+ All Categories
Home > Documents > SLAC-PUB-14903 · 2012-03-29 · Fisica, ersità Univ rieste, T I-34127 Italy 11 Istituto Nazionale...

SLAC-PUB-14903 · 2012-03-29 · Fisica, ersità Univ rieste, T I-34127 Italy 11 Istituto Nazionale...

Date post: 23-Jun-2020
Category:
Upload: others
View: 0 times
Download: 0 times
Share this document with a friend
39
2,3 4 4 5,6 7 8 9,10 11,12 13 4 7 4 4 14,15 4 7 7 16,17 18 19 16,17 4 20 8 21 14,15 22,23,24 25 2,26 4 14,15 4 27 28 29,6,30 4 21 31 16,17 4 4 32,33 27 16,17 18 4 18 34,1 31 35 36 4 16,17 17 22,37 14,15 16,17 16,17 38 4 4 8 2 32,33 39 36 22 13 29,6,40 4 4 2 41,23,42,43 4 36 44,45 44,46 19 47 4 7 4 7 9,10 16,17 32,33 2 14,15 4 2,26 48 17 22,37 22 40,6 29,6 4 4 36 23,37 16,17 4 49 4 35 4 50 27 36 7 28 50 4 32,33 48 27 14,15 7 27 51 16,17 11,12 7 48 52,4 32,33 48 53 19 40,6 51 18 13 51 54 7 4 13 7 16,17 2 55 34 4 36 4 4 4 22 11,8,12 56 57,53 14,15 4,58 59,4 4 22,23,24 47 49,60 4 4 61 13 2 40,62,6 35 51 35 63 64 65 63 63 66 67 67 68 59 34 69 70 63 78 35,72 72 SLAC-PUB-14903 Work supported in part by US Department of Energy contract DE-AC02-76SF00515. SLAC National Accelerator Laboratory, Menlo Park, CA 94025
Transcript
Page 1: SLAC-PUB-14903 · 2012-03-29 · Fisica, ersità Univ rieste, T I-34127 Italy 11 Istituto Nazionale di Fisica Nucleare, Sezione a, v ado P I-35131 Italy 12 to Dipartimen di Fisica

Multiwavelength monitoring of the enigmati 1 Narrow-Line Seyfert 1 PMN J0948+0022 in Mar h-July 20092 A. A. Abdo2,3, M. A kermann4, M. Ajello4, M. Axelsson5,6, L. Baldini7, J. Ballet8,3 G. Barbiellini9,10, D. Bastieri11,12, B. M. Baughman13, K. Be htol4, R. Bellazzini7,4 B. Berenji4, E. D. Bloom4, E. Bonamente14,15, A. W. Borgland4, J. Bregeon7, A. Brez7,5 M. Brigida16,17, P. Bruel18, T. H. Burnett19, G. A. Caliandro16,17, R. A. Cameron4,6 P. A. Caraveo20, J. M. Casandjian8, E. Cavazzuti21, C. Ce hi14,15, Ö. Çelik22,23,24,7 A. Celotti25, A. Chekhtman2,26, J. Chiang4, S. Ciprini14,15, R. Claus4, J. Cohen-Tanugi27,8 W. Collmar28, J. Conrad29,6,30, L. Costamante4, S. Cutini21, A. de Angelis31,9 F. de Palma16,17, E. do Couto e Silva4, P. S. Drell4, D. Dumora32,33, C. Farnier27,10 C. Favuzzi16,17, S. J. Fegan18, W. B. Fo ke4, P. Fortin18, L. Fos hini34,1, M. Frailis31,11 L. Fuhrmann35, Y. Fukazawa36, S. Funk4, P. Fus o16,17, F. Gargano17, N. Gehrels22,37,12 S. Germani14,15, N. Giglietto16,17, F. Giordano16,17, M. Giroletti38, T. Glanzman4,13 G. Godfrey4, I. A. Grenier8, J. E. Grove2, L. Guillemot32,33, S. Guirie 39, Y. Hanabata36,14 E. Hays22, R. E. Hughes13, M. S. Ja kson29,6,40, G. Jóhannesson4, A. S. Johnson4,15 W. N. Johnson2, M. Kadler41,23,42,43, T. Kamae4, H. Katagiri36, J. Kataoka44,45,16 N. Kawai44,46, M. Kerr19, J. Knödlseder47, M. L. Ko ian4, M. Kuss7, J. Lande4,17 L. Latroni o7, F. Longo9,10, F. Lopar o16,17, B. Lott32,33, M. N. Lovellette2, P. Lubrano14,15,18 G. M. Madejski4, A. Makeev2,26, W. Max-Moerbe k48, M. N. Mazziotta17,19 W. M Conville22,37, J. E. M Enery22, S. M Glynn40,6, C. Meurer29,6, P. F. Mi helson4,20 W. Mitthumsiri4, T. Mizuno36, A. A. Moiseev23,37, C. Monte16,17, M. E. Monzani4,21 A. Morselli49, I. V. Moskalenko4, I. Nestoras35, P. L. Nolan4, J. P. Norris50, E. Nuss27,22 T. Ohsugi36, N. Omodei7, E. Orlando28, J. F. Ormes50, D. Paneque4, D. Parent32,33,23 V. Pavlidou48, V. Pelassa27, M. Pepe14,15, M. Pes e-Rollins7, F. Piron27, T. A. Porter51,24 S. Rainò16,17, R. Rando11,12, M. Razzano7, A. Readhead48, O. Reimer52,4, T. Reposeur32,33,25 J. L. Ri hards48, A. Y. Rodriguez53, M. Roth19, F. Ryde40,6, H. F.-W. Sadrozinski51,26 D. San hez18, A. Sander13, P. M. Saz Parkinson51, J. D. S argle54, C. Sgrò7, M. S. Shaw4,27 P. D. Smith13, G. Spandre7, P. Spinelli16,17, M. S. Stri kman2, D. J. Suson55,28 G. Tagliaferri34, H. Tajima4, H. Takahashi36, T. Tanaka4, J. B. Thayer4, J. G. Thayer4,29 D. J. Thompson22, L. Tibaldo11,8,12, O. Tibolla56, D. F. Torres57,53, G. Tosti14,15,30 A. Trama ere4,58, Y. U hiyama59,4, T. L. Usher4, V. Vasileiou22,23,24, N. Vil hez47,31 V. Vitale49,60, A. P. Waite4, P. Wang4, A. E. Wehrle61, B. L. Winer13, K. S. Wood2,32 T. Ylinen40,62,6, J. A. Zensus35, M. Ziegler51 (The Fermi/LAT Collaboration)33 and34 E. Angelakis35, C. Bailyn63, H. Bignall64, J. Blan hard65, E. W. Bonning63, M. Buxton63,35 R. Canterna66, A. Carramiñana67, L. Carras o67, F. Colomer68, A. Doi59, G. Ghisellini34,36 M. Hauser69, X. Hong70, J. Isler63, M. Kino78, Y. Y. Kovalev35,72, Yu. A. Kovalev72,37

SLAC-PUB-14903

Work supported in part by US Department of Energy contract DE-AC02-76SF00515.

SLAC National Accelerator Laboratory, Menlo Park, CA 94025

Page 2: SLAC-PUB-14903 · 2012-03-29 · Fisica, ersità Univ rieste, T I-34127 Italy 11 Istituto Nazionale di Fisica Nucleare, Sezione a, v ado P I-35131 Italy 12 to Dipartimen di Fisica

2 T. P. Kri hbaum35, A. Kutyrev22,24, A. Lahteenmaki73, H. J. van Langevelde74,75,38 M. L. Lister76, D. Ma omb77, L. Maras hi34, N. Mar hili 35, H. Nagai78, Z. Paragi74,79,39 C. Phillips80, A. B. Pushkarev35,81,82, E. Re illas67, P. Roming83, M. Sekido84,40 M. A. Stark83, A. Szomoru74, J. Tammi73, F. Tave hio34, M. Tornikoski73,41 A. K. Tzioumis80, C. M. Urry63, S. Wagner6942

Page 3: SLAC-PUB-14903 · 2012-03-29 · Fisica, ersità Univ rieste, T I-34127 Italy 11 Istituto Nazionale di Fisica Nucleare, Sezione a, v ado P I-35131 Italy 12 to Dipartimen di Fisica

3 1Corresponding author: L. Fos hini, luigi.fos hinibrera.inaf.it.2Spa e S ien e Division, Naval Resear h Laboratory, Washington, DC 20375, USA3National Resear h Coun il Resear h Asso iate, National A ademy of S ien es, Washington, DC 20001,USA4W. W. Hansen Experimental Physi s Laboratory, Kavli Institute for Parti le Astrophysi s and Cosmol-ogy, Department of Physi s and SLAC National A elerator Laboratory, Stanford University, Stanford, CA94305, USA5Department of Astronomy, Sto kholm University, SE-106 91 Sto kholm, Sweden6The Oskar Klein Centre for Cosmoparti le Physi s, AlbaNova, SE-106 91 Sto kholm, Sweden7Istituto Nazionale di Fisi a Nu leare, Sezione di Pisa, I-56127 Pisa, Italy8Laboratoire AIM, CEA-IRFU/CNRS/Université Paris Diderot, Servi e d'Astrophysique, CEA Sa lay,91191 Gif sur Yvette, Fran e9Istituto Nazionale di Fisi a Nu leare, Sezione di Trieste, I-34127 Trieste, Italy10Dipartimento di Fisi a, Università di Trieste, I-34127 Trieste, Italy11Istituto Nazionale di Fisi a Nu leare, Sezione di Padova, I-35131 Padova, Italy12Dipartimento di Fisi a G. Galilei", Università di Padova, I-35131 Padova, Italy13Department of Physi s, Center for Cosmology and Astro-Parti le Physi s, The Ohio State University,Columbus, OH 43210, USA14Istituto Nazionale di Fisi a Nu leare, Sezione di Perugia, I-06123 Perugia, Italy15Dipartimento di Fisi a, Università degli Studi di Perugia, I-06123 Perugia, Italy16Dipartimento di Fisi a M. Merlin" dell'Università e del Polite ni o di Bari, I-70126 Bari, Italy17Istituto Nazionale di Fisi a Nu leare, Sezione di Bari, 70126 Bari, Italy18Laboratoire Leprin e-Ringuet, É ole polyte hnique, CNRS/IN2P3, Palaiseau, Fran e19Department of Physi s, University of Washington, Seattle, WA 98195-1560, USA20INAF-Istituto di Astrosi a Spaziale e Fisi a Cosmi a, I-20133 Milano, Italy21Agenzia Spaziale Italiana (ASI) S ien e Data Center, I-00044 Fras ati (Roma), Italy22NASA Goddard Spa e Flight Center, Greenbelt, MD 20771, USA23Center for Resear h and Exploration in Spa e S ien e and Te hnology (CRESST), NASA Goddard Spa eFlight Center, Greenbelt, MD 20771, USA24University of Maryland, Baltimore County, Baltimore, MD 21250, USA25S uola Internazionale Superiore di Studi Avanzati (SISSA), 34014 Trieste, Italy26George Mason University, Fairfax, VA 22030, USA

