106.00 4.88 0.77 3.48 9.06 1.43 6.45

-

106.00 22.04 3.48 0.00 40.85 6.45 0.00

Total 633.00

633.00

182

Table D.13 (continued)

Size

(µm)

4 min 8 min

Weight

(g)

Weight

(%)

Cum. Percent

Passing

Weight

(g)

Weight

(%)

Cum.

Percent

Passing

1700 0.00 0.00 100.00 0.00 0.00 100.00

1180 278.94 44.07 55.93 188.53 29.78 70.22

850 120.82 19.09 36.85 104.10 16.45 53.77

600 53.61 8.47 28.38 55.55 8.78 44.99

425 35.78 5.65 22.72 41.86 6.61 38.38

300 21.15 3.34 19.38 26.79 4.23 34.15

212 16.83 2.66 16.72 24.16 3.82 30.33

150 15.27 2.41 14.31 23.57 3.72 26.61

106 15.63 2.47 11.84 25.97 4.10 22.51

-106 74.96 11.84 0.00 142.46 22.51 0.00

Total 633.00

633.00

Table D.14. Product size distribution after batch grinding of -1.7+1.18 mm of

HPGR product (dB =25.4 mm, ɸBALL=0.35)

-1.7+1.18 mm (HPGR product) - 25.4 mm ball size

Size

(µm)

0.25 min 0.5 min

Weight

(g)

Weight

(%)

Cum. Percent

Passing

Weight

(g)

Weight

(%)

Cum.

Percent

Passing

1700 0.00 0.00 100.00 0.00 0.00 100.00

1180 532.60 84.14 15.86 492.15 77.75 22.25

850 59.26 9.36 6.50 72.51 11.45 10.80

600 14.34 2.27 4.23 23.53 3.72 7.08

425 7.70 1.22 3.02 13.52 2.14 4.94

300 3.51 0.55 2.46 6.13 0.97 3.98

212 2.45 0.39 2.08 4.37 0.69 3.28

150 1.92 0.30 1.77 3.31 0.52 2.76

106 1.81 0.29 1.48 3.15 0.50 2.27

-106 9.40 1.48 0.00 14.34 2.27 0.00

Total 633.00

633.00

183

Table D.14 (continued)

Size

(µm)

1 min 2 min

Weight

(g)

Weight

(%)

Cum. Percent

Passing

Weight

(g)

Weight

(%)

Cum.

Percent

Passing

1700 0.00 0.00 100.00 0.00 0.00 100.00

1180 423.97 66.98 33.02 346.06 54.67 45.33

850 90.99 14.37 18.65 109.71 17.33 28.00

600 34.67 5.48 13.17 49.37 7.80 20.20

425 22.17 3.50 9.67 32.95 5.21 14.99

300 11.47 1.81 7.86 17.30 2.73 12.26

212 8.35 1.32 6.54 12.66 2.00 10.26

150 7.10 1.12 5.42 10.81 1.71 8.55

106 6.72 1.06 4.35 10.12 1.60 6.95

-106 27.56 4.35 0.00 44.00 6.95 0.00

Total 633.00

633.00

Size

(µm)

4 min 8 min

Weight

(g)

Weight

(%)

Cum. Percent

Passing

Weight

(g)

Weight

(%)

Cum.

Percent

Passing

1700 0.00 0.00 100.00 0.00 0.00 100.00

1180 244.77 38.67 61.33 129.16 20.40 79.60

850 128.13 20.24 41.09 106.79 16.87 62.73

600 63.14 9.97 31.12 72.21 11.41 51.32

425 45.33 7.16 23.96 61.12 9.65 41.66

300 26.69 4.22 19.74 40.28 6.36 35.30

212 19.78 3.12 16.61 33.04 5.22 30.08

150 17.34 2.74 13.87 30.67 4.84 25.24

106 18.28 2.89 10.99 31.19 4.93 20.31

-106 69.55 10.99 0.00 128.55 20.31 0.00

Total 633.00

633.00

184

Table D.15. Product size distribution after batch grinding of -1.7+1.18 mm of

HPGR product (dB =31.75 mm, ɸBALL=0.35)

-1.7+1.18 mm (HPGR product) - 31.75 mm

Size

(µm)

0.25 min 0.5 min

Weight

(g)

Weight

(%)

Cum. Percent

Passing

Weight

(g)

Weight

(%)

Cum.