Page 4: SLAC-PUB-14903 · 2012-03-29 · Fisica, ersità Univ rieste, T I-34127 Italy 11 Istituto Nazionale di Fisica Nucleare, Sezione a, v ado P I-35131 Italy 12 to Dipartimen di Fisica

4 27Laboratoire de Physique Théorique et Astroparti ules, Université Montpellier 2, CNRS/IN2P3, Mont-pellier, Fran e28Max-Plan k Institut für extraterrestris he Physik, 85748 Gar hing, Germany29Department of Physi s, Sto kholm University, AlbaNova, SE-106 91 Sto kholm, Sweden30Royal Swedish A ademy of S ien es Resear h Fellow, funded by a grant from the K. A. WallenbergFoundation31Dipartimento di Fisi a, Università di Udine and Istituto Nazionale di Fisi a Nu leare, Sezione di Trieste,Gruppo Collegato di Udine, I-33100 Udine, Italy32Université de Bordeaux, Centre d'Études Nu léaires Bordeaux Gradignan, UMR 5797, Gradignan, 33175,Fran e33CNRS/IN2P3, Centre d'Études Nu léaires Bordeaux Gradignan, UMR 5797, Gradignan, 33175, Fran e34INAF Osservatorio Astronomi o di Brera, I-23807 Merate, Italy35Max-Plan k-Institut für Radioastronomie, Auf dem Hügel 69, 53121 Bonn, Germany36Department of Physi al S ien es, Hiroshima University, Higashi-Hiroshima, Hiroshima 739-8526, Japan37University of Maryland, College Park, MD 20742, USA38INAF Istituto di Radioastronomia, 40129 Bologna, Italy39University of Alabama in Huntsville, Huntsville, AL 35899, USA40Department of Physi s, Royal Institute of Te hnology (KTH), AlbaNova, SE-106 91 Sto kholm, Sweden41Dr. Remeis-Sternwarte Bamberg, Sternwartstrasse 7, D-96049 Bamberg, Germany42Erlangen Centre for Astroparti le Physi s, D-91058 Erlangen, Germany43Universities Spa e Resear h Asso iation (USRA), Columbia, MD 21044, USA44Department of Physi s, Tokyo Institute of Te hnology, Meguro City, Tokyo 152-8551, Japan45Waseda University, 1-104 Totsukama hi, Shinjuku-ku, Tokyo, 169-8050, Japan46Cosmi Radiation Laboratory, Institute of Physi al and Chemi al Resear h (RIKEN), Wako, Saitama351-0198, Japan47Centre d'Étude Spatiale des Rayonnements, CNRS/UPS, BP 44346, F-30128 Toulouse Cedex 4, Fran e48California Institute of Te hnology, Pasadena, CA 91125, USA49Istituto Nazionale di Fisi a Nu leare, Sezione di Roma Tor Vergata", I-00133 Roma, Italy50Department of Physi s and Astronomy, University of Denver, Denver, CO 80208, USA51Santa Cruz Institute for Parti le Physi s, Department of Physi s and Department of Astronomy andAstrophysi s, University of California at Santa Cruz, Santa Cruz, CA 95064, USA52Institut für Astro- und Teil henphysik and Institut für Theoretis he Physik, Leopold-Franzens-

Page 5: SLAC-PUB-14903 · 2012-03-29 · Fisica, ersità Univ rieste, T I-34127 Italy 11 Istituto Nazionale di Fisica Nucleare, Sezione a, v ado P I-35131 Italy 12 to Dipartimen di Fisica

5 Universität Innsbru k, A-6020 Innsbru k, Austria53Institut de Cien ies de l'Espai (IEEC-CSIC), Campus UAB, 08193 Bar elona, Spain54Spa e S ien es Division, NASA Ames Resear h Center, Moett Field, CA 94035-1000, USA55Department of Chemistry and Physi s, Purdue University Calumet, Hammond, IN 46323-2094, USA56Max-Plan k-Institut für Kernphysik, D-69029 Heidelberg, Germany57Institu ió Catalana de Re er a i Estudis Avançats (ICREA), Bar elona, Spain58Consorzio Interuniversitario per la Fisi a Spaziale (CIFS), I-10133 Torino, Italy59Institute of Spa e and Astronauti al S ien e, JAXA, 3-1-1 Yoshinodai, Sagamihara, Kanagawa 229-8510,Japan60Dipartimento di Fisi a, Università di Roma Tor Vergata", I-00133 Roma, Italy61Spa e S ien e Institute, Boulder, CO 80301, USA62S hool of Pure and Applied Natural S ien es, University of Kalmar, SE-391 82 Kalmar, Sweden63Department of Astronomy, Department of Physi s and Yale Center for Astronomy and Astrophysi s,Yale University, New Haven, CT 06520-8120, USA64Curtin Institute for Radio Astronomy, Curtin University of Te hnology, Perth WA 6845, Australia65Department of Physi s, University of Tasmania, Hobart Tasmania 7001, Australia66Department of Physi s and Astronomy, University of Wyoming, Laramie, WY 82071, USA67Instituto Na ional de Astrofísi a, Ópti a y Ele tróni a, Tonantzintla, Puebla 72840, Mexi o68Observatorio Astronómi o Na ional, E-28803 Al alá de Henares, Spain69Landessternwarte, Universität Heidelberg, Königstuhl, D 69117 Heidelberg, Germany70Shanghai Astronomi al Observatory, Shanghai 200030, China71Nagoya University, Department of Physi s and Astrophysi s, Chikusa-ku Nagoya 464-8602, Japan72Astro Spa e Center of the Lebedev Physi al Institute, 117810 Mos ow, Russia73Metsähovi Radio Observatory, Helsinki University of Te hnology TKK, FIN-02540 Kylmala, Finland74Joint Institute for VLBI in Europe, 7990 AA Dwingeloo, Netherlands75Leiden Observatory , NL 2300 RA Leiden, Netherlands76Department of Physi s, Purdue University, West Lafayette, IN 47907, USA77Department of Physi s, Boise State University, Boise, ID 83725, USA78National Astronomi al Observatory of Japan, 2-21-1 Osawa, Mitaka, Tokyo, 181-8588, Japan79MPA Resear h Group for Physi al Geodesy and Geodynami s, H-1585 Budapest, Hungary80Australia Teles ope National Fa ility, CSIRO, Epping NSW 1710, Australia

Page 6: SLAC-PUB-14903 · 2012-03-29 · Fisica, ersità Univ rieste, T I-34127 Italy 11 Istituto Nazionale di Fisica Nucleare, Sezione a, v ado P I-35131 Italy 12 to Dipartimen di Fisica

6 ABSTRACT4344 Following the re ent dis overy of γ rays from the radio-loud narrow-lineSeyfert 1 galaxy PMN J0948+0022 (z = 0.5846), we started a multiwavelength ampaign from radio to γ rays, whi h was arried out between the end of Mar hand the beginning of July 2009. The sour e displayed a tivity at all the observedwavelengths: a general de reasing trend from opti al to γ−ray frequen ies wasfollowed by an in rease of radio emission after less than two months from thepeak of the γ−ray emission. The largest ux hange, about a fa tor of about 4,o urred in the X-ray band. The smallest was at ultraviolet and near-infraredfrequen ies, where the rate of the dete ted photons dropped by a fa tor 1.6−1.9.At opti al wavelengths, where the sampling rate was the highest, it was possibleto observe day-s ale variability, with ux variations up to a fa tor of about 3.The behavior of PMN J0948+0022 observed in this ampaign and the al ulatedpower arried out by its jet in the form of protons, ele trons, radiation and mag-neti eld are quite similar to that of blazars, spe i ally of at-spe trum radioquasars. These results onrm the idea that radio-loud narrow-line Seyfert 1galaxies host relativisti jets with power similar to that of average blazars.Subje t headings: quasars: individual (PMN J0948+0022) galaxies: a tive 45 gamma rays: observations X-rays: galaxies ultraviolet: galaxies infrared:46 galaxies radio ontinuum: galaxies47 1. Introdu tion48 The re ent dete tion by Fermi Gamma-ray Spa e Teles ope of γ rays from the radio-loud49 narrow-line Seyfert 1 galaxy (RL-NLS1) PMN J0948+00221 (z = 0.5846) opened new and50 81Crimean Astrophysi al Observatory, 98409 Nau hny, Crimea, Ukraine82Pulkovo Observatory, 196140 St. Petersburg, Russia83Department of Astronomy and Astrophysi s, Pennsylvania State University, University Park, PA 16802,USA84National Institute of Information and Communi ations Te hnology, Kashima Spa e Resear h Center,893-1, Hirai, Kashima, Ibaraki, 314, Japan1We note that the absolute magnitude of this sour e is MB = −23.6, so formally mat hes also thedenition of quasars.

Page 7: SLAC-PUB-14903 · 2012-03-29 · Fisica, ersità Univ rieste, T I-34127 Italy 11 Istituto Nazionale di Fisica Nucleare, Sezione a, v ado P I-35131 Italy 12 to Dipartimen di Fisica

7 interesting questions on the unied model of a tive gala ti nu lei (AGN), the development51 of relativisti jets and the evolution of radio-loud AGN (Abdo et al. 2009a, Fos hini et al.52 2009a). Indeed, before Fermi/LAT (Large Area Teles ope) it was known that γ rays from53 AGN are produ ed in blazars and radio galaxies, but we have to add also RL-NLS1s.54 NLS1s are a tive nu lei similar to Seyferts, where the opti al permitted lines emitted55 from the broad-line region (BLR) are narrower than usual, with FWHM(Hβ)< 2000 km s−156 (see Pogge 2000, for a review). Other hara teristi s are [OIII/Hβ < 3 and a bump of FeII,57 making them a pe uliar lass of AGN. NLS1s are dierent from Seyfert 2s, whose opti al58 spe tra typi ally display FWHM(Hβ)< 1000 km s−1, [OIII/Hβ > 3 and no bump of FeII.59 NLS1s are also dierent from the naked AGN dis overed by Hawkins (2004), a pe uliar lass60 of Seyferts without the BLR, whi h have [OIII/Hβ >> 3. Indeed, NLS1s do have both BLR61 and the narrow-line region (NLR), but the BLR emits only permitted lines narrower than in62 Seyfert 1s (Rodríguez-Ardila et al. 2000).63 NLS1s are generally radio-quiet, but a small fra tion of them (< 7%, a ording to64 Komossa et al. 2006), are radio-loud. It is not lear how these sour es t into the framework65 of radio-loud AGN. Some studies of the average non-simultaneous multiwavelength properties66 (from radio to X-rays) of RL-NLS1s suggested some possibilities. Komossa et al. (2006)67 argued that RL-NLS1s ould be some young stage of quasars, while Yuan et al. (2008) found68 some similarities to TeV BL La s, but having strong emission lines they would represent69 the so- alled high-frequen y peaked at-spe trum radio quasars onje tured by Padovani70 (2007). Fos hini et al. (2009b) found instead that there is no one-to-one orrelation of RL-71 NLS1s properties with any spe i type of blazar or radio galaxy. In some ases, there are72 similarities with at-spe trum radio quasars, while others are like BL La s.73 Now, the rst dete tion by Fermi/LAT of γ rays from one RL-NLS1 - namely PMN74 J0948+0022 - sets the denitive onrmation of the presen e of a relativisti jet in these75 sour es. The dis overy of γ−ray emission from other sour es of this type (Abdo et al.,76 in preparation) raise RL-NLS1s to the rank of γ−ray emitting AGN. However, any average77 spe tral energy distribution (SED) of a γ−ray loud AGN leaves open several important ques-78 tions on the me hanisms of radiation emission, su h as whether the syn hrotron self-Compton79 (SSC) or the external Compton (EC) produ tion me hanism is dominant at high-energies80 and where the zone is where most of the dissipation o urs. Be ause PMN J0948+0022 is81 the rst obje t of this new lass of γ−ray AGN, it is important to observe it for a long time,82 in order to understand if there is something unexpe ted and if its behavior is very dierent83 from blazars and radio galaxies or not.84 With these aims in mind, we de ided to set up a multiwavelength ampaign on this85 sour e. The ampaign involved several spa e and ground-based fa ilities a ross the whole86

Page 8: SLAC-PUB-14903 · 2012-03-29 · Fisica, ersità Univ rieste, T I-34127 Italy 11 Istituto Nazionale di Fisica Nucleare, Sezione a, v ado P I-35131 Italy 12 to Dipartimen di Fisica

8 ele tromagneti spe trum, from radio to γ rays (in alphabeti al order): ATOM (Landesstern-87 warte), F-GAMMA (Eelsberg), e-VLBI (EVN, LBA), Fermi, G. Haro Teles ope (INAOE),88 Metsähovi, OVRO, RATAN-600, Swift, SMARTS, MOJAVE (VLBA), WIRO. The period89 overed was between 2009 Mar h 24 and July 5. We measured variability at multiple wave-90 bands, modelled the resulting SEDs, and ompared the results to those for more typi al91γ−ray blazars in the FSRQ and BL La lasses.92 Throughout this work, we adopted a ΛCDM osmology from the most re ent WMAP93 results, whi h give the following values for the osmologi al parameters: h = 0.71, Ωm = 0.27,94ΩΛ = 0.73 and with the Hubble-Lemaître onstant H0 = 100h km s−1 Mp −1 (Komatsu et95 al. 2009).96 2. Data Analysis97 2.1. Fermi/LAT98 The data from the Large Area Teles ope (LAT, Atwood et al. 2009) were analyzed using99 the same pro edures outlined in Abdo et al. (2009a), but with a more re ent version of the100 software (S ien e Tools v 9.15.2), Instrument Response Fun tion (IRF P6_V3_DIFFUSE,101 Rando et al. 2009) and ba kground2. Photons with energy above 100 MeV and between102 MJD 54910 (2009 Mar h 20) and 55017 (2009 July 5) were sele ted. The quoted 1σ errors103 of the analyses are statisti al only and systemati errors should be added. The most re ent104 estimates set these values as 10% at 100 MeV, 5% at 500 MeV and 20% at 10 GeV (Rando105 et al. 2009).106 The result of the t with a power-law model in the form F (E) ∝ E−Γ to the data inte-107 grated over the whole ampaign gives an average ux (E > 100 MeV) equal to (1.5± 0.1)×10810−7 ph m−2 s−1, a photon index Γ = 2.48 ± 0.09 with Test Statisti TS = 337 (whi h is109 roughly equivalent to 18σ, sin e σ ∼

√TS; see Mattox et al. 1996 for the denition of TS).110 Comparison with the values obtained from the t of the rst 5 months of data, reported in111 Abdo et al. (2009a) and re al ulated here as FE>100MeV = (1.6 ± 0.1) × 10−7 ph m−2 s−1112 with Γ = 2.7 ± 0.1 (TS = 386), shows no hanges in the average ux, but a slight spe -113 tral hardening during the present multiwavelength ampaign. We observed no emission for114 energies above ∼ 2 GeV.115 PMN J0948+0022 shows some variability on shorter times ales (Fig. 1), but the weak-116 2Everything now publi ly available at: http://fermi.gsf .nasa.gov/ss /data/

Page 9: SLAC-PUB-14903 · 2012-03-29 · Fisica, ersità Univ rieste, T I-34127 Italy 11 Istituto Nazionale di Fisica Nucleare, Sezione a, v ado P I-35131 Italy 12 to Dipartimen di Fisica

9 ness of the γ−ray ux hampers the study of the hanges of its properties. Therefore, we117 de ided to divide the ampaign into three larger bins, by integrating and analyzing data118 month-by-month. The results are summarized in Table 1. The better statisti s allow us to119 measure a lear drop in ux of a fa tor ∼ 2 from April to May and June, with a orrespond-120 ing hardening of the spe tral slope. We also note that the 2009 April ux was higher than121 the average ux in 2008 August-De ember.122 2.2. Swift (BAT, XRT, UVOT)123 The Swift satellite (Gehrels et al. 2004) observed PMN J0948+0022 11 times, starting124 on MJD 54916.26 (2009 Mar h 26 06:21 UTC) and ending on MJD 55015.53 (2009 July 3125 12:41 UTC), with average exposures of ≈ 5 ks for ea h observation. Data of BAT (Barthelmy126 et al. 2005), XRT (Burrows et al. 2005) and UVOT (Roming et al. 2005) have been analyzed127 by means of the HEASoft v. 6.6.3 software pa kage, with default parameters (ex ept as128 spe ied below) and the alibration database updated on 2009 June 5.129 No dete tion was found with BAT in the hard X-ray energy band, after having inte-130 grated all the available data obtained in this ampaign (total exposure 55.6 ks, in luding131 the observation performed on 2008 De ember 5, see Abdo et al. 2009a), with an upper limit132 (3σ) of 3.2 × 10−10 erg m−2 s−1 in the 20 − 100 keV energy band.133 XRT was set to work in photon ounting mode. Photons in the 0.2 − 10 keV energy134 band and with grades 0-12 (single to quadruple pixels events) were sele ted. A he k for135 pile-up gave negative results. The extra ted spe trum was rebinned to have a minimum of 30136 ounts per bin, in order to apply the χ2 statisti al test. In one ase (ObsID 00031306006) the137 exposure was lower than expe ted (1.4 ks) and it was ne essary to use the Cash statisti al test138 (Cash 1979), whi h allows parameters estimation in low ounts measurements through the139 likelihood ratio. The spe tra were tted with a power-law model with Gala ti absorption140 (5.22 × 1022 m−2, Kalberla et al. 2005) and the results are summarized in Table 2 and141 Fig. 1.142 UVOT ounts in all the 6 available lters (V, B, U, UVW1, UVM2, UVW2) were143 extra ted from a sour e region radius of 5′′ and a ba kground region with radius 1′, entered144 in a nearby sour e-free region and not in an annulus region around the sour e be ause of145 nearby ontaminating sour es. The observed magnitudes were orre ted for the Gala ti 146 absorption AV = 0.277 mag. The absorption for the other lters was al ulated a ording147 to the extin tion laws of Cardelli et al. (1989). The dereddened magnitudes were onverted148 into uxes in physi al units taking into a ount the zeropoints by Poole et al. (2008). Data149

Page 10: SLAC-PUB-14903 · 2012-03-29 · Fisica, ersità Univ rieste, T I-34127 Italy 11 Istituto Nazionale di Fisica Nucleare, Sezione a, v ado P I-35131 Italy 12 to Dipartimen di Fisica