Percent

Passing

1700 0.00 0.00 100.00 0.00 0.00 100.00

1180 548.35 86.63 13.37 492.71 77.84 22.16

850 45.85 7.24 6.13 72.47 11.45 10.71

600 13.05 2.06 4.07 24.41 3.86 6.86

425 7.41 1.17 2.90 13.45 2.12 4.73

300 3.55 0.56 2.34 6.28 0.99 3.74

212 2.09 0.33 2.01 4.22 0.67 3.07

150 2.05 0.32 1.68 3.26 0.51 2.56

106 1.81 0.29 1.40 2.95 0.47 2.09

-106 8.83 1.40 0.00 13.25 2.09 0.00

Total 633.00

633.00

Size

(µm)

1 min 2 min

Weight

(g)

Weight

(%)

Cum. Percent

Passing

Weight

(g)

Weight

(%)

Cum.

Percent

Passing

1700 0.00 0.00 100.00 0.00 0.00 100.00

1180 437.17 69.06 30.94 328.91 51.96 48.04

850 90.05 14.23 16.71 120.22 18.99 29.05

600 35.44 5.60 11.11 56.88 8.99 20.06

425 21.02 3.32 7.79 35.28 5.57 14.49

300 10.20 1.61 6.18 18.18 2.87 11.62

212 6.98 1.10 5.08 13.14 2.08 9.54

150 5.70 0.90 4.18 10.61 1.68 7.86

106 5.25 0.83 3.35 9.72 1.54 6.33

-106 21.19 3.35 0.00 40.05 6.33 0.00

Total 633.00

633.00

185

Table D.15 (continued)

Size

(µm)

4 min 8 min

Weight

(g)

Weight

(%)

Cum. Percent

Passing

Weight

(g)

Weight

(%)

Cum.

Percent

Passing

1700 0.00 0.00 100.00 0.00 0.00 100.00

1180 198.90 31.42 68.58 81.15 12.82 87.18

850 135.55 21.41 47.16 101.97 16.11 71.07

600 82.60 13.05 34.12 92.13 14.56 56.52

425 57.41 9.07 25.05 82.09 12.97 43.55

300 30.37 4.80 20.25 49.87 7.88 35.67

212 22.85 3.61 16.64 39.75 6.28 29.39

150 18.66 2.95 13.69 32.47 5.13 24.26

106 17.24 2.72 10.97 30.86 4.88 19.39

-106 69.42 10.97 0.00 122.71 19.39 0.00

Total 633.00

633.00

Table D.16. Product size distribution after batch grinding of -1.7+1.18 mm of

HPGR feed (dB =19.05 mm, ɸBALL=0.35)

-1.7+1.18 mm (HPGR feed) - 19.05 mm ball size

Size

(µm)

0.25 min 0.5 min

Weight

(g)

Weight

(%)

Cum. Percent

Passing

Weight

(g)

Weight

(%)

Cum.

Percent

Passing

1700 0.00 0.00 100.00 0.00 0.00 100.00

1180 571.13 90.23 9.77 536.35 84.73 15.27

850 31.08 4.91 4.86 46.80 7.39 7.88

600 9.61 1.52 3.35 15.10 2.39 5.49

425 5.70 0.90 2.45 9.61 1.52 3.97

300 2.69 0.42 2.02 4.51 0.71 3.26

212 1.91 0.30 1.72 3.10 0.49 2.77

150 1.59 0.25 1.47 2.82 0.45 2.32

106 1.75 0.28 1.19 3.02 0.48 1.85

-106 7.54 1.19 0.00 11.69 1.85 0.00

Total 633.00

633.00

186

Table D.16 (continued)

Size

(µm)

1 min 2 min

Weight

(g)

Weight

(%)

Cum. Percent

Passing

Weight

(g)

Weight

(%)

Cum.