10 are displayed in Fig. 2 and 3.150 We note that the opti al/IR lters bandpasses of the several fa ilites employed in this151 resear h (UVOT and the other ground-based teles opes ATOM, SMARTS, INAOE, WIRO152 des ribed in the next Se tions) do not mat h exa tly. However, after a areful inspe tion of153 simultaneous or quasi-simultaneous observations, we found that these mismat hes in lter154 bandpasses are negligible be ause they are smaller than the error bars.155 We note also that at all the UV/opti al/NIR wavelengths the quasar is unresolved with156 no hint of a ontribution from starlight of the underlying galaxy.157 2.3. Automati Teles ope for Opti al Monitoring for H.E.S.S. (ATOM)158 Opti al observations in Johnson R and B lters for this ampaign were obtained between159 Mar h 27 and May 20 with the 0.8 m opti al teles ope ATOM in Namibia. ATOM is operated160 roboti ally by the H.E.S.S. ollaboration and obtains automati observations of onrmed161 or potential γ−bright blazars. Data analysis (debiassing, at elding, photometry using162 SExtra tor; Bertin & Arnouts, 1996) is ondu ted automati ally. The magnitudes were163 then orre ted for gala ti extin tion using the extin tion laws of Cardelli et al. (1989),164 assuming RV = 3.1 and AV = 0.277 mag, whi h gives an absorption of AB = 0.37 mag and165AR = 0.23 mag. The magnitudes were onverted in uxes using the zeropoints of Bessell166 (1979). Data are shown in Fig. 3.167 2.4. Small and Moderate Aperture Resear h Teles ope System (SMARTS)168 The sour e was monitored at the Cerro Tololo Inter-Ameri an Observatory (CTIO)169 SMARTS 1.3 m teles ope plus ANDICAM, whi h is a dual- hannel imager with a di hroi 170 linked to an opti al CCD and an IR imager, from whi h it is possible to obtain simultaneous171 data from 0.4 to 2.2 µm. Opti al/Near-Infrared (NIR) observations with the lters B, R and172 J were arried out between 2009 June 1 and 14 (MJD 54983-54996).173 Opti al data were bias-subtra ted, overs an-subtra ted, and at-elded using the dpro 174 task in IRAF. The opti al photometry was alibrated absolutely using published magnitudes175 (from the USNO-B1.0 atalogue) of se ondary standard stars in the eld of the obje t. IR176 data were sky-subtra ted, at-elded, and dithered images ombined using in-house IRAF177 s ripts. The IR photometry was absolutely alibrated using 2MASS magnitudes of a se -178 ondary standard star. We estimated photometri errors by al ulating the 1σ variation in179 magnitude of omparison stars with omparable magnitude to PMN J0948 + 0022 in the180

Page 11: SLAC-PUB-14903 · 2012-03-29 · Fisica, ersità Univ rieste, T I-34127 Italy 11 Istituto Nazionale di Fisica Nucleare, Sezione a, v ado P I-35131 Italy 12 to Dipartimen di Fisica

11 same frame. The results are summarized in Fig. 3 and 4.181 2.5. Instituto Na ional de Astrofísi a, Ópti a y Ele tróni a (INAOE)182 NIR observations of PMN J0948+0022 were done between 2009 April 3 and June 21,183 at the 2.1 m teles ope Guillermo Haro, with the NIR amera CANICA, equipped with a184 Ro kwell 1024× 1024 pixel Hawaii infrared array, working at 75.4 K, with standard J(1.164185 - 1.328 µm), H(1.485 - 1.781 µm) and Ks (1.944 - 2.294 µm) lters. The plate s ale is 0.32186 ar se /pix. Observations were arried out in series of 10 dithered frames in ea h lter. A187 proper number of additional observations were adopted for the Ks observations. Data sets188 were oadded after orre ting for bias and at-elding. Flats were obtained from sky frames189 derived from the dithered ones. Data are shown in Fig. 4.190 2.6. University of Wyoming Infrared Observatory (WIRO)191 The NIR observations at WIRO of PMN J0948+0022 were obtained on 2009 May 8-9,192 as part of a blazar observing ampaign in whi h sele ted AGN are monitored over times ales193 of months, on e the AGN is measured by the LAT to ex eed a nominal threshold of 15 ×19410−8 ph m−2 s−1 (E > 100 MeV). The NIR amera is sited on the Wyoming Infrared195 Observatory's 2.3 m teles ope, whi h is optimized for IR observations, and lo ated on Mt.196 Jelm at an elevation of 2943 m. The dete tor is a professional grade 2562 InSb hip a197 spare from the Spitzer mission with a square 100′′ eld of view. On e a ounting for198 atmospheri absorption, the amera's J (1.171−1.328 µm) and K (1.987−2.292 µm) lters199 have bandpasses and enter wavelengths very similar to the MKO-NIR system (Tokunaga200 & Va a 2005).201 The observations of PMN J0948+0022 were made on 2009 May 8-9: sixteen 26 s integra-202 tions ea h in the J and K lters, per night. Ea h set of frames was at-elded and reviewed203 for transparen y with maximum of three frames per set dis arded and the remaining204 retained frames sta ked in registration. The sour e uxes were then ompared with uxes of205 same or near-frame stars as well as with uxes of NIR Arni a3 standards stars whi h were206 also obtained with the NIR amera, to derive J and K magnitudes. Data are shown in207 Fig. 4.208 3see Table 2 in L. Hunt et al., Ar etri Te hni al Report no. 3, 1994:http://www.ar etri.astro.it/irlab/instr/arni a/arni a.html

Page 12: SLAC-PUB-14903 · 2012-03-29 · Fisica, ersità Univ rieste, T I-34127 Italy 11 Istituto Nazionale di Fisica Nucleare, Sezione a, v ado P I-35131 Italy 12 to Dipartimen di Fisica

12 2.7. Owens Valley Radio Observatory (OVRO)209 PMN J0948+0022 has been observed regularly between 2009 Mar h 26 and July 3, at210 15 GHz by the Owens Valley Radio Observatory (OVRO) 40 m teles ope as part of an211 ongoing Fermi blazar monitoring program. Flux densities were measured using azimuth212 double swit hing as des ribed in Readhead et al. (1989). The relative un ertainties in ux213 density result from a 5 mJy typi al thermal un ertainty in quadrature with a 1.6% non-214 thermal random error ontribution. The absolute ux density s ale is alibrated to about215 5% using the Baars et al. model for 3C 286 (Baars et al. 1977). This absolute un ertainty216 is not in luded in the plotted errors. The light urve is shown in Fig. 5.217 2.8. Metsähovi218 The 37 GHz observations were made between 2009 April 10 and May 30, with the 13.7 m219 diameter Metsähovi radio teles ope, whi h is a radome en losed paraboloid antenna situated220 in Finland. A typi al integration time to obtain one ux density data point is 1200−1400 s.221 The dete tion limit of our teles ope at 37 GHz is on the order of 0.2 Jy under optimal222 onditions. Data points with a signal-to-noise ratio < 4 are handled as non-dete tions.223 The ux density s ale is set by observations of DR 21. Sour es 3C 84 and 3C 274 are224 used as se ondary alibrators. A detailed des ription on the data redu tion and analysis225 is given in Teräsranta et al. (1998). The error estimate in the ux density in ludes the226 ontribution from the ba kground and the un ertainty of the absolute alibration. The light227 urve is shown in Fig. 5.228 2.9. RATAN-600229 The 2 − 22 GHz instantaneous radio spe trum of PMN J0948+0022 was observed two230 times, on 2009 Mar h 24 and 25, with the 600-meter ring radio teles ope RATAN-600 (Ko-231 rolkov & Parijskij 1979) of the Spe ial Astrophysi al Observatory, Russian A ademy of S i-232 en es, lo ated in Zelen hukskaya, Russia. The broad-band radio ontinuum spe trum was233 measured quasi-simultaneously (within several minutes) in a transit mode at ve dierent234 bands. Details on the method of observation, data pro essing, and amplitude alibration are235 des ribed in Kovalev et al. (1999). The presented data were olle ted using the Northern236 ring se tor of RATAN-600. Averaged ux density spe trum is presented in Fig. 6.237

Page 13: SLAC-PUB-14903 · 2012-03-29 · Fisica, ersità Univ rieste, T I-34127 Italy 11 Istituto Nazionale di Fisica Nucleare, Sezione a, v ado P I-35131 Italy 12 to Dipartimen di Fisica

13 2.10. F-GAMMA (Eelsberg)238 The radio spe trum of PMN J0948+0022 at entimeter wavelength was measured with239 the Eelsberg 100 m teles ope, within the proje t F-GAMMA, the monitoring program of240 Fermi γ-ray blazars (F-GAMMA proje t, Fuhrmann et al. 2007). The observations were241 performed at dierent epo hs (from 2009 April 13 to June 27), with the se ondary fo us242 heterodyne re eivers between 2.64 and 42 GHz, and quasi-simultaneously with ross-s ans,243 that is slewing over the sour e position, in azimuth and elevation dire tion, with adaptive244 numbers of sub-s ans in order to rea h the required sensitivity (for details, see Fuhrmann245 et al. 2008; Angelakis et al. 2008). Pointing o-set orre tion, gain orre tion, atmospheri 246 opa ity orre tion and sensitivity orre tion have been applied to the data. The results are247 summarized in Fig. 6.248 2.11. Monitoring Of Jets in A tive gala ti nu lei with VLBA Experiments249 (MOJAVE)250 PMN J0948+0022 was observed on 2009 May 28 within the framework of the program251 MOJAVE, whi h is a survey with the Very Large Baseline Array (VLBA) at 15.4 GHz aiming252 at the study of the parse -s ale stru ture of relativisti jets in sour es with de lination> −30253 (Lister et al. 2009). Total intensity and linear polarization were measured (Fig. 7). The254 total integrated ux density is SVLBA = 437 mJy (peak value: 425 mJy/beam), while the255 integrated linear polarization is 3.5 mJy (peak value: 3.6 mJy/beam). The relative error in256 both ases is about 5%. For details of data pro essing we refer to Lister et al. (2009) and257 Lister & Homan (2005).258 These observations were performed with a 512 Mbps re ording rate and resulted in a259 very high dynami range (about 8,000:1) parse -s ale total intensity image. The stru ture260 was modeled using three omponents with ir ular Gaussian intensity proles. It was found261 that the VLBA ore highly dominates the emission and is unresolved: the ore ux density262Score = 420 mJy overs 96% of the total parse -s ale emission. We estimated an upper263 limit of the ore size following Kovalev et al. (2005), whi h turned out to be θcore < 60 µas264 ( onden e level > 99%). We are able to get su h a small upper limit, be ause of the high265 dynami range and the simpli ity of the sour e stru ture. The ore brightness temperature266 in the sour e frame is estimated to be greater than 1.0 × 1012 K.267 The obje t is highly ompa t in omparison to the sample of radio-loud AGN reported268 by Lister & Homan (2005). Its ore-to-jet ux density ratio is about 25, well above the269 average value of 3 in the sample. However, the 0.7% fra tional linear polarization of the270

Page 14: SLAC-PUB-14903 · 2012-03-29 · Fisica, ersità Univ rieste, T I-34127 Italy 11 Istituto Nazionale di Fisica Nucleare, Sezione a, v ado P I-35131 Italy 12 to Dipartimen di Fisica

14 stru ture is in agreement with the average distribution of bright quasars (Lister & Homan271 2005).272 Another MOJAVE observation was performed after the end of the ampaign (2009 July273 23, not shown here4), revealing that the ux density at 15 GHz was already de reasing274 (SVLBA = 340 mJy), and the parse -s ale ore appeared to be fainter than in 2009 May.275 2.12. e-VLBI276 PMN J0948+0022 was observed with the e-VLBI (ele troni Very Long Baseline Inter-277 ferometry) te hnique on April 21 at 1.6 GHz, and on May 23, Jun 10, and July 4 at 22 GHz.278 The epo h at 1.6 GHz was a pilot observation, lasting about 80 minutes with EVN (Euro-279 pean VLBI Network) stations only. In the following epo hs, EVN teles opes were joined by280 Australian and Japanese antennas, for about 9 hours at ea h epo h with about 1 hour of281 mutual visibility between Europe, Asia, and Australia (ex ept in the last epo h).282 Real time fringes were dete ted in all baselines between parti ipating teles opes at all283 epo hs. This in ludes Europe-Australia baselines as long as 12000 km, whi h reveals that284 the sour e is highly ompa t and allows us to onstrain its angular size. From visibility285 model tting to the rst 22 GHz epo h, we determine an upper limit to the ore size of286 0.2 mas. This orresponds to a lower limit for the brightness temperature of TB > 2.9×1010287 K, and is onsistent with the result from the se ond 22 GHz epo h and the 15 GHz data288 from MOJAVE. The 1.6 GHz observation and the nal 22 GHz one la ked Europe-Australia289 baselines, resulting in less tight onstraints. Also, the sour e shows an inverted spe trum290 between 1.6 and 22 GHz, being only 0.17 Jy at 1.6 GHz and 0.41 Jy at 22 GHz (weighted291 average), with a spe tral index of −0.3 (Sν ∝ ν−α).292 Extended emission is not revealed within our noise levels of about 1 mJy/beam. The293 elongation of the tted Gaussian is roughly along the extended emission seen at 15 GHz,294 but the extended emission is resolved out in these maps. Further details on the observations295 and a higher level analysis will be presented in a forth oming publi ation (Giroletti et al.,296 in preparation). The results are summarized in Table 3.297 4See http://www.physi s.purdue.edu/astro/MOJAVE/sour epages/0946+006.shtml

Page 15: SLAC-PUB-14903 · 2012-03-29 · Fisica, ersità Univ rieste, T I-34127 Italy 11 Istituto Nazionale di Fisica Nucleare, Sezione a, v ado P I-35131 Italy 12 to Dipartimen di Fisica

15 3. Spe tral Energy Distributions (SEDs)298 We have built opti al-to-γ rays SED by pi king time intervals so that they would be299 entered on the epo h of the Swift observations (see Table 2). We used the data from Swift300 XRT and UVOT, and, when available, the opti al/NIR data from ground-based fa ilities5.301 In the ase of γ rays, we adopted an integration time of 5 days, entered on the day of the302 Swift snapshot. The integrated LAT data were analyzed in two energy bands (0.1 − 1 and3031 − 10 GeV) and we have taken as dete tions those with TS ≥ 9. We have also re-built304 the SED orresponding to the Swift observation performed on 2008 De ember 5, whi h was305 reported in Abdo et al. (2009a). However, this time, we used for LAT the data integrated306 over 5 days (instead of 5 months). The 12 SEDs are displayed in Fig. 8.307 We have modeled these SEDs with the syn hrotron and inverse-Compton (IC) model,308 whi h is des ribed in detail in Ghisellini & Tave hio (2009) and was also used in the previous309 study (Abdo et al. 2009a). For the sake of simpli ity, we just re all some basi denitions310 and symbols used in the present work.311 The emitting blob of plasma has spheri al shape with size r and is lo ated at a distan e312Rdiss from the entral spa etime singularity with mass M = 1.5 × 108M⊙ (see Abdo et al.313 2009a), moving with onstant bulk Lorentz fa tor Γbulk = 10.314 The energy distribution of the inje ted relativisti ele trons has a broken power-law315 model, with shapes dened by γ−s1

e and γ−s2e , below and above γe,break, respe tively, where γe316 is the random Lorentz fa tor of ele trons. This input distribution is then modied a ording317 to the radiative ooling o urring during a nite time of inje tion (the light rossing time318 of the blob) and the possibility of pair produ tion through γγ → e±. The distribution in319 output is then used to generate the observed radiation through the syn hrotron, syn hrotron320 self-Compton (SSC) and external-Compton (EC) pro esses. The seed photons for EC are321 generated dire tly by the a retion disk and its X-ray orona, the broad-line region (BLR),322 and the infrared torus.323 Obviously, in this ase, the BLR emits only narrow-lines, but what is important with324 respe t to EC is the energy density in the omoving frame. As already outlined in Abdo et325 al. (2009a), the dieren es of the BLR in NLS1s are thought to be due to (1) a disk-like326 shape of the BLR (De arli et al. 2008) or (2) a shift of the BLR farther from the entral327 supermassive singularity due to the radiation pressure of the highly a reting disk (Mar oni328 5Radio data were not used in the t of the SEDs, be ause they are generated in regions external to thatwhere opti al-to-γ rays are produ ed. More details on radio observations will be presented in Giroletti et al.(in preparation).

Page 16: SLAC-PUB-14903 · 2012-03-29 · Fisica, ersità Univ rieste, T I-34127 Italy 11 Istituto Nazionale di Fisica Nucleare, Sezione a, v ado P I-35131 Italy 12 to Dipartimen di Fisica

16 et al. 2008). From the point of view of generating seed photons for EC, in ase (1) there is329 no dieren e from a shell-like shape of the BLR, sin e what is important is the angle with330 whi h the blob sees the BLR (see angles α1 and α2 in Fig. 1 of Ghisellini & Tave hio 2009).331 In ase (2), we performed some tests by pushing the BLR further out (up to 5 × 1017 m),332 but we found minimal hanges in the parameters. We note also that the size of the BLR333 is dened on the basis of the a retion disk luminosity, whi h in turn is measured from334 the SED, as RBLR = 1017√

Ldisk,45, where Ldisk,45 is the luminosity of the disk in units of3351045 erg s−1.336 The maximum ele tron energy is rea hed with γe,max, and that orresponding to the337 IC peak is γe,peak. The inje ted power in the form of relativisti ele trons is L′

e ( omoving338 frame), while the power arried out by the jet is omposed of kineti motion of ele trons339 (Le) and protons (Lp, one for ea h ele tron), radiation (Lrad) and magneti eld (LB).340 The summary of the 12 SED ts is reported in Table 4, while Fig. 9 and 10 display the341 evolution of some parameters on a time s ale oordinated with those of the light urves of342 Figs. 1-5, to allow an easy omparison with observations.343 We have also built an overall SED from the averages of all the data olle ted in this344 ampaign (Fig. 11). It is not an average over the whole ampaign, ex ept for LAT data, whi h345 are olle ted daily. At all the other wavelengths, the result is an average of the available346 observations, generally limited to some periods in the ampaign. The parameters obtained347 by the modeling of this overall SED are also reported in Table 4.348 4. Dis ussion349 An immediate omparison between the two average SEDs obtained from the present350 ampaign (2009 Mar h-July) and that of the period 2008 August-De ember analyzed in351 Abdo et al. (2009a), together with ar hival data (Fig. 11), displays some hanges in the352 emission, more pronoun ed at some frequen ies. An inspe tion of the multiwavelength light353 urves highlights variability both in ux (at all the observed frequen ies; see Fig. 1-5) and354 spe tral properties (Table 1, Fig. 6 and Fig. 12), ex ept for X-rays, whi h show no variability355 in the photon index, despite showing the strongest ux variations.356 To he k for the presen e of variability, we tted the light urves at dierent frequen ies357 with a onstant ux light urve, but we got high values of redu ed χ2, thus onrming that358 the sour e displayed some a tivity at all the wavelengths (Table 5). The most dramati ux359 hanges are in X-rays (fa tor 3.9), radio 37 GHz (fa tor 3.2) and opti al V and R lters360 (fa tor 2.7 and 2.9, respe tively), the latter with day times ales (Table 5). Interestingly,361

Page 17: SLAC-PUB-14903 · 2012-03-29 · Fisica, ersità Univ rieste, T I-34127 Italy 11 Istituto Nazionale di Fisica Nucleare, Sezione a, v ado P I-35131 Italy 12 to Dipartimen di Fisica

17 a lear de reasing trend from X-rays to opti al wavelengths is visible at the beginning of362 May and orresponds to a period with de reasing γ rays (Table 1). Although only a few363 observations are available between May 5 and 15, the drop in ux is onsistent with an364 exponential de ay of the form F (t) = F (t0) exp[−(t − t0)/τ ], with a de ay onstant τ ∼ 7365 days. The opposite o urs at radio and NIR frequen ies, rea hing a peak at 15 GHz about366 20 days after the beginning of the X-ray-to-opti al ux de rease.367 This oordinated trend is the typi al behavior expe ted from the ele tromagneti emis-368 sion of a relativisti jet. At the radio, opti al and X-ray frequen ies, there is a dominan e369 of the syn hrotron and syn hrotron self-Compton (SSC) pro esses, while γ rays are gener-370 ated by external Compton (EC). This is also lear by looking at the hange in the opti-371 al/UV spe trum (Fig. 12). Indeed, it is known that these frequen ies sample the rising372 part of the a retion disk bump, but before May 5 the opti al/UV spe trum was atter373 (αV −UV W2 = 0.08 ± 0.06) and at high uxes(6). This is likely due to a higher syn hrotron374 emission, while the a retion disk had relatively small hange. In the following ∼ 10 days,375 the syn hrotron emission de reased to its minimum, and the shape of the opti al/UV emis-376 sion returned to being hard (αV −UV W2 = 0.4± 0.2) and mainly due to the rising part of the377 a retion disk bump. The X-ray emission followed this behavior, being due to SSC, i.e. it378 was high on May 5 and de reased to its minimum on May 15.379 The radio emission, oming from zones farther away from the opti al-to-γ rays dissipa-380 tion region, rea hed its peak about 20 days after the opti al-to-X-ray drop, as shown in the381 light urves at 15 and 37 GHz (Fig. 5). However, the spe tral index α5−15GHz, as measured382 between 4.85 and 14.6 GHz, hanged well before, from a rather at value (α5−15GHz ∼ 0) on383 April 13 (MJD 54934.98) and earlier, to an inverted spe trum (α5−15GHz = −0.40 ± 0.03)384 already on April 30 (MJD 54951.75) (about two weeks, see Fig. 6). On May 27 (MJD385 54978.79), lose to the maximum ux, the spe tral inversion was at its maximum too386 (α5−15GHz = −0.98 ± 0.05) and then, on June 27 (MJD 55009.53), the spe tral index was387 already returning to a atter shape (α5−15GHz = −0.77 ± 0.04). This is in agreement with388 the ndings by Kovalev et al. (2009) with referen e to the general radio vs γ−ray properties389 of the blazars dete ted by Fermi/LAT during the rst three months of operation (Abdo et390 al. 2009b). They found that the time separation between γ−ray and radio ares is typi ally391 up to a few months, in agreement with the results obtained by other authors on individual392 sour es studies (e.g. Raiteri et al. 2008, Larionov et al. 2008, Villata et al. 2009). In the393 present ase, if we adopt as referen es the peak of the γ−ray emission that o urred in the394 rst two weeks of 2009 April and the peak of the radio ux at 15 GHz that o urred in the395 6Having dened α12 = − log(F1/F2)/ log(ν1/ν2), where F1 and F2 are the uxes at frequen ies ν1 and ν2.