Percent

Passing

1700 0.00 0.00 100.00 0.00 0.00 100.00

1180 481.33 76.04 23.96 404.89 63.96 36.04

850 66.61 10.52 13.44 87.83 13.88 22.16

600 24.11 3.81 9.63 35.34 5.58 16.58

425 16.37 2.59 7.04 25.66 4.05 12.52

300 8.39 1.32 5.72 13.73 2.17 10.36

212 5.74 0.91 4.81 9.81 1.55 8.81

150 4.81 0.76 4.05 8.39 1.32 7.48

106 5.14 0.81 3.24 9.10 1.44 6.04

-106 20.50 3.24 0.00 38.26 6.04 0.00

Total 633.00

633.00

Size

(µm)

4 min 8 min

Weight

(g)

Weight

(%)

Cum. Percent

Passing

Weight

(g)

Weight

(%)

Cum.

Percent

Passing

1700 0.00 0.00 100.00 0.00 0.00 100.00

1180 316.62 50.02 49.98 218.73 34.55 65.45

850 97.23 15.36 34.62 93.55 14.78 50.67

600 44.61 7.05 27.57 49.24 7.78 42.89

425 35.48 5.60 21.97 41.41 6.54 36.35

300 21.23 3.35 18.62 27.64 4.37 31.98

212 15.90 2.51 16.10 23.55 3.72 28.26

150 14.58 2.30 13.80 22.12 3.49 24.76

106 15.86 2.51 11.29 25.78 4.07 20.69

-106 71.49 11.29 0.00 130.98 20.69 0.00

Total 633.00

633.00

187

Table D.17. Product size distribution after batch grinding of -1.7+1.18 mm of

HPGR feed (dB =25.4 mm, ɸBALL=0.35)

-1.7+1.18 mm (HPGR feed) - 25.4 mm ball size

Size

(µm)

0.25 min 0.5 min

Weight

(g)

Weight

(%)

Cum. Percent

Passing

Weight

(g)

Weight

(%)

Cum.

Percent

Passing

1700 0.00 0.00 100.00 0.00 0.00 100.00

1180 570.28 90.09 9.91 532.92 84.19 15.81

850 30.70 4.85 5.06 51.37 8.12 7.69

600 9.76 1.54 3.52 16.45 2.60 5.10

425 6.05 0.96 2.56 9.84 1.55 3.54

300 3.15 0.50 2.06 4.62 0.73 2.81

212 2.07 0.33 1.74 3.03 0.48 2.33

150 1.79 0.28 1.45 2.55 0.40 1.93

106 1.71 0.27 1.18 2.31 0.36 1.57

-106 7.49 1.18 0.00 9.92 1.57 0.00

Total 633.00

633.00

Size

(µm)

1 min 2 min

Weight

(g)

Weight

(%)

Cum. Percent

Passing

Weight

(g)

Weight

(%)

Cum.

Percent

Passing

1700 0.00 0.00 100.00 0.00 0.00 100.00

1180 474.92 75.03 24.97 389.96 61.60 38.40

850 75.82 11.98 13.00 97.22 15.36 23.04

600 25.97 4.10 8.89 42.75 6.75 16.28

425 16.32 2.58 6.31 28.26 4.46 11.82

300 8.37 1.32 4.99 15.14 2.39 9.43

212 5.63 0.89 4.10 10.25 1.62 7.81

150 4.55 0.72 3.38 8.48 1.34 6.47

106 4.44 0.70 2.68 8.44 1.33 5.13

-106 16.98 2.68 0.00 32.50 5.13 0.00

Total 633.00

633.00

188

Table D.17 (continued)

Size

(µm)

4 min 8 min

Weight

(g)

Weight

(%)

Cum. Percent

Passing

Weight

(g)

Weight

(%)

Cum.