Page 18: SLAC-PUB-14903 · 2012-03-29 · Fisica, ersità Univ rieste, T I-34127 Italy 11 Istituto Nazionale di Fisica Nucleare, Sezione a, v ado P I-35131 Italy 12 to Dipartimen di Fisica

18 se ond half of 2009 May, we an roughly estimate a delay of 1.5-2 months.396 The modeling of the SED (Fig. 8, Table 4, see also the evolution of the model parameters397 in Fig. 9 and 10) onrmed this phenomenologi al view. During this ampaign, the modelled398 values of the magneti eld, inje ted power, and the radius at whi h dissipation of energy399 o urs varied by fa tors of 2.4, 4.1 and 2.4, respe tively. At the same time, the power in400 radiation, ele trons, protons, and the magneti eld varied by 4.4, 3, 4.2 and 1.2, respe tively.401 The dissipation radius was (3.6− 8.8)× 1016 m, roughly 0.04− 0.091 light years or 0.012−4020.028 p from the entral supermassive bla k hole. At the beginning of May, when the403 syn hrotron and SSC emission dominate the opti al-to-X-ray emission, the dissipation region404 is very ompa t and the magneti eld is high. The trend of the inje ted power (agged405 by the γ−ray emission) is de reasing. Then, on May 15, the dissipation radius is larger406 together with a smaller value of the magneti eld. We note that the a retion remained407 almost onstant, at about 40-50% of the Eddington value7.408 The t from the overall SED (Table 4) had the following values: the dissipation409 radius is 67.5 × 1015 m, Ldisk = 0.5 times the Eddington luminosity, the inje ted power is4102.3 × 1043 erg s−1, while the power arried out by the jet is 1.5 × 1046 erg s−1 in protons,4112.9 × 1044 erg s−1 in ele trons, 2.1 × 1045 erg s−1 in radiation, and 2.8 × 1044 erg s−1 in412 the magneti eld. These values are well within the range of typi al values for other γ−ray413 blazars ( f Celotti & Ghisellini 2008, Ghisellini et al. 2009).414 5. Con lusions415 We thus onrm that PMN J0948+0022 despite being a radio-loud narrow-line Seyfert416 1 hosts a relativisti γ−ray emitting jet, similar to those of FSRQs, and onrms all the417 hypotheses adopted to model the non-simultaneous SED in Abdo et al. (2009a). This418 type of sour e an develop a relativisti jet like blazars and radio galaxies, even though the419 onditions of the environment lose to its entral spa etime singularity are quite dierent.420 This is indeed a new lass of γ−ray emitting AGN.421 We have shown that the variability at multiple wavebands and the physi al parameters422 resulting from modelling the SEDs are typi al of a sour e midway between FSRQs and BL423 La s. The al ulated powers arried by the various omponents of the jet are low ompared424 to the distributions of values for FSRQ, but above those of BL La s ( f Celotti & Ghisellini425 7The Eddington value of the a retion disk luminosity orresponds to the power emitted in a onditionof equilibrium between the for e due to the radiation pressure and the gravity.

Page 19: SLAC-PUB-14903 · 2012-03-29 · Fisica, ersità Univ rieste, T I-34127 Italy 11 Istituto Nazionale di Fisica Nucleare, Sezione a, v ado P I-35131 Italy 12 to Dipartimen di Fisica

19 2008, Ghisellini et al. 2009), and therefore within the average range of blazar powers, despite426 the relatively low mass of its bla k hole, 1.5 × 108M⊙ (Abdo et al. 2009a). The γ−ray427 observations performed to date have not revealed very high uxes, i.e. above the usual428 threshold adopted to dene an outburst in normal blazars (FE>100MeV > 10−6 ph m−2 s−1).429 However, it is not lear yet if this is due to the duty y le of this sour e and hen e if430 we have just observed a minor event or if the dierent environmental onditions in the431 ore of RL-NLS1s hampers the development of a high power jet. This question will likely432 be answered by the ontinuous monitoring that Fermi/LAT is performing on this and other433 sour es of this type.434 The Fermi LAT Collaboration a knowledges generous ongoing support from a number435 of agen ies and institutes that have supported both the development and the operation of the436 LAT as well as s ienti data analysis. These in lude the National Aeronauti s and Spa e437 Administration and the Department of Energy in the United States, the Commissariat à438 l'Energie Atomique and the Centre National de la Re her he S ientique / Institut National439 de Physique Nu léaire et de Physique des Parti ules in Fran e, the Agenzia Spaziale Italiana440 and the Istituto Nazionale di Fisi a Nu leare in Italy, the Ministry of Edu ation, Culture,441 Sports, S ien e and Te hnology (MEXT), High Energy A elerator Resear h Organization442 (KEK) and Japan Aerospa e Exploration Agen y (JAXA) in Japan, and the K. A. Wallen-443 berg Foundation, the Swedish Resear h Coun il and the Swedish National Spa e Board in444 Sweden. Additional support for s ien e analysis during the operations phase is gratefully445 a knowledged from the Istituto Nazionale di Astrosi a in Italy and the Centre National446 d'Études Spatiales in Fran e.447 This work is sponsored at PSU by NASA ontra t NAS5-00136.448 The SMARTS observations were supported by Cy le 1 Fermi GI grant number 011283.449 The Metsähovi team a knowledges the support from the A ademy of Finland.450 e-VLBI developments in Europe are supported by the EC DG-INFSO funded Communi-451 ation Network Developments proje t EXPReS, Contra t No. 02662. The European VLBI452 Network is a joint fa ility of European, Chinese, South Afri an and other radio astronomy453 institutes funded by their national resear h oun ils.454 The National Radio Astronomy Observatory is a fa ility of the National S ien e Foun-455 dation operated under ooperative agreement by Asso iated Universities, In . RATAN-600456 observations are supported in part by the Russian Foundation for Basi Resear h (proje ts457 01-02-16812 and 08-02-00545). This resear h has made use of data from the MOJAVE458 database that is maintained by the MOJAVE team (Lister et al. 2009). The MOJAVE459

Page 20: SLAC-PUB-14903 · 2012-03-29 · Fisica, ersità Univ rieste, T I-34127 Italy 11 Istituto Nazionale di Fisica Nucleare, Sezione a, v ado P I-35131 Italy 12 to Dipartimen di Fisica

20 proje t is supported under National S ien e Foundation grant 0807860-AST and NASA-460 Fermi grant NNX08AV67G.461 Also based on observations with the 100-m teles ope of the MPIfR (Max-Plan k-Institut462 für Radioastronomie) at Eelsberg.463 M. Hauser and S. Wagner a knowledge nan ial support through SFB 439 and BMBF/PT-464 DESY.465 This resear h has made use of the NASA/IPAC Extragala ti Database (NED) whi h466 is operated by the Jet Propulsion Laboratory, California Institute of Te hnology, under467 ontra t with the National Aeronauti s and Spa e Administration and of data obtained468 from the High Energy Astrophysi s S ien e Ar hive Resear h Center (HEASARC), provided469 by NASA's Goddard Spa e Flight Center.470 Fa ilities: ATOM (LSW), Eelsberg (F-GAMMA), e-VLBI (EVN, LBA), Fermi, G.471 Haro (INAOE), Metsähovi, OVRO, RATAN-600, Swift, SMARTS (Yale), VLBA (MO-472 JAVE), WIRO.473 REFERENCES474 Abdo A.A., A kermann M., Ajello M., et al., 2009a, ApJ, 699, 976475 Abdo A.A., A kermann M., Ajello M., et al., 2009b, ApJ, 700, 597476 Angelakis E., Fuhrmann L., Mar hili N., Kri hbaum T. P., & Zensus J. A., 2008, Mem. SAIt,477 79, 1042478 Atwood W.B., Abdo A.A., A kermann M., et al., 2009, ApJ, 697, 1071479 Baars J.W.M., Genzel R., Pauliny-Toth I.I.K. & Witzel A., 1977, A&A, 61, 99480 Barthelmy S.D., Barbier L.M., Cummings J.R., et al., 2005, Spa e S ien e Review, 120, 143481 Bertin E. & Arnouts S., 1996, A&AS, 117, 393482 Bessell M.S., 1979, PASP, 91, 589483 Burrows D.N., Hill J.E., Nousek J.A., et al., 2005, Spa e S ien e Review, 120, 165484 Cardelli J.A., Clayton G.C., Mathis J.S., 1989, ApJ, 345, 245485 Cash W., 1979, ApJ 228, 939486

Page 21: SLAC-PUB-14903 · 2012-03-29 · Fisica, ersità Univ rieste, T I-34127 Italy 11 Istituto Nazionale di Fisica Nucleare, Sezione a, v ado P I-35131 Italy 12 to Dipartimen di Fisica

21 Celotti A. & Ghisellini G., 2008, MNRAS, 385, 283487 De arli R., Dotti M., Fontana M., Haardt F., 2008, MNRAS, 386, L15488 Doi A., Nagai H., Asada K., et al., 2006, PASJ, 58, 829489 Fos hini L. et al., 2009a, Pro eedings of the Conferen e A retion and Eje tion in AGN: a490 Global View, ASP Conferen e Pro eedings, to be published arXiv:0908.3313491 Fos hini L., Maras hi L., Tave hio F., Ghisellini G., Gliozzi M., Sambruna R.M., 2009b,492 Adv. Spa e Res., 43, 889493 Fuhrmann L., Zensus J. A., Kri hbaum T. P., Angelakis E., & Readhead A. C. S., 2007,494 The First GLAST Symposium, AIP Conferen e Pro eedings 921, 249495 Fuhrmann L., et al., 2008, A&A, 490, 1019496 Gehrels N., Chin arini G., Giommi P., et al., 2004, ApJ, 611, 1005497 Ghisellini G. & Tave hio F., 2009, MNRAS, 397, 985498 Ghisellini G., Tave hio F., Fos hini L., Ghirlanda G., Maras hi L., Celotti A., 2009, MN-499 RAS, submitted [arxiv:0909.0932500 Hawkins M.R.S., 2004, A&A, 424, 519501 Kalberla P.M.W., Burton W.B., Hartmann D., et al., 2005, A&A, 440, 775502 Komatsu E., Dunkley J., Nolta M. R., et al., 2009, ApJS, 180, 330503 Komossa S., Voges W., Xu D., et al., 2006, ApJ, 132, 531504 Korolkov, D. V., & Parijskij, Yu. N., 1979, Sky Teles ., 57, 324505 Kovalev, Y. Y., Nizhelsky, N. A., Kovalev, Yu. A., Berlin, A. B., Zhekanis, G. V., Mingaliev,506 M. G., & Bogdantsov, A. V., 1999, A&AS, 139, 545507 Kovalev, Y. Y., et al., 2005, AJ, 130, 2473508 Kovalev, Y. Y., et al., 2009, ApJ, 696, L17509 Larionov V.M., Jorstad S.G., Mars her A.P., et al., 2008, A&A, 492, 389510 Lister M.L. & Homan D.C., 2005, AJ, 130, 1389511 Lister M.L., Aller H.D., Aller M.F., et al. 2009, AJ, 137, 3718512

Page 22: SLAC-PUB-14903 · 2012-03-29 · Fisica, ersità Univ rieste, T I-34127 Italy 11 Istituto Nazionale di Fisica Nucleare, Sezione a, v ado P I-35131 Italy 12 to Dipartimen di Fisica

22 Mattox J.R., Berts h D.L., Chiang J.L., et al., 1996, ApJ, 461, 396513 Mar oni A., Axon D.J., Maiolino R., et al., 2008, ApJ, 678, 693514 Padovani P., 2007, Ap&SS, 309, 63515 Pogge R.W., 2000, New Astron Review, 44, 381516 Poole T.S., Breeveld A.A., Page M.J., et al., 2008, MNRAS, 383, 627517 Raiteri C.M., Villata M., Chen W.P., et al., 2008, A&A, 485, L17518 Rando R. et al., 2009, Pro eedings of the 31th ICRC, [arXiv:0907.0626519 Readhead A. C. S., Lawren e C. R., Myers S. T., et al., 1989, ApJ, 346, 566520 Rodríguez-Ardila A., Binette L., Pastoriza M.G., Donzelli C.J., 2000, ApJ, 538, 581521 Roming P.W.A., Kennedy T.E., Mason K.O., et al., 2005, Spa e S ien e Review, 120, 95522 Teräsranta H., Tornikoski M., Mujunen A. et al., 1998, A&AS, 132, 305523 Tokunaga A.T. & Va a W.D., 2005, PASP, 117, 421524 Villata M., Raiteri C.M., Larionov V.M., et al., 2009, A&A, 501, 455525 Yuan W., Zhou H.Y., Komossa S.A. et al., 2008, ApJ, 685, 801526

This preprint was prepared with the AAS LATEX ma ros v5.2.

Page 23: SLAC-PUB-14903 · 2012-03-29 · Fisica, ersità Univ rieste, T I-34127 Italy 11 Istituto Nazionale di Fisica Nucleare, Sezione a, v ado P I-35131 Italy 12 to Dipartimen di Fisica

23 0

0.1

0.2

0.3

Flu

x E

>10

0 M

eV

Apr 1 May 1 Jun 1 Jul 10

0.1

0.2

0.3

Flu

x E

>10

0 M

eV

240 260 280 300 320 340

24

68

Flu

x 0.

2−10

keV

Time [MJD − 54680]Fig. 1. (top panel) γ−ray (E > 100 MeV) light urve from Fermi/LAT [10−6 ph m−2 s−1, overing the whole period of the ampaign. The bin time is 15 days. ( enter panel) γ−ray(E > 100 MeV) light urve from Fermi/LAT [10−6 ph m−2 s−1, with 5 days bin time entered on Swift epo hs. (bottom panel) X-ray (0.2− 10 keV) light urves from Swift/XRT[10−12 erg m−2 s−1.

Page 24: SLAC-PUB-14903 · 2012-03-29 · Fisica, ersità Univ rieste, T I-34127 Italy 11 Istituto Nazionale di Fisica Nucleare, Sezione a, v ado P I-35131 Italy 12 to Dipartimen di Fisica

24

240 260 280 300 320 340

01

23

4

Flu

x O

ptic

al/U

V

Time [MJD − 54680]

Apr 1 May 1 Jun 1 Jul 1

Fig. 2. Swift/UVOT light urves of PMN J0948+0022 for the three ultraviolet lters(squares: UVW1; triangles: UVM2; ir les: UVW2) and two opti al lters (stars: U; aster-isks: V). Fluxes (νFν) are in units of 10−12 erg m−2 s−1.

Page 25: SLAC-PUB-14903 · 2012-03-29 · Fisica, ersità Univ rieste, T I-34127 Italy 11 Istituto Nazionale di Fisica Nucleare, Sezione a, v ado P I-35131 Italy 12 to Dipartimen di Fisica

25

240 260 280 300 320 340

12

34

Flu

x O

ptic

al

Time [MJD − 54680]

Apr 1 May 1 Jun 1 Jul 1

Fig. 3. Swift/UVOT (B), ATOM (B, R) and SMARTS (B, R) opti al light urves ofPMN J0948+0022 ( ir les: B; triangles: R). Fluxes (νFν) are in units of 10−12 erg m−2 s−1.

Page 26: SLAC-PUB-14903 · 2012-03-29 · Fisica, ersità Univ rieste, T I-34127 Italy 11 Istituto Nazionale di Fisica Nucleare, Sezione a, v ado P I-35131 Italy 12 to Dipartimen di Fisica

26

240 260 280 300 320 340

11.

52

2.5

3

Flu

x N

IR

Time [MJD − 54680]

Apr 1 May 1 Jun 1 Jul 1

Fig. 4. SMARTS (J), WIRO (J, Ks) and INAOE (J, H, Ks) near-infrared light urvesof PMN J0948+0022 ( ir les: J; triangles: H; squares: Ks). Fluxes (νFν) are in units of10−12 erg m−2 s−1.

Page 27: SLAC-PUB-14903 · 2012-03-29 · Fisica, ersità Univ rieste, T I-34127 Italy 11 Istituto Nazionale di Fisica Nucleare, Sezione a, v ado P I-35131 Italy 12 to Dipartimen di Fisica

27

240 260 280 300 320 340

00.

20.

40.

60.

81

Flu

x R

adio

[Jy]

Time [MJD − 54680]

Apr 1 May 1 Jun 1 Jul 1

Fig. 5. Radio light urves of PMN J0948+0022. Cir les: 15 GHz data from OVRO;squares: 37 GHz data from Metsähovi.

Page 28: SLAC-PUB-14903 · 2012-03-29 · Fisica, ersità Univ rieste, T I-34127 Italy 11 Istituto Nazionale di Fisica Nucleare, Sezione a, v ado P I-35131 Italy 12 to Dipartimen di Fisica

28 1

0.2

0.5

[Jy]

RATAN−600, March 24−25, 2009

10.

20.

5

[Jy]

Effelsberg, April 13, 2009

10.

20.

5

[Jy]

Effelsberg, April 30, 2009

10.

20.

5

[Jy]

Effelsberg, May 27, 2009

102 5 20

10.

20.

5

[Jy]

Frequency [GHz]

Effelsberg, June 27, 2009

Fig. 6. Evolution of the radio spe trum of PMN J0948+0022 as observed from Eelsbergand RATAN.

Page 29: SLAC-PUB-14903 · 2012-03-29 · Fisica, ersità Univ rieste, T I-34127 Italy 11 Istituto Nazionale di Fisica Nucleare, Sezione a, v ado P I-35131 Italy 12 to Dipartimen di Fisica

29

Fig. 7. VLBA (MOJAVE program) 15 GHz ombined total intensity and linear polar-ization image of PMN J0948+0022 observed on 2009 May 28. The total intensity is shownby ontours of equal intensity (with ×2 steps). The lowest ontour is 0.2 mJy/beam andthe peak intensity rea hes the value of 425 mJy/beam. The dire tion of the ele tri ve torsis superimposed and represented by blue solid lines, with their length proportional to theintensity of the linear polarization, whi h peaks at 3.6 mJy/beam. The FWHM size of therestoring beam is shown in the left bottom orner. The spatial s ale is 6.59 p /mas in theadopted osmology.

Page 30: SLAC-PUB-14903 · 2012-03-29 · Fisica, ersità Univ rieste, T I-34127 Italy 11 Istituto Nazionale di Fisica Nucleare, Sezione a, v ado P I-35131 Italy 12 to Dipartimen di Fisica

30 05-12-08 26-03-09 15-04-09

05-05-09 10-05-09 15-05-09

25-05-09 04-06-09 14-06-09

23-06-09 24-06-09 03-07-09

Fig. 8. Individual SEDs built from the measurements obtained during the observationsperformed in the present multiwavelength ampaign and entered on the Swift snapshots.The observation performed on De ember 5, 2008 is also shown (Abdo et al. 2009). Redpoints are the (quasi-)simultaneous data. The dotted line indi ates the ontribution fromthe a retion disk. The dashed line is the syn hrotron self-Compton (SSC) and the dot-dashed line is the external Compton (EC). The blue ontinuous line is the sum of all the ontributions. LAT spe tra integrated over the three months of this ampaign (grey points)and that integrated on August-De ember 2008 (green points) from Abdo et al. (2009) arealso shown (these are almost onsistent, ex ept for the last bin at the highest energy).