Percent

Passing

1700 0.00 0.00 100.00 0.00 0.00 100.00

1180 285.41 45.09 54.91 163.70 25.86 74.14

850 117.54 18.57 36.34 113.54 17.94 56.20

600 61.48 9.71 26.63 70.41 11.12 45.08

425 42.54 6.72 19.91 60.41 9.54 35.54

300 24.96 3.94 15.97 39.11 6.18 29.36

212 17.37 2.74 13.22 30.28 4.78 24.57

150 14.80 2.34 10.89 26.45 4.18 20.39

106 14.80 2.34 8.55 27.43 4.33 16.06

-106 54.10 8.55 0.00 101.67 16.06 0.00

Total 633.00

633.00

Table D.18. Product size distribution after batch grinding of -1.7+1.18 mm of

HPGR feed (dB =31.75 mm, ɸBALL=0.35)

-1.7+1.18 mm (HPGR feed) - 31.75 mm ball size

Size

(µm)

0.25 min 0.5 min

Weight

(g)

Weight

(%)

Cum. Percent

Passing

Weight

(g)

Weight

(%)

Cum.

Percent

Passing

1700 0.00 0.00 100.00 0.00 0.00 100.00

1180 576.76 91.12 8.88 534.85 84.49 15.51

850 27.83 4.40 4.49 46.91 7.41 8.09

600 9.07 1.43 3.05 17.22 2.72 5.37

425 5.48 0.87 2.19 9.74 1.54 3.84

300 2.53 0.40 1.79 4.75 0.75 3.08

212 1.88 0.30 1.49 3.39 0.54 2.55

150 1.63 0.26 1.23 2.88 0.46 2.09

106 1.59 0.25 0.98 2.88 0.46 1.64

-106 6.21 0.98 0.00 10.36 1.64 0.00

Total 633.00

633.00

189

Table D.18 (continued)

Size

(µm)

1 min 2 min

Weight

(g)

Weight

(%)

Cum.

Percent

Passing

Weight

(g)

Weight

(%)

Cum.

Percent

Passing

1700 0.00 0.00 100.00 0.00 0.00 100.00

1180 468.31 73.98 26.02 370.84 58.58 41.42

850 74.51 11.77 14.25 100.71 15.91 25.51

600 29.72 4.70 9.55 51.63 8.16 17.35

425 18.28 2.89 6.66 31.32 4.95 12.40

300 8.48 1.34 5.32 15.76 2.49 9.91

212 5.94 0.94 4.38 10.96 1.73 8.18

150 4.82 0.76 3.62 9.12 1.44 6.74

106 4.70 0.74 2.88 8.84 1.40 5.34

-106 18.24 2.88 0.00 33.83 5.34 0.00

Total 633.00

633.00

Size

(µm)

4 min 8 min

Weight

(g)

Weight

(%)

Cum.

Percent

Passing

Weight

(g)

Weight

(%)

Cum.

Percent

Passing

1700 0.00 0.00 0.00 0.00 0.00 0.00

1180 226.86 35.84 35.84 89.74 14.18 14.18

850 127.11 20.08 55.92 99.78 15.76 29.94

600 76.84 12.14 68.06 92.00 14.53 44.47

425 55.03 8.69 76.75 82.60 13.05 57.52

300 28.59 4.52 81.27 50.04 7.90 65.43

212 20.70 3.27 84.54 37.92 5.99 71.42

150 16.65 2.63 87.17 30.48 4.82 76.23

106 17.29 2.73 89.90 30.23 4.78 81.01

-106 63.95 10.10 100.00 120.22 18.99 100.00

Total 633.00

633.00


Recommended