Page 31: SLAC-PUB-14903 · 2012-03-29 · Fisica, ersità Univ rieste, T I-34127 Italy 11 Istituto Nazionale di Fisica Nucleare, Sezione a, v ado P I-35131 Italy 12 to Dipartimen di Fisica

31 40

6080

100

Rdi

ss

Apr 1 May 1 Jun 1 Jul 1

12

34

L’e

240 260 280 300 320 340

46

8

Mag

netic

Fie

ld

Time [MJD −54680]Fig. 9. Evolution of models parameters derived from the ts of individual SEDs. Rdissis the dissipation radius in units of [1015 m; L′e is the inje ted ele tron power in units of[1043 erg s−1; the magneti eld B is in units of [gauss. The dot-dashed lines indi ate thevalue obtained from the t of the overall SED.

Page 32: SLAC-PUB-14903 · 2012-03-29 · Fisica, ersità Univ rieste, T I-34127 Italy 11 Istituto Nazionale di Fisica Nucleare, Sezione a, v ado P I-35131 Italy 12 to Dipartimen di Fisica

32 45

45.5

46

log(

L rad)

Apr 1 May 1 Jun 1 Jul 1

4646

.5

log(

L p)

44.2

44.4

44.6

log(

L e)

240 260 280 300 320 340

44.3

544

.444

.45

log(

L B)

Time [MJD −54680]Fig. 10. Evolution of models parameters derived from the ts of individual SEDs. Fromtop to bottom: radiation, proton, ele tron and magneti eld powers in units of [erg s−1.The dot-dashed lines indi ate the value obtained from the t of the overall SED.

Page 33: SLAC-PUB-14903 · 2012-03-29 · Fisica, ersità Univ rieste, T I-34127 Italy 11 Istituto Nazionale di Fisica Nucleare, Sezione a, v ado P I-35131 Italy 12 to Dipartimen di Fisica

33

Fig. 11. Overall SED built from all the measurements obtained during the observationsperformed in the present multiwavelength ampaign. Red points are the data olle tedduring the present ampaign. The dotted bla k line indi ates the ontribution from thea retion disk, X-ray orona and IR torus. The short-dashed green line is the syn hrotron(Syn) and the long-dashed orange line is the syn hrotron self-Compton (SSC). The dot-dashed bla k line is the external Compton (EC). The blue ontinuous line is the sum of allthe ontributions. Grey symbols indi ate ar hival data from Abdo et al. (2009). The tdoes not in lude radio data, although they are displayed, sin e they are produ ed in regionsexternal to that of the γ rays. The region of syn hrotron self-absorption is learly visiblearound 1011 Hz.

Page 34: SLAC-PUB-14903 · 2012-03-29 · Fisica, ersità Univ rieste, T I-34127 Italy 11 Istituto Nazionale di Fisica Nucleare, Sezione a, v ado P I-35131 Italy 12 to Dipartimen di Fisica

34

10155×1014 2×1015

10−

122×

10−

125×

10−

12

υFυ

[erg

cm

−2

s−1 ]

υ [Hz]

May 5, 2009

May 15, 2009

Fig. 12. Zoom of the SED into the opti al/UV frequen ies of PMN J0948+0022, asobserved on May 5 and 15.

Page 35: SLAC-PUB-14903 · 2012-03-29 · Fisica, ersità Univ rieste, T I-34127 Italy 11 Istituto Nazionale di Fisica Nucleare, Sezione a, v ado P I-35131 Italy 12 to Dipartimen di Fisica

35 Table 1: Summary of the spe tral tting of the Fermi/LAT data on a monthly times ale.Time Period FE>100MeV Γ TS[10−7 ph m−2 s−1April 2009 2.2 ± 0.4 2.7 ± 0.2 158May 2009 1.2 ± 0.3 2.4 ± 0.2 65June 2009 1.0 ± 0.2 2.2 ± 0.2 76Aug-De 2008 1.6 ± 0.1 2.7 ± 0.1 386

Page 36: SLAC-PUB-14903 · 2012-03-29 · Fisica, ersità Univ rieste, T I-34127 Italy 11 Istituto Nazionale di Fisica Nucleare, Sezione a, v ado P I-35131 Italy 12 to Dipartimen di Fisica

36 Table 2: Summary of results from analysis of the Swift/XRT data. See the text for detailsand Fig. 1.ObsID Time Exposure Γ Flux0.2−10keV χ2/dof Notes[MJD [ks [10−12 erg m−2 s−100031306002 54916.26 4.8 1.75 ± 0.10 7.7 ± 0.3 33.7/2300031306003 54936.34 4.4 1.67 ± 0.13 5.4 ± 0.3 14.4/1300031306004 54956.42 4.8 1.61 ± 0.09 8.1 ± 0.3 18.8/2200031306005 54961.51 4.9 1.83 ± 0.14 4.2 ± 0.4 5.7/1200031306006 54966.13 1.4 1.77 ± 0.49 2.1 ± 0.7 − 2 PHA bins; Cash statisti (Cash 1979)00031306007 54976.43 5.0 1.75 ± 0.14 4.3 ± 0.4 7.2/1100031306008 54986.16 4.5 1.72 ± 0.15 4.3 ± 0.4 9.1/1000031306009 54996.04 3.9 1.69 ± 0.14 5.4 ± 0.3 14.1/1100031306010 55005.42 7.7 1.63 ± 0.11 3.6 ± 0.4 7.5/1500031306011 55006.81 4.7 1.52 ± 0.23 3.3 ± 0.3 3.6/600038394001 55015.53 4.2 1.77 ± 0.25 3.1 ± 0.3 3.3/5

Page 37: SLAC-PUB-14903 · 2012-03-29 · Fisica, ersità Univ rieste, T I-34127 Italy 11 Istituto Nazionale di Fisica Nucleare, Sezione a, v ado P I-35131 Italy 12 to Dipartimen di Fisica

37 Table 3: Summary of the observed uxes from e-VLBI. See the text for details.Time Frequen y Flux density TB Resolution(MJD) (GHz) [Jy [K [mas × mas, deg54942 1.66 0.17 ± 0.03 > 1.7 × 106 35.4 × 22.9, 12

54974 22.2 0.7 ± 0.2 > 3.1 × 1010 0.22 × 0.59, 24

54992 22.2 0.3 ± 0.1 > 2.3 × 1010 0.19 × 0.47, 28

55016 22.2 0.5 ± 0.1 > 1.5 × 1010 0.41 × 0.48, 55

Page 38: SLAC-PUB-14903 · 2012-03-29 · Fisica, ersità Univ rieste, T I-34127 Italy 11 Istituto Nazionale di Fisica Nucleare, Sezione a, v ado P I-35131 Italy 12 to Dipartimen di Fisica

38

Table 4. Summary of the ts of the SEDs.Time Rdiss Ldisk L′

e B γe,break γe,max γe,peak s1 s2 U ′ log Lrad log Lp log Le log LB(1) (2) (3) (4) (5) (6) (7) (8) (9) (10) (11) (12) (13) (14) (15)54916 65.3 0.5 3.3 4.2 700 2000 675 -0.5 2.2 4.4 45.49 46.20 44.56 44.4554936 72.0 0.5 2.6 3.8 600 1900 556 -0.25 2.2 3.9 45.38 46.10 44.49 44.4554956 36.0 0.5 1.8 7.6 400 2200 462 -1.0 2.2 8.1 45.21 46.05 44.34 44.4554961 45.0 0.45 1.3 5.8 500 1800 476 0.0 2.2 5.3 45.06 45.86 44.29 44.4054966 76.5 0.4 1.7 3.2 600 1800 526 0.0 2.2 3.4 45.19 45.95 44.36 44.3554976 81.0 0.5 2.5 3.4 900 1700 636 0.0 2.2 3.6 45.37 46.08 44.47 44.4554986 49.5 0.5 1.6 5.5 700 2100 656 -0.5 2.2 5.1 45.17 45.83 44.27 44.4554996 87.7 0.5 3.7 3.1 600 2500 604 0.0 2.2 3.6 45.54 46.26 44.61 44.4555005 56.3 0.5 1.4 4.4 600 1700 543 -0.5 2.2 4.4 45.11 45.80 44.26 44.4555007 54.0 0.4 1.3 4.5 900 1400 640 -1.0 2.2 4.3 45.08 45.81 44.23 44.3555015 38.3 0.4 0.9 6.4 500 1500 465 -0.5 2.2 5.8 44.90 45.64 44.14 44.35Overall 67.5 0.5 2.3 4.1 530 2000 464 -1.0 2.7 4.0 45.32 46.19 44.47 44.4554805 72.0 0.4 2.3 3.4 1000 1500 623 -0.25 2.2 3.7 45.33 46.04 44.45 44.35Abdo et al. (2009) 67.5 0.4 3.2 2.4 800 1600 411 1.0 2.2 3.7 45.30 46.68 44.70 44.25Note. Columns: (1) time [MJD; (2) radius at whi h most of the dissipation o urs [1015 m; (3) luminosity of the a retion disk in Eddingtonunits; (4) inje ted ele tron power in the omoving frame [1043 erg s−1; (5) magneti eld [gauss; (6, 7, 8) random ele tron Lorentz fa tors γe,break,

γe,max and γe,peak, respe tively; (9, 10) power law indexes of the ele tron distribution below and above γe,break, respe tively; (11) radiation and magneti energy density in the omoving frame [erg m−3; (12, 13, 14, 15) radiation, proton, ele tron and magneti eld power of the jet [erg s−1. See the textfor details and Fig. 11.

Page 39: SLAC-PUB-14903 · 2012-03-29 · Fisica, ersità Univ rieste, T I-34127 Italy 11 Istituto Nazionale di Fisica Nucleare, Sezione a, v ado P I-35131 Italy 12 to Dipartimen di Fisica

39 Table 5: Results of the tting of the light urves with a onstant ux line and maximumobserved fa tor of ux hange.Band/Filter/Frequen y χ2 Fa tor Flux Changeγ ray 2.0 2.2X-ray 30.3 3.9UVW2 22.0 1.9UVM2 16.7 1.9UVW1 10.2 1.8U 28.3 2.4B 19.6 2.5V 12.5 2.7R 22.4 2.9J 46.8 1.9H 41.6 1.8K 60.9 1.637 GHz 5.9 3.215 GHz 252.3 2.6


Recommended